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Introduction: Tuta absoluta is currently considered one of the most devastating 
invasive pests of solanaceous plants worldwide, causing severe damage to the 
tomato industry. Insects use volatile organic compounds (VOCs) to locate host 
plant for feeding and oviposition. Those VOCs could be developed as lures for 
pest monitoring and control.

Methods: In this study, the differentially accumulated VOCs between the 
preferred host (tomato) and non-preferred host (eggplant) were analyzed by GC–
MS method, and their roles on female T. absoluta host selection and egg laying 
behaviors were investigated using electroantennography (EAG), olfactometer and 
cage experiments.

Results: A total of 39 differentially accumulated VOCs were identified in tomato 
and eggplant. Strong EAG signals were obtained in 9 VOCs, including 5 VOCs 
highly accumulated in tomato and 4 VOCs highly accumulated in eggplant. 
Further olfactometer bioassays showed that 4 compounds (1-nonanol, ethyl 
heptanoate, ethyl octanoate and o-nitrophenol) were attractive to T. absoluta 
females, while 5 compounds (2-phenylethanol, 2-pentylfuran, trans,trans-2,4-
nonadienal, 2-ethyl-5-methylpyrazine and trans-2-nonenal) were repellent, 
indicating that VOCs from host plants play important roles in host plant 
preferences. The attractive activities of 1-nonanol and ethyl octanoate, as well as 
the repellent activities of trans,trans-2,4-nonadienal and trans-2-nonenal, were 
further confirmed in cage experiments.

Discussion: In this study, two attractants and two repellents for T. absoluta were 
developed from plant released VOCs. Our results could be useful to enhance the 
development of eco-friendly and sustainable pest management strategies for T. 
absoluta.
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1. Introduction

The South American tomato pinworm, Tuta absoluta (Meyrick) 
(Lepidoptera, Gelechiidae), an invasive pest native to Peru, South 
America, has become one of the most devastating pests of solanaceous 
plants worldwide (Biondi et al., 2018). It can infest host plants at all 
developmental stages, with the larvae mining and feeding on leaves, 
stems and fruits, causing crop losses up to 80–100% in the area 
without timely control measures (Desneux et al., 2010). After invading 
Europe in 2006, this pest spread quickly to Afro-Eurasian 
supercontinent, and now has been recorded in more than 90 countries 
and regions outside South America (Biondi et al., 2018; Desneux et al., 
2022). In Asia, T. absoluta has been found in many countries (Campos 
et al., 2017; Han et al., 2019), including countries on the northwestern 
and southwestern border of China, e.g., Tajikistan, Kyrgyzstan, India, 
Nepal, etc. (Campos et al., 2017; Sankarganesh et al., 2017; Uulu et al., 
2017; Saidov et al., 2018). Recently, this pest was found in northwest 
China in Xinjiang (Li D. et al., 2019; Li X. W. et al., 2019; Zhang et al., 
2019) and southwest China in Yunnan (Zhang et al., 2020), and has 
quickly spread to 14 provinces in China mainland, poses a significant 
threat to China’s tomato production (Zhang et al., 2021).

Currently, chemical control is still the main control method for 
T. absoluta implemented in its native ranges and invaded countries 
to counter its great threat to agricultural production (Guedes et al., 
2019). It has been reported that the application of insecticides 
could prevent the occurrence and spread of T. absoluta to some 
extent (Silvério et  al., 2009). However, the control effects of 
insecticides is limited because of the larval endophytic feeding 
behavior which makes T. absoluta a difficult target for insecticide 
sprays (Guedes and Siqueira, 2012). In addition, due to the 
intensive use of insecticides, T. absoluta has become resistant to 
many chemical classes of insecticides, including organophosphates 
(Siqueira et al., 2000b; Lietti et al., 2005; Haddi et al., 2017; Barati 
et al., 2018), pyrethroids (Haddi et al., 2012; Biondi et al., 2015), 
spinosyn (Campos et al., 2014, 2015), avermectins (Siqueira et al., 
2001; Silva et al., 2016), cartap (Siqueira et al., 2000a), benzoylureas 
(Silva et al., 2011), indoxacarb (Roditakis et al., 2018) and diamides 
(Silva et al., 2019). Alternative control strategies should therefore 
be used within the context of integrated pest management (IPM) 
for this destructive pest.

In response to insect herbivory, plants release volatile 
compounds that may serve as protective substances as well as 
mediators of interactions with other plants, microbes, and animals. 
Plant-released semiochemicals are promising eco-friendly pest 
management methods that has been widely used as a sustainable 
alternative for synthetic insecticides (Dudareva et  al., 2006; 
Shrivastava et  al., 2010; Beck et  al., 2017). In the process of 
co-evolution between insects and plants, there is a corresponding 
interaction between insects and plants. The most primitive 
ecological relationship is that insects select their compatible host 
plants, while the phytoconstituents of host plants are one of the 
direct causes of host plant-insect interaction (Thompson, 1988). 
Plants could release different classes of volatile organic compounds 
(VOCs) into the external environment during their growth and 
development, which enables plants to generate defense signals and 
communicate with each other (Baldwin et al., 2006; Heil and Silva 
Bueno, 2007). Plant VOCs also play important roles in plant-insect 

interactions, affecting insect feeding, mating and egg-laying (Bruce 
et al., 2005). Insects use plant volatiles to locate plant hosts for 
feeding and oviposition (Kuhnle and Muller, 2011; Wynde and 
Port, 2012). Those VOCs could be  developed as lures for pest 
monitoring and control (Shrivastava et al., 2010). On the other 
hand, many plants have developed counter strategies to defend 
themselves against these insects, including repellent VOCs, which 
could be developed into repellents to reduce pest populations on 
target crops (War et al., 2012).

The use of plant chemicals (VOCs and non-volatile secondary 
metabolites) for pest control has been reported for T. absoluta. For 
instance, it has been reported that the extracts of jojoba, 
Simmondsia chinensis, can effectively control T. absoluta (Abdel-
Baky and Al-Soqeer, 2017). Essential oils of three Satureja species, 
S. khuzestanica, S. bachtiarica, and S. rechingeri, had fumigant 
toxicity on T. absoluta, with geraniol the main component of all 
essential oils (Rahmani and Azimi, 2021). Shared volatile 
compounds from different hosts [a blend consisting of limonene 
(16.64%), β-ocimene (1.84%), α-terpinene (12.17%),δ-eIemene 
(4.29%) and (E)-β-caryophyllene (6.78%)] could attract female 
T. absoluta (Msisi et al., 2021). Consequently, understanding the 
plant chemicals involved in T. absoluta-host plant interactions 
could be  useful for the development of a new strategy for the 
control of this pest.

Tuta absoluta is oligophagous and can survive and reproduce 
normally on potatoes, tobacco and other Solanaceae crops (Arnó 
et al., 2019). Nevertheless, it has been found that T. absoluta had a 
strong preference for tomatoes among host plants, and volatile 
chemical signals played important roles in its host plant preferences 
(Subramani et al., 2021). Similarly, in our previous study, it has been 
found that the number of eggs laid by T. absoluta was significantly 
higher on tomatoes than on eggplants (Chen et al., 2021). In this study, 
we further analyzed the differentially accumulated VOCs between 
these two host plants, and their roles on female host selection and egg 
laying behaviors were investigated by using electroantennography 
(EAG), olfactometer and cage experiments. The VOCs with attractive 
and repellent activities could be used to develop new control strategies 
for this pest.

2. Materials and methods

2.1. Plant materials and insects

Seeds of tomato (variety Zhefen 202) and eggplant (variety Zheqie 
NO.1) were sown in the coconut coir for germination. After the 
two-leaf stage, seedlings were individually transplanted into plastic 
pots (7 cm long, 7 cm wide and 9 cm high) and placed in an insect-free 
greenhouse (26 ± 5°C, 60% ± 5% RH, 16 L:8 D photoperiod). The 
plants were watered at regular intervals and 1 g of water-soluble 
fertilizer containing 18 macro-elements (OMEX, 18–18-18) was 
applied to each plant. Plants at the 5-leaf stage were used for host plant 
VOC collection and egg-laying experiments.

Tuta absoluta populations were collected in 2018 from tomato 
fields in Yili, Xinjiang, and were continuously reared in an artificial 
climate chamber (25 ± 1°C, 60% ± 5% RH, 16 L:8 D photoperiod) on 
tomato plants.
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2.2. Headspace solid-phase 
microextraction coupled to gas 
chromatography–mass spectrometry 
(HS-SPME/GC–MS)

When the healthy host plants (tomato and eggplant) were at the 
5-leaf stage, the third leaf from the top was selected, the veins were 
removed, approximately 1 g of each sample was lyophilized in liquid 
nitrogen (LN) and subsequently stored in a − 80°C freezer. Samples 
were later pulverized in liquid nitrogen and vortexed to mix evenly. 
The samples were moved into a headspace bottle with fully automatic 
headspace solid-phase microextraction (HS-SPME) (Lee et al., 2007). 
The gas chromatography-mass spectrometer (GC–MS) was used to 
identify terpenoids, benzene ring types and phenylpropanoids, fatty 
acid derivatives and other volatiles. The volatile content was 
determined by the headspace collection method or extraction method. 
The SPME readings were taken at 250°C aging temperature; 5 min 
aging time; 60°C heating temperature; 10 min heating time; 20 min 
adsorption time; 5 min desorption time; and 5 min aging time after 
sample injection. The original data file obtained by GC–MS analysis 
was first extracted using the MassHunter software (Agilent) (Yuan 
et al., 2022). Three samples were collected and tested both for tomato 
and eggplant.

2.3. Electroantennographic (EAG) 
responses of T. absoluta females to VOCs

To test whether differentially accumulated VOCs between tomato 
and eggplant contribute to host plant preference of T. absoluta, EAG 
responses of T. absoluta females and males to 20 differentially 
accumulated VOCs were determined using the EAG detection system 
(Stimulus Air Controller CS-55 and SYNTECH IDIC2; Syntech, 
Hilversum, the Netherlands). The 20 VOCs, which were selected 
according to the principal component analysis and the characteristics 
of VOCs, were as follows: 1-nonanol, 2-phenylethanol, 2-isopropyl-3-
methoxypyrazine, ethyl heptanoate, ethyl octanoate, 
1,4-diethylbenzene, o-nitrophenol, which were highly accumulated in 
tomato; benzyl alcohol, 2-pentylfuran, benzaldehyde, trans,cis-2,6-
nonadienal, trans,trans-2,4-nonadienal, furfural, trans-2-hexen-1-al, 
trans,trans-2,4-heptandienal, isophorone, 2-s-butylphenol, 4-hexen-
3-one, 2-ethyl-5-methylpyrazine, and trans-2-nonenal, which were 
highly accumulated in eggplant. The synthetic standards of the above 
VOCs were purchased from Merck and Shanghai Aladdin Biochemical 
Technology Co.

The standard compounds were diluted in a gradient with paraffin 
oil to four concentrations (0.1, 1, 10, and 100 mg/mL), 10 μL of each 
was applied to a piece of filter paper (5 mm × 2 cm), which was placed 
into Pasteur pipette 10 min before testing. 10 μL of paraffin oil was 
used as a control stimulus. The stimulus was made by introducing the 
test volatile to the antenna at a flow rate of 25 mL/min for 2 s and with 
an interval of 1 min for the next stimulus. For each test chemical, 
paraffin oil was used as control. The test order was paraffin oil, the test 
compound, and paraffin oil. The test compound of each concentration 
was performed on five females and males. Relative EAG values of 
T. absoluta were reported as the percentage of the response to 
paraffin oil.

2.4. Olfactometer bioassay

The responses of T. absoluta females and males to 9 volatile 
compounds with strong EAG responses, including 5 highly 
accumulated in tomato (1-nonanol, 2-phenylethanol, ethyl heptanoate, 
ethyl octanoate and o-nitrophenol) and 4 highly accumulated in 
eggplant (2-pentylfuran, trans,trans-2,4-nonadienal, 2-ethyl-5-
methylpyrazine and trans-2-nonenal), were tested by using Y-tube 
olfactometer. The glass Y-tube is with a 3-arm structure, which 
consists of a 60-mm-long base tube and two 60-mm-long arms. The 
two arms were separated from each other at an angle of 90°. Teflon 
tubes were used to connect the components of the olfactometer 
apparatus. Air was pumped into the apparatus by an electromagnetic 
air pump, filtered by activated carbon, and split into two air streams 
at a flow rate of 60 ml/s. Before each test, the apparatus was rinsed with 
pure ethanol and dried in an oven (120°C).

Tuta absoluta females and males of mixed ages (2–4 days) were 
used for Y-tube olfactometer bioassays. The bioassays were conducted 
in a dark room at 25 ± 1°C and 60% ± 5% RH. The light was provided 
by an LED lamp located in the ceiling directly above the Y-tube. 
Solutions of each VOC compounds were prepared in paraffin oil at a 
gradient of four concentrations (0.1, 1, 10, and 100 mg/mL), and 10 μL 
was pipetted onto a piece of clean filter paper (1 × 1 cm), which was 
then transferred to a glass flask as the test odor source. Filter paper 
with 10 μl of paraffin oil in a glass flask was used as a control 
odor source.

Tuta absoluta females and males were individually transferred to 
the base tube of the Y-tube and their choice was recorded within 
5 min. When the tested individual crossed half-length of either arm, 
the “effective choice” was recorded. If the tested individual did not 
cross half-length of either arm within 5 min, the “no choice” was 
recorded. To prevent the effects of light, the Y-tube arms were swapped 
after every 5 insects. The experiment was repeated five times, with 20 
individuals each time.

2.5. Cage experiments

Cage experiments were conducted in a climate chamber 
(25 ± 1°C, 60% ± 5% RH, 16 L: 8 D photoperiod) to test the responses 
of T. absoluta females to 4 VOCs (1-nonanol, ethyl octanoate, 
trans,trans-2,4-nonadienal and trans-2-nonenal) that showed the 
highest attractive or repellent activities to T. absoluta females in 
olfactometer bioassays. In each cage, six five-leaf stage tomato plants 
were placed equally along two opposite sides of the cage, with three 
plants along each side. The concentrations of standard compounds 
that showed the highest attractive or repellent activities to T. absoluta 
were used in cage experiments. The standard compounds of selected 
VOCs were dissolved in hexane at the required concentration. A 
Rubber septum with 10 μl diluted standard compounds of selected 
VOCs was hung on each of the three plants on one side of the cage. 
Rubber septa with 10 μl of hexane were used as control, and were 
hung on plants on the other side of the cage. Thirty 2 to 4 days old 
females of T. absoluta were released from the middle of the cage. 
After 48 h, the number of T. absoluta eggs on all leaves of each 
tomato plant was counted. The experiment was repeated twice for 
each tested VOC compound.
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2.6. Statistical analysis

Quality control (QC) analysis was conducted before data were 
obtained from GC–MS to confirm the reliability of the data before the 
overall analyses. The QC sample was prepared by mixing sample 
extracts for insertion into every three samples to monitor the changes 
in repeated analyses. Data matrices with the intensity of the metabolite 
features from the samples were uploaded to the Analyst software 
(version 1.6.1; AB Sciex, Canada) for statistical analyses. The partial 
least squares discriminant analysis (PLS-DA) was performed to 
maximize the metabolome differences between sample pairs. The 
relative importance of each metabolite to the PLS-DA model was 
tested using the variable importance in projection (VIP) as a 
parameter. Metabolites with VIP ≥ 1 and fold change ≥2 or fold 
change ≤0.5 were considered differential metabolites for group 
discrimination (Chong et al., 2018). PCA and Ward’s hierarchical 
clustering heatmap were performed using R software (version 3.3.2).1 
Consequently, a metabolic pathway was constructed according to 
KEGG2; and pathway analysis was performed using MetaboAnalyst3 
based on the change in metabolite concentration compared with the 
corresponding controls.

EAG data were analyzed using one-way ANOVA followed by 
Turkey’s Highest Significant Difference. Olfactometer data was 
analyzed using the Chi square test. The null hypothesis was that 
T. absoluta had 50: 50 distributions across the two arms of the 
olfactometer. Differences in the number of eggs on tomato plants with 
VOC compounds and solvent control were analyzed using Student 
t-test. Data analyses were performed by using SPSS (SPSS Inc., 2007, 
Chicago, IL) with p ≤ 0.05.

3. Results

3.1. Analysis of differentially accumulated 
VOCs in tomato and eggplant

VOCs released from the two host plants (tomato and eggplant) 
collected by HS-SPME were identified by GC–MS. In total, one hundred 
and forty VOCs predominantly from alkanes (24), heterocyclic 
compounds (20), alcohol (16), aldehyde (16), terpenes (14), ketone (13), 
ester (11), aromatics (10), phenol (8), olefin (3), acid (2), ether (1), amine 
(1) and other (1) classes were detected in this study (Figure  1A; 
Supplementary Table S1). Thirty-nine differentially accumulated VOCs 
were identified between these two different host plants 
(Supplementary Table S2), of which, 15 VOCs were accumulated higher 
in tomato than in eggplant, which belong to alcohol (3), heterocyclic 
compound (3), terpenes (2), aromatics (2), ester (2), alkanes (1), aldehyde 
(1) and phenol (1). These VOCs might contribute to the higher attraction 
of tomato plants to T. absoluta females for host selection and oviposition. 
While 24 VOCs were accumulated higher in eggplant than in tomato, 
which belong to aldehyde (9), heterocyclic compound (5), alcohol (3), 
ketone (3), phenol (2), terpenes (2). These VOCs might have repellent 
activities to T. absoluta.

1 www.r-project.org

2 https://www.genome.jp/kegg/

3 https://www.metaboanalyst.ca/

The 39 differentially accumulated VOCs were further evaluated 
using principal component analysis (PCA) to clarify that the 
differentially accumulated VOCs detected could be used to distinguish 
between the two host plants. PCA analysis (Figure 1B) indicated that 
the detected VOCs were divided into two groups, with significant 
differences between tomato and eggplant, suggesting significant 
differences in VOCs between the two host plants. Although tomato 
and eggplant could not be distinguished in the PC2 (vertical axis) 
principal component, a significant distinction between tomato and 
eggplant could be  found in the PC1 (horizontal axis) principal 
component. The PC1 (horizontal axis) principal component explained 
62.51% of the total variance between samples, while PC2 (vertical 
axis) explained only 16.88%. The variability between sample groups 
and the similarity within sample groups confirmed the differential 
accumulation of VOCs in the two host plants.

We performed a hierarchical clustering analysis of the 
differentially accumulated VOCs detected in tomato and eggplant 
samples (Figure  1C), which showed a high degree of similarity 
between the biological replicates within each host plant and significant 
differences between the tomato and eggplant samples. These results 
indicate the high quality of data from both sets of samples and the 
presence of significant differences in VOCs in the two host plants.

3.2. EAG responses of T. absoluta females 
to VOCs

To demonstrate that the differential accumulation of VOCs on the 
two host plants identified in this study does have effects on the 
egg-laying behavior of T. absoluta females, the EAG response of 
T. absoluta females and males to 20 differentially accumulated VOCs 
were initially screened. These 20 VOCs included 7 VOCs that were 
higher accumulated in tomatoes than in eggplants, namely 1-nonanol, 
2-phenylethanol, 2-isopropyl-3-methoxypyrazine, ethyl heptanoate, 
ethyl octanoate, 1,4-diethylbenzene, o-nitrophenol, and 13 VOCs that 
were higher accumulated in eggplants namely benzyl alcohol, 
2-pentylfuran, benzaldehyde, trans,cis-2,6-nonadienal, trans,trans-
2,4-nonadienal, furfural, trans-2-hexen-1-al, trans,trans-2,4-
heptandienal, isophorone, 2-S-butylphenol, 4-hexen-3-one, 2-ethyl-
5-methylpyrazine, trans-2-nonenal.

The results showed that all the 20 VOCs triggered certain EAG 
responses of T. absoluta females (Figure 2), confirming that the selected 
VOCs might have some effects on host plant selection and egg-laying 
behavior of T. absoluta females. It is also noteworthy that among the 20 
compounds tested, 9 VOCs, including 5 highly accumulated in tomato 
(1-nonanol, 2-phenylethanol, ethyl heptanoate, ethyl octanoate and 
o-nitrophenol) and 4 highly accumulated in eggplant (2-pentylfuran, 
trans,trans-2,4-nonadienal, 2-ethyl-5-methylpyrazine and trans-2-
nonenal), caused significantly higher EAG responses in T. absoluta 
females. The EAG responses of T. absoluta males to 20 VOCs 
(Supplementary Figure S1) were roughly the same as females.

3.3. Olfactory responses of T. absoluta 
females to VOCs

Among the 9 VOCs in the olfactometer bioassays, 4 compounds (all 
higher in tomatoes than in eggplants) were attractive to T. absoluta 
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females and 5 compounds (four of them were higher in eggplant than in 
tomato) were repellent (Figure 3). Specifically, 1-nonanol was shown to 
be attractive to T. absoluta females at doses of 1 and 10 μg, but had no 
significant attractive effect at doses of 100 and 1,000 μg. Ethyl heptanoate 
at a dose of 10 μg showed an attractive effect on T. absoluta females, but 
no significant effects at 1, 100 and 1,000 μg. Ethyl octanoate was attractive 
to T. absoluta females at 1, 10 and 100 μg, but there was no significant 
effect at 1000 μg. O-nitrophenol at a dose of 1 μg produced an attractive 
effect on T. absoluta females, but there were no significant effects at doses 
of 10, 100 and 1,000 μg. By contrast, 2-phenylethanol at 100 and 1,000 μg 
produced repellent effects on T. absoluta females, but no significant 
repellent activities were found at 1 and 10 μg doses. 2-pentylfuran at 
1000 μg produced a repellent effect on T. absoluta females, but there was 
no significant repellent effect at 1, 10 and 100 μg. The trans,trans-2,4-
nonadienal produced repellent effects on T. absoluta females at doses of 
10, 100 and 1,000 μg, but no significant effect at 1 μg. 2-ethyl-5-
methylpyrazine produced repellent effects on T. absoluta females at doses 

of 100 and 1,000 μg, but not repellent at 1 and 10 μg. The trans-2-nonenal 
produced repellent effects on T. absoluta females at four doses of 1, 10, 100 
and 1,000 μg. Notably, 1-nonanol and ethyl octanoate, which were more 
abundant in tomatoes compared to eggplants, showed significant 
attractive activities to T. absoluta females, while trans,trans-2,4-nonadienal 
and trans-2-nonenal, which were more abundant in eggplants than 
tomatoes, showed significant repellent activities to T. absoluta females. 
The behavioral responses of T. absoluta males to these nine VOCs were 
highly consistent with females (Supplementary Figure S2).

3.4. Effects of VOCs on the oviposition 
behavior of T. absoluta

Results from cage experiments showed that 1-nonanol, ethyl 
octanoate, trans,trans-2,4-nonadienal and trans-2-nonenal could 
significantly influence the number of eggs laid by T. absoluta on the 

A

B C

FIGURE 1

(A) Classes of volatile organic compounds identified of tomato and eggplant. (B) Principal component analysis (PCA) of differentially accumulated 
VOCs identified from tomato and eggplant leaves by headspace solid-phase microextraction (HS-SPME). (C) Heatmap clustering of 39 differentially 
accumulated VOCs identified from tomato and eggplant leaves.
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host plants (Figure 4). Specifically, T. absoluta females laid significantly 
more eggs on tomato plants with 1-nonanol by 91.6% compared to 
control plants with hexane. Similarly, T. absoluta females produced 

significantly more eggs on tomato plants with ethyl octanoate by 
245.2% compared to control plants with hexane. By contrast, 
T. absoluta females produced 71.9% fewer eggs on tomato plants with 

FIGURE 2

Electroantennographic (EAG) responses of T. absoluta females to 20 volatile compounds. The bar represents the standard error, and the different 
letters above each bar indicate Turkey’s highest significant difference at p < 0.05.
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trans,trans-2,4-nonadienal compared to control plants with hexane. 
T. absoluta females produced 35.8% fewer eggs on tomato plants with 
trans-2-nonenal compared to control with hexane. These results 
suggest that 1-nonanol and ethyl octanoate had significant attractive 
effects on the oviposition choice of T. absoluta females. On the 
contrary, trans,trans-2,4-nonadienal and trans-2-nonenal had 
repellent effects on the oviposition choice of T. absoluta females.

4. Discussion

Compared with polyphagous insects, oligophagous insects usually 
have a much stronger preference for selecting suitable host plants 
(Gripenberg et al., 2010). The dispersal ability of T. absoluta larvae is 
limited, consequently, host plant selection of T. absoluta females often 
determines the food source of their offspring at the larval stage (Silva 
et al., 2021). Results from our previous study showed that T. absoluta 
females showed significant oviposition preference to tomatoes 
compared to eggplants (Chen et  al., 2021). This phenomenon is 
consistent with the “preference performance hypothesis” (Jaenike, 
1978; Thompson, 1988; Mayhew, 1997; Gripenberg et al., 2010). In 
response to the host plant preference behavior of T. absoluta, 
we supposed that one or more specific plant VOCs released by tomato 
plants may have attractive effects on T. absoluta females, facilitating 

their rapid localization to tomato plants and preferred oviposition on 
tomato leaves.

The results from this study showed that 39 differentially 
accumulated VOCs were identified between the preferred host 
(tomato) and non-preferred host (eggplant) by headspace solid-
phase microextraction coupled with gas chromatography–mass 
spectrometry (HS-SPME/GC–MS). Specifically, 15 VOCs were 
highly accumulated in tomato, with alcohol and heterocyclic 
compounds the most abundant. These results were different from the 
previous study, which reported that tomato had a higher number of 
terpenes and acid compounds than other host plants (including 
eggplant) (Msisi et al., 2021; Subramani et al., 2021). Our results 
showed that 24 VOCs were accumulated higher in eggplant with 
aldehyde and heterocyclic compounds the most abundant. However, 
some highly accumulated compounds reported in eggplant 
compared with tomato, such as 1,2,3,5-tetramethylcyclohexane, 
cyclooctene, 3-(1-methylethenyl), 1,2,3,5-tetramethylcyclohexane, 
etc. (Subramani et al., 2021), were not found in our study. Similar to 
previous studies (Proffit et al., 2011; Msisi et al., 2021; Subramani 
et al., 2021), these differentially accumulated VOCs might contribute 
to the oviposition preference differences between tomato and 
eggplant. A previous study reported that the high composition of 
terpenes in tomato contributed to the attractive activity of tomato 
volatiles to female T. absoluta, while highly constituted green leaves 

FIGURE 3

Responses of female T. absoluta to nine VOCs in a Y-tube olfactometer. NS indicates no significant difference; asterisks indicate significant differences 
(*p < 0.05; **p < 0.01).
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volatiles (GLVs) in watermelon contributed to the repellent activity 
of watermelon volatiles to female T. absoluta (Msisi et al., 2021). 
Subramani et  al. reported that volatiles from tomato, such as 
p-quinone, 2-carene, δ-curcumene, and 1,2-diethylbenzene, could 
serve as oviposition stimulants to T. absoluta, whereas the presence 
of 1-fluorododecane in host plants such as datura, eggplant, 
ashwagandha, and black nightshade, might deterred T. absoluta from 
ovipositing (Subramani et al., 2021). It has also been reported that 
plant volatiles from different tomato cultivars contributed to the 
oviposition choice of T. absoluta (Proffit et al., 2011). 2-tridecanone, 
2-undecanone, and zingiberene, which are compounds not detected 
in susceptible tomato varieties, were detected in wild tomato 
varieties resistant to T. absoluta (Leite et al., 1999; Azevedo et al., 
2003). Consequently, we suspected the VOCs accumulated higher in 
tomato might contributed to the higher attraction of tomato plants 
to T. absoluta females for host selection and oviposition, while the 
VOCs accumulated higher in eggplant might be account for the 
repellency for egg laying.

To confirm the behavioral effects of the differentially accumulated 
VOCs on T. absoluta, 20 differentially accumulated VOCs had been 
selected for electroantennographic tests. The results showed 9 VOCs, 
including 5 highly accumulated in tomato (1-nonanol, 
2-phenylethanol, ethyl heptanoate, ethyl octanoate and o-nitrophenol) 
and 4 highly accumulated in eggplant (2-pentylfuran, trans,trans-2,4-
nonadienal, 2-ethyl-5-methylpyrazine and trans-2-nonenal), caused 
significant higher EAG responses of T. absoluta females (Figure 2) and 
males (Supplementary Figure S1). Further olfactometer bioassays 
showed that 4 compounds (1-nonanol, ethyl heptanoate, ethyl 
octanoate and o-nitrophenol) were attractive to T. absoluta females, 
while 5 compounds (2-phenylethanol, 2-pentylfuran, trans,trans-2,4-
nonadienal, 2-ethyl-5-methylpyrazine and trans-2-nonenal) were 
repellent (Figure  3). These results showed that, except for 
2-phenylethanol, VOCs that were highly accumulated in tomato 
elicited attractive activities to T. absoluta, while VOCs that were highly 
accumulated in eggplant elicited repellent activities, and the results for 
males were highly consistent with those of females 

(Supplementary Figure S2). These results proved that volatile chemical 
signals played important roles in the host plant preferences of this 
pest. The VOCs identified in this study were different from the VOCs 
with oviposition selection behavior effects on T. absoluta in previous 
studies (Smith et  al., 1996; Anastasaki et  al., 2018), which could 
provide new candidate compounds for the development of bisexual 
attractants and repellents for this pest.

Results from cage experiments confirmed that 1-nonanol and 
ethyl octanoate were attractive to T. absoluta for oviposition. The 
attractive activities of these two volatiles have been reported in other 
pests. For instance, 1-nonanol could induce attraction response in 
sandfly Lutzomyia longipalpis (Magalhaes-Junior et al., 2014), melon 
fly Bactrocera cucurbitae (Siderhurst and Jang, 2010), and parasitic 
wasp Campsomeris tasmaniensis (Allsopp, 1992). However, this 
compound has been reported to be an oviposition deterrent for 
codling moth, Cydia pomonella (Yokoyama and Miller, 1991). Ethyl 
octanoate itself or synthetic compounds blend containing ethyl 
octanoate were attractive to fruit flies, such as Bactrocera dorsalis, 
Anastrepha ludens and A. obliqua (Robacker et al., 1992; Cruz-Lopez 
et al., 2006; Jayanthi et al., 2012). Ethyl octanoate is also one of the 
major volatile compounds of fermented sugar baits, which are 
commonly used for mass trapping of lepidopteran species (El-Sayed 
et al., 2005). Our results also showed that trans,trans-2,4-nonadienal 
and trans-2-nonenal could repel T. absoluta from oviposition. 
Trans,trans-2,4-nonadienal has been frequently reported to be a 
repellent against stored product insects, such as granary weevil 
Sitophilus granarius (Germinara et  al., 2015), cigarette beetle 
Lasioderma serricorne and booklouse Liposcelis bostrychophila (Wei 
et  al., 2018). Trans-2-nonenal was reported to be  repellent to 
Culicoides biting midges (Isberg et al., 2017), and this compound 
was also effective in inactivating pathogenic bacteria (Cho et al., 
2004). Further study should be conducted to test the effects of the 
identified attractive and repellent VOCs on field populations of 
T. absoulta.

In conclusion, our results identified 39 differentially 
accumulated VOCs between the preferred host (tomato) and 

FIGURE 4

The effect of four VOCs on the oviposition behavior of T. absoluta. The bar represents the standard error, and asterisks indicate significant differences 
(*p < 0.05; **p < 0.01).
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non-preferred host (eggplant). Then the behavioral effects of these 
VOCs on the host selection and oviposition of T. absoluta were 
further investigated by using electroantennography and 
olfactometer tests. Almost all the selected VOCs that were highly 
accumulated in tomato showed attractive activities to T. absoluta, 
while VOCs highly accumulated in eggplants showed repellent 
activities, indicating that VOCs from host plants play important 
roles in host plant preferences. The attractive activities of 
1-nonanol and ethyl octanoate, as well as the repellent activities 
of trans,trans-2,4-nonadienal and trans-2-nonenal, were further 
confirmed in cage experiments. These VOCs will enhance the 
development of semiochemicals-based eco-friendly control 
strategies for this pest.
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SUPPLEMENTARY FIGURE S1

Electroantennographic (EAG) responses of T. absoluta males to 20 volatile 
compounds. The bar represents the standard error, and the different letters 
above each bar indicate Turkey’s highest significant difference at p < 0.05.

SUPPLEMENTARY FIGURE S2

Responses of male T. absoluta to nine VOCs in a Y-type olfactometer. NS 
indicates no significant difference; asterisks indicate significant differences 
(*p < 0.05; **p < 0.01).
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