
TYPE Technology and Code

PUBLISHED 08 March 2023

DOI 10.3389/fsufs.2023.1144998

OPEN ACCESS

EDITED BY

Chu Zhang,

Huzhou University, China

REVIEWED BY

Seyed-Hassan Miraei Ashtiani,

Ferdowsi University of Mashhad, Iran

Soumyajit Mandal,

Brookhaven National Laboratory (DOE),

United States

*CORRESPONDENCE

Dan Dai

boatdriver@163.com

Jian Zheng

403671419@qq.com

SPECIALTY SECTION

This article was submitted to

Agro-Food Safety,

a section of the journal

Frontiers in Sustainable Food Systems

RECEIVED 15 January 2023

ACCEPTED 14 February 2023

PUBLISHED 08 March 2023

CITATION

Kang H, Dai D, Zheng J, Liang Z, Chen S and

Ding L (2023) Identification of hickory nuts with

di�erent oxidation levels by integrating

self-supervised and supervised learning.

Front. Sustain. Food Syst. 7:1144998.

doi: 10.3389/fsufs.2023.1144998

COPYRIGHT

© 2023 Kang, Dai, Zheng, Liang, Chen and

Ding. This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Identification of hickory nuts with
di�erent oxidation levels by
integrating self-supervised and
supervised learning

Haoyu Kang1, Dan Dai1*, Jian Zheng2,3*, Zile Liang1,3,4,

Siwei Chen1,3,4 and Lizhong Ding5

1School of Mathematics and Computer Science, Zhejiang Agriculture and Forestry University, Hangzhou,

China, 2College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China, 3Key

Laboratory of Forestry Perception Technology and Intelligent Equipment of the State Forestry

Administration, Hangzhou, China, 4Zhejiang Key Laboratory of Forestry Intelligent Monitoring and

Information Technology Research, Hangzhou, China, 5Lin’an District Agricultural and Forestry

Technology Extension Centre, Hangzhou, China

The hickory (Carya cathayensis) nuts are considered as a traditional nut in Asia

due to nutritional components such as phenols and steroids, amino acids and

minerals, and especially high levels of unsaturated fatty acids. However, the edible

quality of hickory nuts is rapidly deteriorated by oxidative rancidity. Deeper Masked

autoencoders (DEEPMAE) with a unique structure for automatically extracting

some features that could be scaleable from local to global for image classification,

has been considered to be a state-of-the-art computer vision technique for

grading tasks. This paper aims to present a novel and accurate method for grading

hickory nuts with di�erent oxidation levels. Owing to the use of self-supervised

and supervised processes, this method is able to predict images of hickory nuts

with di�erent oxidation levels e�ectively, i.e., DEEPMAE can predict the oxidation

level of nuts. The proposed DEEPMAE model was constructed from Vision

Transformer (VIT) architecturewhichwas followed byMasked autoencoders(MAE).

This model was trained and tested on image datasets containing four classes,

and the di�erences between these classes were mainly caused by varying levels

of oxidation over time. The DEEPMAE model was able to achieve an overall

classification accuracy of 96.14% on the validation set and 96.42% on the test

set. The results on the suggested model demonstrated that the application of

the DEEPMAE model might be a promising method for grading hickory nuts with

di�erent levels of oxidation.

KEYWORDS

hickory nuts, oxidation levels, image classification, Masked autoencoders, vision

transformer, self-supervised, supervised

1. Introduction

There are more than 20 different varieties of walnut. According to FAO (2019),

China produces more than half of the world’s walnuts. From 2009 to 2019, China’s

walnut production increased by 11.3% year-on-year to 2,521,504 tons. The Hickory(Carya

cathayensis Sarg.) is foundmainly in Lin’an District, China. Because of the mountainous and

high-altitude climate, hickory thrives in the area naturally. In Lin’an, the hickory plantation

covers an area of 40,000 km2, with an annual production of 15,000 tons of hickory nuts. The

output value of the whole hickory nuts industry is about 5 billion yuan.
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There are a total of 544 kinds of lipids in mature hickory

nuts (Huang et al., 2022). Furthermore, a mature hickory nut

kernel contains more than 90% unsaturated fatty acids and 70%

oil, which is in the top place in all oil-bearing crops (Kurt, 2018;

Narayanankutty et al., 2018; Zhenggang et al., 2021). The oxidation

of hickory nuts is an inescapable problem and a major contributor

to a decline in the quality of the nuts. It is generally accepted that the

process of lipid oxidation of nuts proceeds by way of a free radical

mechanism called autoxidation (Kubow, 1992; López-Uriarte et al.,

2009).

With the oxidation of hickory nuts, a series of changes in color,

odor, taste, and other conditions occur. Significantly the kernels of

hickory nuts change from light yellow to yellow-brown or brown,

the taste gradually becomes lighter and lighter, and a strong rancid

smell from the nuts (Jiang et al., 2012). Traditional methods of

identifying hickory nuts are mainly manual and electronic nose

screening (Pang et al., 2011). On the other hand, the former

relies mainly on subjective human experience, which complicates

the accuracy of screening and slows down the screening speed.

In addition, electronic nose technology can detect the substance

content of hickory nuts according to the degree of oxidation

and acidity in different storage years (Pang et al., 2019), i.e.,

hickory nuts with different degrees of oxidation will produce

different odors. However, electronic nose technology has a slow

response time and requires special equipment, making it difficult

to promote in the marketplace. Therefore, accurate identification

and fine classification of hickory nuts based on color appearance

could contribute to factory production and processing to safeguard

consumers’ food safety.

In classifying certain agricultural products, shape and color are

the two fundamental characteristics. It is common knowledge that

the most important distinguishing feature between naturally grown

agricultural products is their appearance (Fernández-Vázquez

et al., 2011; Rodríguez-Pulido et al., 2021). For instance, varied

sizes, roundness, lengths, and widths distinguish walnut varieties.

These characteristics are the core foundation for classification.

In studies about walnuts, it is crucial to use their morphological

properties for classification (Ercisli et al., 2012; Chen et al., 2014;

Solak and Altinişik, 2018). Various color characteristics on the

surfaces of objects are crucial for classification, and they primarily

leverage RGB and hyperspectral images to generate. For example,

color information in RGB images could generate a one-dimensional

signal (Antonelli et al., 2004) or a matrix of signals, yielding

excellent classification results for hazelnuts (Giraudo et al., 2018)

and maize (Orlandi et al., 2018).

In addition, hyperspectral imaging technology can achieve the

same higher level of classification accuracy (Alamprese et al., 2021;

Bonifazi et al., 2021). There is also a significant distinction between

RGB and hyperspectral data. RGB data contains less information

than hyperspectral data. Nevertheless, the former is easier to

gain and also widely popular. Although these studies above have

delivered successful results in specific applications, mostly, experts

manually extracted or specified features. In each of these extracted

features, there are both strong and weak features, and if it is difficult

to figure out the strong features of a target, it is challenging to

produce very successful results.

Deep learning (LeCun et al., 2015) is a field of machine

learning that has gained tremendous recognition in computer

vision over the past decade. The pervasiveness of deep learning

is relatively more advantageous than the above methods. Deep

learning methods are mainly multi-layer artificial neural networks

(ANN; like high-dimensional abstract functions) constructed by

computers. In ANNs, image features can generate feedback signals

that help models adjust their parameters. It is until the final ANN

model contains critical features that can distinguish differences

between images.

Deep learning technology has been used extensively for the

classification of agricultural product quality (Ashtiani et al., 2021;

Javanmardi et al., 2021; Bernardes et al., 2022; Mukasa et al., 2022).

A Convolutional Neural Network (CNN) with a shallow depth

was set up to classify four classes of tobacco with a 95% accuracy

(Li et al., 2021). Nasiri et al. (2019) employed a modified version

of VGG16 to identify dates, achieving an accuracy of 96.98%.

Various models were created to classify the maturity of agricultural

products from different perspectives (Zhang et al., 2018; Garillos-

Manliguez and Chiang, 2021). Moreover, Saranya et al. (2022)

was able to differentiate between four different maturity levels of

bananas with an accuracy of 96.14%. Because of their shallow

architecture, the networks used in the aforementioned applications

may not possess the necessary generalization capabilities. Chen

et al. (2022b) developed a high-performance classification model

based on a 152-layer deep ResNet to identify different types

of walnuts. Additionally, due to the capability of deep learning

algorithms to automatically extract robust advanced features

(Zhang et al., 2019), most studies have not explicitly specified

what characteristics those algorithms have learned. In this way,

manual feature extraction is more conducive to explanation, such

as grading based on the shape, color, and size of strawberries

(Liming and Yanchao, 2010). However, Su et al. (2021) was able

to successfully utilize the ResNet algorithm to effectively assess

the ripeness and quality of strawberries, and noted that pigment-

related information is essential for accurate ripeness recognition.

Such explanations provide greater insight into the potential of deep

learning algorithms. In addition to CNNs, deep learning is also

based on VIT is developing rapidly for a variety of applications like

the classification of weeds from drone images (Bi et al., 2022; Li X.

et al., 2022; Reedha et al., 2022). With the ever-growing number of

emerging technologies, applied research in agricultural products is

becoming increasingly feasible.

Deep learning algorithm is utilized in this paper to

automatically extract the appearance features of hickory nuts,

thereby avoiding the shortcomings of traditional methods while

achieving more effective results. In addition, deep learning-based

classification models are able to process an image in milliseconds

(Lu et al., 2022), which is conducive to enhancing the automation

of factory production and processing and thus improving the

ability to ensure food safety. In this paper, DEEPMAE, a model

algorithm based on deep self-supervised (He et al., 2022) and

supervised learning is constructed, enabling the identification and

distinction between various levels of oxidation and sourness of

hickory nuts kernels. The primary contributions of this paper are

enumerated as follows:
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1. It was demonstrated that the hickory nuts kernels shelled

exhibited significant differences in appearance corresponding to

different oxidation levels.

2. DEEPMAE combines self-supervised and supervised learning,

which are usually considered two different approaches, into a

single unified model. And DEEPMAE outperformed the base

MAE model in classifying hickory nuts kernels. Furthermore,

the DEEPMAE model is lighter. It uses fewer parameters to

achieve better results.

3. It was verified that the features learned by DEEPMAE are

indeed the color and brightness of the hickory nuts’ appearance,

which is consistent with changes in the oxidation of nuts at

different times, thus demonstrating the practical significance of

DEEPMAE. This study can provide some reference value for

hickory nuts production and processing.

2. Materials and methods

2.1. Samples

The hickory nuts were harvested from the well-growing and

ten-year-old hickory trees in Daoshi Town, China (Lin’ an,

118◦58’11” E, 30◦16’50" N, elevation: 120 m) in September 2021.

After harvesting, the nuts were transported to the laboratory and

dried in an oven at 40◦C for 72 h tomaintain their moisture content

below 8%.

2.2. Experimental details and preparation

There are several steps in the experiments of this study, and we

will describe the preparation and experimental details.

2.2.1. To control experimental conditions
The hickory nuts are physically protected by the intact woody

shell, and the lipids oxidize more slowly than they would without

the shell. Generally, the nuts were preserved with their shells

intact. We stored the nuts with the shells intact but sought to

speed up the nuts’ lipids’ oxidation to reduce the experiment’s

duration. Prior to this formal experiment, we determined through

pre-experiments on small samples that the oxidation rate of hickory

nuts at 35◦C was within the tolerable range for this experiment,

so we decided to place the nuts in a constant temperature and

humidity chamber at 35◦C and 35% to accelerate the oxidation

process. Through time, the lipids within hickory nuts kernels

undergo continuous oxidation. In addition, we sampled for the

experiment every 30 days.

2.2.2. To acquire RGB images of nuts kernels
Samples of 280 hickory nuts per experiment were taken in

this study, and the nuts kernels were separated after the shells

were broken by hand. After this, RGB images of the kernels

were acquired.

The image acquisition system is composed by placing a

smartphone connected to a computer on an experimental stand.

The smartphone ismounted horizontally on the experimental stand

while keeping the vertical height constant. In addition, we use

the computer to control the phone to avoid changes in the angle

and position of the phone. In addition, there are two symmetrical

4W lamps to fill in the light. More specifically, the phone was a

Xiaomi 6X with LineageOS, the camera software was OpenCamera,

the camera parameters were 20 megapixels, the lens aperture was

f/1.75, the focal length was 4.07 mm, and the ISO was set to 100.

2.2.3. To measure the physicochemical properties
of hickory nuts

Immediately after completing image acquisition, we physically

pressed the hickory nuts kernels to obtain the nut oil. Then we

measured the oil’s peroxide value (POV) and acid value (AV).

POVs were determined according to the Chinese standard method

GB 5009.227-2016. The peroxide test indicates the rancidity of

unsaturated oils, and the POV is the most commonly used value.

It measures the extent to which the oil sample has undergone

primary oxidation. In addition, the AV is one of the most sensitive

indicators of nut spoilage. In this study, AV was measured using the

method of the Chinese standard GB 5009.229-2016. Approximately

80 mL of oil was extracted in each experiment. Of this, 36 mL was

divided into three replicate experiments for POV measurement,

and the remaining oil was divided into three replicate experiments

for AV measurement.

2.2.4. Summary of preparations
This experiment took four samples with different oxidation

times in this paper, resulting in four sets A, B, C, and D, containing

1,090 good hickory nuts. Additionally, 13,000 RGB images of their

kernels were also taken. All of them were cropped to 512 × 512

pixels. Then, we randomly chose 9,000 images as the training set,

2,800 as the validation set and the remaining 1,200 as the test set.

2.3. An algorithm for aggregating image
values

The CIELAB color space is expressed as three values: in human

vision, the L-value from low to high indicates perceived brightness

from black to white, the a-value from negative to positive represents

green to red, and the b-value from negative to positive represents

from blue to yellow. To investigate the relationship between the

features produced by the deep learning model and the visual

properties of hickory nut kernels, we did targeted processing of the

kernels’ RGB images in the CIELAB color space.

The original image I and the image Ig generated (Equation

1) by fully convolutional networks (FCNN) which were almost

smoothed are first transformed from RGB to CIELAB (Figure 1).

The CIELAB images are split according to the three values. The

corresponding values in the CIELAB color space are combined in

an “enhancement” operation to convert the CIELAB images back

into RGB images. The entire process is almost identical to EdgeFool

(Shamsabadi et al., 2020), except for the “enhancement.”
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FIGURE 1

The process of aggregating an image.

FIGURE 2

Datasets. The four columns are the four sets of experimental images

of hickory nuts kernels, A, B, C, and D; the “Original” row is the

acquired original images, AL* is aggregated images from the L*

channel, Ab* is aggregated images from the b* channel, and AL*b*

is aggregated images from both the L* and b* channels.

Ls
(

Is, Ig
)

= ‖ Is − Ig ‖2 (1)

I = I −
I − β

max−min
×max(I − β) (2)

Our enhancement method, corresponding channel

enhancement of image, is an aggregation algorithm aggregating a

set of data closer to a specified value β (Equation 2). In general, the

β falls within that range of the set. In addition, the L-value, a-value,

and b-value can each be assigned beta values separately. There is

the aggregation of L-values(AL*), aggregation of b-values(Ab*),

and co-aggregation of L-values and b-values(AL*b*), but no

aggregation at the a-value (Figure 2).

2.4. Classification methods

Our final work relies on a deep-learning model for

classification. Based on existing research, this study proposes

a more effective and improved model, and this section describes

the detailed construction of our model.

2.4.1. VIT and MAE
The workflow of Vision Transformer (VIT; Dosovitskiy et al.,

2020) firstly requires dividing the original image into several

regular non-overlapping blocks and spreading the divided blocks

into a sequence, after which the sequence is transmitted into

the Transformer Encoder. Finally, the output features of the

Transformer Encoder are handed over to the fully connected layer

for classification.

Masked autoencoders (MAE;He et al., 2022) is a self-supervised

learning method that infers the original image from local features

strongly correlated with global information. MAE’s Decoder can

reconstruct the same number of features as the original image

blocks, thereby reconstructing a complete image from a partial

image. When applied to downstream classification tasks, the MAE

can split the trained Encoder and Decoder and use only the features

extracted by the Encoder for classification. That is similar to the

process of a standard VIT for image classification. Compared to

VIT, MAE uses only part of the image data for the classification

task, which can significantly reduce computational effort. In

addition, MAE’s Decoder can reconstruct the original image from

partial features, which also can represent feature information in

the association.

2.4.2. Re-attention
The MAE is mainly stacked by the Multi-Head Self-Attention

(MHSA; Equation 3) module in the vanilla VIT. However, the

structure based on the Transformer does not obtain better results

by simply stacking it like the convolutional networks (CNN)

structure. Instead, it quickly sinks into saturation at deeper

levels. That is called attention collapse (Zhou et al., 2021).

Re-attention (Equation 4) could replace the MHSA module in

the VIT and regenerate the attention maps to establish cross-

head communication in a learnable way. 2 is multiplied by

the self-attention map along the head dimension. Re-attention

exploits the interactions between the different attention heads

to collect complementary information, regenerating the attention

graph at a small computational cost but better enhancing the

features’ diversity between the layers. It stands to reason that

the proposed DeepVIT (Zhou et al., 2021) model using the

Re-attention mechanism also achieves excellent performance on

classification tasks.

Self -Attention(Q,K,V) = Softmax

(

QK⊤
√
d

)

V (3)

Re-Attention(Q,K,V) = Norm

(

2⊤
(

Softmax

(

QK⊤
√
d

)))

V

(4)

2.4.3. DEEPMAE
This paper proposes the DEEPMAE model with MAE and

DeepVIT as the backbone (Figure 3). Firstly, unlike VIT, MAE

and DeepVIT, the blocks sequence input to DEEPMAE is

not from the original image but is composed of low-level

features extracted from the original image by convolutional

operations. Secondly, we introduce Re-attention into MAE, reduce
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FIGURE 3

The architecture of DEEPMAE.

the MAE model width, and increase its depth to achieve a

deeper stacking of the Transformer to obtain a more vigorous

representation of some of the blocks, which can reduce the

computational effort while avoiding attention collapse. In addition,

unlike MAE, which uses only the trained parameters of the

Encoder when processing classification tasks, our DEEPMAE

always retains both Encoder and Decoder and combines the

reconstruction of image features and classification into one

complete model. The reconstruction is a self-supervised learning.

It is done by comparing the output features of the Decoder

with the original features and trying to make them as similar as

possible. The classification is a supervised learning. Eventually, the

complete structure of DEEPMAE contains both self-supervised and

supervised processes.

The blocks sequences for MAE, VIT, and DeepVIT are derived

from the original images. This approach starts by slicing an

original image horizontally and vertically and spreading blocks

sliced sequentially into a patch embedding blocks sequence. By

default, a patch, also a block, is 16 × 16 pixels, implemented by

a convolutional kernel and a step size of 16. That results in many

convolutional parameters and a high degree of randomness. The

process of slicing also results in large random matrices, which

somehow affects the stability of the patch embedding and, thus,

the instability of the Transformer (Xiao et al., 2021). Before that,

VGG (Simonyan and Zisserman, 2014) compared the perceptual

fields of small kernels of CNNs with big kernels. They found

that multi-layers successive small kernels and single-layer big

kernels were similar. So VGG replaced the large convolutional

kernels by stacking multiple layers of 3 × 3 small convolutional

operations, and 3 × 3 small convolutional kernels also dominated

the CNNs after that (Simonyan and Zisserman, 2014; Iandola

et al., 2016; Howard et al., 2019; Tan and Le QV, 2020). In

addition to stability, the Transformer model has properties for

global attention computation. However, it lacks some inductive

biases inherent to CNNs, such as translation equivariance and

locality (Han et al., 2020). The Transformer model, therefore, lacks

some local features from earlier layers compared to the CNNs.

Therefore, we change the patch embedding of DEEPMAE to an

operation with multiple small convolutional kernels and convert

the low-level features of the acquired images into patches, similar

to the Image-to-Tokens module (Yuan et al., 2021). In MAE, the

input to the Encoder is a subset of patches, and our DEEPMAE

does the same thing, using only a subset of patches composed of

low-level image features as input to the Encoder. Finally, because

images are inherently strong positional relativities, DEEPMAE uses

a two-dimensional fixed sine-cosine to encode the position of the

spreading patches.

DEEPMAE as a whole also consists mainly of two parts,

an Encoder and a Decoder, but the classifier is added after

the Decoder to make up the whole. The Encoder part is

composed of Transformer blocks composed of Re-attention (RTB).

Decoder consists of self-attention Transformer blocks (STB). It

is clear that Encoder and Decoder are asymmetrical in terms

of both width and depth. In addition, the classifier does not

use all the information from Decoder’s output; it relies only on

some of the features reconstructed by the Decoder to make its

classification decisions.

2.5. Performance evaluation

A confusion matrix (Karl Pearson, 1904) is a performance

measurement technique for classification problems. It’s a

contingency table which contains True Positives (TP), True

Negatives (TN), False Positives (FP), and False Negatives

(FN) of a model’s predictions. DEEPMAE’s primary

responsibility is classification. The classification indicators
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FIGURE 4

POVs and AVs for four experiments. (A) POVs. (B) AVs.

used are accuracy (Equation 5), kappa coefficient (Equation

6; Cohen, 1960), precision (Equation 7), recall (Equation

8), specificity (Equation 9), and F1 Score (Equation 10)

(Labatut and Cherifi, 2012; Giraudo et al., 2018; Alamprese

et al., 2021; Chen et al., 2022a; Saranya et al., 2022) in

this paper.

accuracy =
(TP + TN)

(TP + FP + FN + TN)
× 100 (5)

Kappa =

∑n
i=1 xii
N −

∑n
i=1 (

∑n
j=1 xij

∑n
j=1 xji)

N2

1−
∑n

i=1 (
∑n

j=1 xij
∑n

j=1 xji)

N2

(6)

Precision =
TP

(TP + FP)
(7)

Recall =
TP

(TP + FN)
(8)

Specificity =
TN

(TN + FP)
(9)

F1-Score =
(

2 ∗
(

Precision ∗ Recall
))

(

Precision+ Recall
) (10)

In addition, the reconstruction of image features by Decoder

is a critical component of DEEPMAE. We use the Multi-scale

Structural Similarity Index (MS-SSIM; Wang et al., 2003), the

Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS;

Wald, 2000), and Visual Information Fidelity (VIF; Sheikh and

Bovik, 2004) to measure the goodness of the reconstructed

features. MS-SSIM is a multi-scale structural similarity method

that considers the variation in observation conditions and provides

a reliable approximation of perceived image quality. VIF is

an image information metric that quantifies the fidelity of

image information.

3. Results

3.1. Lipid oxidation analysis for four
samples

The quality of the oil extracted from hickory nuts was

used to assess the physiological quality of the samples. The

samples showed different POVs and AVs after different times of

oxidation (Figure 4).

POV is an indicative indicator of the quality of oils and

fats (Beyhan et al., 2017). At 35◦C and 35% relative humidity,

the POVs measured in four samples, A, B, C, and D, increased

gradually with storage time. Samples A and B showed a slow

increase in POVs, while experiment C exhibited a faster increment.

Over the course of the four samples, the POVs consistently

increased, demonstrating that the hickory nut oil was undergoing

continuous oxidation.

The AV reflects the degree of fat hydrolysis and rancidity

by indicating the oil’s dissociative fat mass concentration level

(Chatrabnous et al., 2018). The results of the four samples,

measured based on differences in the time dimension of the hickory

nuts, showed a significant upward trend. In samples A and B,

the AVs of samples accumulated more rapidly, while in the later

experiments, the AVs accumulated more slowly. Eventually, the AV

in samples D exceeded 0.6 mg/g, doubling the value of samples A.

The increase in AVs during the storage of hickory nuts is due to

the enzymatic hydrolysis of lipids, which can adversely affect the

hickory nuts.

The POVs and AVs of the hickory nut oils in the four samples

suggest that the degree of oxidative deterioration of the samples was

increasing in a sequential manner. This provides an objective basis

for further distinguishing between samples with different levels of

oxidative degradation.

3.2. Di�erences of kernels’ images for four
samples

The data distribution was analyzed after the RGB images

were converted to CIELAB images. More importantly, this paper
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FIGURE 5

L-values and b-values distribution of original images. (A) L-value distribution; (B) b-value distribution.

analyzed the relationship between changes in the exterior of hickory

nuts kernels and their internal lipid oxidation and rancidity. Ortiz

(Ortiz et al., 2019) expressed the L-value as the response to the

browning of walnut kernels’ exterior. They analyzed the correlation

between changes in the exterior of walnut kernels and the rancidity

and oxidation process. It is evident that the distribution of L-

values and b-values on the appearance of hickory nuts kernels

from four samples showed variability (Figure 5). There is a large

concentration of L-values around 47 in experiment A, and around

37, 38, and 31 in experiments B, C, and D, respectively. First,

looking at the distribution of L-values (Figure 5A), there is much

crossover between experiments B and C. Even the mean brightness

of C is slightly higher than B. However, the changes in L-values of

the four experiments show an overall trend of gradual decrease.

Four experiments also scored around 40, 24, 20 and 18 for

the b-value.

Taking experiment A as the benchmark, by observing the

distribution of the L-value and b-value, it can be found that the

changes in the brightness and chromaticity of the appearance of

hickory nuts kernels show an uneven state of being larger first and

then smaller. In the latter part of the samples, the human eye’s

differentiation advantage is significantly weakened. That means it

will not even be possible to directly distinguish the differences

between the appearance of kernels with the naked eye. This

unevenness of variation is explained by Yang et al. (2022). The

leading causes of pecans browning are membrane peroxidation and

enzymatic browning catalyzed by polyphenol oxidase. Throughout

the post-harvest storage period, hickory nuts maintained their

antioxidant capacity, and the rate of browning was fastest in the

early stages of storage, after which the rate of browning changed

gradually and gently.

The results above indicate that there was some extent of

correlation between the changes in the intrinsic oxidative rancidity

of the hickory nuts and the changes in the appearance of kernels.

For the same batch of hickory nuts, as the oxidation of their

internal oils proceeded, the intrinsic quality of nuts would change,

manifested in kernels’ appearance as a decrease in L-value and a

deviation from yellow in b-value. That also effectively supported

the subsequent differentiation of different oxidized and acidified

kernels by image features.

3.3. Classification results

Based on the above Analysis, we also need to classify the

images of hickory nuts kernels to infer the internal quality from

the appearance of kernels.

3.3.1. General configuration
In this paper, the main optimization points of DEEPMAE

based on its backbone model were previously mentioned. Ablation

experiments are then conducted in order to evaluate the efficacy of

the model at the three points specified.

1. A sequence consisting of blocks of low-level features extracted

by a convolution operation to replace the original 16× 16-pixel-

sized image blocks sequence in the backbone.

2. The most critical point in MAE is using partial images to

extract features, reducing the application’s computational effort.

DEEPMAE also retains this feature, but because the low-level

features of the images are not as redundant as the original

images, DEEPMAE will have a different input scale for the

Encoder than MAE, and we compare three mask ratios.

3. DEEPMAE incorporates both self-supervised and supervised

learning and has an Encoder and Decoder. The Decoder, a self-

supervised operation, could reconstruct the image features. That

is very different from the inference process in MAE, so we want

to verify the role of the Decoder in the classification process.

After establishing the core structure of DEEPMAE, some CNN

models were introduced and compared to Transformer models and

DEEPMAE model, and their classification effects were evaluated.

The common CNNs are AlexNet (Krizhevsky et al., 2017), VGG19

(Simonyan and Zisserman, 2014), SequeezeNet (Iandola et al.,

2016), MobileNetV3 (Howard et al., 2019), and EfficientNet (Tan

and Le QV, 2020), respectively, and the Transformer modes are

the backbones of DEEPMAE, mainly VIT (Dosovitskiy et al.,

2020) and MAE (He et al., 2022). CNNs are all implemented by

calling PyTorch’s torchvision official interface to implement. In

addition, the learning rate, optimizer, data augmentation, and other

controllable hyperparameters are kept consistent across models.

Training is done in the same environment for eachmodel (Table 1).
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TABLE 1 Experimental environment configuration.

Experimental environment Configuration

CPU AMD Ryzen 5 5600 G with

Radeon Graphics (12) @ 3.900

GHz

GPU NVIDIA GeForce RTX 3060 12

G

Operating system Ubuntu 22.04

Python version 3.7.13

Torchvision version 0.12.0

Batch size 64

Learning rate 1e-4

Loss function Cross entropy

Gradient threshold method Batch Normalization (Ioffe and

Szegedy, 2015)

Optimizer Adamw (Loshchilov and Hutter,

2017)

Number of iterations 100 or 300

Image pre-processing Flip, Rotation, Mask, Crop

(Random with the same seed)

TABLE 2 Four configurations of the DEEPMAEs.

Model configurations Encoder Decoder

Depth Dim Depth Dim

DeepMAE16 16 192 8 256

DeepMAE23 16 276 8 368

DeepMAE28 16 336 8 448

DeepMAE33 16 396 8 528

dim = numbers of head × model name. For example, DeepMAE16 has encoder dim =
12× 16 = 192 and decoder dim = 16× 16 = 256.

3.3.2. DEEPMAE: Low-level features and RGB
images data

Many researchers are combining convolution blocks and

transformer blocks (Guo et al., 2022; Li J. et al., 2022; Liu et al.,

2022), not least with changes to the input data. Due to the

redundancy of the RGB image, MAE uses the original image blocks

as input, but DEEPMAE extracts the low-level features of the image

as input. Therefore, this paper will compare the patch embedding

composed of the original RGB images with the patch embedding

composed of low-level features. Additionally, the size of low-level

features is much smaller than that of the original RGB image, which

is a characteristic of the convolution operation. In comparison,

the MHSA used by the Encoder and Decoder in DEEPMAE does

not have to shrink the feature map, and the patterns of the

layers are similar, making DEEPMAE easily scalable. Subsequently,

four practical structures based on DEEPMAE are constructed for

comparison (Table 2).

The number of parameters and classification accuracy of the

two types of patches embedding from four different sizes of

DEEPMAEs were compared in Table 3. The accuracy improvement

was 1.14–1.17% on the validation set and 1.67–2.67% on

the test set. For classification, the improvement of low-level

features is significant, showing that the Transformer model is

very effective after adding the low-level features extracted by

convolutional operations.

3.3.3. DEEPMAE: Mask ratios of input patches
It was mentioned that the original MAE masks a certain

percentage of the input patches, which reduces the number of

operations and improves the model’s inference time. DEEPMAE

also absorbs this advantage. However, DEEPMAE’s inputs are low-

level features with less redundancy than the original images. In

addition, DEEPMAE combines the whole process of classification

and MAE-like pre-training. DEEPMAE needs to focus on the

unmasked part of the image and the masked part. Therefore, the

mask ratio of DEEPMAE will be different from that of MAE. We

have done further comparison experiments.

The MAE default is 75% masking, i.e., Mask ratio = 0.75.

Based on this, we compared mask ratios of 0.25, 0.5, and 0.75 on

the DEEPMAE model. In addition, it can also be seen that the

DEEPMAE still has an increasing trend (Figure 6B), so the number

of training epochs in this section is set to an upper limit of 300.

The size of the Mask Ratio correlates with the number of

features visible in the model, with a larger Mask Ratio giving

the model fewer features to learn. As Mask Ratio increases

sequentially (Figure 7), it is evident that the overall loss is also

higher for the latter than for the former. Looking at the loss of

the Decoder reconstructed feature maps, the level of loss decline

at approximately the 100th epoch for Mask ratio = 0.5 is equivalent

to the loss decline for a total of 300 epochs for Mask ratio=0.75, i.e.,

the training time for Mask ratio = 0.5 is only one-third of that for

Mask ratio = 0.75. That means that the training time for Mask ratio

= 0.5 is only one-third of that for Mask ratio = 0.75, while that for

Mask ratio = 0.25 is only one-third of 0.5. In classification loss, the

loss for a larger mask ratio is significantly higher than for a smaller

one. Therefore, a smaller Mask ratio can release more features for

DEEPMAE training and achieve better results. Incidentally, our

experiments achieved 97% accuracy in about the 240th epoch by

deepening the Encoder depth to 32 while using a Mask ratio of

0.25. However, the smaller the Mask ratio, the more hardware, and

computational resources are required. Although using a smaller

Mask ratio, deepening the network and extending the training time

of the model can further improve accuracy, the computational

resources required are more than these accuracy improvements.

Therefore, to balance the model’s performance and effectiveness,

a moderate Mask ratio facilitates the implementation of the model.

Furthermore, the masking operation has a considerable impact on

CNNs. The default Mask ratio for the experiments in this paper is

0.5 unless otherwise stated.

3.3.4. DEEPMAE: Decoder for classification
Our DEEPMAE combines the self-supervised approach of

image reconstruction used by MAE with the supervised process

of classification. However, unlike MAE, which only employs

pre-trained Encoder parameters for classification, DEEPMAE

also uses Decoder parameters in the classification process to

reconstruct some of the features for better classification. Therefore,
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TABLE 3 Comparison of RGB patches and low-level feature patches on four DEEPMAEs.

Model config DeepMAE with RGB patches DeepMAE with low-level features

Params. (M) Valid Acc. (%) Test Acc. (%) Params. (M) Valid Acc. (%) Test Acc. (%)

DeepMAE16 11.77 94.25 93.83 11.83 95.39 95.50

DeepMAE23 23.96 94.89 94.08 24.04 96.11 96.17

DeepMAE28 35.3 94.89 93.58 35.40 96.25 96.00

DeepMAE33 48.83 94.43 93.75 48.94 96.14 96.42

FIGURE 6

Accuracy of di�erent models on the validation dataset. (A) E�cientNet, SqueezeNet, AlexNet, and MobieNetV3; (B) DEEPMAE, MAE, VIT, and VGG.

FIGURE 7

Losses of three mask ratios. Each subgraph contains the loss of the Decoder (LD) to reconstruct image features and the loss of the classification (LC).

(A) Mask ratio (MR) = 0.25; (B) Mask ratio (MR) = 0.5; (C) Mask ratio (MR) = 0.75.

DEEPMAE’s image reconstruction is very closely related to

classification. Therefore, we still use the four different sizes

DEEPMAEs in Table 2 for comparison to explore the role of

the Decoder in reconstructing images. From the performance of

the four DEEPMAEs (Table 4), it can be seen that the results of

“classification and feature reconstruction” are higher than those

of “classification only,” which indicates that the image feature

reconstruction of Decoder is also a key factor in DEEPMAE.

In addition to the performance on the test set, this paper

also measured the Decoder’s performance after the image features.

From a human visual point of view, the reconstructed feature

images differ significantly from the original and appear difficult to

understand (Figure 8). Therefore, The quality of the reconstructed

feature images is measured using the MS-SSIM, ERGAS, and VIF

metrics, and a comparison of these images from the perspective

of images is carried out. Comparing the three metrics (Table 5),

it is clear that the image features constructed by “classification

and feature reconstruction” outperform the “classification only”

image features, which is an advantage of the Decoder. That means

that considering both “classification” and “image reconstruction”

can improve the effect of classification and ensure the effect of

“image reconstruction” at the same time. If only classifying, the

classification effect is slightly lower, and the quality of the final

image features extracted by the Decoder is negatively affected.
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TABLE 4 Comparison of “classification only” and “classification and feature reconstruction” on four DEEPMAEs.

Model Params. (M) Classification Classification and reconstruction

Test Acc. (%) Kappa Test Acc. (%) Kappa

DeepMAE16 11.83 95.25 0.937 95.50 0.940

DeepMAE23 24.04 95.67 0.942 96.17 0.949

DeepMAE28 35.40 95.17 0.936 96.00 0.947

DeepMAE33 48.94 95.92 0.946 96.42 0.952

FIGURE 8

Examples of reconstructed feature images. In addition, image data

must be transformed into tensors before being input into a model in

PyTorch. The transformed images are from these tensors.

3.3.5. Comparing DEEPMAE with popular models
From the accuracy performance of each model in the validation

set (Figure 6), it is easy to see that the MobileNetV3 and VGG19

models performed average level. They were slow to optimize, and

their final accuracy was just over 80%. The remaining models, such

as Alexnet, SqueezeNet, and EfficientNet, have high recognition

and stable performance and have the advantage of fast convergence

of the convolution operation.

The VIT and MAE models, which are representatives

of Transformer, performed smoothly, with VIT reaching a

maximum accuracy of 94.04% at the 95th epoch and MAE a

maximum accuracy of 94.36%, which is not too far from the

recognition of CNN models such as EfficientNet. In addition, the

Transformer model has high accuracy from the beginning and

gradually becomes more accurate afterwards. That is because the

Transformer model uses initialized parameters, whereas the CNN

models have random parameters. Initialization of the Transformer

models was necessary, but this did not affect comparing the results

with the CNN models. The DEEPMAE model outperformed the

above models, reaching a maximum accuracy of 96.14% in the 89th

epoch, which was significantly higher than the other models.

Regarding the curves (Figure 6B), DEEPMAE shows relatively

large amplitudes in the first 60 epochs and only slight oscillations

afterwards. The curves still tend to increase and do not reach

a bottleneck in the model’s performance within 100 epochs.

Regarding the performance of the models on the validation set,

DEEPMAE outperforms the common ANNs and does not lose

out on the CNN models in classification recognition. In addition,

DEEPMAE is a sets of networks that can be effortlessly extended

and fine-tuned both in terms of depth and width. Moreover, due to

the global associate nature of MHSA, the connections between the

layers are more adjustable than those of CNNs.

3.3.6. Compare DEEPMAE with the backbones of
DEEPMAE

The original MAE in experiments is constructed by Encoder

and Decoder, which are purely stacked STB blocks. The Encoder

and Decoder are pre-trained for 300 epochs, then the trained

Encoder parameters are loaded and trained for classification.

Because there is no generic hickory nuts dataset at the scale

of ImageNet, we use the same dataset for the pre-training

and classification process, also called self pre-training by Zhou

et al. (2022). So MAE migrates from more extended pre-training

weights in the classification process rather than using parameter

initialization (Glorot and Bengio, 2010; He et al., 2015). As a result,

MAE achieves an initial accuracy of over 90% on the validation set,

which is far ahead of othermodels. However,MAEwith the self pre-

training approach does not improve the results significantly on the

classification task, meaning that the MAE model still relies heavily

on the pre-training image reconstruction process to update model

parameters. Although the comparison in Figure 6 is “unfair,” pre-

training based on image reconstruction is a robust functionality

of MAE, so the DEEPMAE model also retains the Decoder to

reconstruct images.

The MAE has precisely the same number of parameters as

the VIT with the same structure during classification training.

However, because the former randomly masks a certain proportion

of the input patches, the original MAE’s encoder input only

accounts for a quarter of the initial data volume. It is faster and

more accurate than the latter. In addition, the DEEPMAE model

hasmore feature information and less redundancy for the Encoder’s

input of low-level features compared to the original image. Hence,

DEEPMAE sets a lower masking ratio than MAE, with a masking

ratio of 50%.

The confusion matrices of MAE (Figure 9A) and VIT

(Figure 9B) on the test set show that both distinguish A images

nearly completely. However, the MAE model misclassifies B

images as A more often. Misclassification between B, C, and D

is also inevitable with MAE and VIT. However, MAE is better

at distinguishing D images. Correspondingly, VIT misidentified

images from C and D more than MAE. The main reason for

these significant discrimination errors may be the slight differences

in the data itself. In addition, there are many similarities in the

brightness and color of the hickory nuts kernels images from

adjacent experiments. Furthermore, the individual difference in
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TABLE 5 On the comparison of “classification only” and “classification and feature reconstruction” to the quality of the reconstructed images.

Classes Model Only classify Classify with decoder

MS-SSIM ERGAS VIF MS-SSIM ERGAS VIF

A

DeepMAE16 0.05371 77395.7 0.00107 0.16139 97501.6 0.00534

DeepMAE23 0.04704 70701.1 0.00118 0.22048 91168.4 0.00630

DeepMAE28 0.04160 70315.8 0.00115 0.17425 98597.0 0.00543

DeepMAE33 0.04840 65430.1 0.00120 0.22116 96514.8 0.00689

B

DeepMAE16 0.04168 71825.3 0.00136 0.15519 117555.6 0.00631

DeepMAE23 0.04253 68893.7 0.00123 0.14719 115311.4 0.00628

DeepMAE28 0.03837 65250.1 0.00135 0.20278 109701.3 0.00666

DeepMAE33 0.03375 63583.3 0.00138 0.19966 112363.3 0.00728

C

DeepMAE16 0.04468 71323.6 0.00104 0.12503 116296.5 0.00507

DeepMAE23 0.04417 66864.7 0.00094 0.17489 117397.3 0.00559

DeepMAE28 0.04070 64554.4 0.00106 0.23420 108670.9 0.00575

DeepMAE33 0.03500 63364.3 0.00130 0.23090 112199.3 0.00646

D

DeepMAE16 0.04372 68358.6 0.00117 0.09954 101826.8 0.00462

DeepMAE23 0.04467 66239.6 0.00106 0.16460 113871.1 0.00532

DeepMAE28 0.04313 63919.9 0.00113 0.20490 101243.2 0.00520

DeepMAE33 0.03606 62493.5 0.00124 0.21811 106212.4 0.00587

FIGURE 9

Confusion matrices of MAE, VIT, and DEEPMAE on Test Dataset. The test set contains 300 images for each category. The number of predictions is

shown in the column and the number of true labels is in the row. (A) The confusion matrix of MAE. (B) The confusion matrix of VIT. (C) The confusion

matrix of DEEPMAE.

TABLE 6 The evaluation of three models.

Model Params(M) MACs(G) Accuracy Kappa Precision Recall Specificity F1

MAE 140.006 10.845 0.938 0.918 0.939 0.938 0.980 0.938

VIT 114.767 22.446 0.948 0.931 0.949 0.948 0.983 0.948

DeepMAE33 48.941 7.281 0.964 0.952 0.964 0.964 0.988 0.964

Our DEEPMAEs have 12 Heads in Encoder and 16 Heads in Decoder. DEEPMAE33 is one kind of our DEEPMAE with Embed dim = 12*33 = 396 for Encoder and 16*33 = 528 for Decoder.

kernels also unavoidably influences the results. That results in some

flaws in the image data, so the differences are not absolute and

complete and are understandable in agriculture.

According to DEEPMAE’s confusion matrix on the test set

(Figure 9C), A images were correctly classified. It also had the

lowest level of misclassification of the three above models. Also

most noticeable was the significant enhancement in DEEPMAE’s

discrimination of C and D images. That is due to DEEPMAE being

the most adept of the three models at distinguishing between C

and D images. From the results, DEEPMAE is as good as MAE at
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FIGURE 10

L-values and b-values distribution of images after aggregation. (A) L-values distribution after AL*. (B) b-values distribution after Ab*. (C) L-values

distribution after AL*b*. (D) b-values distribution after AL*b*.

FIGURE 11

The confusion matrices of DEEPMAE on AL*, Ab*, and AL*b* test datasets. (A) AL*; (B) Ab*; (C) AL*b*.

FIGURE 12

The heat map of the features learned by DEEPMAE.

identifying D, VIT at identifying B, and slightly better than both for

A and C. Compared to the backbonemodel DEEPMAE learnsmore

critical distinguishing features.

The specific results of MAE, VIT and DEEPMAE on the

test set were compared quantitatively to objectively evaluate their

performance without bias (Table 6). The MAE pre-trained model

contains both Encoder and Decoder with ∼140 M parameters. At

the same time, the MAE inference process has the same number

of model parameters as VIT, 114.767 M, and the DEEPMAE,

which also contains both Encoder and Decoder processes, has

only 35% of the parameters of MAE and 43% of VIT. The macs

(Multiply-Accumulate Operations) of DEEPMAE are only one-

third of those of VIT. In terms of the accuracy of the test set,

DEEPMAE reached 96.4%, higher than MAE and VIT by 2.6 and

1.6%, respectively. In addition, DEEPMAE outperformed MAE

and VIT in terms of average Precision, Recall, Specificity and

F1 Score.
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3.4. What features learned by DEEPMAE

Due to the “black box” problem of the deep learningmodel, this

paper examines whether the features extracted by our model match

the changes in the image appearance. We introduce an algorithm

for aggregating images. According to this algorithm, this paper

performs the corresponding aggregation operations on the L-value

and b-value of the original images to demonstrate that these two

values are the key factors that affect the model’s differentiation of

the kernels’ images.

The β of our aggregation function is specified separately

for each experiment for L-value and b-value, e.g., the β for A

images with L-value is 47, and the rest of the experiments have β

corresponding to Figure 5. The chromaticity change of enhanced

images is represented in the same way as in Figure 5.

After image enhancement, the L-values of the four experiments

become more aggregated and distinguishable (Figures 10A, C).

In addition, the L-values of the enhanced B and C images

are slightly more discernible than those of the original images.

Also, the b-values of the enhanced images are more aggregated

(Figures 10B, D). Compared to the statistical distribution in

Figure 5, the images processed by the aggregation algorithm are

significantly different from the previous because of the more

significant differentiation of brightness and color.

We trained DEEPMAE on the original dataset and tested it on

the aggregated datasets AL, Ab, and ALb. Despite the discrepancies

between the original and aggregated datasets, the DEEPMAE still

register some effectiveness in the test datasets. The correlation

between the distribution of L-values and b-values in Figure 5 and

the classification results in the confusion matrix is apparent, for

instance, the overlapping areas of the distribution led to poorer

performance on the AL, Ab, and ALb datasets. It shows that the

range of L-values of D in AL is much smaller than in Figure 5A,

resulting in images of D being largely misclassified as adjacent

C. The ranges of b-values of B, C, and D are closely linked,

indicating that C of Figure 11 was misclassified as B and D. After

adjusting the L-value or b-value of images, the results of DEEPMAE

demonstrated a strong relationship between the data distribution

and the classification effect, indicating that the L-value or b-value

characteristics are of great importance for the classification process

of DEEPMAE. These values appear to be the main features learned

by DEEPMAE to distinguish walnuts, such as their appearance

brightness and color. The heat map of the features learned by

DEEPMAE also confirms this conclusion (Figure 12).

4. Conclusions

This study explores the link between changes in the

physiological quality and appearance of hickory nuts kernels. It uses

hickory nuts oxidation as the starting point and verifies through

literature and experiments that oxidative changes in hickory nuts

during storage cause changes in the brightness and color of the

kernels. The aim of this paper is to use deep learning model

optimization to distinguish nuts with different levels of oxidation

and rancidity. The DEEPMAE model, a lighter deep learning

model based on MAE, is designed to learn more key distinguishing

features to help differentiate between varying levels of oxidation

in hickory nuts. In particular, the antioxidant capacity of the

nuts resulted in a slight change in the rate of browning during

storage. Our DEEPMAE could distinguish hickory nuts based on

the essential characteristics learned.

The results indicate that DEEPMAE achieves 96.14% accuracy

on the validation set for the first 100 epochs of training and still

tends to increase after that. With deeper DEEPMAE and more

feature learning, it can exceed 97% accuracy on both the validation

and test sets at the 240th epoch. In addition, by aggregating

information from image samples, we have confirmed that the

critical features learned by DEEPMAE are precisely the brightness

and color of the appearance of kernels. That is the same conclusion

we obtained from our physiological experiments on hickory nuts.

Additionally, this paper carries out ablation experiments to confirm

its efficiency from three main improvement points. Furthermore,

we illustrate some differences in the topology of DEEPMAE

and CNNs. In comparison, DEEPMAE shows greater flexibility,

effectiveness and scalability than that of CNNs.

This study provides an accurate and valid method for

distinguishing the degree of oxidative rancidity in hickory nuts.

In the future, we will focus our research on the applicability of

the method, longer-term hickory nuts oxidation processes, and

reflections on other physiological manifestations of hickory nuts.
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