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Evaluation of evapotranspiration
models for cucumbers grown
under CO2 enriched and HVAC
driven greenhouses: A step
towards precision irrigation in
hyper-arid regions

Ikhlas Ghiat, Rajesh Govindan and Tareq Al-Ansari*

College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar

Evapotranspiration is considered as one of the most crucial surface fluxes

describing the water movement from the land to the atmosphere in the

form of evaporation from the soil and transpiration from plants. Several

evapotranspiration models exist, but their accuracy is subject to change because

of the di�erences between the underlying assumptions used in their formulation

and the conditions of the application at hand. The appropriate selection of an

evapotranspiration model is necessary to ensure the accurate estimation of crop

water requirements. This work compares between 20 di�erent evapotranspiration

models for the estimation of transpiration of cucumber crops grown in a

cooling-based greenhouse with CO2 enrichment located in a high solar radiation

region. The models are classified into temperature-based, radiation-based, mass

transfer-based, and combination models. These models are assessed against

direct gas exchange measurements in a greenhouse with cucumber crops.

The performance of the models is evaluated using nine statistical indicators to

determine the most suitable models for the application under study. Results

demonstrate that among the temperature-based models, Schendel and Blaney

and Criddle models resulted in the best transpiration prediction, contrary to

Hargreaves and Samani which presented the worst performance. Transpiration

estimates from Rohwer were the closest and that of Trabert were the furthest

to the measured data amongst the other mass-transfer based models. The

Abtew model was the best transpiration predicting model, while Priestley

and Taylor exhibited the worst performance in the radiation-based model

category. The combination-based FAO56 Penman Monteith entailed the best

performance among all models and can be considered the best suitable method

to estimate transpiration for cucumber crops grown in CO2 enriched and HVAC

based greenhouses located in high solar radiation regions. Nonetheless, the

parametrization of this model is still crucial and should be considered to achieve

better estimates and accurately evaluate the e�ect of high solar radiation, CO2

enrichment and HVAC cooling for this agricultural greenhouse application.
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1. Introduction

Limited water resources causes one of the most critical

abiotic stresses on agricultural systems which renders their

photosynthetic activity (Osakabe et al., 2014). Accurate irrigation

water management is essential to avoid these stresses and optimize

the water use efficiency (WUE). The insufficiency of water resources

in regions of the world such as hyper-arid ones further entails

accurate and reliable irrigation water management (Lahlou et al.,

2022). Agricultural greenhouse systems have been widely used in

regions where climate conditions are unfavorable. These systems

allow close control of the microclimate which protect the crops

from external climatic threats, optimize their growing conditions,

and improve the systems’ yields and performance. The optimal

growing conditions in greenhouses allow to achieve higher water

use efficiencies (WUE) with magnitudes of 3–10 times higher

than open fields (Katsoulas and Stanghellini, 2019). Particularly in

hyper-arid regions with high solar radiation, greenhouse systems

with cooling technologies have proved their applicability in facing

the high air temperature and humidity conditions. The simplest

and most affordable cooling technique in greenhouses is natural

ventilation. However, this latter is not always sufficient to eliminate

the necessary surplus heat for healthy plant growth in very hot

regions and during hot periods of the year. Evaporative cooling

can counteract this problem and offer better temperature control

than natural ventilation. The mechanism of evaporative cooling lies

in the conversion of the sensible heat to the latent heat necessary

to evaporate the supplied water (Villarreal-Guerrero et al., 2012).

However, this cooling system has limitations in humid climates.

The occurrence of high humidity levels can lead to the risk of water

condensation at the leaf level which can cause fungal and bacterial

diseases (Soussi et al., 2022). Moreover, with high temperature and

humidity levels, the wet-bulb temperature increases which reduces

the evaporative cooling process (Mahmood and Al-Ansari, 2022).

For example, Sabeh et al. (2011) found that the use of evaporative

cooling systems in a semi-arid climate-based greenhouse leads to

water use efficiency (WUE) reductions as low as those achieved in

open field applications. Heating, ventilation and air conditioning

(HVAC) are temperature control systems with higher efficiencies

than the other mentioned cooling systems; however, they hold large

energy requirements and hence high operating costs (Mahmood

et al., 2021). Additional agricultural practices have been adopted

for these regions to further enhance the systems’ performance

Abbreviations: ET0, reference evapotranspiration (mm/h); ETc, crop

evapotranspiration (mm/h); kc, crop coe�cient; Tmean, average mean

temperature (◦C); Tmax, maximum temperature (◦C); Tmin, minimum

temperature (◦C); p, atmospheric pressure (kPa); RH, average relative

humidity (%); Rn, net solar radiation (MJ/m2 day); Ra, extraterrestrial radiation

(MJ/m2 day); Rs, incoming shortwave radiation (MJ/m2 day); 1, slope of

vapor pressure and temperature curve (kPa/◦C); γ , psychrometric constant

(kPa/◦C); α, Priestley Taylor coe�cient; λ, Latent heat of vaporization (MJ/kg);

u, wind speed (m/s); VPD, vapor pressure deficit (kPa); LAI, Leaf area index;

ρa, Air density (kg/m3); Cp, Specific heat capacity of air (J/kg ◦C); re, External

crop resistance (s/m); ri, Internal resistance (s/m); G, Soil heat flux (MJ/m2

day); Nu, Nusselt number; Re, Reynolds number; Gr, Grashof number; l,

Characteristic dimension of a leaf (m); λa, Thermal conductivity (W/m K).

including hydroponics which can eliminate the evaporation from

the soil and the CO2 enrichment practice which can reduce

transpiration from the plants and increase yields (Jensen Merle,

1997; Ghiat et al., 2021b).

Evapotranspiration is a key parameter in irrigation water

management as it determines the proper water input required

by the plants (Cruz-Blanco et al., 2014). Evapotranspiration from
agricultural systems is considered as the second largest component

of the hydrological cycle and it combines evaporation from the soil
and transpiration from the plants (Łabedzki et al., 2011; Mondal

et al., 2022). Evapotranspiration can be estimated using different
techniques including weighing lysimeters, eddy covariance, and
gas exchange systems. However, limitations remain for these

systems due their complexity, extensive labor work and high
acquisition costs. Therefore, physical-based mathematical models

are widely used for estimating ET rates based on climatological data

(Ghiat et al., 2021a). The quantification of crop evapotranspiration

(ETc) requires prior determination of reference evapotranspiration

(ET0) which represents the evapotranspiration rate of a uniform

grass under well-watered conditions (Allen et al., 1998; Tabari

and Talaee, 2011). These models involve multiplying ET0 by

specific crop coefficients (Kc) that represent crop characteristics

to distinguish different crops from the grass reference and

estimate the crop evapotranspiration (Akhavan et al., 2019). Allen

et al. (1998) proposed two different approaches for determining

crop coefficients; the single and the dual crop coefficients. The

single crop coefficient approach involves the combination of the

effects of both transpiration and evaporation into one coefficient

while the dual-crop coefficient method represents these effects

in two separate coefficients; the basal crop coefficient (Kcb) for

transpiration and the soil water evaporation coefficient (Ke). The

basal crop coefficient provides better estimates as it can involve the

effects of wetting by precipitation or irrigation; however, the single

crop coefficient approach is widely used owing to its simplicity.

The crop coefficients are tabulated by crop type and growing stage.

These coefficients involved four main crop characteristics in their

formulation including crop height, albedo of the crop surface,

canopy resistance and soil evaporation (Allen et al., 1998). Several

models have been proposed for ET0 estimation which can be

classified into temperature-based, radiation-based, mass transfer-

based and combination models (Vishwakarma et al., 2022). The

FAO56 Penman Monteith (PM) model is considered as the most

common approach which uses widely available meteorological

data such as air temperature, humidity and solar radiation to

estimate ET0. The Penman Monteith model has been reported

to deliver good estimates for ET rates for many applications.

However, the involvement of several input data to the model may

introduce inaccuracies due to possible cumulative measurement

errors (Rahimikhoob et al., 2012). The Penman Monteith model

served as the theoretical basis for the development of other ET

models with formulation changes and the addition of model or

sub-model parametrizations for specific growing environments

and crop types (Ershadi et al., 2015). Moreover, the FAO56-PM

method can involve large amount of data which can be difficult to

acquire for certain regions or applications. Thus, other ET models

are available which require less input data such as temperature-

based models which only involve temperature measurements,

mass-transfer based models which include temperature, relative

Frontiers in Sustainable FoodSystems 02 frontiersin.org

https://doi.org/10.3389/fsufs.2023.1155443
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Ghiat et al. 10.3389/fsufs.2023.1155443

humidity and wind speed data, and radiation-based models which

incorporate radiation measurements (Vishwakarma et al., 2022).

However, the accuracy of these models is subject to change because

of the differences between the underlying assumptions used in

their formulation and the conditions of the application at hand

(Muniandy et al., 2016). The aerodynamic and surface resistances

represent critical parameters in the PM model which describe the

resistance to vapor flow through the stomata. There are several

stomatal resistance models such as the Jarvis-Stewart, Ball-Berry,

and Stannard. However, their accuracy differs from one application

to another (Bao et al., 2022). Moreover, crop resistance models

pertaining to greenhouse conditions are lacking (Wang et al.,

2021). Stanghellini (1987) proposed a modified PM model by

describing the effect of different microclimate conditions on the

internal resistance of greenhouse grown plants. The Stanghellini

model is based on an empirical relation of the internal resistance

under naturally ventilated greenhouse conditions. Hence, further

investigation of ET models is needed for controlled microclimate

agricultural settings with high technology systems such as HVAC.

Several studies evaluated various ET models and tested their

performance for different plant types and climatic conditions.

Trajkovic andKolakovic (2009) compared five ETmodels including

Hargreaves, Thornthwaite, Turc, Priestley Taylor, and Jensen Haise

against the FAO56 Penman Monteith model in humid regions.

This study concluded that the Turc model was the most reliable as

compared to the other models and provided the closest ET estimate

to that of the FAO56 PMmodel for humid regions. The Turc model

was the best to adapt to the different humid region conditions

and was considered as a suitable alternative to the FAO56 PM

model when climatic data are lacking (Trajkovic and Kolakovic,

2009). Under similar climate environments (i.e., humid climate),

Tabari et al. (2013) assessed 31 ET models against the FAO56

PM model and found that the temperature-based and radiation-

basedmodels had the best estimates while the mass-transfer models

exhibited the worst performances. Wu et al. (2022) estimated the

evapotranspiration of maize in semi-humid regions by calculating

the canopy resistance using the PM model and using it to optimize

the Jarvis model and improve the prediction accuracy of the PM

model. Other studies have been incorporating stomatal resistance

or conductance models into ET models not only to optimize

the prediction of ET rates but also to evaluate the integrated

ET and stomatal conductance models against other original ET

models. For example, Bao et al. (2021) incorporated the Ball-Berry

stomatal conductance model with the Shuttleworth-Wallace and

PM models and compared their prediction performances in the

semi-arid meadow wetland application. Vishwakarma et al. (2022)

evaluated 30 various ETmodels for humid and subtropical climates.

Results from this study demonstrated the higher performance of

the FAO56 PM and Turc models and their suitability in humid and

subtropical regions (Vishwakarma et al., 2022). Bourletsikas et al.

(2018) compared 24 ET models against the FAO56 PM model for

a forest application in a humid Mediterranean region with findings

indicating the outperformance of the combination-based followed

by the temperature-based and finally the radiation-based models.

Contrary to other studies, Muniandy et al. (2016) revealed the low

performance of the FAO56 PM model for two agricultural crops

grown in a humid tropic region which was outperformed by the

Penman and Rohwer models. Under different climate conditions,

Djaman et al. (2019) compared between 35 ET models in semiarid

and dry climates and under limited data availability and found

that the FAO56 PM model had a good accuracy in predicting ET

under only one missing data. However, the model underestimated

ET rates in the case of two or more missing climatological data

parameters, while other models such as Makkink and Jensen and

Haise offered better estimates (Djaman et al., 2019). Akhavan et al.

(2019) evaluated 28 ET models against lysimeter measurements to

assess the actual ET of corn crops in semiarid environments. Results

of this study prove that the FAO56 PM and temperature-based

models had the best performances under the single crop coefficient

method for estimating ETc from ET0 (Akhavan et al., 2019). López-

Urrea et al. (2006) found the FAO56 PMmodel as themost accurate

against lysimeter measurements followed by the Hargreaves model

for semiarid climates.

Few studies evaluated ET models and studied their relevance

under greenhouse conditions (Jolliet and Bailey, 1992; López-

Cruz et al., 2008; Morille et al., 2013). Most studies proved

the applicability of the Stanghellini model for estimating crop

evapotranspiration in greenhouses under natural ventilation and

with no heating systems (Acquah et al., 2018). Villarreal-Guerrero

et al. (2012) compared between three ET models for two

agricultural crops grown in a greenhouse with natural ventilation

and variable high pressure fogging cooling system. This study

suggested that any of the three evaluated models including

Penman-Monteith, Stanghellini and Takura could be used for

similar greenhouse applications (Villarreal-Guerrero et al., 2012).

Yan et al. (2020) parametrized the Stanghellini model for cucumber

crops and evaluated its performance. This work demonstrated

that the Stanghellini model overestimated the transpiration from

cucumber plants during the day when the microclimate data

were measured at 1m and 1.8m, while the model underestimated

transpiration when microclimate data was collected at 0.5m above

the ground.

The wide selection of evapotranspiration models and the

different types of data needed makes it difficult to choose the

appropriate model for a specific climate and growing environment.

There is a lack of studies that evaluate the different ET0 models

for the estimation of transpiration in agricultural greenhouse

settings located in high solar radiation regions which are

faced to high ambient temperatures and high solar radiation.

Therefore, this study aims at filling this gap by comparing 20

ET0 models for the estimation of transpiration in a greenhouse

located in a high solar radiation region and evaluating their

performance against direct transpiration measurements using

statistical indicators. The objective of this work is to conduct a

comparative evaluation of ET0 models and test their accuracy

for estimating transpiration in agricultural greenhouse systems

with HVAC and CO2 enriched environments located in high

solar radiation regions. This is important when physiological

parameters such as stomatal and aerodynamic resistances are not

available and only full or partial microclimatic parameters are

present. The existing transpiration models such as the Ball-Berry,

Jarvis, Penman Monteith, Shuttleworth-Wallace models require

physiological parameters such as stomatal conductance, boundary

layer conductance and leaf area index which cannot be easily
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acquired. Thus, this study aims at evaluating the use of ET0

empirical and mechanistic models for transpiration prediction in

greenhouses under high solar radiation.

2. Materials and methods

2.1. Experimental site

This study takes place in a water-saving agricultural greenhouse

with CO2 enrichment in the hyper-arid region of the State of Qatar.

The glass-based greenhouse is characterized by a net growing

area of 715 m2 and encompasses a microclimate management

system with heating, ventilation and air conditioning (HVAC) for

enhanced growing conditions of vegetable crops. The unfavorable

Qatari climate conditions during most of the year imposes the

implementation of a greenhouse-controlled microclimate system

to lower the negative impacts of the external environment

and reduce the consumption of resources. The microclimate of

the greenhouse is controlled for optimal operations, based on

established agricultural best practices. The desired temperature and

humidity inside the greenhouse are set at ∼26◦C and 80% during

the day and 18◦C and 60–70% at night. For this, a semi-closed

system was put in place involving a heating, ventilation, and air

conditioning (HVAC) system. The air inside the greenhouse is

recovered, cooled, and dehumidified, and recirculated back without

exchange with outside air. The air is cooled in three air handling

unit (AHU), with cooling supplied by a 600 kW capacity water

chiller. The hot and humid air is extracted through three ducts

at the top of the greenhouse each connected to an AHU, and

the cooled and dehumidified air was sent back to the greenhouse

through 15 flexible ducts. The conditioned air supplying ducts are

positioned under each crop gutter line which provides a more

uniform distribution of the air inside the greenhouse.

CO2 enrichment is supplied to the greenhouse by two LPG fed

burners, each having a capacity of 11.5 kW and a flowrate up to

2.5 kg/h. With a total area of 800 m2 (net growing area of 715

m2), the two burners can enrich the greenhouse up to 800 ppm

at daylight. The burners were located inside the greenhouse and at

the same level of the extraction ducts. The CO2 rich and hot air

produced from the burners was pulled out through the extraction

ducts and supplied to the AHU to be cooled and recirculated back

to the greenhouse uniformly via the 15 flexible ducts.

A hydroponic culture was adopted in the greenhouse which has

been proven as a promising method that can improve yields and

reduce water consumption. The crops were grown in a coco peat

substrate to provide a better aeration to roots and water retention.

As for the type of crop, cucumbers were chosen in this study

because they are heat resistant which makes them an applicable

subject of study in a high solar radiation and temperature region

like Qatar.

The crop was irrigated using a drip irrigation system, with

one dripper per growing bag, while allowing 20–30% of the total

irrigation water for drainage. Plants were irrigated throughout

the day, with maximum irrigation supply at midday when

solar radiation is at its peak and was stopped before sunset to

allow drainage at night. Irrigation was controlled through an

automatized fertigation system. A nutrient solution was prepared

with commercial nitrogen, phosphorus and potassium (NPK)

fertilizers and fed to the plants with the objective to maintain the

electric conductivity and pH levels of the irrigation water to ∼2.7

mS/cm and 5.7, respectively. Nutrient proportions can be found in

a study previously conducted by the authors (Ghiat et al., 2022).

Moreover, the EC of drained water was continuouslymonitored not

to exceed 1 mS/cm more than the EC of the drip irrigation water,

to regulate the EC accordingly and ensure the right level in the drip

irrigation water.

2.2. Data collection

Microclimate data including inside temperature, relative

humidity, and CO2 concentration were measured via the

Hoogendoorn aspirator box which consists of electronic sensors for

each parameter. The aspirator box includes a built-in fan that pulls

air toward the sensors inside the box. Solar radiation was measured

via the Hoogendoorn weather station outside the greenhouse that

consists of a pyranometer sensor. Figure 1 illustrates the collected

microclimate measurements.

A gas exchange measurement system was used to directly

measure transpiration at the leaf level. The CIRAS-3 portable

photosynthesis system (PP systems) was used to simultaneously

measure water vapor and CO2 gas exchanges within the leaf

and accordingly calculates the transpiration rate and assimilation

rates. The system consists of a true differential analyzer with four

infrared gas analyzers (IRGA) that trace gases by evaluating the

absorption of infrared sources through a sample gas. The PLC3

leaf cuvette with dimensions of 25mm × 18mm was mounted

with the photosynthesis system. The cuvette was maintained at a

continuous and constant flowrate of 300 cubic centimeter per min,

a relative humidity of 75% and the gas exchange was measured

on a leaf area of 4.5 cm2. The relative humidity inside the cuvette

was controlled with desiccants that condition the air according to

the reference specifications entered and the reference CO2 was set

to ambient. The gas exchange measurements were conducted on

fully developed and sun exposed leaves. Transpiration rates were

measured every 2 s throughout the day to achieve a high level of

accuracy. The short-term transpiration rates were then cumulated

to estimate hourly transpiration. The gas exchange system estimates

the transpiration rate by measuring the amount of water vapor in

the cuvette as presented in Equation 1.

T = W (eout − ein)

P − eout
∗103 (1)

Where T is the transpiration rate, W is the mass flowrate of

air entering the cuvette, ein and eout are respectively the partial

pressures of water vapor entering and existing the cuvette and P

is the atmospheric pressure.

The gas exchange measurement encompasses a zero-column

assembly containing three desiccants which are used for the

analyzer zero. The zero-columnmeasurement establishes a baseline

reading for the instrument which is used to ensure accurate

measurements when the sample gas is flowing through the cuvette.

This later corrects for changes that result in calibration drifts and

ensures the accuracy of the gas analyzer. The system also involves a

Frontiers in Sustainable FoodSystems 04 frontiersin.org

https://doi.org/10.3389/fsufs.2023.1155443
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Ghiat et al. 10.3389/fsufs.2023.1155443

FIGURE 1

Microclimate data.

differential balance mode that measures the difference between the

reference and analysis cells while diverting the reference air through

all cells. The differential balance takes place when large changes in

CO2 and H2O are detected. Both automatic zero and differential

balance modes are set to ensure high accuracy.

The microclimate data was collected every 5 mins (Figure 1),

and the gas exchange measurement data collected with a time

step of 2 s throughout the day. These data were collected for one

growing season of cucumber crops covering 1 month of crop

growth and 1 month of production.

2.3. ET0 estimates from empirical and
mechanistic models

This study examined 20 reference evapotranspiration (ET0)

models for predicting crop transpiration in a cooling-based

greenhouse subject to high solar radiation. The evaluated

models were classified into four categories corresponding to

the required input: temperature-based, radiation-based, mass

transfer-based, and combination-based models (Figure 2). The

ET0 models can also be classified based on the method of

parametrization used in their formulation. The parametrization

methods include percentage of net radiation, linear function of

mean temperature, linear function of mean temperature and

temperature difference, and linear function of wind speed (Acquah

et al., 2018).

The Ivanov, Schendel, Blaney-Criddle, Kharrufa, Hargreaves

and Samani, and Trajkovic were grouped as temperature-based

models which all require temperature and a few of them involve

relative humidity data as presented in Table 1. The Schendel model

of evapotranspiration was formulated by building a relationship

with mean temperature and relative humidity (Schendel, 1967).

The Blaney-Criddle model was developed by building a correlation

between measured evapotranspiration with temperature, daytime

hours, the growing season, and precipitation. The model then

only involves mean temperature and an empirical coefficient for

the estimation of evapotranspiration (Blaney and Criddle, 1962).

The Kharrufa model was derived by correlating between the ratio

of evapotranspiration and pressure with temperature (Xu and

Singh, 2001). The Hargreaves and Samani model was formulated to

determine solar radiation (Rs) from extraterrestrial radiation (Ra)

and the difference between maximum and minimum temperatures

(Subedi and Chávez, 2015).

Radiation-based models including Makkink, Turc, Jensen and

Haise, Priestley and Taylor, Abtew, and Irmak only require solar

radiation or net radiation and mean temperature as input data as

displayed in Table 2. The Makkink equation is a modified version

of the Penman Monteith equation with reduced input parameters

which was formulated using lysimeter measurements (Makkink,

1957). The Jensen and Haise model was built from measured

evapotranspiration using soil sampling and has been developed

for arid and semiarid regions (Zhang et al., 2017; Rawat et al.,
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FIGURE 2

Methodology.

TABLE 1 Temperature-based ET0 models.

Evapotranspiration model Equation Inputs References

Ivanov ET0 = 0.00006 (25+ Tmean)
2 (100− RH) Tmean , RH Romanenko, 1961

Blaney-Criddle ET0 = p(0.46Tmean + 8.13) Tmean Blaney and Criddle, 1962

Schendel ET0 = 16 Tmean
RH

Tmean , RH Schendel, 1967

Kharrufa ET0 = 0.34pT1.3
mean Tmean Kharrufa, 1985

Hargreaves and Samani ET0 = 0.0023 Ra
2.45

√
Tmax−Tmin(Tmean + 17.8) Tmean , Tmax , Tmin Hargreaves and Samani, 1985

Trajkovic ET0 = 0.0023Ra (Tmax−Tmin)
0.24 (Tmean + 17.8) Tmean , Tmax , Tmin Trajkovic, 2007

2019). The Priestley Taylor model is a semi-empirical equation

that involves a dimensionless coefficient α which replaces the

aerodynamic resistance in the original PenmanMonteith equation.

The coefficient varies depending on the surface type, climatic

conditions and growing season (Priestley and Taylor, 1972; Ghiat

et al., 2021a). The Irmakmodel was derived from the FO56 Penman

Monteith equation using multilinear regression to reduce the input

parameters in the estimation of ET0 (Irmak et al., 2003).

The Dalton, Trabert, Meyer, Rohwer, Penman, and Albrecht

were grouped as mass transfer-based modela which involve three

major meteorological parameters including temperature, humidity,

and wind speed (Table 3). These models are primarily based on

Dalton’s gas law as expressed in Equation 2 (Singh and Xu, 1997).

E0 = f (u)VPD (2)

Where E0 is the free water surface evaporation and f(u)

is the wind function. The vapor pressure deficit (VPD) is the

difference between the saturation vapor pressure (es) and actual

vapor pressure (ea).

The FAO56 Penman Monteith and Stanghellini are

combination-based models established on physical laws of

energy balance and mass transfer (Table 4). Both models are

directly derived from the original Penman Monteith model

(Stanghellini, 1987; Allen et al., 1998). The Stanghellini model

was mainly derived to accommodate greenhouse environments by

involving the leaf area index (LAI) parameter in the formulation

and suppressing wind speed. This model principally links the

internal resistance to microclimate variables including solar

radiation, leaf temperature, CO2 concentration and vapor pressure

deficit as expressed in Equations 4–9 (Stanghellini, 1987; Acquah

et al., 2018).

The slope of vapor pressure temperature curve and

psychometric constant are expressed in Pa/C for the Stanghellini

model and kPa/C for the other models. The net solar radiation Rn

is estimated in W/m2 for the Stanghellini model and in MJ/m2 day

for the other models.

The Stanghellini model requires the estimation of external and

internal resistances. The external (aerodynamic) resistance re can

be expressed using the Nusselt (Nu) which is defined using the

Grashof (Gr) and Reynolds (Re) numbers as expressed in Equations

3 and 4.

re =
ρaCpl

λaNu
(3)

Nu = 0.37
(

Gr + 6.92 Re2
)0.25

(4)
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TABLE 2 Radiation-based ET0 models.

Evapotranspiration model Equation Inputs References

Makkink ET0 = 0.61
(

1
1+γ

)

(

Rs
58.5

)

− 0.12 Rs , Tmean Makkink, 1957

Turc ET0 = 0.013
(

Tmean
Tmean+15

)

(Rs + 50) Rs , Tmean Turc, 1961

Jensen and Haise ET0 = Rs
λ

(0.025Tmean + 0.08) Rs , Tmean Jensen and Haise, 1963

Priestley and Taylor ET0 = α

(

1
1+γ

)

(

Rn
λ

)

Rn , Tmean Priestley and Taylor, 1972

Abtew ET0 = 0.53
(

Rs
λ

)

Rs Abtew, 1996

Irmak ET0 = 0.489+ 0.289Rn + 0.023Tmean Rn , Tmean Irmak et al., 2003

The incoming shortwave radiation (Rs) is expressed in Cal/m2 , day for Makkink and Turc models and in MJ/m2 day for the other models.

TABLE 3 Mass-transfer based ET0 models.

Evapotranspiration model Equation Inputs References

Dalton ET0 = (0.3648+ 0.01223u) VPD Tmean , RH, u Dalton, 1802

Trabert ET0 = 0.3075
√
u VPD Tmean , RH, u Trabert, 1896

Meyer ET0 = (0.375+ 0.05026u) VPD Tmean , RH, u Meyer, 1926

Rohwer ET0 = (3.3+ 0.891u) VPD Tmean , RH, u Rohwer, 1931

Penman ET0 =
(

2.625+ 0.000479
u

)

VPD Tmean , RH, u Penman, 1948

Albercht ET0 = (0.1005+ 0.279u) VPD Tmean , RH, u Albrecht, 1950

TABLE 4 Combination-based ET models.

Evapotranspiration model Equation Inputs References

Stanghellini λET =
1 Rn+

(

2LAI ρa Cp
re

)

VPD

γ (1+ 1
γ
+ ri

re
)

Rn , Tmean , RH, LAI Stanghellini, 1987

FAO56 Penman Monteith ET0 =
(

0.408(Rn−G)+ γ
900

Tmean+273 uVPD
)

1+γ (1+0.34u) Rn , Tmean , RH, u Allen et al., 1998

The internal resistance can be estimated through the

independent action of all microclimate parameters from the

minimum possible resistance rmin as presented in Equation 5.

r̃i correspond to functions representing the relative increase in

transpiration due to microclimate data.

ri = rmin r̃i(Is)r̃i(T0)r̃i(CO2)r̃i(VPD) (5)

r̃i (Is) =
Is + C1

Is + C2
; Is =

AsIs

2 LAI
(6)

r̃i (T0) = 1+ C3 (T0 − Tm)2 (7)

r̃i (CO2) = 1+ C4 (CO2 − 200)2 (8)

VPD ≤ 0.8 kPa : ri (VPD) = 1+ C5 VPD
2 (9)

VPD ≥ 0.8 kPa : ri (VPD) = 3.8 (10)

Where Is is the mean density flux of the shortwave irradiation,

As is the coefficient of shortwave radiation, Tm is the temperature

corresponding to the minimum possible internal resistance,

and C1-C5 are model constants built from empirical relations

(Stanghellini, 1987).

The dual crop coefficient method was used for all empirical

and mechanistic models to estimate transpiration. Including crop

coefficients has been extensively used as a method to estimate

actual evapotranspiration when the necessary parameters such as

aerodynamic and internal resistances cannot be acquired. Crop

coefficients are dimensionless parameters that represent the ratio

of the actual evapotranspiration of a specific crop to the reference

evapotranspiration of a hypothetical reference crop. The basal crop

coefficient values (kcb) are taken from the FAO tabulated data

depending on the type of the crop and the growing stage and are

adjusted for the relative humidity of the greenhouse (Allen et al.,

1998).

2.4. Statistical and performance analyses

A preliminary correlation analysis was conducted to learn

about the data measured and determine the microclimate variables

that have the most significant effect on the measured transpiration.

The studied variables include solar radiation, greenhouse relative

humidity, temperature, and CO2 concentration. Pearson’s

coefficient of correlation (PCC) was used in this analysis as

presented in Table 5. The correlation coefficient represents the

linear relationship between two variables in which a positive value

signifies that an increase in one variable leads to an increase in the

other, and a negative coefficient indicates that an increase in one

variable is accompanied by a decrease in the other and vice versa.

Nine statistical indicators were used to compare between

the different evapotranspiration models following the

recommendation of Legates and McCabe (1999) as presented

in Table 5. Correlation-based measures (e.g., R2) are not

recommended to be used solely in the evaluation the goodness

of fit of hydrological models and should be accompanied with
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TABLE 5 Statistical indicators.

Statistical
indicator

Equation References

Mean square
error (MSE)

MSE =
∑n

i=1(yi−ŷi)
2

n
Legates and
McCabe, 1999

Root mean square
error (RMSE)

RMSE =
√

∑n
i=1

(yi−ŷi)
2

n
Ritter and
Muñoz-Carpena,
2013

Mean absolute
error (MAE)

MAE =
∑n

i=1|yi−ŷi|
n

Legates and
McCabe, 1999

Mean bias error
(MBE)

MBE =
∑n

i=1 ŷi−yi
n

Bourletsikas et al.,
2018

Percentage error
(PE)

PE =
∣

∣

∣

ŷi−yi
yi

∣

∣

∣
100 Tabari and Talaee,

2011

Coefficient of
determination
(R2)

R2 =
∑n

i=1[(ŷi−ŷi)(yi−yi)]
2

∑n
i=1

(

ŷi−ŷi

)2
∑n

i=1(yi−yi)
2

Tabari and Talaee,
2011

Pearson’s
correlation
coefficient (PCC)

PCC =
∑n

i=1

(

ŷi−ŷi

)

(yi−yi)
√

∑n
i=1

(

ŷi−ŷi

)2
∑n

i=1(yi−yi)
2

Vishwakarma et al.,
2022

Index of
agreement (d)

d = 1−
∑n

i=1(yi−ŷi)
2

∑n
i=1[|ŷi−yi|+|yi−yi|]2

Willmott, 1981

Nash and Sutcliffe
coefficient (NSE)

NSE = 1−
∑n

i=1(yi−ŷi)
2

∑n
i=1(yi−yi)

2 = 1− RMSE
SD

Nash and Sutcliffe,
1970

yi and yi are respectively the actual observed and the mean value of the observed

transpiration data. ŷi and ŷi are respectively the predicted and mean value of the predicted

evapotranspiration from the regression models, and n is the sample size.

additional indicators. Legates and McCabe (1999) suggests that a

good assessment should include at least one absolute error statistic

(e.g., RMSE, MAE) and one relative error statistic (i.e., NSE, d).

The coefficient of determination (R2) is an indicator that describes

the degree of collinearity between the observed and predicted

values and can easily be assessed (Ritter and Muñoz-Carpena,

2013). The root mean square error (RMSE), mean absolute error

(MAE) and the mean bias error (MBE) are useful indicators that

describe the error in the units of the studied variables. Usually,

RMSE is greater or equal to MAE, and the degree of the difference

between the two indicators represents the presence of outliers in

the data (Legates and McCabe, 1999; Akhavan et al., 2019). Lower

values of RMSE and MAE indicate more accurate estimates to the

observed values. The MBE statistic is useful as it indicates if there is

an overestimating or underestimating trend in the predicted values

(Akhavan et al., 2019). The Nash and Sutcliffe (NSE) coefficient

of efficiency is the most used indicator in the hydrology field to

evaluate the goodness of fit of models. However, researchers have

indicated that it is sensitive to bias and outliers. The Nash and

Sutcliffe (NSE) coefficient of efficiency corresponds to the unity

minus the ratio of MSE to the standard deviation and takes values

between –∞ and 1. An NSE value of 1 represents a perfect fit,

contrary to a value of 0 which indicates that the observed mean is

as good as the predicted model, and an NSE value less to 0 implies

that the mean of the observed values are better predictors than the

model (Ritter and Muñoz-Carpena, 2013). The index of agreement

(d) takes into consideration the observed and predicted means

and variances which prevails over the bias from correlation-based

indicators. The index of agreement has a range between 0 and 1.

Large values of the index d indicate good agreement between the

observed and modeled data (Legates and McCabe, 1999).

The models with the lowest MSE, RMSE, MAE and MBE along

with the largest R2, NSE, and d were selected as the most accurate

in predicting transpiration for this application.

3. Results

The correlation coefficient is an important measure which

evaluates the strength and direction of the relationship between two

variables. Figure 3 revealed that there is a significant correlation

of transpiration with greenhouse temperature and outside solar

radiation as well as a moderate relationship with relative humidity

and CO2 concentration. The strongest correlations were reported

between transpiration and solar radiation (0.78) followed by

transpiration and greenhouse temperature (0.63). This explains

that with high solar radiation and temperature, plants tend to

transpire more to cool themselves and balance the heat stress.

Moreover, the inverse relationship between transpiration and CO2

(−0.32) is explained by the stomatal closure mechanism due

to higher CO2 concentrations in the air which consequently

leads to less water loss via transpiration. Similarly, transpiration

and relative humidity held an inversely proportional correlation

(−0.32) because the higher the humidity in the air, the more the air

is close to saturation which limits water loss through transpiration.

Microclimate variables also exhibited interesting relationships

between each other. Outside solar radiation and greenhouse

air temperature displayed a strong positive correlation (0.63).

Greenhouse temperature and humidity were inversely proportional

(−0.16) because as air temperature increases, its equilibrium

vapor pressure increases, and the relative humidity decreases.

Greenhouse temperature and CO2 concentration held a small

negative correlation (−0.017) which explains that in the presence

of light and with higher greenhouse temperature photosynthesis is

stimulated which leads to higher CO2 consumption by the plants.

Moreover, there was a strong negative correlation between CO2

concentration and solar radiation (−0.4). This implies that with

high solar radiation, there is a higher uptake of CO2 by the plants

due to photosynthesis activation which reduces the amount of

available CO2 in the greenhouse environment.

The transpiration rates of cucumber crops grown in an

HVAC cooling based greenhouse were evaluated through

different mechanistic and empirical evapotranspiration

models. Four ET0 model categories were studied covering

combination-based, temperature-based, mass-transfer based and

radiation-based models. ET0 model values were compared against

direct gas exchange measurements on cucumber leaves in the

greenhouse for one growing season. Figure 4 displays the average

evapotranspiration estimates from the various studied models

and transpiration from the direct gas exchange measurement.

The radiation-based Priestley and Taylor model exhibited the

largest evapotranspiration value of 1.718 mm/h which was 150%

higher than the average measured value. The lowest average ET0

was recorded with the mass-transfer based Trabert model with

a value of 0.192 mm/h which was 72% lower than the average

gas exchange measured value. In general, all mass transfer-based

models exhibited lower average ET0 rates compared to the average
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FIGURE 3

Correlation matrix between di�erent microclimate variables and transpiration.

direct measurement with an average percentage error (PE) of

38.6%. All the temperature-based models estimated ET0 rates

higher than the measured gas exchange value (average PE = 88%)

except for Ivanov and Schendel models (average PE = 52.2%).

Most radiation-based models resulted in higher average ET0

rates than the gas exchange measurement (average PE = 97.2%)

except for Makkink and Turc models (average PE = 37.6%). The

combination-based models had the closest average ET0 estimate

to the direct measurement, with values 22.7% lower on average.

The mass-transfer based Rohwer model exhibited similar average

ET0 estimates to the combination-based models, followed by the

Dalton model with an average PE of 23.6% from the two models as

compared to the gas exchange measured ET0.

The evapotranspiration models were plotted against observed

gas exchange transpiration data as illustrated in Figure 5. Linear

regression lines were built for each ET0 model and were compared

with the reference 1:1 line which serves as the best fit. Models

with regression lines occurring under the reference line imply

that the model underestimates the actual measured data. These

include both combination-based models, the temperature-based

Ivanov and Schendel models, the Dalton, Trabert, the six mass-

transfer based, and the radiation-based Makkink and Turc models.

The regression lines for the temperature-based Blaney-Criddle,

Kharrufa, Hargreaves and Samani, and Trajkovic models and the

radiation-based Jensen and Haise, Priestley and Taylor, Irmak and

Abtew models were above the reference line which entails that the

models overestimated the observed gas exchange data.

The 20 ET0 models were evaluated using eight statistical

indicators as illustrated in Figure 6. The model(s) with the highest

accuracy in predicting the transpiration rate for greenhouse

cucumbers should exhibit the lowest values in the error

measurements (i.e., MSE, RMSE, MAE, and MBE) and the highest

values in the other performance indicators including R2, NSE, PCC,

and d.

The FAO56 PM model had the highest R2, explaining 63% of

the variability of the gas exchange measurements. The radiation-

based models ranked second to seventh with an average R2 of

62%. The Stanghellini model was ranked after the radiation-

based models and was able to explain 56% of the changes in the

measured data. The temperature-based models held an average R2

of approximately 22% with Hargreaves and Samani and Trajkovic

models representing the lowest R2 values amongst all category

models. All six mass-transfer based models had similar R2 values

of∼18%.

According to RMSE values, the best performing temperature-
based model was the Schendel model with a value of 0.3004 mm/h.
As for the radiation-based models, the Turc equation delivered

the closest predicted values to the observed data with the lowest

RMSE value of 0.254 mm/h. The Rohwer model outperformed
the other models in the mass-transfer based model category with

an RMSE value of 0.249 mm/h. The combination-based models

exhibited the lowest RMSE values amongst the other categories,

which entails that these models fit best the observed transpiration

data. The FAO56 Penman Monteith model ranked first with an

RMSE value of 0.205 mm/h, and the Stanghellini model ranked

second with an RMSE value of 0.215 mm/h. The third and fourth

lowest RMSE values amongst all categories pertain to the mass-

transfer based Rohwer model with a value of 0.249 mm/h and
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FIGURE 4

Hourly evapotranspiration evaluated from various ET0 models and transpiration from direct gas exchange measurement.

the radiation-based Turc model with a value of 0.254 mm/h.

Dalton, Albercht, Meyer, Schendel, Blaney-Criddle, Makkink, and

Abtew ranked fifth to tenth respectively with RMSE values

between 0.264 and 0.398 mm/h. The mass transfer-based models

(i.e., Dalton, Albrecht, and Meyer) performed better than the

temperature-based models (i.e., Schendel, Blaney-Criddle) which

performed better than the radiation-based models (i.e., Makkink

and Abtew) according to RMSE. Kharrufa, Penman, Ivanov,

Trabert, Jensen and Haise, Irmak, Trajkovic, Hargreaves and

Samani, Priestley Taylor ranked twelfth to twentieth respectively

with RMSE values between 0.399 and 1.171 mm/h. The Priestley

Taylor, Hargreaves and Samani, and Trajkovic models held the

highest RMSE values and represent the worst fit to the measured

data (between 0.902 and 1.171 mm/h). Thus, RMSE values

indicated that the two combination-based models represent best

the microclimate conditions of a cooling-based greenhouse under

high solar radiation.

Transpiration overestimations and underestimations were

revealed through MBE and MAE values. The lowest MBE

value representing the largest transpiration underestimation

corresponded to the mass-transfer based Trabert model with a

value of −0.494 mm/h. The largest overestimation of transpiration

related to the largest MBE value of 1.031 mm/h which

corresponds to the radiation-based Priestley and Taylor model.

Both combination-based models underestimated transpiration

with an average MBE value of −0.156 mm/h and an average MAE

of 0.156 mm/h, which correspond to the lowest underestimations

amongst all models. Moreover, the mass-transfer based Rohwer

model also involved a similar underestimation to the combination-

based models. Within the temperature-based model category,

Ivanov and Schendel underestimated transpiration with an

average MBE of −0.358 mm/h, though, Blaney-Criddle, Kharrufa,

Hargreaves, and Trajkovic overestimated transpiration with an

average MBE andMAE values of 0.606 mm/h. All six mass-transfer
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based models underestimated transpiration with an average MBE

of −0.265 mm/h. As for the radiation-based models, Makkink and

Turc underestimated transpiration with average MBE of −0.258

mm/h, however, Jensen and Haise, Priestley Taylor, Irmak and

Abtew overestimated transpiration with an average MBE and MAE

values of 0.667 mm/h.

FIGURE 5 (Continued)
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FIGURE 5 (Continued)
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FIGURE 5 (Continued)

Predicted evapotranspiration against observed transpiration for the di�erent ET0 models.

The largest NSE values were reported at −0.028 by the FAO56

PM model, followed by the Stanghellini model with a value of

−0.132, and the mass-transfer based Rohwer model with a value

of −0.522. The FAO56 PM model also resulted in the highest PCC

value of 0.795 followed by the six radiation-based models with an

average PCC value of 0.788 and the Stanghellini model with a value

of 0.748. All models reported index of agreement (d) values close to

0.99 which indicate a good match between predicted and observed

data. However, the index of agreement is highly sensitive to extreme

values due to the squared differences in the formulation which can

also lead to high d value estimates with large errors.

Moreover, the temperature-based models involving mean

temperatures (i.e., Ivanov, Schendel, Blaney-Criddle, and Kharrufa)

resulted in lower values of MSE, RMSE, MAE, andMBE and higher

values of NSE, and PCC and hence deliver better transpiration

estimations than the ones with maximum and minimum

temperatures (i.e., Hargreaves and Samani, and Trajkovic). This can

be explained by the somewhat semi-closed and non-homogeneous

environment of the greenhouse as compared to the aerated open

field whichmakes the use of meanmicroclimate data more accurate

then maximum and minimum peak values.

The best mass-transfer based model was Rohwer with the

lowest RMSE (0.249), MAE (0.155), MSE (0.062), MBE (−0.155)

and highest NSE (−0.522). The Dalton model was the second-

best performing model in the mass-transfer based category.

On the other hand, the Trabert model displayed the worst

performance in predicting transpiration rates with the highest

values in error measurements and lowest NSE value amongst the

other mass-transfer based models. The comparison among the

radiation-based models demonstrates that the Turc model was the

best performingmodel with the lowest RMSE (0.254),MAE (0.221),

MSE (0.064), MBE (−0.221) and highest NSE (−0.58) and second

highest PCC (0.79). The Priestley and Taylor model yielded the

worst performance with the highest error values and the lowest

NSE (−32.53).

The comparative results demonstrated that the FAO56 PM

model exhibits the best performance against the gas exchange

measurements with the lowest MSE (0.042), RMSE (0.205), the

second lowest MAE (0.157) and MBE underestimation (−0.157)

and the highest R2 (0.632), NSE (−0.028) and PCC (0.795).

The Stanghellini model represented the second lowest MSE

(0.046) and RMSE (0.215), the lowest MAE (0.155) and MBE

underestimation (−0.155) and the second highest NSE (−0.132).

This implies that the FAO56 PM simulated the CO2 enriched and

HVAC based greenhouse environment better than the Stanghellini

model and the other category models. Although the Stanghellini

model was developed to accommodate CO2 enriched greenhouse

environments, but it was based on a naturally ventilated greenhouse

which is different than the application at hand. The HVAC system

can induce major differences in microclimate stimulated plant

responses as compared to Stanghellini’s environment which can

explain the discrepancies between Stanghellini’s model and the gas

exchange transpiration rates.

Results of the inferential statistics analysis reveal that the error

between the predicted and observed transpiration was found to be

statistically significant, with a p-value <0.05 for the temperature-

based Kharrufa, Hargreaves and Samani, and Trajkovic models

along with the radiation-based Priestley and Taylor and Irmak
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models (Figure 5). These p-values were calculated based on the

reference line, which denotes zero error. The low p-values (<0.05)

indicate that there is a significant difference (overestimation)

between the predicted and observed values, rendering these

models unsuitable for predicting transpiration accurately for this

application. The results are consistent with findings from the

descriptive statistics where these models were identified as the least

performant (with the exception of the Kharrufa model). Moreover,

it is worth mentioning that in the case of a one-tailed test,

p-values greater than 0.95 indicate a significant underestimation.

The Ivanov, Trabert, Penman, Makkink, and Turc models exhibit

a p-value exceeding 0.95, which suggests that they may result in

FIGURE 6 (Continued)
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FIGURE 6 (Continued)

Radar charts for the di�erent statistical indicators.

a significant underestimation of transpiration. As a result, such

models are not suitable for accurately predicting transpiration

for this particular application. Furthermore, this highlights the

significance of evaluating the accuracy and validity of empirical

and mechanistic models in predicting transpiration for different

settings. In contrast, the analysis results indicate that the p-value

for the error between the predicted and observed transpiration was

between 0.05 and 0.95 for all the other models (FAO56 Penman

Monteith, Stanghellini, Schendel, Blaney-Criddle, Dalton, Meyer,

Rohwer, Albrecht, Jensen and Haise, and Abtew) (Figure 5). This

suggests that there is no statistically significant difference between

the predicted and observed values, indicating that these models

can be used for predicting transpiration for greenhouses under

high solar radiation. However, it is essential to note that results

of the descriptive statistics are crucial to evaluate and compare

the accuracy of the different models for predicting transpiration.

Further research is still required to parametrize these models to

better predict transpiration for greenhouse applications.

The results obtained from both inferential and descriptive

statistics suggest that the Schendel and Blaney-Criddle models

based on mean temperatures are the recommended models within

the temperature category, with the Schendel model as the most

accurate. For the mass transfer category, it is recommended to use

the Dalton, Meyer, Rohwer, and Albrecht models, with the Rohwer

model being the most accurate among them. For the radiation-

based category, it is suggested to use the Jensen and Haise as well

as the Abtew models, with the Abtew model being more accurate

compared to the Jensen and Haise model. Both combination-

based models are recommended for transpiration prediction in

greenhouses that are exposed to high solar radiation, with the

FAO56 PMmodel being the most accurate among them.

4. Discussion

Findings of this study align with the results obtained in other

comparable studies in similar climates settings, which also showed

that the FAO-56 Penman-Monteith method had the highest level

of accuracy (López-Cruz et al., 2008). López-Cruz et al. (2008)

also demonstrated that for semiarid climates, the Blaney-Criddle

method significantly overestimated evapotranspiration, while the

Penman method resulted in considerable underestimations as

found in this study. Studies in greenhouse settings have shown

that, contrary to our findings, the Stanghellini model outperformed

the FAO56-PM model. However, this may be attributed to the

parametrization and careful estimation of parameters in the

Stanghellini model, such as leaf area index and stomatal resistance,

which made the model more applicable (López-Urrea et al., 2006;

Acquah et al., 2018).

The mass transfer models demonstrated lower prediction

accuracy than the combination-based models for transpiration in

greenhouses. This can be explained by the limited air movement

and the somewhat heterogeneous microclimate in the greenhouse

which can lead to variations in transpiration which may not be

captured by the mass-transfer models. Lower accuracy estimates

from the radiation-based models can be due to the different

exposure of plants to solar radiation due to the glass cover

and positioning of the greenhouse. Moreover, greenhouse grown

plants receive a non-uniform light distribution as compared

to the open field, which is due to many factors such as

shading or plant alignment. The radiation-based models do not

consider these greenhouse specific factors which may be subject

to inaccuracies since they heavily rely on the solar radiation

parameter. Moreover, the combination-based models encompass

all major factors affecting transpiration including solar radiation,

temperature, humidity, wind speed and atmospheric pressure,

which makes them more accurate and reliable than other single

variable-based models. The Penman-Monteith model is derived

from physical laws which makes it more robust and applicable

for predicting for different crop types and in different settings.

This can explain the higher performance of the Penman-Monteith

model over the Stanghellini model which involves empirical

relations corresponding to a different crop than the one studied in

this work.
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Although, the FAO56 PM model demonstrated the best

performance among the other models in predicting transpiration

for greenhouses under high solar radiation, HVAC and CO2

enriched environments, but it is linked to approximately a 22.9%

error difference from the gas exchange measurements. Hence,

it is still important to further improve the prediction accuracy

by parametrizing the model or sub-model components such as

the internal or aerodynamic resistances which can be considered

as one of the limitations of this work. The parametrization of

such mechanistic models requires larger experimental sampling

and longer time frames than the presented work. Hence,

Future work is envisaged to parametrize the best performing

models with advanced sampling and measurement techniques

to provide a more accurate modeling roadmap for irrigation

management in agricultural greenhouses located in regions with

high solar radiation.

5. Conclusion

Greenhouse cultivation practices are recognized as one

the leading enablers in achieving precision agriculture which

require high accuracy precision in microclimate and irrigation

management. The accurate estimation of ET is crucial to evaluate

crop water requirements and help guide growers in their irrigation

management schemes. This work emerged from the need to

evaluate existing ET0 models and determine their applicability for

agricultural greenhouse systems located in high solar radiation

regions under both HVAC and CO2 enriched environments.

Twenty ET0 models including temperature-based, radiation-based,

mass transfer-based, and combination models were evaluated

against direct gas exchange measurement for a cucumber crop-

based greenhouse using several statistical indicators. The main

findings of this study are:

• The FAO56 Penman-Monteith model demonstrated the best

performance for the estimation of transpiration with the

lowest RMSE (0.205), second lowest MAE (0.157), and the

highest R2 (0.632).

• The Stanghellini model proved to be the second most accurate

in estimating transpiration.

• The FAO56 PM model, having the best performance, is

recommended over the other simplified temperature, mass-

transfer and radiation-based models to be used for estimating

transpiration in HVAC based and CO2 enriched greenhouses

located in high solar radiation regions.

Future work is necessary to parametrize the model or sub-

model components of the FAO56 PM model to further improve

the accuracy of transpiration predictions for this application.

In the case of the unavailability of full microclimatic data, the

Schendel model, the Rohwer, and Abtew models can be applied

to predict transpiration for this application as they exhibit the

best performances amongst the temperature-based, mass transfer

based, and radiation-based model categories respectively. This

work demonstrates its feasibility as it determines the most suitable

models for predicting transpiration in greenhouses located in

hyper-arid regions which are challenged by high solar radiation

and water scarcity, hence requiring the deployment of special

technologies and management practices such as HVAC cooling

and CO2 enrichment. Hence, it is important to study the

applicability of the different existing ET0 models for greenhouses

under these challenges to improve the prediction of irrigation

water requirements and contribute to the purpose of precision

agriculture for greenhouse systems. This work will also aid in the

irrigation management of greenhouses under the CO2 enrichment

practice which is an important sink for carbon capture and

utilization (CCU) with cross-sectoral energy, water and food

nexus opportunities.
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