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Plant-associated microorganisms play a key role in the future sustainability of 
terrestrial ecosystems. In nature, plants and their associated microbiome can form 
an assemblage of species, considered interacting metaorganisms or holobionts. 
Horticultural plants, including vegetables, fruit and berries, and ornamentals live 
in intimate association with complex and diverse microbial communities that have 
evolved a myriad of cooperative and competitive interaction mechanisms that 
shape the holobiont fitness. Nonetheless, our understanding of these interactions 
in shaping more complex microbial horticulture communities, along with their 
relevance for host growth, fitness, stress resilience, and health in a more natural 
context remains sparse. In this perspective, the holo-omic landscape that requires 
careful consideration of study design and integrates multi-omic data from both 
host and microbiota domains is a promising approach to unveil the interplay 
between the two to advance horticultural production. The analysis of horticulture 
(meta)-omics and phenotyping, along with mechanistic experiments in model 
systems, is revolutionizing research by enhancing our ability to understand 
the structure and core function of the plant-associated microbiome. These 
advancements are complemented by improvements in the throughput and 
accuracy of DNA sequencing, enabling us to delve deeper into the genomes of 
microbial communities. Yet, many challenges remain. We  focus this review on 
the potential for holo-omics to generate a more holistic perspective of molecular 
networks, and we further discuss the implementation and current limitations of the 
holo-omic approach within microbial horticulture. We argue that holo-omics will 
pave the way to improve, from a horticultural perspective, food security and safety, 
sustainability, breeding practices, development of microbiota- and host-tailored 
horticultural crops’ health treatments and increasing production efficiency.
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1. Introduction

Horticultural crops are an essential part of agriculture for both food and nutritional 
security. In recent years, impressive progress has been made in improving the growth, 
productivity, and quality of horticultural crops. Given the distinct features of plant growth 
and development, research in the horticultural associated-microbes have increasingly been 
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addressed. Many studies revealed an important diversity of the 
microbiome associated with horticultural crops affecting the 
quantity and quality of their products and their tolerance to biotic 
and abiotic stresses through close interactions with plant roots 
(Bulgari et al., 2019; Emmanuel and Babalola, 2020; Ma et al., 2020; 
Zulfiqar, 2021). Research has fundamentally altered our perception 
of plant-microorganism interactions to more understanding of their 
complex network biological processes. In their environment, plants 
coexist with a variety of microbes including bacteria, fungi, archaea, 
and protists constituting the plant microbiota (Lindow and Brandl, 
2003; Buée et al., 2009; Berendsen et al., 2012; Vorholt, 2012; Turner 
et al., 2013). Several studies conducted on microbes originating 
from the phyllosphere, rhizosphere, and in endophytic plant 
compartments have reported a series of promoting effects on plant 
health and performance, including enhancement of nutrient 
acquisition (Anli et al., 2020; Lahbouki et al., 2022), boosting plant 
immune defense (Rolfe et al., 2019; Zheng et al., 2020), protection 
against pathogens (Ait Rahou et  al., 2020; Liu H. et  al., 2020), 
resistance to environmental stresses (Ait-El-Mokhtar et al., 2020; 
Ben-Laouane et al., 2020; Boutasknit et al., 2021), and promoting 
hormone production (Wang et al., 2017). Plants and their associated 
microorganisms interact in a bidirectional fashion. The microbes 
provide the necessary metabolites to boost plant health and fitness 
and the host plant supplies its microbial associates with metabolic 
capacities, resulting in the establishment of niche-specialized 
inhabitants providing positive (mutualistic), detrimental 
(pathogenic), or neutral (commensalistic) actions on plant 
performances (Thrall et al., 2007).

These interactions are based on complicated molecular 
connections including a mutual perception between the two 
partners and the management of resources and nutrients critical for 
their survival (Cotton et al., 2019; Finkel et al., 2019b; Huang et al., 
2019; Campos-Soriano et  al., 2020; Stassen et  al., 2021). 
Furthermore, current discoveries suggest that the outcome for host 
performances may rely not only on host/microbe exchange of 
supplies but also on signaling and metabolic exchanges between 
microbiome members (Durán et  al., 2018; Finkel et  al., 2019a; 
Harbort et al., 2020). These investigations show that comprehending 
the plant microbiome will most likely need an analysis of these 
connections at different layers, such as activity and functional 
capacity and molecular interaction involving host and 
microorganisms. Although many advances were accomplished in 
the functional understanding of plant microbiome interactions 
especially through combining metabolomic and metatranscriptomic 
studies, this aspect is still lacking, in part because of the system’s 
complexity. One aspect of this complexity is that the 
phytomicrobiome is built from and lives in one of the most varied 
habitats on the planet: the soil (Compant et al., 2019; Fitzpatrick 
et al., 2020). Soils support a diverse microbial ecology interacting 
in complicated framed networks and shifting in abundance, 
composition, and activity which enhance the diversity of the whole 
system (Griffiths et al., 2011; Chemidlin et al., 2014; Terrat et al., 
2017; Wei et al., 2019). Another level of complication is related to 
the quantity and composition of the metabolites exuded by plant 
roots that are in continuous changes (Jacoby et al., 2020), resulting 
in the differential recruitment of rhizospheric microbes. These 
aspects combine to form a dynamic and linked biological scheme 

that has tested our capacity to grasp the fundamental molecular 
mechanisms that build and sustain it. Still, our choice of assets may 
be a bigger reason for our delayed progress toward a functional 
understanding of plant microbiome interactions. Until recently, the 
majority of plant microbiome investigations have focused on 
descriptive studies of community structure with help of amplicon-
based sequencing, including Internal Transcribed Spacer (ITS) 
sequencing for fungi and 16S rRNA sequencing for bacteria 
(Griffiths et al., 2011; Terrat et al., 2017).

While these data have provided a significant understanding of 
the broad dynamics that orchestrate the general structure of the 
plant microbiome and the relative intensity of their influence 
(Lundberg et al., 2012; Coleman-Derr et al., 2015), they frequently 
fail to provide mechanistic perception to interactions with the host 
plant. More recently, a growing number of research has started to 
investigate additional microbiome characteristics, such as 
functional capacity and activity, using shotgun metagenomics and 
metatranscriptomics (Galloway-Peña and Hanson, 2020; Jo et al., 
2020; Gao et al., 2021; Singh et al., 2022). Even with this rise, there 
is still a scarcity of research relating plant microbiome information 
to plant physiology, metabolism, genetics, and other host aspects 
(Brunel et al., 2020), which might supply additional data from this 
unexplored aspect of plant-microbiome interactions. Emerging 
trends and research hotspots in this field—as co-cited references in 
Figure  1A—revealed a total of 16 clusters, where each one 
corresponds to a line of research. Except “#7 shoot tips” cluster, all 
the other clusters were closely related to the topic of the microbiome 
of horticultural crops. Among these clusters, “#0 disease resistance,” 
contains most of the nodes, has been widely reported followed by 
“#1 plant growth promoting rhizobacteria” and “#2 mycorrhizae” 
as the most active research areas. Studies from 2010 and 2017 were 
focused on cluster “#0 disease resistance,” but in the last 5 years, the 
hotspots and frontier trends highlight plant associated-beneficial 
microorganisms (“#1 plant growth-promoting rhizobacteria” and 
“#2 mycorrhizae”), apple replant disease, and internal transcribed 
spacer (ITS) (Figure  1B). To gain a more comprehensive 
understanding of plant microbiome function, we  advocate for 
experimental datasets that combine host-centered omic approaches 
like transcriptomics, epigenomics, metabolomics, and proteomics 
with microbial-focused approaches like shotgun metagenomic, 
amplicon sequencing, metatranscriptomics, and exometabolomics. 
The term “holo-omics” characterize research that includes data 
from many-omic layers from both the host and microbial domains 
(Nyholm et al., 2020). We believe that holo-omic investigations 
have the potential to clarify the functionality of plant microbiome 
interactions by producing a picture of what is expressed, translated, 
and generated through plant-microbiome interactions (Griffiths 
et al., 2011). This multimodal view can assist narrow down results 
from various datasets to significant biological signals, as well as 
generate support for certain hypotheses using data gained via 
orthogonal methodologies. After the introduction of the holo-omic 
approach (Nyholm et  al., 2020) and its adoption in plant 
microbiome interactions (Xu L. et al., 2021; Xu Q. et al., 2021), this 
review focuses on the potential of holo-omics to generate a more 
holistic understanding of molecular networks and discusses the 
implementation and current limitations of the holo-omic approach 
within the horticultural microbiome. More understanding of 
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microbiome-horticultural crop interactions will harness the 
development of microbial tools for climate-proof horticulture 
production. We  first highlight the horticultural-associated 
microbiome and discuss the different beneficial/pathogenic 

interactions between the host plant and the microbes, with a focus 
on experimental design considerations for plant holo-omic. 
Finally,   we  discuss the current challenges in appraising holo-
omics datasets.

FIGURE 1

Co-cited references (A) and timeline visualization (B) of keyword co-occurrence clustering analysis in the study of microbiome associated with 
horticultural crops from 2018 to 2023. ITS, internal transcribed spacer; TYLCV, tomato yellow leaf curl virus; ROS, reactive oxygen species.
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2. Composition of horticultural 
microbiome and structuring factors

2.1. Bacterial and archaeal microbiota of 
horticulture

Multiple studies reported the diversity of bacterial and archaeal 
microbiota of horticultural plants and their functional traits 
influencing the host plant and the associated microbial community. 
Previous studies confirmed that there is no hazard in the 
establishment of the bacterial community on plants since this 
process is managed by an assemblage of specific rules (Dong et al., 
2019; Yang H. et  al., 2023). Many structuring factors of plant-
associated bacterial communities such as soil type (Liu et al., 2020; 
Xu et al., 2020), plant compartment (López-Angulo et al., 2020; 
Bettenfeld et al., 2022), host genotype/species (Cheng Z. et al., 2020; 
Sousa et al., 2020; Shakir et al., 2021), plant immune system (Kohl, 
2020; Knights et al., 2021), plant trait variation/developmental stage 
(Liu et al., 2020; Compant et al., 2021), and residence time/season 
(Chernov and Zhelezova, 2020; Wang et al., 2021; Yi et al., 2021). 
Various bacteria such as Alphaproteobacteria, Actinobacteria, 
Gammaproteobacteria, Firmicutes, Pseudomonas, and 
Paraburkholderia spp. were discovered in the rhizosphere of 
different horticultural crops (carrot, potato, neep, beetroot, onion, 
and topinambur) (Kõiv et  al., 2019). Cheng F. et  al. (2020) and 
Cheng Z. et al. (2020) reported that the rhizomicrobiome of 11 
tomato cultivars is composed of a diversified community dominated 
by bacteria from the phyla Proteobacteria, Bacteroidetes, and 
Acidobacteria, mainly comprising Rhizobiales, Xanthomonadales, 
Burkholderiales, Nitrosomonadales, Myxococcales, 
Sphingobacteriales, Cytophagales, and Acidobacteria subgroups. 
Meanwhile, the pathogenic bacterial community has been found in 
a variety of horticultural crops; Pseudomonas syringae in olive, 
tomato, and green bean, Xylella fastidiosa and Ralstonia 
solanacearum in potato and banana, Escherichia coli strains in leafy 
greens and sprouts, Listeria monocytogenes in fresh-cut salad and 
melons, Salmonella spp. in tomato, spices seeds, and sprouts, 
Norovirus in berries, and Shigella in green onion (Mansfield et al., 
2012; Leff and Fierer, 2013; Li et al., 2015; Deng et al., 2019; Shi 
et  al., 2019). Although the important diversity of bacterial 
microbiota reported here and the myriad factors controlling the 
establishment of this microbiota, the bacterial community in both 
above- and belowground compartments of horticultural plants are 
dominated by Proteobacteria, Actinobacteria, and Bacteroidetes 
phyla, as is the case for most plants (Rai et al., 2021). Comparing 
root- and leaf-associated communities using an operational 
taxonomic unit (OTU) showed significant overlap in many crops, 
such as grapevine and tomato (Zarraonaindia et al., 2015; Dong 
et al., 2019). However, Bai et al. (2015) demonstrated through large-
scale genome sequencing and re-colonization of germ-free plants 
that host-associated microorganisms are specific and adapted to 
their respective cognate plant organs. Despite representing ca. 36% 
of plant-associated microbiota (Müller et  al., 2015), archaeal 
microbiota have not received the same level of attention as their 
bacterial counterparts, possibly because no archaeal pathogens have 
been reported. Therefore, more research should be conducted on 
archaeal members, particularly to clarify their interactions and 
significance for their host plants.

2.2. Fungal microbiota of horticulture

Community profiling studies showed a huge diversity of plant-
associated fungi with Ascomycota and Basidiomycota as the main 
phyla (Sweeney et al., 2021; Zhou et al., 2021). A great number of 
phytobiome research identified many fungal microorganisms from the 
horticultural microbiome, including Trichoderma and mycorrhizal 
fungi, Penicillium sp., Cladosporium sp., Colletotrichum sp., 
Cryptococcus, Rhodotorula, Hanseniaspora, and Sphingomonas with 
beneficial effects on plant growth performances (Shi et al., 2019; Jo 
et al., 2020; Knapp et al., 2021; Liu and Howell, 2021; Darriaut et al., 
2022; Fournier P. et al., 2022; Sangiorgio et al., 2022). Recent studies 
have identified several fruit trees-associated fungi (e.g., Fusarium, 
Cladosporium, Taphrina, Phoma, Septoria) as phytopathogenic fungi 
(Padraic et al., 2019; Nicoletti et al., 2020; Gusella et al., 2021; de Jager 
and Roets, 2023; Yang Y. et al., 2023). In the rhizosphere of sweet 
potato, Gao et  al. (2019) revealed the presence of plant growth-
promoting fungi, including Chaetomium and pathogenic fungi such 
as Fusarium, Verticillium, Guehomyces, and Colletotrichum. A 
phytobiome study on tomato identified several beneficial fungi, 
including Aspergillus, Hyphodiscus, Chrysosporium, Trichoderma, and 
Oidiodendron (Lee et al., 2019). Similar to bacteria, there are several 
structuring factors that govern the fungal phytobiome, including soil 
type, plant compartment, plant species, and seasons (Onufrak et al., 
2020; Knapp et al., 2021; Liu and Howell, 2021; Runge et al., 2023). 
Fungal populations have high endemism and limited biogeographic 
dispersal due to their sensitivity to stochastic variations and distinct 
responses to environmental factors when compared to bacterial 
communities (Powell et al., 2015; Thomson et al., 2015; Vacher et al., 
2016; Zhang et al., 2021; Wei et al., 2022). Studies examining plant-
associated fungi and bacteria have shown that fungal microbiota is 
more influenced by biogeography than bacterial microbiota (Onufrak 
et al., 2020; Liu and Howell, 2021; Zhang et al., 2021; Wei et al., 2022; 
Runge et  al., 2023). However, it remains unclear whether the 
taxonomic resolutions brought forth by the 16S rRNA and ITS marker 
loci impact this trend (Peay et al., 2016).

2.3. Horticulture-associated protist

Little importance was given to protists as a component of the 
rhizosphere microbiome, although they are ubiquitous and play a key 
role in soil and plant functioning. The most known protists to interact 
with plants are belonging to the lineages of Oomycota (Stramenopiles) 
and Cercozoa (Rhizaria) which belong to the supergroup of 
Stramenopiles-Alveolata-Rhizaria (SAR) (Ruggiero et  al., 2015). 
Phytophthora, Pythium, Albugo, and Peronospora genera, within 
Oomycota, contain some species closely associated with horticultural 
roots or leaves (Arcate et al., 2006; Coince et al., 2013; Sapkota and 
Nicolaisen, 2015; Agler et al., 2016). The main oomycete species are 
well known to induce deleterious effects on plants and thereby a 
significant decline in global crops production (Kamoun et al., 2015). 
In contrast, some oomycetes species that colonize roots can boost 
plant fitness and health performances (Benhamou et al., 1997, 2012; 
Van Buyten and Höfte, 2013), confirming the existence of beneficial 
protists with non-harmful interactions with plants. Protists profiling 
community studies have revealed unexpected diversity of soil protists 
(Dupont et  al., 2016; Mahé et  al., 2017). Oomycetal communities 
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associated with horticultural crops showed very low diversity (Coince 
et al., 2013; Sapp et al., 2015), where they are mostly represented in 
plant tissue by species belonging to the Pythiaceae family (Sapp et al., 
2015), while Cercozoan communities presented high diversity in plant 
leaves and roots (Sapp et  al., 2015; Ploch et  al., 2016). Protistan 
communities are controlled by many environmental factors (Geisen 
et  al., 2015; Dupont et  al., 2016) and they have been recently 
considered as determinant bioindicators of soil quality (Fournier 
B. et al., 2022). These studies highlight the importance of protists—
especially Oomycota and Cercozoa—for holobiont functioning 
and sustainability.

The horticultural microbes provide many services through their 
effective bidirectional interactions with plants. These services (see 
Figure 2) are reviewed in the next section.

3. Cascading consequences of 
holobionts on plant growth and health

3.1. Interplay between the host beneficial 
microbiome and horticultural metabolic 
pathways

Previous studies have provided evidence of the promising role of 
plant interactions with beneficial soil microbes in agriculture 
sustainability (see reviews by Arif et al., 2020; Liu H. et al., 2020; Liu 
L. et al., 2020; Ali et al., 2022; Bai et al., 2022; Trivedi et al., 2022). This 
section does not intend to give a detailed account of horticulture–
beneficial microbe interaction and the reader is directed to other 
publications to read about the beneficial interaction for plant growth 
promotion (Patel et al., 2018; Kumawat et al., 2019; Ullah et al., 2020), 
disease suppression (De Vrieze et al., 2018; Sharma et al., 2018; Ait 
Rahou et al., 2020), bioremediation (Ma et al., 2015; Bücker-Neto 

et al., 2017; Belimov et al., 2020), and abiotic stress tolerance, including 
heat stress (Mukhtar et al., 2020; Sangiorgio et al., 2020), salinity stress 
(Ait-El-Mokhtar et  al., 2019; Toubali et  al., 2020), drought stress 
(Silambarasan et al., 2019; Anli et al., 2020; Huang et al., 2020).

Signaling from horticultural plants to microbes through plant-
secreted compounds has been demonstrated to promote various 
beneficial aspects for plants (Goddard et al., 2021; Lazazzara et al., 
2021; Montesinos et al., 2021). This signaling process has been mainly 
investigated in close symbiotic associations, especially those involving 
mycorrhizal fungi and rhizobial bacteria (Emmanuel and Babalola, 
2020; Sharma et al., 2020; Hanaka et al., 2021; Dabré et al., 2022). For 
instance, under nutrient-deficient conditions, the host plant enhances 
strigolactone secretion to stimulate the establishment of AMF and 
root colonization as a mechanism for nutrient acquisition (Li et al., 
2023). Another group of signaling molecules involved in the 
communication between horticultural plants and microorganisms is 
flavonoids. These compounds have been shown to boost root infection 
by rhizobacteria that induce the formation of nodules allowing N 
fixation in legumes (Wang et al., 2022; Zhang et al., 2022). Plants emit 
flavonoids that serve as chemo-attractants and nodulation gene (Nod) 
inducers for symbiotic Rhizobia when N levels are low. Apigenin and 
luteolin, two of the Nod-inducing flavonoids, were both potent 
chemoattractants, whereas naringenin elicited a very weak response 
in Rhizobium leguminosarum biovar phaseoli (Dent and Cocking, 
2017; Abedini et  al., 2021), showing that various flavonoids play 
distinct roles. Besides these characterized signaling molecules, the 
plant-derived aromatic metabolite benzoxazinoids (BXs) can act as 
chemo-attractants for several beneficial microbes in addition to their 
role as toxins toward pathogens (Bhattarai et al., 2021). It has been 
shown that the presence of coumarins in root exudates alters the 
microbial makeup of the roots by promoting/restraining the growth 
of specific microorganisms. According to Stringlis et  al. (2018), 
scopoletin, an antimicrobial coumarin, preferentially inhibits the 

FIGURE 2

Microbiome services provided by beneficial/pathogenic horticulture–microbe interactions. SAR, Systemic acquired resistance; ISR, induced systemic 
resistance; MAMPs, microbe-associated molecular patterns; PGPM, plant growth-promoting microbes.
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growth of the pathogenic Fusarium oxysporum and Verticillium dahlia 
(both known to be associated with horticultural crops), while having 
no effect on the beneficial rhizobacteria Pseudomonas capeferrum and 
Pseudomonas simiae. Moreover, a wide range of amino acids is 
recognized by microbial chemoreceptors, which drive the bacteria to 
nutrient-rich niches around the plant roots (Dent and Cocking, 2017). 
For the development of symbiotic relationships, the capacity to utilize 
amino acids provided by the host plant for nourishment may 
be  essential. For instance, Hida et  al. (2020) demonstrated that 
Pseudomonas protegens CHA0, a rhizobacterium that promotes plant 
growth of various species including tomato, possesses four putative 
chemoreceptors for amino acids that may enhance chemotaxis toward 
amino acids. In the same vein, glycerol-3-phosphate (G3P) roots 
secretion is essential for strain-specific exclusion of non-desirable 
root-nodulating bacteria and the associated foliar pathogen immunity 
in soybean (Shine et  al., 2019). Under stressful conditions, 
horticultural plants produce chemicals that specifically attract 
microbes that can increase plant resilience (Cheng F. et al., 2020; Xu 
Q. et al., 2021). Furthermore, plants interact with the microbiome 
through volatile compounds (VCs), such as aldehydes, terpenoids, 
phenylpropanoids, and common monoterpenes (i.e., limonene, −
pinene, benzenoids, −caryophyllene) (Wolfgang et al., 2019; López 
et al., 2021; Jiuyun et al., 2022). Along with the low-molecular-weight 
organic acids, many other important bioactive agents (i.e., phenolics, 
flavonoids, cutin, monomers) and many other unidentified molecules 
are involved in plant-microbial chemical interactions (Gulati et al., 
2020; López et al., 2021; Jiuyun et al., 2022).

Horticultural plants can detect signaling molecules produced by 
microorganisms that have an impact on the host gene expression, 
immune system, development, and stress responses (Shine et al., 2019; 
Fu et al., 2021; Oyserman et al., 2022). Microbe-associated molecular 
patterns (MAMPs), such as lipopolysaccharide, peptidoglycans, 
flagellin, and chitin are used by rhizosphere microbes to elicit plant 
responses (Fu et  al., 2021; Oyserman et  al., 2022). MAMPs cause 
induced systemic resistance (ISR) and they prime the rhizosphere-
beneficial microorganisms. Systemic acquired resistance (SAR), 
primarily induced by pathogens, can also be triggered by MAMPs 
(Kim et al., 2020; Dye and Bostock, 2021). To initiate symbiosis with 
plants, several well-known chemicals are employed by 
microorganisms, including legumes rhizobium and mycorrhizal 
factors (Shine et  al., 2019; Ge et  al., 2022). In addition to plant 
signaling chemicals, metabolic interactions between microbes via 
quorum sensing (QS) are crucial in defining microbial communities. 
According to extensive research, the QS molecule N-acyl homoserine 
lactone (AHL), produced by Gram-negative bacteria, not only acts as 
a signaling molecule within and between bacterial species but also 
between bacteria and plants, influencing thereby gene expression and 
functions related to plant development, stress response, and immunity 
(Schuhegger et al., 2006; Ferluga et al., 2008; Babenko et al., 2022). QS 
compounds, such as cis-2-unsaturated fatty acids, pyrones, alkyl 
quinolones, and dialkyl resorcinols have recently been discovered. 
Beyond QS mechanisms, numerous microbial compounds such as 
VCs have been reported to act as signaling molecules, inducing 
directed movement of fungal-bacterial and plant-microbe 
associations. VCs from bacterial metabolic activity could be used by 
plants in stressful environments (Sangiorgio et al., 2020; Jiuyun et al., 
2022; Nakayasu et al., 2023). Pseudomonas and Bacillus species have 
been found to produce VCs that either directly inhibit plant pathogens 

by changing the transcriptional expression levels of numerous genes 
involved in motility and pathogenicity or indirectly by increasing ISR 
in plants (Raza et al., 2016a,b). However, little is known about the 
processes through which microbial VCs promote growth and nutrient 
absorption. Besides, microorganisms regulate the nutritional and 
hormonal balance of plants and promote systemic tolerance to (a)
biotic stimuli and plant growth. Several root-associated microbes 
produce auxins, cytokinins, gibberellins, salicylic acid, abscisic acid, 
and cytokinins (French et al., 2019). In a changing climate, the plant 
microbiome is also involved in host phenotypic plasticity, which can 
have an impact on plant phenology (Dastogeer et  al., 2020). For 
instance, by altering the N cycle and converting the amino acid 
tryptophan in root exudates to the indoleacetic acid phytohormone, 
rhizosphere bacteria can control the flowering time (Lu et al., 2018).

3.2. Pathogenic microbiome interactions 
with key metabolic pathways of host plants

Plants are equipped with multilayer defense strategies to cope with 
microbe attacks. A myriad of studies has highlighted the induced 
response during the horticultural plant-pathogen interaction at 
different levels. Advanced research in genomic profiling allows the 
sequencing of the whole genomes of horticultural pathogens. Table 1 
shows a list of sequenced genomes of horticultural plant pathogens.

Transcriptomic studies have implicated the upregulation of several 
phenylpropanoid and terpenoid biosynthesis-related genes and the 
downregulation of photosynthesis-related genes at 48 h post-
inoculation of lettuce with B. cinerea (De Cremer et  al., 2013). 
Proteomics studies added a new layer to the understanding of plant-
pathogen interaction. Margaria et al. (2013) investigated the proteome 
profile of grapevine infected by Flavescence doree (phytoplasma 
pathogen disease). In infected grapevine, 48 different proteins were 
de-regulated, including isocitrate dehydrogenase and glutathione 
S-transferase known by their antioxidant role. Another study (Parker 
et al., 2013) identified the tomato proteome during the infection by 
Pseudomonas syringae pv. tomato DC3000 (Pst). A total of 2,369 
proteins were de-regulated in tomato leaves of which 477 Pst redox 
proteins such as glutathione S-transferase, thioredoxin, and 
superoxide dismutase as the most up-regulated proteins. Li et  al. 
(2013) identified 38 proteins (i.e., antifungal proteins, PR proteins, and 
cell wall strengthening-related proteins) differentially expressed in 
Fusarium oxysporum f. sp. cubense infected-banana. Using LC–MS 
analysis, the metabolite profile changes were observed during the 
infection of grape with B. cinerea (Hong et  al., 2012). The results 
provided evidence of carbohydrate and lipid metabolisms 
reprogramming toward the increased synthesis of secondary 
metabolites involved in plant defense, such as trans-resveratrol and 
gallic acid. The study provided metabolic biomarkers of infection (i.e., 
azelaic acid, a substance known to prime plant defense responses, 
arabitol, ribitol, 4-amino butanoic acid, 1-O-methyl- glucopyranoside, 
and several fatty acids) that alone or in combination can be used to 
monitor Botrytis early infection in the vineyard. In potato, The 
infection with Phytophthora infestans showed a resistance 
characterized by the presence of flavonoids, alkaloids, and 
phenylpropanoids (Yogendra et al., 2015). Soybean plants infected 
with Rhizoctonia solani yielded an altered metabolites profile with 
major antioxidant molecules (i.e., phytoalexins, flavonoids, coumarins, 
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and hormones) likely to limit the invasion of the pathogen (Aliferis 
et al., 2014).

Characterizing the entire range of bioactive substances 
generated by plant pathogens is another crucial task for 
metabolomic studies in plant-microbes interactions. These 
compounds could be  employed as plant-attacking non-protein 
effectors (Pusztahelyi et  al., 2015). Pathogenic organisms of 
Aspergillus, Alternaria, Burkholderia, Fusarium, and Pseudomonas 
create a wide range of chemically varied toxins that include 
aflatoxin, alternariol, toxoflavin, fumonisin, or coronatine (Lee and 
Ryu, 2017; Adeniji et al., 2020). In addition, root pathogens must 
identify chemical cues in the rhizosphere to infect root tissues. For 
instance, the oomycete pathogen Phytophthora sojae recognizes 
trace amounts of the compounds daidzein and genistein released by 
soybean and uses them as chemotrophic cues to guide its growth 
(Hua et al., 2015). Similarly, cochliophilin A, belongs to the class of 
flavones, from spinach root exudates attracts Aphanomyces 
cochlioides causing root rot disease (Chen et al., 2021). Plant root 
exudates typically play a significant role in both pathogen attraction 
to the roots and their deterrence or activation of microbiome 
processes, as part of the action to defend against invading pathogens 
(Sasse et al., 2018; Jacoby et al., 2020). Most of the current studies 
on the interactions of microbial members with potential pathogenic 
behavior (pathobiota) with horticultural crops have employed basic 
simulation models containing a single host entity and a single 

pathogen entity. Yet, in their natural habitat, plants are in 
continuous interaction with a myriad of susceptible pathogens 
(Bartoli et  al., 2018) and the establishment of these harmful 
microbes relies on whether the pathobiota cooperate with or 
compete with the plant microbiome. The next step is therefore to 
understand the way pathobiota and plant microbiomes interact in 
a long-term process in a realistic ecological context.

3.3. Microbe-assisted production-related 
traits improvement

One of the aspects of the positive impact of the horticultural-
associated microbiome on crop performance is the promotion of 
fruit quantity, quality, and/or functionality (Agnolucci et al., 2020; 
Emmanuel and Babalola, 2020). Bona et al. (2016) revealed that the 
inoculation of tomato with AMF (Glomus aggregatum, G. viscosum, 
Rhizophagus intraradices, Claroideoglomus claroideum, and 
C. etunicatum) and PGPB (Pseudomonas sp.) induced early 
flowering and fruiting and a significant increase in fruit length, 
diameter, and weight, providing thereby fruit with high commercial 
value. Mycorrhizae significantly improved sugar concentration in 
bigarade orange, eggplant, and grape berries (Antolín et al., 2020; 
Hadian-Deljou et  al., 2020; Sabatino et  al., 2020). Apple roots 
inoculated with Rhizophagus irregularis accumulated higher sugar 
concentration, especially under drought conditions. Similarly, 
inoculation of strawberry with PGPB strains increases yield, sugars, 
nutrients, and vitamins content in fruit (Esitken et  al., 2010; 
Todeschini et al., 2018). It has long been noted that horticultural 
crops–beneficial microorganisms interactions are significantly 
influenced by the amounts of soluble sugar in the host plants 
(Agnolucci et al., 2020; Emmanuel and Babalola, 2020). Todeschini 
et al. (2018) showed an increase in fruit glucose and fructose levels 
in Septoglomus viscosum-inoculated strawberry, whereas Bona et al. 
(2015) revealed that the application of commercial inoculum 
Mybasol improved glucose and sucrose concentrations in 
strawberry fruits. Tomato plants inoculated with the same 
commercial inoculum yielded higher levels of glucose (Bona et al., 
2016). The synthesis of fruits amino acids is favorably impacted by 
the beneficial microorganisms. Mycorrhizal cherry tomatoes 
showed an increase in valine, isoleucine, leucine, and lysine content 
in the fruits (Carillo et al., 2020). Todeschini et al. (2018) revealed 
that mycorrhizal inoculation can also differentially affect acid 
production in a strain-dependent manner. In fact, F. mosseae 
significantly affected total organic acid and citric acid content, while 
R. irregularis and S. viscosum altered the concentrations of ascorbic, 
malic, and fumaric acids. The dual inoculation of AMF and PGPB 
altered tomato fruit VCs production, indicating that the synergistic 
effect of both microorganisms is important in determining the 
sweet-fruity taste and flavor (Todeschini et al., 2018). Compared to 
the single inoculation, the dual inoculation significantly enhanced 
the total phenolic compounds and flavonoid levels in spinach 
(Khalid et al., 2017). In this vein, the production and quantity of 
anthocyanins in strawberry fruits were enhanced after the 
application of a mixture of Glomus sp. and Pseudomonas sp. strains 
(Lingua et al., 2013). Metabolic profiling revealed increased sugars, 
acids, and multiple secondary metabolites levels following 

TABLE 1 List of horticulture pathogens whose genomes are sequenced 
using -omics technologies.

Host 
plant

Pathogen Genome 
size (Mb)

References

Potato Pectobacterium 

carotovorum

4.97 Niemi et al. (2017)

Phytophthora infestans 240 Haas et al. (2009)

Dickeya solani 4.92 Khayi et al. (2014)

Ceratocystis fimbriata 29.41 Markus Wilken et al. 

(2013)

Tomato Clavibacter 

michiganensis

3.298 Gartemann et al. 

(2008)

Ralstonia solanacearum 5.8 Salanoubat et al. (2002)

Banana Ralstonia 

solanacearum

5.43 Xu et al. (2011)

F. oxysporum (Foc1) 47.838 Guo et al. (2014)

F. oxysporum (Foc4) 53.111 Guo et al. (2014)

Bean Pseudomonas syringae 5.93 Joardar et al. (2005)

Plum Monilinia fructigena 43.125 Landi et al. (2018)

Apple Erwinia amylovora 3.8 Sebaihia et al. (2010)

Chestnut Cryphonectria 

parasitica

43.8 Crouch et al. (2020)

Strawberries Phytophthora 

fragariae

73.68 Gao et al. (2015)

Citrus Xylella fastidiosa 2.68 Simpson (2000)

Peach Taphrina deformans 13.3 Cissé et al. (2013)
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AMF + PGPB inoculation. These combinations, however, did not 
induce the same effects, and fruit concentration of some elements 
and/or volatilome profile can be affected by the presence of specific 
beneficial soil microorganisms. For instance, Todeschini et  al. 
(2018) revealed that fruits from each microbial strain were different 
and this can result in unique organoleptic and qualitative 
characteristics. In fact, the combined application of F. mosseae and 
P. fluorescens Pf4 produced sweeter fruit, while the dual application 
of R. irregularis and Pseudomonas sp. 5Vm1K induced low-acid 
fruits. The comparison studies above provide a demonstration of 
the differences between strains within the same species, indicating 
that the use of the right strain (or right combination) matters and 
could help boost plant growth and ultimately, is more likely to 
increase crop yield and/or quality in sustainable agriculture (Turrini 
et al., 2018; Plouznikoff et al., 2019).

4. Horticultural microbiome in light of 
holo-omics

4.1. Implementing the holo-omics 
approach in horticulture

A growing number of studies adopted “omics” and holo-omic 
approaches to study horticultural plant–microbes interaction 
(Table  2). The implementation of the holo-omics approach in 
horticulture required the use of a variety of methodological assets 
within different experimental setups with a need for diverse statistical 
and analytical approaches. Research depends on targeted approaches 
such as targeted RNA sequencing, amplicon sequencing, and western 
blot to link the host and the microbiota domains. Yet, untargeted 
approaches including shotgun DNA sequencing, shotgun proteomics, 
and shotgun metabolomics are increasingly completing and still used 
instead of targeted approaches since they provide a non-selective 
snapshot of the nucleotides, proteins, and metabolites present in the 
samples. Indeed, host/microbe-generated data from untargeted 
approaches seem to be more advantageous than those obtained from 
targeted approaches since the shotgun sequencing approach can 
generate metagenome-assembled genomes (MAGs) from 
metagenomic data and the construction of individual genomic profiles 
(Nyholm et al., 2020). In addition, Vieira-silva et al. (2021) confirm 
that steadily decreasing sequencing costs associated with 
improvements in computational methods are likely to promote the use 
of the shotgun sequencing approach.

The construction of high-dimensional data is the first step in 
implementing a complete holo-omics approach with horticultural host/
microbe multiple-omics layers. According to the objectives of the 
research, the obtained data from each study sample could include 
genomic, transcriptomic, proteomic, and/or metabolomic 
measurements. For instance, millions of genes, thousands of gene 
orthologs, or hundreds of MAGs may be employed to characterize the 
microbiota. As a result, the huge amount of information and the 
multidimensionality of the generated data is challenging classic statistical 
methods including linear models and correlation-based methods. To 
reduce the complexity of the generated data, several authors suggest the 
reduction of dimensionality. For this purpose, Alberdi et  al. (2022) 
proposed gathering MAGs following taxonomy or ecological guilds, and 
Ayesha et  al. (2020) suggested clustering genes according to their 

functional properties. While this dimensionality reduction abridges 
analyses and diminishes computational complexity, it may induce 
pertinent data loss Ayesha et al. (2020).

The first studies in holo-genomics identified correlations among 
hosts and associated microbes using association analysis methods 

TABLE 2 Examples of holo-omic studies in the microbial horticulture.

Plant host Sample 
type(s)

Approaches References

Tomato, 

lettuce

Root Shotgun metagenome, 

metatranscriptome, 

and host RNA-seq

Zolti et al. (2020)

Tomato Root Metatranscriptome 

and host RNA-seq

Chialva et al. (2020)

Cucumber Root Metagenomics, host 

RNA-seq, and 

metatranscriptomic

Ofek-Lalzar et al. 

(2014)

Peanut Root, 

rhizosphere

Shotgun metagenome, 

metatranscriptome, 

and host RNA-seq

Li et al. (2019)

Mustard Soil, 

rhizosphere, 

root

Ionomics, 

metabolomics, 

phenome, and 16S

Ichihashi et al. 

(2020)

Pea Shoot Host RNA-seq and 

metatranscriptome

Zhuang et al. (2012)

Canola Shoot Host RNA-seq and 

Metagenomics

Lowe et al. (2014)

Lettuce Leaf Host RNA-seq De Cremer et al. 

(2013)

Potato Leaf Host genomic Jupe et al. (2013)

Host RNA-seq Gyetvai et al. (2012) 

and Gao et al. 

(2013)

Proteomics and 

transcriptomics

Ali et al. (2014)

Banana Leaf Host RNA-seq Passos et al. (2013)

Grapevine Root Proteomic Li et al. (2013)

Leaf Proteomic Margaria et al. 

(2013)

Black gram Fruit Metabolomic Hong et al. (2012)

Leaf Proteomic Kundu et al. (2013)

Tomato Leaf Metabolomic and 

proteomic

Parker et al. (2013)

Kiwi Shoot Proteomic Petriccione et al. 

(2013)

Potato Leat and shoot Metabolomic Yogendra et al. 

(2015)

Soybean Root and shoot Proteomic Delmotte et al. 

(2014)

Root Metabolomic Aliferis et al. (2014) 

and Scandiani et al. 

(2015)
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such as genome-wide association studies (GWASs). This approach 
associated precise loci in the host genome with the occurrence of 
beneficial/pathogenic microorganisms (Batstone et  al., 2022; 
Demirjian et  al., 2022). Similar methods were applied to study 
epigenomes (Zhang et al., 2023), proteomes (Zancarini et al., 2021), 
and metabolomes (Deng et al., 2021). Metagenome-wide association 
studies (MGWASs) were developed from GWASs to link specific loci 
in the metagenome to specific characters of the host phenotype 
(Ayesha et al., 2020). To date, the main applied methods to gather 
multi-omics data from host and microbiome domains were based on 
traditional statistical models including general linear and linear mixed 
methods in GWASs and MGWASs (Ayesha et al., 2020; Nyholm et al., 
2020). The used models are frequently hindered by the complex 
dimensionality of the metagenomic data, which suggests the 
development of specific models to manage the complexity of holo-
omics data (Xu L. et al., 2021).

To make progress in the holo-omics approach and overcome the 
association analyses issue, Limborg et al. (2018) developed a two steps 
methodological framework to expose the implemented mechanisms 
during host-microbiome interactions that modulate host phenotype 
variation. During the first step, an initial association is performed 
based on GWAS and MGWAS analysis to identify variants (SNPs) 
inside the genome and metagenome (e.g., amplicon sequence variants, 
MAGs, operational taxonomic units, or genes) related to specific host 
phenotypes. In the second step, the interactions between the 
associated GWAS variants and other-omic levels are investigated, 
resulting in the identification of the main molecular features 
orchestrating the pathway from host genotype to phenotype. Although 
the two-step method allows us to drill down into the interactions 
among the diverse-omic levels that impact host phenotype, the 
efficiency of the GWAS, carried out in the first step, in identifying 
causal variants still limits the number of interactions that should 
be cross-examined. The integrated inference by leveraging different-
omics big data is challenging, and the development of computational 
methods in this field has been hindered by the inherent complexity of 
holo-omics and the biological process underlying them. So far, 
integrating various-omics datasets is based on different approaches 
including regularized regression-based methods (Pan, 2021), network-
based approaches (Xiao et al., 2022), or other specialty tools (Abbott 
et al., 2021). None of these approaches, however, were developed to 
analyze metagenomic, metatranscriptomic, or metametabolomic data.

4.2. Experimental setups of holo-omics 
studies in microbial horticulture

Many decisive considerations should be taken into account to 
obtain meaningful and precise data from holo-omics-related 
microbiome studies (Nyholm et al., 2020; Xu L. et al., 2021). The first 
consideration is the reflected choice of the type of study. Longitudinal 
studies (studies with sampling occurring throughout horticultural 
plant development, but not permanently from the same plant host) 
present substantial benefits for holo-omic research in comparison to 
the end-point studies. During microbiome end-point experiments, 
data are collected at a single defined time point in the experiment to 
explore the alterations of microbial communities under diverse 
treatments. Yet, choosing a suitable time point is challenging since 
there is frequently slight or no a priori information about when host 

and microbiome interactions will happen. In contrast, longitudinal 
studies aim to assess the evolution of the microbiome over time. These 
studies allow for a type of pseudo-replication as patterns recorded at 
several time points are most probably the consequence of actual 
biological processes. Further, longitudinal experiments improve the 
possibility of identifying modifications that occur exclusively during 
a certain period after treatment. As already stated in this review, 
samples gathered at a single randomly determined time point could 
miss the key treatment-dependent variations occurring outside the 
chosen temporal frame.

In addition, a longitudinal approach may help detect correlations 
across data types that are influenced by a delay of time (Chen et al., 
2022). Signal transduction and decoding among host and 
microorganisms may be time-consuming (Pan, 2021; Xiao et al., 2022) 
as can the delay between transcriptional shifts and downstream 
changes affecting the biosynthesis of proteins and metabolites in the 
host (Jamil et al., 2020). Temporal delay is anticipated to have an even 
greater influence on microbiome composition and abundance, as well 
as the development of macroscopic host phenotypes. Finally, in 
orthogonal datasets, a longitudinal design may aid in the development 
of a clear hypothesis for the interconnection between associated 
characteristics. However, the longitudinal approach for holo-omics 
studies is constrained by the requirement of multiple rounds of 
sampling, effective scheduling of the sample collection timing to avoid 
the introduction of confusing variables (i.e., circadian variations) 
(Hubbard et  al., 2018), abiotic factors, diurnal variations, and 
downstream statistical analyses. Indeed, several host-related data 
types, e.g., transcriptomics, are influenced by circadian variations and 
will need samples to be gathered in a restricted window at a set time 
of day during the experimental design when collecting huge numbers 
of samples, particularly in the field (Xu L. et  al., 2021). While 
developing integrated holo-omics research, it is necessary to take into 
account the sample and sampling procedure restrictions. For instance, 
the compatibility of each gathered sample type for certain required 
data types should be  considered, which may need changes to the 
sampling method in some circumstances. Phyllosphere microbiome 
samples would include more DNA, RNA, and proteins derived from 
the horticultural plant than from the microorganisms. Therefore, 
some microbial methods may be  impossible to perform without 
removing horticultural plant-derived contamination. When an 
environment presents low microbial biomass, such as droughted 
sandy soils, a higher number of samples must be collected for the 
extraction of nucleic acids. Furthermore, collection methods or 
sampling time may differ following the horticultural plant 
compartments, which may have unintended consequences for sample 
viability and data results, particularly for -omics approaches owing to 
their high-sensitivity to time and temperature.

A thorough examination of what data type combinations are most 
achievable and appropriate for the system under study, the objectives 
of the study, and available resources for the project are required 
(Lucaciu et al., 2019). For instance, holo-omics could be more difficult 
in non-model plants (e.g., horticultural crops) than in other host 
species due to the presence of various organelles, integration, and 
interpretation of incomplete genomes, high metabolic diversity, and 
complicated interaction links with pathogens and symbionts at the 
same time (Jamil et al., 2020). It is worth mentioning that holo-omics 
designs for deciphering plant-microbiome interactions are quite 
expensive to implement owing to the integration of multi-omics 
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approaches, specifically shotgun metagenomics and 
metatranscriptomics remain highly expensive, whereas others (i.e., 
amplicon analysis) can cost one to two orders of magnitude less per 
sample. Before conducting holo-omic research, focused pilot surveys, 
with less expensive techniques or limited sampling possibility, are 
highly recommended to determine whether the experimental factors 
in question have a significant impact on microbial community 
dynamics, warranting further holo-omic investigation. This will also 
allow preliminary system evaluations to be  performed without 
requiring broad technological and biological knowledge.

Developing staging within holo-omic investigations in 
horticultural-microbes interaction, in which procedures require a 
larger investment, are deployed later and may reduce resource 
expenditure in longitudinal designs by selecting crucial periods to 
focus on less expensive early datasets. However, not all data types are 
equally suitable to this method; certain sample types require instant 
or quick analyses (RNA, metabolites), while others (DNA) may 
be retained for considerably longer periods for subsequent use.

4.3. Integrated multi-omics for deciphering 
horticultural-microbiome interactions

The emergence of -omics technologies, such as genomics, 
transcriptomics, proteomics, metabolomics, lipidomics, 
hormonomics, and ionomics has permitted to identify components 
associated with plant-microbe interactions including molecular 
regulatory circuitries, how influential and important horticultural 
microbiomes play in plant fitness, plant disease, (a)-biotic stress 
susceptibility/tolerance, soil health, multi-organismal communication, 
and nutrient transfer and cycling, thus underpinning factors paving 
the way to harnessing the power of the microbiome to boost 
productivity and quality of horticultural crops.

With continual improvements, the integrated study of the genetic 
features of a horticultural host and its associated microbes is becoming 
more feasible, though still underdeveloped, approach to understanding 
horticultural holobionts. The combination of host and microbial 
genomic and transcriptomic information is critically important to 
improving our understanding of the plant holobiont (Figure 2). Yet, 
the microbial genetics contribution in holobionts is still difficult to 
assess owing to the vast majority of microbes lacking reference 
genomes. Across the complex landscape of studying horticultural–
microbe interactions, transcriptomics only provides information on 
expressed gene levels and does not provide specifics on post-
translational shifts, which are supplied by the proteomic method. 
Meanwhile, metabolites are the end products of biological activities 
supplied by the metabolomics platform. As a result, investigations are 
being conducted using a mix of -omics methodologies, which aids in 
the construction of bridges connecting all elements of cellular changes. 
This aids in the precise understanding of the complicated dynamics of 
cellular systems in both partners during plant-microbe interactions.

This section gives an overview of the application/integration of 
-omics techniques of what has been successfully achieved in microbial 
horticulture studies (Table 2). For instance, Bradyrhizobium japonicum 
bacteroid metabolism in soya bean root nodules was investigated 
using proteomics and transcriptomics datasets (Delmotte et al., 2014). 
A considerable number of proteins related to various forms of 
bacterial metabolism that were not previously thought to be present 

during symbiosis were revealed. Transcriptome and proteome data of 
potato during compatible and incompatible interactions with 
Phytophthora infestans (Ali et al., 2014) revealed the de-regulation of 
over 17,000 transcripts and 1,000 expressed proteins. Kunitz-like 
protease inhibitors, RCR3-like proteins, and several TFs were strictly 
activated during incompatible interactions. The change in transcript 
abundance corresponded to a change in half of the differentially 
abundant proteins. The protein and metabolite profiles of genetically 
near-resistant and susceptible tomato lines against tomato yellow leaf 
curl virus (TYLCV) infection were compared (Adi et al., 2012). In the 
susceptible line, antioxidant, pathogenesis-related, and wound-
induced proteins were prominent, whereas protein and chemical 
chaperones preserved homeostasis. Carbon and nitrogen metabolisms 
were less influenced by resistant vs. susceptible ones. Recently, Chialva 
et  al. (2020) sought to investigate whether host-targeted 
transcriptomics can identify the taxonomic and functional diversity 
of root microbiota by using an RNA-seq dataset generated for tomato 
plants growing on different native soils. The authors were able to 
reconstruct the microbial communities and grasp an overview of their 
functional diversity. By comparing the host transcriptome and the 
meta-transcriptome, the composition and metabolic activities of the 
microbiota seem to influence plant responses at the molecular level. 
Zolti et al. (2020) reported that microbial profiling can reveal stress 
signals that cannot be detected even when the host transcriptome is 
analyzed, providing a different method of assessing the in-situ 
conditions that host organisms encounter. The presence/absence and 
quantity of certain biological components may be precisely measured 
by applying and comparing transdisciplinary -omics techniques on 
horticultural plant-microbe interactions (Figure 3).

4.4. Big data integration and computational 
tools used in holo-omics

Different statistical methods can be  used to analyze the 
metabarcoding data to determine which microbiome characteristics 
are most explanatory of the variation in the functional feature of 
interest. These explanatory features can be aggregated properties at the 
community, network layers (i.e., microbial network connectance or 
community alpha-diversity), presence or abundance of specific 
microbial taxa, or microbial functional groups (Barroso-Bergadà 
et  al., 2021). According to Borokini et  al. (2021), the PCNM 
eigenvectors method created for geographic distance matrices can 
be used to transform the compositional dissimilarity matrix between 
samples (community beta-diversity) into explanatory vectors. In the 
statistical model, the functional trait of interest will be considered as 
the dependent variable while the microbiome characteristics and 
environmental factors will be considered as explanatory variables (i.e., 
drought tolerance, Cambon et al., 2022; yield, Asad et al., 2021; an 
example of paired samples, Pérez-Valera et al., 2020). The differential 
abundance analysis methods (Nearing et  al., 2022) or pTITAN2 
approach (Figary et  al., 2022) can be  used to determine which 
microbial taxa are the determinant components when the microbiome 
significantly influences the functional trait of interest. Moreover, deep 
learning or machine learning approaches may also be used (Xu et al., 
2022). For instance, the Random Forest algorithm has been applied to 
find combinations of horticultural yield indicative microbial taxa 
(Yergeau et  al., 2020). Structural equation models (SEM) can test 
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particular hypotheses regarding the direct and indirect impacts of the 
explanatory factors (e.g., microbiome) on the functional trait of 
interest in horticultural crops (Xiao et al., 2021).

The wealth of -omics data generated by high-throughput methods 
is used by computational methods to infer networks of ecological 
interactions within microbial taxa, reveal the trophic and metabolic 
relationships underlying them, and examine how these relationships 
affect microbiome dynamics at various time scales. Metabarcoding has 
been utilized for a long time by microbial ecologists to discover 
ecological connections between microbial taxa. Data showed that 
patterns in relative shifts in frequency may reveal information about 
the structure of the ecological interaction network since interactions 
between microbial taxa in the past or present may have an impact on 
their frequencies (Kerdraon et al., 2019; Cobo-Díaz et al., 2022). This 
procedure is not simple since metabarcoding data are always 
compositional and can be skewed by amplification and sequencing 
abnormalities (Arribas et al., 2022). SparCC (Chen et al., 2022) was 
one of the methods used for estimating interaction networks from 
relative sequence counts. SparCC avoided the compositional effect by 
obtaining correlation using log-transformed components. 
Correlation-based measurements were refined by other tools like 
CCLasso (Matchado et al., 2021) or SPIEC-EASI (Liu et al., 2023). 
While MPLasso (Chen et al., 2022) incorporates the application of 
prior microbiological knowledge by data-mining of external sources 
of information, PLN (Chiquet et  al., 2019) improves inference 
accuracy by utilizing sample covariance. Recently, HMSC was used to 
estimate microbial networks and incorporates variables on samples 
and taxa (Abrego et al., 2020; Fort et al., 2021). These methods could 
be rapidly employed on even rather big datasets and are resistant to 
noise in experimental data. The statistical computing powerhouse R 
integrates the majority of these methods, which makes handling data 
from various sources easy (Dohlman and Shen, 2019; Tikhonov et al., 
2020). These tools allow us to connect the identified positive and 
negative interactions and the ecological mechanisms. Explainable 
machine learning can link inferred interaction networks to ecological 
mechanisms (Tamaddoni-Nezhad et al., 2021). Several horticultural 
crops-microbiome interactions (i.e., mutualism, competition) affect 
the frequency of different species in different ways (Song et al., 2020; 
Venkataram et al., 2023). With minimal to no human involvement in 

the interpretation stage, explainable machine learning translates these 
requirements into logical rules that explicitly infer ecological 
interactions (Barroso-Bergadà et al., 2021). Through a process that 
simultaneously detects interactions and categorizes them as 
mutualism, competition, commensalism, or amensalism, hypotheses 
of ecological interactions among taxa pairs could be generated. This 
straightforward method is especially useful for reconstructing 
microbial networks in previously unexplored ecosystems, where 
human interpretation expertise may be deficient.

5. Essential challenges facing the 
holo-omics approach in microbial 
horticulture and future perspective

The combined collection of horticultural host and microbial data 
is a potential strategy for uncovering plant-microbiome interactions 
by creating mechanism-based questions and testable hypotheses. 
However, analyzing holo-omics has its own set of challenges; the high 
cost of the used techniques in holo-omic approaches such as shotgun 
sequencing. In some circumstances, targeted sequencing or DNA 
microarray techniques can be  more cost-effective than shallow 
shotgun sequencing, which can recover better taxonomic resolution 
at the same cost, while also offering direct insight regarding 
functioning (Hillmann et al., 2018). Researchers may be able to show 
a link between the presence of certain microbes and genetic or 
phenotypic features of the host plant using targeted techniques, but 
shotgun sequencing will frequently be required to achieve whole-
genome resolution. The implementation of holo-omics methods needs 
a wide range of experts. Indeed, plant and microbial biologists will 
need statisticians and computational biologists for the identification 
and implementation of the approaches with suitable statistical 
precision (Joyce and Palsson, 2006). Additionally, the lack of 
completely established analytical methods constitutes another key 
problem, and there is a considerable need for the development of 
adapted bioinformatic assets. For the existing assets, choosing which 
one to use can be challenging since some will be dependent on the 
specific problems under inquiry, while others will be generalizable to 
all experiments and data types (Franzosa et  al., 2015). There is 

FIGURE 3

Exploring the diverse approaches and relationships in holo-omics for microbial horticulture.
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generally significantly more software suited for multi-omic analysis of 
either the host or microbiome in isolation (Xia et al., 2010; Rohart 
et al., 2017; Chong et al., 2018; Rahnavard et al., 2018; Jamil et al., 
2020; Subramanian et al., 2020) than tools for integrating information 
from both at the same time (Gui et al., 2020; Su et al., 2020). For 
instance, gNOMO is a bioinformatic channel particularly intended to 
process and analyze non-model organism materials at up to three 
meta-omics layers including metagenomics, metatranscriptomics, and 
metaproteomics in an integrated way (Muñoz-Benavent et al., 2020), 
although analysis does not support the host information. The 
development and implementation of statistical approaches that 
directly combine orthogonal datasets into a single analytical 
framework remain challenging. Currently, the majority of plant 
microbiome studies employing the holo-omic approach focus on 
discrete -omic analyses first, then combine results from various levels 
afterward based on existing data and prior knowledge (Limborg et al., 
2018; Liu et al., 2021). While this method is very simple to execute, it 
may overlook key correlations between various-omics levels (Chen 
et al., 2012; Sun and Hu, 2016). Another area of importance is the 
development of methods to integrate holo-omic with non-omic 
analyses. López de Maturana et al. (2019) suggested a joint modeling 
approach to increase our understanding of the extent of the impact of 
host-microbes interaction that will exceed host performances to 
theoretically broader environmental and evolutionary shifts.

6. Conclusion

Holo-omics figures as a useful asset that may be  utilized to 
increase our understanding of the basis of horticultural plant-
microbiome interactions. Implementation of this approach will need 
the boost of developing alternative sequencing-data integration 
techniques with potential applications outside of plant biology. 
Following this approach would inspire plant and microbial biologists, 
ecologists, statisticians, and computational scientists to collaborate in 
creating combined experimental frameworks that involve multiple 
scientific views. This process of technical and conceptual 
harmonization of approaches throughout the scientific community is, 
possibly, the most difficult obstacle to a comprehensive understanding 
of the natural environment. A better understanding of the plant-
microbiome interactions through the holo-omics approach will 
provide more potentialities to predict, mitigate, and promote 
horticulture productivity under a changing climate. It is necessary to 
investigate how much we can alter the plant microbiome to boost 
sustainable agricultural productivity while preserving the 
environment. The influence of host genetics on the research of 
microbiome diversity and structure has the potential to aid in the 
selection of microbiomes with particular features. There is a need for 

the integration of a holo-omics method that might link the relationship 
between the microbial communities, horticultural plant, and 
environmental function to obtain advanced fundamental knowledge 
about the specific host–microbe interaction under changing global 
climate, taking into account the community context.
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