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Defining features of diverse and
productive agricultural systems:
An archetype analysis of U.S.
agricultural counties

Katherine S. Nelson'* and Emily K. Burchfield?

'Department of Geography and Geospatial Sciences, Kansas State University, Manhattan, KS,
United States, 2Department of Environmental Sciences, Emory University, Atlanta, GA, United States

Prior research suggests that greater spatial diversity in crops and land use is
associated with higher crop yields and improved ecosystem function. However,
what leads to the emergence of agricultural systems that meet both productivity
and ecological health goals remains an open question. Understanding the
factors that differentiate these places from other agricultural systems is key to
understanding the mechanisms, pathways, consequences, and constraints to
employing diversification as a tool for increasing agricultural sustainability. In this
study, we employ archetype analysis to examine the factors uniquely associated
with the conjoint existence of high crop diversity and high crop productivity.
We identify five agricultural system classes that represent a range of diversity
and productivity combinations using k-means cluster analysis then use random
forests analysis to identify factors that strongly explain the differences between
the classes—describing different agricultural production regimes. Our exploratory
analysis of the difference in agricultural system factors across classes suggests
(1) crop diversity and its preconditions are associated with the highest yields,
(2) biophysical conditions bound diversity-productivity realities, (3) productivity
comes at a petrochemical cost, and that (4) crop rotations are a key diversification
strategy. Overall, our results suggest that despite clear biophysical constraints
on transitions to high diversity—high productivity systems the role of actionable
factors on crop production regimes is stronger, providing reason to be hopeful
about transitions to agricultural production regimes fit for new climate realities.
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1. Introduction

Agricultural expansion and specialization have led to dramatically simplified landscapes
over the last 200 years (Aguilar et al.,, 2015; Khoury et al., 2016; Landis, 2017). This is
particularly true in the United States (U.S.), where agriculture now accounts for over
50% of land area, and where more than 60% of this agricultural land is cultivated
with one of three crops: corn, soy, or wheat (Bigelow and Borchers, 2017; Spangler
et al, 2020; Crossley et al, 2021). While average crop diversity across the US has
been relatively stable since 2000, the number of crops grown remains dramatically
lower than what was observed in the late 1800s and early 1900s despite much
higher area of extent under cultivation (Aguilar et al, 2015; Crossley et al, 2021).
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This simplification of agricultural landscapes—in terms of
the loss of natural and semi-natural habitat or a reduction
in the number of crops grown—has been shown to adversely
affect ecosystem services that support crop production including
pollination, pest management, water retention, nutrient supply
and soil health, thereby threatening the long-term productivity of
agricultural systems (Swift et al., 2004; Zhang et al., 2007; Smith
et al., 2008; Grab et al., 2018; Karp et al., 2018; Dainese et al.,
2019; Garland et al., 2021; Hemberger et al., 2021). For example,
Hemberger et al. (2021) find that richness and occurrence of a key
pollinator in the U.S., bumblebees, has declined with reductions in
regional crop diversity. Similarly, in a global meta-analysis, Dainese
et al. (2019) report that reductions in natural and seminatural area
around crop fields are associated with declines in natural predator
and pollinator richness and abundance.

A growing body of research suggests that in addition to
boosting ecological health, agricultural diversification is associated
with multiple agricultural benefits. First, field-scale research
suggests that increased crop diversity may reduce the need for
chemical inputs (Redlich et al, 2018; Thomine et al, 2022),
supporting ecosystem health while also reducing on-farm expenses.
Relatedly, agricultural experiments and landscape-scale studies
suggest that increasing crop diversity and natural habitat near crop
fields are associated with higher crop yields (Smith et al., 2008;
Grab et al., 2018; Burchfield et al.,, 2019; Dainese et al., 2019;
Galpern et al., 2020; Garland et al, 2021) and increased yield
stability (Redhead et al., 2020; Nelson et al., 2022). More diverse
agricultural landscapes are also associated with higher financial
returns (Sanchez et al., 2022), reduced farm economic volatility
(Abson etal., 2013), and more stable national food supplies (Renard
and Tilman, 2019).

Prior research has examined determinants of crop productivity
(Lobell and Gourdji, 2012; Elliott et al., 2014; Zhao et al.,
2017; Mourtzinis et al., 2020; Burchfield and Nelson, 2021),
described trends in crop diversity (Aguilar et al, 2015; Goslee,
20205 Crossley et al., 20215 Spangler et al., 2022b), and evaluated
the relationship between these two agricultural system attributes
(Burchfield et al., 2019; Nelson and Burchfield, 2021; Spangler
et al, 2022b). However, there is little research exploring the
emergence of systems that are both diverse and productive, crucially
meeting both agricultural and ecological goals. For example,
Pardey and Alston (2021) describe trends in US farm productivity
and suggest that new technologies (including machinery and
chemical inputs), farm consolidation, and regulations led to
the emergence of high productivity agricultural systems between
the early to mid-1900s. On the other hand, in a study of a
US region with relatively high crop diversity, Spangler et al.
(2022a) find that diversity in the region is strongly driven by
crop rotations associated with established crop markets and
that further diversification is disincentivized by the current
regulatory environment. While treated separately, the factors
associated with productive and diverse agricultural systems are
likely interrelated. For example, Mourtzinis et al. (2020) find
that up to 67% of average yield in the US Midwest can be
explained by regional soil and climate characteristics; however,
in many contexts, these same biophysical conditions may also
constrain crop diversity by limiting cultivation choices for farmers.
Similarly, access to specific equipment or inputs can support
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production outcomes while constraining on-farm cultivation
possibilities (Vanloqueren and Baret, 2009; Rissing, 2016; Clapp,
2021).

Relatedly, there is a need to understand the potential
consequences for farmers (both benefits and costs) of productive
and diverse agricultural realities. Historically, industry advocacy
and government programs have strongly incentivized the
cultivation of a small subset of intensively managed commodity
crops (McGranahan et al, 2013). This has encouraged crop
specialization and farm consolidation (Lowder et al., 2016; Key,
2019; Pardey and Alston, 2021), creating increasingly simplified
agricultural landscapes in which large areas are cultivated with
a single crop (Spangler et al., 2022b). These systems are highly
efficient and productive (Drache, 1976; Raup, 1978; Duffy, 2009;
Spangler et al., 2020); however, many of these systems are also
heavily dependent on government support (Burchfield and Nelson,
2021; Spangler et al., 2022b), are often not associated with positive
livelihood outcomes (Diirr, 2016; Burchfield et al.,, 2022), and can
be less resilient to environmental stressors (Annan and Schlenker,
2015).

The conditions that enable or support the emergence of
agricultural systems that can support a diversity of cultivation
realities and better ecosystem health, while also meeting crop
Identifying
these conditions is key to understanding pathways toward

productivity goals remains under examined.
employing crop diversification as a tool for increasing agricultural
sustainability. This is particularly important in the context of
climate change—where transitions in agricultural production
regimes are not just advisable but will ultimately be a necessity—as
biophysical suitability for crop production shifts across regions
and the globe (Zhao et al., 2017; Burchfield, 2022) and productivity
growth from technological advances and chemical inputs continues
to decline (Burchfield and Nelson, 2021; Pardey and Alston, 2021).
In this study, we employ archetype analysis to examine the
factors uniquely associated with the conjoint existence of high
crop diversity and high crop productivity agricultural systems and
contrast these systems with counties with alternate crop production
regimes. Our analyses provide information about constraints,
benefits and tradeoffs, and opportunities for diversification of crop
production systems. In addition to identifying enabling conditions
and potential drivers that lead to diverse and productive systems,
and potential positive outcomes associated with such systems,
we identify pathways for transitioning toward more diverse and
productive systems.

2. Methods

We applied k-means clustering to county-level indicators
of land use and yields of major commodity crops (corn, soy,
winter wheat, hay, and alfalfa) to produce a diversity-productivity
typology. This typology distills five commonly found intersections
of crop diversity and crop productivity across the US: high diversity
and productivity (HD-HP), low diversity and productivity (LD-
LP), high diversity and low productivity (HD-LP), low diversity and
high productivity (LD-HP), and average diversity and productivity
(AVE). We then employed random forests analysis to detect
the biophysical, agricultural, and socioeconomic attributes that
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most strongly predict a county’s diversity-productivity class within
this typology. We also conducted national descriptive analyses
to compare these attributes across each of the five diversity-
productivity classes.

2.1. Crop productivity

To operationalize crop productivity, we constructed panel
datasets merging United States Department of Agriculture (USDA)
National Agricultural Statistics Service (NASS) Survey vyield
estimates with local indicators of weather and soil characteristics
for all U.S. counties cultivating alfalfa, corn, hay, soy, or (winter)
wheat from 2008 to 2018. We excluded any counties with fewer
than three yield observations over this period. We constructed
two seasonal weather indicators—growing degree days (GDDs)
and total precipitation (TP)—from daily gridded four-kilometer
temperature and precipitation data provided by the PRISM Climate
Group (2014). Season duration was defined using the spatially
explicit, crop-specific planting and harvesting dates provided by
Sacks et al. (2010). GDDs—an indicator of cumulative temperature
exposure—is the sum of mean daily temperatures above a crop-
specific threshold over the crop’s growing season,' while TP is
the sum of precipitation (in millimeters) throughout the growing
season. To control for the effects of irrigation on agricultural
production, we also collected county-level data describing the
percent of agricultural land irrigated (USDA NASS, 2020). In
counties reporting percent agricultural land irrigated, we replaced
missing values through time with linearly interpolated estimates
from the MiRAD project (Pervez and Brown, 2010), which we
standardized by agricultural extent estimates from the USDAs
Cropland Data Layer. We constructed county-level indicators of
soil characteristics using four variables from the Harmonized
World Soil Database (Nachtergaele et al., 2009): topsoil pH, topsoil
organic carbon, topsoil cation exchange capacity, and topsoil
exchangeable sodium percentage.

As described by Burchfield and Nelson (2021), we quantified
crop productivity as the extent to which—given biophysical
conditions, regional norms, and national yield trends—a county’s
yields have diverged from national averages over the last decade.
Specifically, we used Bayesian hierarchical models that control
for biophysical conditions, regional norms, and national temporal
trends to isolate the extent to which a county’s yields differed
from national averages over the last decade (see Burchfield and
Nelson, 2021 for more detail). Lower values indicate that yields of
corn, soy, winter wheat, hay, and alfalfa are lower than expected
given local climate, soil conditions, water access, national yield
trends, and regional yield norms, while higher values indicate
yields that are surprisingly high given the same constraints. This
approach allows us to isolate spatial variability in yields unexplained
by the biophysical, isolating the influence of human activities on
yield (Burchfield and Nelson, 2021). These yield residuals capture

1 GDD baseline temperature of 0°C for winter wheat and hay, 10°C for
corn and soy and 15°C for alfalfa (Agweather Connection, n.d.; Corn Growing

Degree Days, n.d.).
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actionable determinants of productivity that can be altered by
farmer decisions and government interventions.

2.2. Crop diversity

To operationalize crop diversity, we constructed an indicator of
crop diversity (Shannon Diversity Index) from the USDA Cropland
Data Layer—a 30m annual land use dataset based on satellite
imagery and extensive ground truth data—for all counties in
the coterminous U.S. and all years from 2008 to 2018 (USDA
CropScrape, 2018). The Shannon Diversity Index measures the
proportional abundance of each land use category in a given region
(in this case counties) in terms of the abundance and evenness of
land-cover categories (McGarigal, 1995). To create our diversity-
productivity typology, crop diversity was operationalized as the
average of the Shannon Diversity Index in each county across
all years.

2.3. Building a diversity-productivity
typology

Our typology was built using k-means cluster analysis on our
county-scale crop diversity and crop productivity metrics. The
metrics were standardized using z-scores before running a five-
cluster k-means model in R (R Core Team, 2017). To eliminate
productivity and diversity value overlap across classes, we identified
the subset of counties with diversity and productivity values that
do not overlap with values observed in other classes. To do this,
we selected counties with crop productivity and crop diversity
values either within 1/3 standard deviation of the class mean or
more extreme than the class mean (Supplementary Table S1). For
example, to belong to the high diversity and high productivity
subset, a county had to have values of both crop diversity and
crop productivity that were greater than or equal to the class
mean minus the class standard deviation divided by three (see
the Supplementary material for more information). We refer to
these counties as archetypal counties (n = 520), or the counties
that represent the most characteristically high diversity and high
productivity (HD-HP), low diversity and high productivity (LD-
HP), low diversity and low productivity (LD-LP), high diversity and
low productivity (HD-LP), or average (AVE) cropping systems in
the U.S.

2.4. Agricultural system attributes

To detect the attributes that most strongly predict a county’s
diversity-productivity class, we collected additional county-
level data describing biophysical conditions, farm management
decisions, land use change, regional socioeconomic conditions,
farmer characteristics, and farmer livelihood from several sources
Indicators

(Supplementary Table 2). of farm management

decisions, farmer characteristics, regional socioeconomic

conditions, land use change, and farmer livelihoods were
collected from the USDAs quinquennial Census of Agriculture
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(USDA NASS, 2020). For this data source, we included only
variables with <10% missing data for the period of interest
(Supplementary Table 2). We standardized predictors (where
applicable) to facilitate comparison across counties using “total
operated acres” which includes agricultural land used for crops,
pasture, or grazing, as well as woodlands, farm roads, and
farm buildings.

Measures of crop processing and grain storage infrastructure
density were constructed using data on the number of relevant
business records (according to SIC industry codes) in each county
from DataAxle Reference Solutions® (Supplementary Table 3) to
reflect regional socioeconomic conditions. In addition, a farm
management decision measure of EQIP conservation program
participation was constructed for each county using individual
practice level records from 2009 to 2018 made available by Basche
et al. (2020). Practices that focus on improvement of land and soil
conditions were selected (Supplementary Table 4) and the average
total acres in a program for each county, between 2009 and
2018, was computed. This acreage value was normalized using
total operated acres in each county. Economic data was obtained
from the U.S. Bureau of Economic Analysis (BEA) (2021) and
used to compute regional socioeconomic condition and farm
management decision measures of county population, percent of
jobs that are on farms, percent of county GDP from agriculture,
and percent of agricultural receipts from livestock in each county-
year. Biophysical condition measures® were obtained from the
sources described above and from the 3D Elevation Program (US
Geological Survey, 2019). Land use change measures were obtained
from Census of Agriculture or calculated from the Cropland Data
Layer using the landscapemetrics R package (Hesselbarth et al.,
2019). Finally, farm management decisions about crop rotations
were represented using a metric of rotational diversity calculated
from the Cropland Data Layer as the county average of the count
of unique crops planted on a pixel between 2008 and 2018. This
estimate of rotational richness gives an approximation of the
relative use of crop rotations in counties in our sample. Annual and
quinquennial measures were averaged to produce an average value
for each county between 2008 and 2018.

2.5. Diversity-productivity class attributes

We employed random forests classification analysis on our
full set of 2,238 counties without any missing agricultural
system attribute information to detect the attributes that most
strongly predict a county’s diversity-productivity class using the
randomForest package in R (Liaw and Wiener, 2002). We first used
all 56 variables in Supplementary Table 2 to predict county classes;
however, because many of these variables are highly correlated,
within categories of agricultural system attributes, we iteratively

2 Note that because our measure of crop productivity accounts for
biophysical conditions we do not expect biophysical conditions to be
strongly associated with the crop productivity component of our typology.
However, we retain these biophysical factors to determine if biophysical
conditions are strongly associated with the crop diversity component of the

typology.

Frontiers in Sustainable Food Systems

10.3389/fsufs.2023.1081079

removed collinear variables (based on a bivariate correlation of 0.6
or higher) with lower variable importance until a reduced set of 34
variables with low multicollinearity remained. We then predicted
the diversity-productivity class for the subset of archetypal counties
using the final set of reduced variables (Throughout we refer to
analyses in which data for all counties was used as “full” and
analyses that are conducted on the subset of 520 archetypal counties
as “archetypal”). Performance of the random forests models was
evaluated using OOB error rate, class-specific error rates, as well as
overall error rate and class-specific balanced accuracy from cross-
validation on a held-out sample (70% of data used for training,
30% for testing). Note that tests using standard random forests
with balanced class sizes (equally sized random samples from each
class) and conditional permutation-based random forests modeling
produced similar results (Strobl et al., 2008). For both the random
forest analysis with the full dataset and with the subset of archetypal
counties, we also examined the predictive accuracy of the random
forests model across counties to determine if there were spatial
patterns in classification accuracy. The predictive accuracy for each
county was calculated as the proportion of random forest trees
(from 500 iterations) in which the assigned k-means class was
correctly predicted using the agricultural system attribute variables.
Spatial patterning in classification accuracy may be partially a factor
of imbalance in the sample size for each class and the locations of
each class but may also be related to limits in the ability of our data
to represent all agricultural systems in the U.S. equally well.
Random forests classification does not establish causal
relationships, but instead identifies strong associations county
attributes and diversity-productivity class. The association
between the diversity-productivity typology we constructed
and agricultural system attributes could reflect forces driving
diversity or productivity outcomes, consequences of diversity
or productivity regimes, or secondary effects correlated with
productivity and diversity norms. For example, largest patch index
is a measure of landscape configuration complexity, which is
distinct from, but related to, crop diversity. Landscape complexity
itself is a function of land cover and is therefore driven by land use
change, much as crop diversity is driven by agricultural land use
change. Therefore, landscape complexity is not necessarily a driver
of county diversity-productivity class or a consequence of county
diversity-productivity class but is instead an associated factor
that describes the structure of the landscape—the arrangement of
land uses—in counties of different types. To determine specific
agricultural system factors that differentiate classes, we used
descriptive data analysis to explore the distinguishing features of
diversity-productivity classes. This analysis provides additional
insights into potential drivers, consequences, and secondary effects
of the type of agricultural production practices in these counties.

3. Results

The existence of agricultural systems with both high
agricultural diversity and productivity may be the result of
biophysical conditions that enable both high yields and high
diversity in the same location or the result of driving forces
such as land use change, agricultural management, and other
socioeconomic and structural factors. We consider places with
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both high levels of diversity and high levels of crop productivity
to be “bright spots” that meet productivity goals and (to a certain
extent) tend closer to ecological goals. Understanding the factors
that differentiate these places from other agricultural systems is key
to understanding the mechanisms, pathways, consequences, and
constraints to employing diversification as a tool for increasing
agricultural sustainability.

In what follows we describe our typology based on overall
productivity across five major commodity crops (corn, soy, wheat,
hay, alfalfa) and compositional diversity of agricultural land cover
using the Shannon Diversity Index. We then report the results of
random forests analyses that identify factors that strongly explain
the differences between classes in the typology when examining all
counties and when examining only strongly archetypal counties.
Lastly, we use exploratory data analysis to identify factors that
might explain productivity differences in places with shared high
levels of diversity and factors that may explain differences in
diversity in places with shared high levels of productivity.

3.1. K-means

The k-means analysis on the full dataset of US agricultural
counties produced five classes of counties based on their diversity
and productivity levels. The class means for diversity and
productivity (Table 1) suggest that counties in each class can be
generally identified as either high diversity—high productivity
(HD-HP), high diversity—low productivity (HD-LP), low
diversity—high  productivity (LD-HP), low diversity—low
productivity (LD-LP), or average (AVE). These classes tend
to be regionally consistent—occurring in spatially contiguous
clusters in space and reflecting regional differences in agricultural
norms (Figure 1). The LD-HP class is primarily located in
the Midwestern U.S. in the Heartland Farm Resource Region
(Supplementary Figure 1), an area known for its monoculture
production of corn and soy. Counties belonging to the HD-HP
class are primarily located within USDA’s designated Fruitful Rim
and Southern Seaboard Farm Resource Regions in the Southeast
and Northwest of the U.S. Meanwhile counties classified as HD-LP
are found primarily in the Northern Great Plains while counties
in the LD-LP are mostly located in the Prairie Gateway (around
the Ogallala aquifer) and Basin and Range regions. Interestingly,
AVE counties are located primarily between LD-HP counties and
other types, suggesting possible spatial autocorrelation in regional
production norms.

When examining the scatter plot of diversity-productivity
values for each county and their assigned class from the k-
mean analysis (Figure 1) it is apparent that even though the class
means align with contrasting diversity-productivity profiles it is
not uncommon for counties in each of these classes to have a
characteristic that does not conform with our generalized naming
convention. For example, some counties in the class we have named
HD-HP have lower diversity values than some counties in the LD-
HP class. In short, while the k-means classification system identifies
counties that are most alike in terms of diversity and productivity,
it provides an imperfect representation of the profiles of interest.

To examine counties that are the most strongly associated with
each diversity-productivity class—i.e., those that are archetypal

Frontiers in Sustainable Food Systems

10.3389/fsufs.2023.1081079

of each class—we removed counties with values of diversity
or productivity that overlap with values observed in other
classes. For example, HD-HP classified counties with diversity
levels lower than those in the LD-HP, LD-LP, or AVE class
were dropped from subsequent analyses. The removal of these
counties resulted in a pattern of distinct, isolated, spatial clusters
of different diversity-productivity classes (Figure 2). Because
the k-means process used to develop this classification is
agnostic with respect to location, this again suggests that the
conjoint occurrence of diversity-productivity outcomes is spatially
auto correlated.

3.2. Random forests

We used random forests classification to identify the
agricultural system attributes most strongly associated with the
diversity-productivity typology both for the full set of agricultural
counties and the subset of archetypal counties. The random
forests analyses suggest that attributes most predictive of a
county’s diversity-productivity class are related to local biophysical
conditions (e.g., growing degree days, total precipitation,
elevation, and soil cation exchange capacity) and on-farm
management decisions (e.g., herbicide application, rotational
diversity, machinery expenses) (Figures 3, 4). The overwhelming
importance of biophysical conditions in shaping agricultural
realities persists despite controlling for biophysical conditions
in our measure of crop productivity. Some land use attributes
(e.g., percent natural cover and percent of county area devoted
to agriculture) are moderately associated with county class while
regional socioeconomic characteristics, farmer characteristics,
and on-farm livelihood indicators are weakly associated with
county class. These findings generally hold true for models
with all county locations and for models with only archetypal
counties. One notable difference is that the archetypal results
suggest that rotation diversity (an on-farm management decision
factor) and not seasonal growing degree days is the strongest
predictor of archetype class (Figure 4). In addition, herbicide use
has higher variable importance than any biophysical factor in
the analysis of archetypal counties, as compared to biophysical
factors (growing degree days and total precipitation) in the full
set of counties. These differences in variable importance exist
despite similar distributions for these factors in both the full and
archetypal datasets.

The random forests analyses performed reasonably well at
classifying counties using the agricultural system attributes. The
classification accuracy for the full set of agricultural counties is
~75%; however, the class-specific accuracy is much higher for the
more numerous LD-HP counties than other counties at ~91%
(Table 2). Classification accuracy also varies across space, displaying
clear spatial autocorrelation where classification accuracy tends to
decline with increasing distance from the center of a cluster of
a single class (Supplementary Figure 2). While the classification
accuracy is fairly low, it is significantly better than a 20% accuracy
which would be expected for random assignment of five classes.
The classification accuracy of the random forests model using only
archetypal counties is substantially better than that observed for the
model with all counties. The overall accuracy rate for archetypal
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TABLE 1 Class means for diversity and productivity and count of counties with complete agricultural system attribute information in each class for all
counties and for the subset of archetypal counties.

All Counties (n = 2,238)

Archetypal Counties (n = 520)

Diversity Productivity Count Diversity Productivity Count
HD-HP 0.89 1.59 276 1.00 1.34 90
HD-LP 1.06 ~1.10 388 113 —1.08 126
LD-HP —0.83 0.46 632 —0.85 0.51 204
LD-LP —0.66 ~1.09 289 —0.93 -117 74
Average 051 0.03 653 0.44 —0.05 26

Values are standardized using z-scores.

Productivity

0

1 2
Crop Diversity (SDI)

FIGURE 1

borders indicate boundaries for USDA Farm Resource Regions (FRRs).

B or [ Average [l Hop [T P

Spatial distribution of county types specified using k-means cluster analysis and scatter plot (inset) of diversity and productivity for each class. Black

HD-HP

county classification is ~88% with more balanced class-specific
classification accuracy where the balanced accuracy is 97% for LD-
HP counties and 86% for HD-HP counties. Despite the removal of
counties with overlapping diversity or productivity characteristics
in the archetypal county analyses, clear spatial patterns in
classification accuracy are still observed (Supplementary Figure 3).
Overall, the random forests analysis suggest that some agricultural
system attributes are strongly associated with, and predictive of,
diversity-productivity classes. The consistency of these attributes
at predicting diversity-productivity class is suggestive of the
presence of different agricultural production regimes—consistent
configurations of biophysical, social, economic, and regulatory
factors that define the organization of the system. However, the
non-random spatial variation in classification accuracy suggests
that the standard set of factors examined in the random forest
analyses does not describe the agricultural system equally well in
all counties.

Frontiers in Sustainable Food Systems

3.3. Descriptive class attribute comparison

While random forests can identify the agricultural system
attributes most predictive of a county’s diversity-productivity
class, additional analyses are needed to determine which specific
factors differentiate the five classes. We employed exploratory
data analysis to identify the distinguishing features of classes.
This analysis provides additional insights into factors that
drive or enable the development of diverse and productive
(or vice versa) agricultural landscapes. This analysis also
provides insight into possible consequences, for farmers or
ecosystems, of different agricultural production paradigms.
As we are most interested in identifying the enabling factors
that support the emergence of diverse and productive counties
as well as the levers that may be used to transform LD-HP
and HD-LP counties into HD-HP counties, we focus our
descriptive analysis on factors that show notable differences
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across archetypal HD-HP, LD-HP, and HD-LP counties
(comparisons across all classes and variables are provided in

the Supplementary material).

3.3.1. Biophysical
We find that soil
precipitation distributions vary across classes (Figure 5A and

conditions, temperatures, and
Supplementary Figure 4).  Specifically, HD-HP counties tend
to have better growing conditions for many crops: warmer
growing season temperatures (higher GDD values), lower silt
levels, lower cation exchange capacity, higher average (though
highly variable) sand levels, more irrigated land, and higher
total precipitation when compared to the other four county
types. This suggests that HD-HP cropping systems are made
possible in part by the presence of biophysical conditions that
are highly favorable for crop production and that offer greater
flexibility in crop choice. Biophysically, LD-HP counties and
HD-HP are fairly similar—the most striking differences between
these two groups are in growing degree days and irrigation
access, with HD-HP counties having higher average levels of
both. This suggests that key target crops for diversification
should be able to tolerate the lower GDDs in LD-HP areas and
have reduced irrigations needs. In contrast, HD-LP counties
tend to have higher levels of cation exchange capacity and
amount of topsoil silt, higher elevations, and lower levels of
total precipitation and GDD, suggesting crop production in
these areas may be constrained by water availability, soil quality,
and topography.
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3.3.2. Farm management

Unsurprisingly, counties classified as LD-HP are associated
with higher application rates of herbicides and fertilizer,
higher rates of crop insurance coverage, higher expenditures
on machinery, lower rotational diversity, and lower rates of
participation in EQIP conservation programs relative to other
classes (Figure 5B and Supplementary Figure 5). Conversely,
HD-LP counties are associated with lower machinery and labor
expenditures, lower chemical inputs, and higher rates of tenancy
and part ownership of operated land. HD-HP counties report
higher rates of EQIP and conservation acreage than LD-HP
counties but show similar distributions as the LD-HP counties
for government funding (other than crop insurance) and acres to
which insecticide is applied. They also exhibit high levels of labor
expenses and higher rates of full ownership of operated acres.

3.3.3. Land use and landscape characteristics
Landscapes in counties classified as LD-HP are dominated
by large-scale crop production as reflected in larger agricultural
patch sizes, higher rates of agricultural land cover, less land
devoted to pasture, and less natural cover (Figure5C and
Supplementary Figure 6). Many of these counties are located in the
Midwestern US and are dominated by corn and soy production
(Supplementary Figure 6). The low productivity HD-LP class has a
relatively high percent of county area dedicated to pasture. Diverse
counties (HD-HP and HD-LP) tend to have experienced recent
expansion in agricultural area and have high edge distance, which
indicates a high degree of complexity in the arrangement of land
uses that may be created by irregular field shapes and linear features
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such as riparian buffers, prairie strips, or hedgerows. However,
agricultural expansion is more pronounced in HD-LP areas, which
have also experienced large growth in alfalfa, corn, and hay acreage.
This expansion of agricultural areas in HD-LP counties has been
accompanied by a strong increase in landscape diversity. The HD-
HP class on the other hand, shows a slight reduction in landscape
diversity over the last decade.

3.3.4. Regional socioeconomic conditions

In terms of regional socioeconomic conditions, we find
that counties classified as LD-HP tend to have a high grain
storage facility density relative to other counties. This reflects
the dominance of big commodity crops in these counties and
the importance of storage infrastructure for large-scale grain
production (Figure 5D). Counties classified as HD-LP tend to
have the largest farm operations, perhaps suggesting that crop
production in these lower producing areas has been more
economically feasible via economies of scale. Both high diversity
and high productivity counties (HD-HP, HD-LP, and LD-HP) tend
to have a high percent of county GDP from agriculture relative

Frontiers in Sustainable Food Systems

to the other classes. Put another way, the percent of a county’s
GDP that comes from agriculture, and hence the importance of
agriculture to the local economy, is low in the average and LD-LP
counties, relative to other county types (Supplementary Figure 7).

3.3.5. Livelihoods

Unsurprisingly, productive places (the HD-HP and LD-HP
counties) tend to be associated with the highest crop sales per
acre (Figure 5E). However, both productive places and diverse
places (HD-HP, HD-LP, and LD-HP), show relatively high total
commercial sales and incomes (Supplementary Figure 8). The HD-
HP counties have a very small proportion of farm receipts from
livestock sales relative to other counties reflecting a strong emphasis
on crop production (Supplementary Figure 8). Relatedly, slightly
higher farm incomes in HD-LP and LD-HP counties than in
HD-HP counties may be the result of increased livestock/animal
production in the HD-LP and LD-HP counties that provides
some economic diversification. Overall, these trends suggest that
outcomes related to farmer wellbeing are not significantly different
across counties with high production or high diversity. In other
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words, the challenges of managing diversified cropping systems do
not necessarily result in reduced net farmer income.

3.3.6. Farmer characteristics

While differences in farmer characteristics across classes are
generally not significant, farmer age appears to be higher in
HD-HP counties, while farmer experience tends to be higher in
counties classified as LD-HP and HD-LP (Figure 5F). Notably, the
difference in experience between the LD-HP and HD-HP classes is
significant, indicating that farmers in HD-HP counties usually have
less experience than farmers in LD-HP counties. Again, while the
trends are not statistically significant, the LD-HP class shows the
lowest average level of female farmers (Supplementary Figure 9).

4. Discussion

In the ongoing debate on the role of diversification in
promoting sustainable agricultural systems, an unanswered
question is what distinguishes counties that have successfully
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maintained high crop diversity and high crop productivity from
those that are not diverse or productive. Our analyses suggest
that actionable agricultural system attributes including on-farm
management, federal support, and agricultural infrastructure
as well as non-actionable biophysical conditions are strongly
predictive of productivity-diversity —outcomes. Moreover,
archetypal counties are more strongly predicted by human,
on-farm, decision-making than by biophysical conditions. This
suggests that, given climate and soil conditions, farmers are making
additional choices that render their county unusually diverse or
productive. That actionable factors play the strongest role in
distinguishing major agricultural production regimes across the
US is promising as it suggests significant agricultural production
regime transitions fit for new climate realities are feasible.

Notably, we find that commodity crop production regimes
are strongly spatially autocorrelated across counties, highlighting
centers of activity that have a regional “zone of influence”
(Supplementary Figure 10) and reflecting well-established regional
economic geographies of agriculture. While there are certainly

differences, our typology clearly concords with the USDAs Farm
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TABLE 2 Random forests analysis performance metrics.

Performance Metric All Counties Archetypal

(n =1,567) Counties
(n = 364)

Overall OOB error 25% 12%

Cross-validation overall accuracy 73% 87%

rate

p-value (Accuracy > No 2.2e—16 2.2e—16

Information Rate)

Class-specific cross-validation balanced accuracy

HD-HP 75% 86%

HD-LP 78% 91 %

LD-HP 91% 97%

LD-LP 80% 91%

AVE 81% 72%

Resource Regions (Supplementary Figure 1) that were delineated
using cluster analysis of farm characteristics, farm production
regions, land resource regions, and crop reporting districts
[Economic Research Service (ERS), 2000]. The autocorrelation
observed corroborates prior work finding that cultivation regimes
are strongly shaped by meso-scale spatially-autocorrelated realities
(Spangler et al., 2022b) and highlights the importance of landscape
or regional coordination and planning for agricultural production
regime transitions. In addition, our findings suggest that many
counties in the US are either in a transitory state (e.g., a high
diversity—high productivity county that has recently experienced
strong declines in diversity) or belong to a production regime
that is not well represented by the national data and public
statistics used in our analyses (e.g., counties with a heavy focus on
fruit and vegetable crops). The results of our descriptive analyses
examining how agricultural system attributes vary across classes
point to several characteristics that may constrain agricultural
diversification and its benefits, but also highlight paths toward
more diversified and beneficial agricultural futures. In what follows,
we discuss four major insights from this analysis that can inform
pathways toward productive and diverse agricultural futures in
the US.

4.1. Finding 1: Crop diversity (and its
preconditions) is associated with the
highest yields

Yields are higher for counties in the HD-HP class than
for any other class, including the LD-HP class. Though crop
diversity is not always associated with higher production,
much higher levels of production seem to be possible in areas
with high crop diversity than in more simplified landscapes.
What is most surprising is that these productivity gains
are associated with Jower rates of petrochemical inputs,
lower rates of federal support, and comparable net farm
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incomes. This suggests that farmers in these HD-HP regions
are reporting higher yields and revenues with fewer inputs
to production.

Understanding the specific mechanisms linking crop diversity
to high productivity is paramount for the agricultural research
community moving forward. While this relationship is explained
in part by favorable biophysical conditions, these results suggest
that other ecosystem services linked to landscape diversity may
be driving the relationship. These results also highlight how areas
with optimal soil and climate conditions for major crops (e.g.,
the Midwest) that are currently devoted to the production of a
few crops could be prime targets for future crop diversification
efforts. Indeed, as climate change alters the biophysical suitability
of production for many crops (Burchfield, 2022), these systems
could serve as an important reservoir for future biodiversity.
Concerningly, much like Spangler et al. (2022b) we find that
HD-HP counties have experienced recent declines in landscape
diversity, pointing to the strong influence of the market pressures of
the dominant productivist paradigm that led to development of the
LD-HP class. This highlights the importance of creating incentives
that enable the emergence of new cropping alternatives rather
than creating lock-in resulting in brittle, maladaptive cropping
regimes (Petersen-Rockney et al., 2021). Increasing the diversity
of LD-HP regimes and stopping the slide in diversity in HD-HP
regimes will require shifts from federal programs that incentivize
commodity lock-in toward programs that support experimentation
and diversification (Chapman et al, 2022; Wardropper et al,
2022).

4.2. Finding 2: Biophysical conditions
bound diversity-productivity realities

Biophysical conditions tightly constrain conjoint diversity and
productivity patterns. Specifically, HD-HP counties have more
advantageous access to sun (seasonal growing degree days),
soil conditions, and water (higher precipitation and access to
irrigation). These ideal biophysical conditions are harnessed
through the cultivation of highly productive commodity crops
as well as more diversified cropping regimes—as reflected in the
dominance of crop production over livestock, higher rates of
crop diversity, and high commodity crop yields. That biophysical
conditions bound agricultural realities is unsurprising. What is
important however, is the implication that transitions toward HD-
HP agricultural futures may have strong geographical limitations.
Given that many of these HD-HP counties will experience
significant shifts in climate conditions over the next century
(Burchfield, 2022), opening up possibilities for diversification in
landscapes with particularly favorable cultivation conditions could
support climate-smart transitions and boost agricultural resilience
(Hertel et al., 2021). Higher levels of diversity in cropping systems
have the potential to improve crop yields and mitigate the effects
of extreme weather conditions leading to greater yield stability
(Redhead et al.,, 2020; Nelson et al., 2022). Moreover, crop diversity
provides greater stability of total food and nutrition supply (Renard
and Tilman, 2019) and economic value (Birthal and Hazrana,
2019; Sanchez et al., 2022) as crops responses to extreme weather
conditions and changes in climate vary (Elmqvist et al., 2003).
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In addition, the importance of these biophysical constraints
suggest that greater focus needs to be placed on building
markets for non-commodity crops that are well suited to the
biophysical realities of major agricultural regions (Weisberger
et al, 2021). The HD-LP counties examined in this study
suggest that despite relatively low productivity for commodity
crops, economic diversification via livestock production and
increased crop diversity have enabled farmers to maintain similar
net income levels as their counterparts in systems with high
productivity of commodity crops. Similar to Roesch-McNally
et al. (2018) these findings provide evidence that low productivity
conditions may enable the emergence of diversity by weaking
the grip of a productivist paradigm and reducing disincentives
to experimentation.
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4.3. Finding 3: Productivity comes at a
(petrochemical) cost

Another major finding is that federal support (crop insurance,
other government receipts) and chemical inputs (herbicide,
insecticide, fertilizer) are key to supporting highly productive
agricultural landscapes (both LD-HP and HD-HP). While
herbicide and fertilizer applications tend to be lower in HD-HP
counties than in the LD-HP counties, insecticide applications are
comparable in both classes. This may suggest that higher crop
diversity is not necessarily associated with reduced crop pest
impacts (Karp et al., 2018; Haan et al., 2020; Zhang et al., 2020)
or that despite fairly wide-spread adoption of integrated pest
management strategies (Peshin et al., 2009), insecticides are still
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routinely applied to commodity crops as a preventative regardless
of observed pest population abundance (Nault and Huseth, 2016).
If pest populations are lower in high diversity systems, changes
to farmer pest management strategies, to treat only as-needed,
could potentially lead to reduced insecticide applications in high
diversity systems. However, in the absence of such changes to
pest management crop diversification should not be seen as a
stand-alone solution to chemical intensive production practices
that can have a negative impact on ecosystem health.

4.4. Finding 4: Crop rotations as a key
diversification strategy

Our analyses also highlight the importance of crop rotations
in boosting productivity and spatial crop diversity. Counties with
the highest crop productivity (HD-HP) also have the highest
rotational diversity; conversely, counties with the lowest crop
productivity (LD-LP) also have the lowest levels of rotational
diversity. This suggests that crop rotations, long accepted as a
method for improving soil quality and field-scale crop production
(Tiemann et al., 2015; Marini et al., 2020; St. Luce et al., 2020) are
likely a significant source of the ecosystem services that support
high aggregate levels of crop production in high spatial diversity
cropping systems. Though we focus on spatial diversity, our
findings suggest that temporal diversification of cropping systems
could be a major win for agricultural and ecological goals.

We note, however, that the lack of autonomy and flexibility
that many tenant farmers experience may hinder efforts to increase
crop rotation diversity, particularly in LD-HP systems where full-
ownership rates are relatively low. Recent changes to crop insurance
that now allow farmers to insure crops other than just the staple
grains that have been covered for several decades should provide
farmers with greater flexibility in crop choice (Goeringer and
Leathers, 2015; Zulauf, 2020). However, in order to counter current
global market forces federal tools are needed that place more direct
pressure on large commercial agricultural operations to adopt more
ecologically-aware cultivation practices and that build markets for
alternative crops and incentivize cultivation of new and different
crops (Weisberger et al., 2021; Chapman et al., 2022).

4.5. Limitations

Our analyses are not without limitations. First, due to data
availability constraints, our measure of crop productivity only
accounts for the five major commodity crops that constitute
about 80% of cultivated acreage in the US: corn, soy, wheat,
hay, and alfalfa. This limitation makes our findings most relevant
to counties dominated by commodity production. Indeed, our
analyses examining the accuracy of the random forest classification
model suggests that some areas that are well known for production
of crops other than the five selected (e.g., almonds in central
California) have low classification accuracy. This may indicate
that these counties are not well described by the agricultural
system attributes examined. For example, counties with an assigned
initial classification of HD-LP in central California may have high
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production levels for high-value specialty crops like almonds and
wine grapes, and due to the focus on these specialty crops, have
relatively low yields for commodity crops. In this case, the county
agricultural system may more closely resemble other HD-HP
counties than other HD-LP counties.

Our metric of crop diversity (SDI) also presents limitations.
First, SDI is slightly sensitive to area, though less sensitive than
other metrics such as Richness. Larger counties are more likely
to have higher SDI by virtue of their larger area that has more
physical space for different crop types. Second, higher SDI does
not necessarily correspond to improved ecosystem health. For
example, an increase in SDI at the expense of the removal of
natural cover, such as that observed in HD-LP counties, may
not reflect an ecological “win” (Lark et al., 2020; Garibaldi et al.,
2021). Lastly, while this work provides a step toward addressing
the resilience of agroecosystems by providing insight into possible
drivers of regime change, additional work is necessary to test
whether and which of the variables examined drive transformation
over time. Recent work by Chapman et al. (2022) suggests that
temporal mismatch between ecological dynamics and human
decision-making timelines resulting from government programs
and incentives may drive the creation of multiple stable agricultural
regimes. While our work does not focus on temporal dynamics, it
is clear that participation in federal incentive programs is strongly
associated with the emergence of distinct agricultural production
regimes with striking implications for commodity crop production
and ecosystem health.

5. Conclusions

By classifying US counties according to a diversity-productivity
typology and identifying distinguishing features associated with
this typology, this paper provides insights into the enabling
conditions and drivers of diverse and productive agricultural
outcomes, the impact of these agricultural realities on farmer
livelihoods, and levers to create pathways toward diverse
and productive agricultural futures. Notably we find that
biophysical conditions have largely constrained the development
of different agricultural production regimes. Beyond pointing to
potential geographical limitations of agricultural diversification,
this highlights the vital importance of new research examining
how future changes in climate will constrict or alter viable
cultivation portfolios across the US. We also find that incentivizing
more diverse crop rotations, and to a lesser extent, agricultural
conservation programs, may be viable strategies for enabling
transitions from LD-HP to HD-HP agricultural systems. In
addition, while we find that HD-HP systems are capable of much
higher commodity crop yields than LD-HP systems and use
less fertilizer and herbicide, on average, they remain comparably
dependent on insecticides.

Our results suggest that the most dominant regime is that
of low diversity—high productivity systems. These systems are
characterized by large-scale, chemical input driven and crop
insurance supported grain production—often by tenant farmers
with reduced autonomy. This regime may be resilient in that it
persists; however, it is also brittle—dependent on a constant stream
of subsidization and chemical inputs to meet regular production
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goals and manage shocks to the system (Wang et al, 2021).
Moreover, this regime is firmly locked into a productivist paradigm
that emphasizes high production rates at the expense of ecosystem
health and farmer livelihood goals (Meynard et al., 2018).

The analyses presented show that alternatives to the LD-HP
production regime that may better support ecological health, rates
of productivity, and farmer livelihoods do exist. These production
regimes align more closely with the USDAs stated goals for
sustainable agriculture that can “provide more profitable farm
income, promote environmental stewardship, and enhance quality
of life for farm families and communities” (USDA, 2022), but are
less common and more heterogeneous than LD-HP systems. The
alternate production regimes identified appear to be more resilient
to external shocks, as they are less reliant on government funding
and chemical inputs yet maintain similar levels of net income
via crop diversification or economic diversification. However, they
are vulnerable to cooption by the dominant LD-HP paradigm.
Transitions toward alternative diverse production regimes that
meet multiple goals related to productivity, ecosystem health, and
farmer livelihoods will require careful attention to biophysical
constraints—not all places can or should grow staple commodity
crops at high yields—and aggressive investment in agricultural
programs that encourage experimentation with new crops and
crop rotations and develop markets and infrastructure for less
well-known crops.
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