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Spent barley grains (SBG) were valorized into a spent barley protein and fibers

(SBPF) ingredient. The ingredient was utilized to formulate SBPF-derived starchless

noodles with a negligible glycemic response (GR) in healthy individuals, a

significant reduction of 93.16% (SD = 8.07) postprandial GR after consumption

when compared to conventional starch-based noodles. Their nutritional content,

visual analog scale, textural property, and palatability were also evaluated. The

SBPF-derived starchless noodles showed comparable hardness and springiness

to the conventional starch-based noodles, but their cohesiveness and chewiness

were improved. There was no significant di�erence in appetite and hunger ratings

between the two types of foods. The overall palatability ratings for both foods

were comparable. The SBPF-derived noodles were a source of nutrients (such as

protein and fibers). This study has considerable potential for the development of

functional food and food as medicine industries.

KEYWORDS

spent barley protein and fibers (SBPF), valorization, functional foods, food as medicine,
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1. Introduction

The global barley production is 147.05 × 106 tons in the 2021/2022 crop year,
reducing from around 160.53 × 106 tons in 2020/2021 (Shahbandeh, 2022). Meanwhile,
the pandemic and geopolitical tensions seriously impact the safety of the food supply
chains (Aday and Aday, 2020; Jagtap et al., 2022). Thus, there is an urgent need to
ensure food sustainability and security. Pristine barley grains provide fermentable sugars
to yeasts during beer brewing (Kok et al., 2019), and 20 kg SBG is generated per 100 L
beer production (Mussatto et al., 2006). The global beer production was 1.91 × 1011 L
in 2022 (Chee, 2022), which was equivalent to 38.2 × 106 tons SBG. The SBG contains
water insoluble protein, husk residues, pericarp, and seed coat within the grains (Townsley,
1979). The barley grain has been approved as a functional food by the U.S. Food and
Drug Administration since 2006, and regular barley consumption reduces blood cholesterol
and controls cardiovascular diseases (Geng et al., 2022). The β-Glucan, arabinoxylans
(AX), and phenolic compounds within the barley significantly improve human immunity,
and provide reliefs for type 2 diabetes, stroke, hypertension, and cardiovascular
diseases (Maheshwari et al., 2019; Tosh and Bordenave, 2020; Zannini et al., 2022).
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The SBG is made of 70% fibers, 20% protein, and 10% fats
(Reshamie et al., 2018). The SBG fibers include approximately
17% cellulose, 28% non-cellulosic polysaccharides, mainly AX,
β-Glucan, and 28% lignin (a poly-phenolic macromolecule)
(Mussatto et al., 2006). The SBG protein contains essential
and non-essential amino acids including phenylalanine, lysine,
tryptophan, histidine, methionine, alanine, glycine, proline, and
serine (Mussatto et al., 2006). Cookies made of 20% SBG
showed increments of protein, lysine, and fibers by 55, 90, and
220%, respectively (Özvural et al., 2009). The SBG lowers the
sweetness and increases the shelf-life of sourdough and bread
(Plessas et al., 2007; Stojceska and Ainsworth, 2008; Szwajgier
et al., 2010; Waters et al., 2012). The phenolic extracts from
the SBG used in fruit beverages show better ferric reducing
antioxidant power (FRAP) activity (Celus et al., 2007). The
SBG is nutritious and not a food waste. There is a possibility
for SBG valorization to meet the nutritional needs of the
aging population.

A practical method to produce the SBPF ingredient is
developed and reported in this article (Figure 1). The SBPF
ingredient is exploited to create a brand new representative
functional food in noodle form (SBPF-derived noodles).
The appearance, texture, and GR of the SBPF-derived
noodles are investigated and compared with the property
of conventional starch-based noodles. The SBPF-derived
noodles have the potential to replace conventional starch-
based noodles as a protein and fibers rich Asian staple
food with negligible GR. The SBPF-derived noodles address
the perennial challenge faced by diabetics. The starchless
noodles can be palatably and tastily prepared without blood
glucose elevation.

2. Materials and methods

2.1. SBG valorization, SBPF ingredient, and
SBPF-derived noodles preparation

The dry SBG was obtained from a local malt production
site, and placed in an electric superfine powder machine (Horus
Industry, China) and ground continuously into powder with
a stainless-steel blade at 6,000 rpm. The SBPF ingredient
was obtained in powder form within 3 h. Subsequently, the
SBPF ingredient was mixed with vital wheat gluten, konjac
powder, premium quality fine salt, sodium carbonate, and
water to form a paste. The paste was directly extruded by a
stainless-steel manual noodle maker (Sailnovo, Malaysia) into
water to form the SBPF-derived noodles. The noodles were
pasteurized and vacuum packed and could be served directly
without cooking. All the abovementioned items were food-
grade and purchased from Phoon Huat Pte Ltd, Singapore.
The control of this study was starch-based noodles (ready to
eat) procured from a local vendor (Hokkien noodle round,
FORTUNE brand, Singapore). The frozen vegetables were
purchased from Watties, New Zealand. Sesame oil was from
Pagoda, Singapore, and the light soy sauce was acquired from Tai
Hua, Singapore.

2.2. Nutritional content analysis and
physical tests

2.2.1. Nutritional content analysis
The SBPF ingredient and SBPF-derived noodles were sent

to the Setsco lab (Setsco Services Pte Ltd) for nutritional
content analysis. Nutritive values including energy, protein,
dietary fibers, carbohydrates, fat, moisture, and ash of the
samples were determined according to BCTD/FC/IHM068/2018
Rev(2), BCTD/FC/IHM123/2013 Rev(1), AOAC official method
No. 985.29 (2005), BCTD/FC/IHM068/2018 Rev(2), AOAC
official method No. 996.06 (2008), AOAC official method No.
950.46 (2008) and AOAC official method No. 920.153 (2005),
930.30 (2005), and 923.03 (2005), respectively. The nutritional
information for starch-based noodles, vegetables, sesame oil, and
soy sauce was acquired from their respective product nutritional
information panels.

2.2.2. Characterization of SBPF-derived noodles
and starch-based noodles

A texture analyzer (TA/TX-plus, Stable Micro System, Surrey,
UK) with a 5 kg load cell was employed to perform the texture
measurements. Hardness (g), springiness (mm), cohesiveness, and
chewiness (g × mm) were analyzed respectively. Texture profile
analysis was performed and a P35 cylinder probe was used (with
pre-test, test, and post-test speeds at 2, 1, and 2 mm/s, respectively).
The target mode was set at 70% strain, the trigger type was auto,
and the trigger force was 5 g. The measurements were conducted
fifteen times.

2.3. In vivo GR studies

The study aimed to compare the GR of each participant
after consuming the SBPF-derived and conventional starch-based
noodles, respectively. The in vivo studies followed previous
publications regarding GR tests (Jang et al., 2017; Crummett
and Grosso, 2022) and were performed using the Singapore
Accreditation Council’s (SAC) FFT-2010-0001A Functional Food
Testing Scheme, based on ISO/IEC 17025:2017 and Technical
Note FFT 01. Ethical approval for GR testing was sought from
an independent ethics committee before conducting the GR tests.
The ethical approval reference number for this study was TP-
IRB Ref: IRB170102. The details of the GR testing protocol were
explained to the subjects and informed consent was obtained.
Fifteen (15) healthy volunteers (19–60 years old) were recruited
into the study based on the following inclusion and exclusion
criteria in Supplementary Table 1. The two types of test foods were
assessed separately in each subject on separate days (with a washout
period of at least 2 days).

The 100 g SBPF-derived and starch-based noodles were
prepared in the same manner. Briefly, both were warmed up in
500ml of hot water (approximately 90◦C) in <1min. Then, they
were mixed with 50 g cooked vegetables, 6 g sesame oil, and 6 g light
soy sauce for GR tests (Table 1). The food was served with 250ml
water to the test subjects. The subject’s capillary fasting samples
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FIGURE 1

Flowchart of the collection of SBG, extraction and purification of SBPF ingredient and the representative SBPF-derived noodle production.

were obtained by a finger prick after ensuring an overnight fast of
10–14 h. They consumed the test food within 12min and remained
seated. Their blood samples were obtained at 15, 30, 45, 60, 90, and
120min after food consumption. The participants’ capillary blood
samples were analyzed by calibrated YSI 2300 Stat Plus Glucose and
Lactate analyzer. Analysis of test data was conducted by evaluating
incremental areas under the curve (AUC) for the two samples
and plotted in a graph. The equation used to determine the GR
difference between starch-based and SBPF-derived noodles is:

The GR difference (%) =

(

1−
AUCSBPF−derived noodles

AUCstarch−based noodles

)

× 100

2.4. Overall palatability rating

The overall palatability ratings of the starch-based and SBPF-
derived noodles were analyzed using the 7-point hedonic scale
(Supplementary Figure 1).

2.5. Visual analog scale

A visual analog scale (VAS) questionnaire was provided to
the participants. Appetite and other sensations were assessed
using 100mm VAS (Supplementary Figure 2). Eight variables were
questioned. On each 100mm line, an appetite (hunger, satisfaction,
fullness, and desire to eat) sensation was paired with the opposing

sensation, (for example, “hungry” and “not hungry” or “full”
and “not full”). To determine “prospective consumption,” the
participants were asked questions including “How much do you
think you can eat?” and the analog scales were administered at
each time point when blood samples were obtained, namely fasting,
15, 30, 45, 60, 90, and 120min after the consumption of the test
foods. The individual response was measured (in mm) and then the
average value± SD was reported.

2.6. Statistical analysis

The statistical significance between data sets was calculated
using Student’s t-test, and p < 0.05 is considered statistically
significant. All the tests were conducted at least in triplicate.

3. Results

3.1. Nutritive value of SBPF ingredient and
SBPF-derived noodles

Spent barley protein and fibers ingredient yielded energy at
280 kcal per 100 g, and contained 29.1 g protein, 45.9 g fibers,
6.6 g carbohydrates, and 15.3 g total fats (8.2% of the total
fats were polyunsaturated fats). Meanwhile, 100 g SBPF-derived
noodles provided 32 kcal energy, 4 g protein, 6.6 g fibers, 0.85 g
carbohydrates, and 1.42 g fats. The 100 g conventional starch-based
noodles provided 180 kcal energy, 5.3 g protein, 1.1 g fibers, 1.6 g
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TABLE 1 Nutritive values of SBPF ingredient and SBPF-derived noodles, results are expressed as mean.

Starch-based
noodles
(100g)

SBPF-derived
noodles
(100g)

Vegetables
(50g)

Oil (6 g) Soy sauce
(6 g)

Energy (kcal) 180 32.0 26.9 11.7 0.8

Protein (g) 5.3 4.0 1.4 0 0.4

Dietary fiber (g) 1.1 6.6 1.8 0 0

Carbohydrates (g) 35.9 0.9 4.0 0 0.4

Fat (g) 1.6 1.4 0.2 6.0 0

TABLE 2 Textural analysis of starch-based and SBPF-derived noodles:

hardness (g), springiness (mm), cohesiveness, chewiness (g × mm), and

average palatability ratings; results are expressed as mean ± standard

deviation.

Starch-
based
noodles

SBPF-
derived
noodles

p value

Hardness (g) 1,714± 392.90 1,745.05±
361.28

0.824

Springiness (mm) 0.90± 0.06 1.42± 1.00 0.065

Cohesiveness∗ 0.50± 0.03 0.54± 0.02 0.002

Chewiness (g×mm)∗ 773.18±
207.08

1,248.80±
720.64

0.026

Palatability 5.55± 0.85 4.95± 1.49 0.347

∗p < 0.05.

fat, and 35.9 g carbohydrates (Table 1). The nutritive values of 50 g
vegetables, 6 g sesame oil, and 6 g soy sauce were included in the
table. The amounts of energy and macronutrients contained in the
test meals can be calculated.

3.2. Textural parameters of starch-based
and SBPF-derived noodles

The textural properties of starch-based and SBPF-derived
noodles could be seen in Table 2. There was no significant difference
in hardness (p = 0.824) and springiness (p = 0.065) of the
two representative foods. Interestingly, significant differences were
observed in cohesiveness (p = 0.0024) and chewiness (p =

0.026) measurements.

3.3. GR studies

The average age of the 15 healthy participants (9 women and
6 men) was 40 years old (SD = 13.74). Their average BMI was
21.1 kg/m2 (SD = 2.17). The average 120min GR responses of
the participants for equal volumes of the two test foods were
shown in Figure 2A. The fasting blood glucose concentration of
each participant before food testing was evaluated as a control. The
consumption of the starch-based noodles increased the mean blood
glucose concentration from 4.09mM (SD = 0.42, baseline level) to
6.11 ± 0.54mM (48.8% higher than the baseline value) within the

first 30min. In addition, 2 h later, the blood glucose concentration
gradually declined to 4.91mM (SD = 0.91, 20% higher than the
fasting baseline value). On the contrary, intake of SBPF-derived
noodles did not increase blood glucose level significantly, the value
was constant for 4.15mM (SD = 0.32) for the first 30min, and
then at 4.06mM (SD = 0.29) after 2 h. Moreover, the starch-
based noodles consumption brought significant blood glucose
fluctuations of the test subjects at 15, 30, 45, 60, 90, and 120min
after food consumption, when compared with the values at the
same time after SBPF-derived noodles consumption (Figure 2B). It
worth mentioning that the intake of SBPF-derived foods did not
cause a significant increase in blood glucose values within 120min.
The p values are 0.18, 4.6 × 10−4, 5.06 × 10−11, 7.2 × 10−10, 4.74
× 10−8, 4.4 × 10−7, and 9.7 × 10−4 for blood glucose levels at 0,
15, 30, 45, 60, 90, and 120min, respectively, after the test subjects
consumed starch-based and SBPF-derived noodles. Meanwhile, the
p values of blood glucose fluctuations are 1.06 × 10−5, 9.89 ×

10−14, 1.37 × 10−11, 1.16 × 10−12, 1.34 × 10−10, and 1.29 × 10−5

at 15, 30, 45, 60, 90, and 120min, respectively.
The AUC calculation of individual participants was shown in

Figure 2C box plot, the AUC spread in the participants consuming
SBPF-derived noodles was narrower than that of the starch-based
noodles (p = 3.46 × 10−9), and one unusual case (outlier) could
be found in the participants consuming SBPF-derived noodles.
The AUC values between consumptions of starch-based noodles
and SBPF-derived noodles showed no intersection. Furthermore,
the individual GR difference was plotted in the Box and Whisker
graph in Figure 2D, the average GR difference was 93.16% (SD =

8.06). In addition, the upper extreme, upper quartile, median, lower
quartile and lower extreme were 99.61, 98.82, 95.81, 90.15, and
84.64%, respectively. It was noticeable that two participants were
having unusual GR differences (two outliers). There were 12 out of
15 (80%) participants in the interquartile range (IQR) of the GR
difference Box and Whisker plot.

3.4. Overall palatability rating and visual
analog scales

The overall palatability ratings for both foods were comparable
(Table 2), and the average palatability ratings were 5.54 (SD= 0.85)
and 4.95 (SD = 1.49) for starch-based noodles and SBPF-derived
noodles (p = 0.347) individually. The average fasting, 60- and 120-
min VAS ratings for four appetite variables of the starch-based,
and SBPF-derived noodles were shown in Table 3. The participants
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FIGURE 2

The average blood glucose concentrations (A) and fluctuations of blood glucose concentrations (B) before and after consuming the starch-based

(orange) and SBPF-derived (green) noodles; Box and Whisker plots of the participants’ AUC values after consuming starch-based noodles (orange) in

contrast to the values of SBPF-derived noodles (green) within 2h (C); and GR di�erence within the participants after consumption of starch-based

and SBPF-derived noodles in 2h (D), *P < 0.05.

preferred to eat more SBPF-derived noodles immediately after
fasting. There was no significant difference in appetite and hunger
ratings between the two types of foods at 60 and 120min after
consumption in all subjects.

4. Discussion

The SBPF ingredient inherits the functional components from
the pristine barley grain except for the starch (as illustrated
in Figure 1 and Table 1). The addition of the SBPF ingredient
not only increases the food’s protein and dietary fiber content
but also lowers the overall content of carbohydrates vs. starch-
based foods (Townsley, 1979; Mussatto et al., 2006; Stojceska
and Ainsworth, 2008). Our team utilized the SBPF ingredient
to form the SBPF-derived noodles and evaluated its nutritional
content, textural parameters, GR, VAS, and overall palatability
rating. The palatability, texture, and taste aspects especially make
it an attractive alternative staple for diabetics due to the significant
GR reduction (93.16% less GR, SD = 8.06). Meanwhile, AX,
β-glucan, and lignin are three major functional dietary fibers
within SBG and the SBPF ingredient. The AX enters the large
intestine and is fermented by colonic microflora to show prebiotic
activity (Lu et al., 2000), and it increases bulk viscosity, slows
gastric emptying and gastrointestinal motility, the blood glucose
and insulin responses are subsequently delayed (Lu et al., 2000).
The β-glucan reduces cholesterol and sugar levels in the blood
upon consumption (Geng et al., 2022). The lignin prolongs the
survival of bifidobacterial versus glucose as a substrate (Niemi et al.,
2013). Moreover, the SBPF ingredient provides a rich combination
of protein and minerals including hordeins, glutelins, globulins,

albumins, phosphorus, calcium, and magnesium (Celus et al., 2006;
Waters et al., 2012).

The textural analysis has been performed to evaluate the
samples (Table 2), and the tensile test is used to elongate the
sample and test the force required to break the sample. The texture
profile analysis employs a double compression test to mimic the
chewing of food. There is no significant difference between the
data on hardness and springiness. Hardness describes the necessary
forces to achieve a given deformation, the participants use a
comparable force to break and crush the noodles during eating. The
springiness measurements indicate the two representative noodles
have comparable rates to return to their respective undeformed
condition after force removal. The SBPF-derived noodles show
better cohesiveness and chewiness, which is probably caused by the
addition of dietary fibers, vital wheat gluten, and konjac powder
(Lin and Huang, 2008; Barak et al., 2014; Liu et al., 2021).

In vivo GR study was conducted using starch-based noodles
as control food (not any other control food like glucose or white
bread). It is practical to compare the GR of SBPF-derived functional
noodles with the starch-based noodles, and it will be helpful to
ascertain that the SBPF-derived functional noodles have lower
GR and will be an ideal choice for health-conscious consumers
who wish to consume noodles without any blood glucose spike.
In Figure 2A, the blood glucose level spikes from 4.09mM (SD
= 0.42, fasting baseline) to 6.11mM (SD = 0.54) within 30min
upon intake of the starch-based food, then gradually reduces to
4.91mM (SD = 0.91) within 120min. The consumption of SBPF-
derived noodles flattens the blood glucose curve without any spike.
Furthermore, the fluctuations in blood glucose levels are illustrated
in Figure 2B. Consumption of the starch-based noodles boosts the
blood glucose level by 2mM from its basal level within 30min
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TABLE 3 Average VAS ratings (in mm) at fasting, 60min, and 120min in 15 participants; results are expressed as mean ± standard deviation.

Variable(s) Fasting 60 min 120 min

How hungry do you feel?

Starch-based noodles 54.1± 29.9 p= 0.58 30.7± 23.6 p= 0.17 37.7± 33.4 p= 0.42

SBPF-derived noodles 51.1± 39.2 24.2± 16.3 39.3± 28.2

How satisfied do you feel?

Starch-based noodles 27.2± 17.9 p= 0.21 70.2± 20.4 p= 0.29 58.1± 30.2 p= 0.48

SBPF-derived noodles 21.6± 15.9 62.4± 24.7 53.4± 30.7

How full do you feel?

Starch-based noodles 24.9± 19.7 p= 0.27 72.9± 18.2 p= 0.16 60.5± 30.0 p= 0.33

SBPF-derived noodles 19.6± 19.5 61.5± 25.3 51.1± 31.1

How much do you think you can eat?

Starch-based noodles 54.5± 27.5∗ p= 0.01 35.5± 20.8 p= 0.29 47.7± 26.9 p= 0.46

SBPF-derived noodles 72.5± 21.1∗ 32.0± 17.9 49.0± 25.3

∗p < 0.05.

and the value remains peaked for another 30min. However, the
blood glucose fluctuations upon intake of SBPF-derived noodles
are inconspicuous, and negligible when compared with the blood
sugar levels after starch-based noodle consumption. The data
from AUC and GR difference in Figures 2C, D is in line with
the blood glucose analysis. The average AUC is 150.96 (SD =

38.81) for participants after consuming starch-based food, but 5.48
(SD = 4.98) for the same participants consuming SBPF-derived
noodles. The participants show negligible GR after consumption
of SBPF-derived noodles (narrow range of AUC Box and Whisker
plot), while intake of starch-based noodles cause significant GR
variations (long range of AUC Box and Whisker plot). Moreover,
the GR difference value indicates 93.16% (SD= 8.06) GR reduction
upon SBPF-derived noodles consumption and 12 out of 15 (80%)
participants in the IQR of the GR difference Box and Whisker plot.
The data concentrates on the IQR area indicating less variability
and high repeatability of negligible GR for the participants after
consuming SBPF-derived noodles. There are two outliers in the
GR difference box plot, they might come from the personal
physical variations, as we can exclude the data entry, measurement
errors, sampling problems, and other unusual conditions. The
SBPF-derived and the conventional starch-based noodles have
comparable palatability (Table 2), and they have comparable VAS
(Table 3). Interestingly, the participants consider eating more
SBPF-derived noodles when they are fasting, and the starchless
noodles provide less energy and carbohydrates with a larger volume
of dietary fibers. Moreover, the participants indicate comparable
fullness upon finishing both types of noodles in 60 and 120min,
respectively. Considering the two test foods show comparable
values of sensory evaluations, and texture properties, the SBPF-
derived noodles can be a green and functional replacement for
conventional starch-based noodles. All the data endorses the
effects of SBPF-derived noodles on controlling blood glucose
(negligible GR). The SBPF-derived noodles provide nutrients and
have enormous potential in empowering blood sugar control for
people with diabetes, metabolic and body weight concerns, without
the need for overbearing constraints in food intake. The inclusion

of SBPF ingredient at high levels (>20%) is bound to have a greater
positive impact on the nutritional levels of the end products but
comes with costs, such as impacting the final product’s texture,
volume, color, and thus, sensorial characteristics and ultimate
consumer acceptance (Lynch et al., 2016). The SBPF functional
ingredient is herein utilized to produce functional noodles with
negligible GR, and it is an ideal candidate for functional food
preparation and health promotion. There is still technical progress
that can be achieved to ensure and even improve the quality of
the products. For example, the productivity of the SBPF functional
ingredient can be improved with new milling methods and the
consistency of nutritional content from various SBG batches must
be ensured. Our team is constantly working on quality of the
SBPF ingredient related foods, and major improvements could be
reported in the future.

5. Conclusion

The SBG protein and fibers are valorized into SBPF functional
ingredient, which can be applied to the preparation of functional
noodles/foods with negligible GR. The SBPF-derived functional
noodles show optimistic consumer acceptance and provide fiber
and protein rich nutrition. The SBPF ingredient and SBPF-derived
noodles and foods are especially suitable for consumers with
blood sugar and body weight concerns, and potentially attractive
alternative staple foods for people with diabetes. Our food waste
upcycling strategies may resolve food sustainability and security
concerns, and provide a source of nutrients to address nutritional
needs without further planetary damage.
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