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Maize (Zea mays L.) production in tropical equatorial regions faces significant 
challenges due to agroclimatic and soil fertility variability, necessitating the 
evaluation of maize hybrid adaptability and phenotypic stability across diverse 
agroecosystems. This study compares the effectiveness of the additive main 
effects and multiplicative interaction (AMMI) and multi-trait genotype-ideotype 
distance (MGIDI) models for identifying superior maize hybrids well-suited to 
the equatorial climate. Fifteen genotypes, including 13 hybrid candidates and 
two popular commercial varieties (BISI 2 and NASA 29), were analyzed in 10 
distinct environments in Indonesia over three consecutive years (2018–2020). 
The ANOVA method used in the AMMI model analyzed variance into three major 
components, with PCA analysis indicating that environments (E), genotypes (G), 
and their interaction (G × E) had a highly significant effect on yield (p < 0.001). Two 
hybrids, HM04 (CI301032/G102612) and HM02 (CI272022/G102612), displayed 
high adaptability and stability across various environments, with significantly 
higher yields than the grand mean by AMMI analysis. Additionally, HM10 (MAL03/
CLYN231) and HM09 (G102612/CLYN231) were narrowly adapted to the ME-1 
and ME-2 mega-environments, indicating they are best suited for these specific 
environments. Similar to AMMI, the MGIDI model suggested HM04 (MGIDI 
index = 1.74) and HM02 (MGIDI index = 1.76) as the two highest-performing 
hybrids, determined by their yield and nine other traits. Using the multiple trait 
combination index as a tool to assess the performance of these hybrids enabled 
researchers to determine the most effective traits for each genotype. The two 
models are recommended and may be  integrated for comprehensive data 
interaction analysis, which simplifies the process of delineating genotypes with the 
environment and enables stakeholders to select desired traits while considering 
their strengths and weaknesses.
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1. Introduction

Maize (Zea mays L.) production in Indonesia is highly influenced 
by the country’s topography and agroecosystem, where each region 
has different land and agroclimatic conditions. Maize production area 
encompasses a large proportion of the country’s rainfed land 
resources, both dryland and wetland. These conditions led to 
variations in the level of maize production among regions. In fertile 
regions such as Java Island, productivity gains can surpass 7 t ha−1, but 
in arid regions in the eastern part of the country, productivity gains 
can drop below 4 t ha−1 (Sulaiman et al., 2018). The different levels of 
land fertility, along with climate change, have a significant impact on 
maize cultivation patterns in Indonesia. Changes in precipitation 
patterns due to global warming have increased the potential of 
extended periods of erratic rainfall in the regions. As a result, many 
regions are experiencing drought conditions and are more vulnerable 
to severe weather events. Despite the high grain yield of improved 
hybrid varieties, there are still challenges to improving maize farming 
productivity, adaptability, and profitability. Thus, the development of 
varieties with broader adaptation and resistance to abiotic and biotic 
changes is critical for the sustainable growth of national maize 
production. An adaptation trial is a method in plant breeding that is 
commonly used to evaluate genotype-environment interactions and 
select genotypes with stable performance over a wide range of 
environmental conditions (stability) or well-adapted to a particular 
environment. The concept of stability in agronomy refers to a plant’s 
ability to maintain yield potential regardless of changing 
environmental conditions (Tollenaar and Lee, 2002).

The additive main effects and multiplicative interactions (AMMI) 
analysis and genotype main effect and genotype-environment (GGE) 
biplot model are among the most appropriate statistical methods for 
analyzing such complex multi-location datasets (Gauch, 2006; Yan 
et al., 2007) using principal component analysis (PCA); both methods 
can provide a straightforward graphical representation of a complex 
genotype. As part of the AMMI model, genotypes are explained and 
interpreted in response to environmental diversity, selecting the 
appropriate model, describing the interaction between 
genotypes × locations, and improving interactions estimate (Crossa, 
1990). AMMI’s model combines variance analysis as a multiplying 
parameter with a single model. An overview of the results of the 
analysis is presented graphically for ease of interpretation and 
understanding (Yan et  al., 2007). AMMI offers a more thorough 
evaluation of the genotype × environment interaction by taking into 
account both the genotype and the environment’s joint impact on the 
response, whereas the GGE biplot primarily concentrates on the 
genotype’s contribution. AMMI model is a powerful approach to 
dissecting GEI in multi-environment experiments. AMMI was 
positive and significantly correlated some statistic stability, and also 
showed a positive correlation with grain yield.

As an extension of the AMMI method, the GGE biplot allows a 
greater understanding of the sources of variation resulting from 
genotype × environment interactions (Roostaei et  al., 2014). 
Specifically, the GGE biplot is composed of three components, namely 
an analysis of the mega environment, an analysis of the test site, and 
an analysis of the genotype. GGE biplots provide graphical 
representations of genotypes in specific environments, their 
adaptability in diverse environments, identification of the best 
genotypes in each environment, visualization of the 

mega-environment, and the average appearance of genotypes and 
their stability. The GGE biplot can be used to compare the performance 
of the environments with the performance of an ideal environment, 
as well as the performance of the genotypes with the performance of 
an ideal genotype. Additionally, the GGE biplot can highlight the 
genotypes with the highest grain yield and the ideal genotype and 
environment in each mega-environment (Farshadfar et  al., 2011). 
Alizadeh et al. (2017) suggested that both AMMI and GGE biplot 
models are interrelated and could be  used interchangeably. Both 
models are equally capable of providing insights into the 
genotype × environment interaction and could be used in conjunction 
with each other to yield a more comprehensive understanding of the 
GEI. By combining the strengths of both models, researchers can have 
a better grasp of the complex interplay between genotype and 
environment in determining the growth and development of crops.

Numerous strategies involving AMMI and GGE biplot have been 
proposed to evaluate the yield stability of plants under abiotic stress. 
These strategies have been applied to a wide range of abiotic stress 
scenarios, such as the complex nature of salinity (Krishnamurthy 
et  al., 2021), hybrid adaptability under waterlogging (Azrai et  al., 
2022), and stress-prone environments in eastern Africa (Rezende 
et  al., 2020). Other studies have used AMMI and GGE biplot to 
evaluate the genetic × environment interaction under high iron and 
zinc in common wheat, the adaptability of durum lines under dryland 
conditions (Sadeghzadeh et al., 2018), the yield adaptability of early 
maturity maize hybrid (Oyekunle et al., 2017), peanut yield stability 
under high levels of phosphorus content (Ajay et al., 2020), and also 
for identifying stability in diverse maturity group of rice (Siddi et al., 
2022). These studies demonstrate the versatility of the AMMI and 
GGE biplot models in evaluating the yield stability of crops under a 
variety of abiotic stress conditions.

Similar applications of AMMI and GGE biplot have also been 
investigated in various biotic stress environments, including rice-blast 
pathosystem (Mukherjee et  al., 2013), Agrotis spp. Cutworms 
vulnerable areas (Bocianowski and Wielkopolan, 2022), the response 
of cassava to various pests and diseases such as brown streak disease 
(Pariyo et  al., 2015). Fotso et  al. (2018) conducted a study that 
investigated the response of cassava to multiple pests and diseases, 
utilizing AMMI and GGE biplot to evaluate the impact of these biotic 
stresses on cassava growth and development. Besides being intended 
to evaluate the stability of genotypes against changes in environmental 
conditions, AMMI and GGE biplots are also commonly used in 
evaluating plant nutrient levels such as the stability test of high quality 
maize protein (lysine and tryptophan) under distinct environments 
(precipitation, soil and temperature range; Kumar et al., 2020), rich 
pro-vitamin A and dry matter contents (Esuma et al., 2016), enriched 
amylopectin content of waxy maize grown in a temperate climate 
(Ozata, 2021), yield stability of purple maize parental lines with a high 
level of anthocyanin content (Mufidah et  al., 2021) as well as 
evaluation of green ear yield and green fodder yield of prospective 
baby corn (Choudhary et al., 2020).

The AMMI and GGE biplot methods typically focus on the 
analysis of single components, particularly grain yield under various 
environmental conditions. However, it is crucial to select an 
appropriate method that considers multiple traits since users’ 
preferences are not limited to a single factor. For example, farmers in 
dry areas of Indonesia prefer high-yielding and early-maturing 
varieties to mitigate the risk of drought, while those in middle 
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elevation regions (>600 m) prioritize varieties that are both high-
yielding and resistant to fusarium ear rot disease. Olivoto and Nardino 
(2021) proposed a new index named MGIDI (multi-trait genotype-
ideotype distance) for the simultaneous selection of genotypes based 
on multiple traits. As reported in various trials, this index outperforms 
the widely-used base linear phenotypic selection index, the Smith-
Hazel (SH) index. Moreover, the MGIDI index enables the 
identification of the strengths and weaknesses of genotypes or 
treatments, thereby facilitating the selection of preferred genotypes 
based on selected criteria.

The objective of this study was to compare the effectiveness of 
single trait and multiple trait based selection methods for identifying 
superior maize hybrids that are well-suited to the equatorial climate 
in Indonesia. Specifically, the study aimed to evaluate the performance 
of different maize hybrids under a range of environmental conditions, 
including the identification of which traits are most important for 
optimizing maize yield in equatorial regions. The impact of multiple 
trait selection on the overall yield of maize hybrids was also discussed.

2. Materials and methods

2.1. Genetic materials and setup locations

The genetic material used in the multilocation test included 13 
single cross hybrids, namely HM01 (CI100422/G102612), HM02 
(CI272022/G102612), HM03 (CI180515/Mal03), HM04 (CI301032/
G102612), HM05 (CI820231/Mal03), HM06 (CI510752/Mal03), 
HM07 (CI190724/Mal03), HM08 (CI292431/CY16), HM09 
(G102612/CLYN 231), HM10 (MAL03/CLYN231), HM11 (CLYN 
231/AL-46), HM12 (DYW 10/CY 11), HM13 (DYW 24/CY 11), and 
two commercial hybrid maize varieties as checks, namely NASA 29 
(MAL03/G102612) and BISI 2 (a commercial hybrid of BISI 
International; Table  1). CI lines were extracted from synthetic 
populations resulting from the recombination of India and China-
introduced hybrids. G102612 is a good recombinant line derived from 
drought-tolerant lines trials in 2015. The MAL03 line was developed 
as a result of the Asian Biotechnology Maize Network (AMBIONET) 
initiative. It was derived from a base population of maize plants that 
were known to have resistance to downy mildew.

The MAL03 line was selected for its downy mildew resistance and 
is expected to play an important role in future breeding efforts aimed 
at improving the resistance of maize crops to this disease. CLYN231 
line was developed by the national research institute by extracting 
Downy mildew tolerant lines introduced from CIMMYT Nairobi in 
2011. DYW lines were derived from a cross between the white drought 
tolerant CML505 line and the downy mildew tolerant Nei9008DMR 
line. The CY lines were extracted from populations of random crosses 
between drought-tolerant lines introduced by CIMMYT. These 
random crosses were made to generate a diverse range of genotypes 
with the potential for improved drought tolerance. The CY lines were 
selected based on their high yield potential under drought conditions 
and are a promising source of germplasm for future breeding efforts 
aimed at developing more drought-tolerant maize varieties.

Ten different locations were selected to evaluate prospective maize 
hybrid candidates during 2018–2020 cropping seasons. The trial 
locations included Gowa, Maros, Probolinggo, Malang, Tomohon, 
Minahasa, North Minahasa, Sigi, Poso, and Lombok Barat (Figure 1; 

Table 2). The experimental sites cover a wide range of geographic 
locations, stretching from 0°36’ North latitude to 124°49 East 
longitude. The typology of these sites is diverse, with some located in 
lowland areas at an elevation of below 100 meters above sea level 
(masl), while others are situated in highland areas above 1,000 masl. 
This range of elevations and topologies provides a comprehensive 
representation of the range of conditions and environments that can 
be encountered in this region. The precipitation and agroclimatic data 
were gathered from meteorological stations in close proximity to the 
experimental locations The three most probable soil types found in 
the trial areas are Andosol, Alluvial, and Regosol, each of which has 
different soil textures. The Andosol soil is characterized by a high 
content of volcanic ash and a dark color, while the Alluvial soil is 
formed from deposits of river water and is rich in minerals. Regosol 
soil has limited organic matter, often found in areas with sparse 
vegetation. The trial areas have a range of soil textures including clay 
loam, sandy loam, and clay. The presence of these different soil types 
and textures in the trial areas highlights the importance of considering 
soil factors in the evaluation of maize performance, as these factors 
can have a significant impact on plant growth and development.

According to Oldeman’s classification system, the study areas have 
been divided into three different climate types: B, C, and E. Each of 
these climate types has a different number of wet and dry months, 
with varying levels of rainfall and temperature, affecting the growth 
and development of crops in the study areas. During the experiment, 
the amount of rainfall experienced varied greatly, ranging from 
311 mm, which was considered less sufficient, to more than 1,000 mm, 
which was considered very high. To compensate for the insufficient 
rainfall in some locations, additional irrigation was provided using 
groundwater pumped through a pump, ensuring that the maize crops 
received an adequate amount of water for optimal growth and 
development. Several locations, including Bajeng, Gowa District, and 
Malaka, Maros District, are also subject to water logging stress during 
rainy-season trials, thus it is crucial to construct a drainage system to 
drain out excess water.

TABLE 1 List of genotypes and parentage used in the experiment.

No.
Genotype 
code

Genotype Parentage

1 HM01 JHP 01 (CI100422/G102612)

2 HM02 JHP 02 (CI272022/G102612)

3 HM03 JHP 03 (CI180515/Mal03)

4 HM04 JHP04 (CI301032/G102612)

5 HM05 JHP 05 (CI820231/Mal03)

6 HM06 JHP 06 (CI510752/Mal03)

7 HM07 JHP 07 (CI190724/Mal03)

8 HM08 JHP 08 (CI292431/CY16)

9 CHK1 BISI 2 Commercial hybrid of BISI Int.

10 CHK2 NASA 29 (MAL03/G102612)

11 HM09 HOPT 01 (G102612/CLYN 231)

12 HM10 HOPT 02 (MAL03/CLYN231)

13 HM11 HOPT 03 (CLYN 231/AL-46)

14 HM12 HOPT 04 (DYW 10/CY 11)

15 HM13 HOPT 05 (DYW 24/CY 11)
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TABLE 2 Description of 10 environments used for maize hybrids evaluation in Indonesia.

Env. 
code

Location
Latitude and 

longitude
Soil 
type

Altitude 
(masl)

Climate type Year
Rainfall 
(mm)

E01 Bajeng, Gowa, South Sulawesi 5°18′N 119°30′E Andosol 79 C3 2018 510

E02 Malaka, Maros, South Sulawes 5°01’N 119°30′E Alluvial 547 C2 2018 1,041

E03 Muneng, Probolinggo, East Java 7°40′N 113°30′E Andosol 17 E1 2018 311

E04 Kendal Payak, Malang, East Java 7°06′N 112°06′E Alluvial 433 B 2018 582

E05 Tomohon, Minahasa, North Sulawesi 1°19′N 124°49′E Alluvial 1,024 B 2019 840

E06 Pandu, North Minahasa, North Sulawesi 1°30′N 124°40′E Alluvial 103 B 2019 868

E07 Tondano, Minahasa, North Sulawesi 1°22′N 124°33′E Andosol 767 C2 2020 910

E08 Palolo, Sigi, Central Sulawesi 0°36′N 119°45′E Andosol 585 E1 2019 375

E09 Poso, Central Sulawesi 2°12′N 120°05′E Regosol 657 C2 2020 820

E10 West Lombok, West Nusa Tenggara 5°54′N 117°30′E Regosol 75 B3 2019 725

The experimental design at each site was arranged using a 
randomized complete block design (RCBD) with three replications. 
Each plot was planted in four rows with a length of 5.0 m, and plant 
spacing of 70 cm between rows and 20 cm within a row. The land 
preparation process involved the use of a disk plow attached to a four-
wheeled Kubota tractor. This tool was used to prepare the soil for 

planting by breaking up clumps, smoothing the soil surface, and 
creating furrows for planting. Maize was sown two seeds per hole and 
thinned leaving one plant per hole 10–12 days after planting. 
Fertilization was done twice, in the initial fertilization, 350 kg of NPK 
(15,15:15) and 150 kg of urea per hectare were applied to the field 
10 days after planting (DAP). The second fertilization uses urea (46% 

FIGURE 1

Map of the maize trial locations in Indonesia.
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N) only at a rate of 200 kg/ha at 30 DAPS. Other cultivation activities 
such as weeding, ridging, irrigation, pest, and disease control follow 
the Indonesian Ministry of Agriculture’s technical protocol. During 
the trial, there were no significant insect infestations, but the most 
prevalent disease on the plants was downy mildew, which was treated 
by a fungicide containing 35% metalaxyl active components.

Harvesting is carried out when the plants have entered a 
physiological maturity phase which is marked by the appearance of a 
black layer at the base of the kernels. To determine grain yield, a 
manual harvesting method was used, where a five-meter length of the 
middle rows in each replicate was harvested. This approach was 
selected to ensure that a representative sample of the plot was collected 
for yield calculation. The harvested ears per plot were weighed and 
recorded. This process was repeated for each replicate to ensure 
accurate and consistent yield data collection across all replicates. The 
kernel moisture content was measured at harvest using a PC-16A 
digital grain moisture meter.

2.2. Phenotypic data and statistical analysis

A variety of agronomic and yield-related traits were observed, 
namely plant height, ear height, plant aspect, days to maturity, ear 
diameter, ear length, number of kernel rows, number of kernels per 
row, shelling percentage, 1,000 kernel weights, and grain yield. Grain 
yield was calculated by using the standard procedure released by 
International Maize and Wheat Improvement Center (2004) as follows:

 
Yield t ha

plot size
x Mo x Ew xSP−( ) = −

−
1 10 000 100

100 15 1 000

.

. 

Where Yield is the grain yield (t ha−1) adjusted to 15% moisture 
content, Mo is the measured kernel moisture content during harvest 
(%), plot size is the area of the harvested plot (m2), EW is ear weight 
per plot (kg), and SP is shelling percentage. The average yield for each 
genotype-environment combination was then calculated from the 
yield data obtained from each replicate, allowing for the evaluation of 
the genotypes’ performance under different environmental conditions.

Grain yield data derived from different locations and years were 
pooled and analyzed using the AMMI model. The AMMI model is a 
statistical approach that considers both the main effects of genotype 
and environment, as well as their interaction, in predicting the yield 
of crops (Gauch, 2013). These methods were chosen due to their 
effectiveness and accuracy in predicting yield and understanding 
genotype-environment interactions in agricultural studies. The 
ANOVA method is used in the AMMI model to analyze the variance 
and divide it into three major components: genotype (G), environment 
(E), and the interaction between genotype and environment (G × E) 
to provide a more comprehensive understanding of how genotypes 
and environmental factors contribute to the observed response 
variable. Further, the G × E data are then subjected to principal 
component analysis (PCA).

A model diagnosis can be used to identify the top AMMI model 
family for a certain database, including additional F-tests in 
evaluating model analysis, as well as finding significant interaction 
principal components in the AMMI model by utilizing AMMI 
packages (Gauch, 2013). The AMMI family of models includes 

different versions, each represented by a different number of 
principal components. The versions range from AMMI0 with no 
principal components to AMMI1 with one principal component, 
AMMI2 with two principal components, AMMI3 with three 
principal components, and so on, up to AMMIF (the full model). The 
mathematical equation for each version is specified in the AMMI 
model family:

 
Y eij i j

k

s
k ik jk ij= + + + +

=
∑µ λ α γ εg

1

Where Yij is the mean yield of genotype g in environment e; μ is 
the overall mean of the yield; gi is the genotypic mean deviation from 
the overall mean; ej is the environmental mean deviation from the 
overall mean; S is the number of retained PCA axes; λk is the singular 
value for the PCA axis k; αik is genotype’s PCA score on the PCA axis 
k; γjk is environment’s PCA score (eigenvector) on the PCA axis k; and 
εij is the error term (Gauch, 2013). The ratio is determined by 
comparing the performance of the overall genotype winner in a 
particular environment to its average performance across all 
environments. If the overall genotype winner performs the best in a 
particular environment, the ratio is set to 1, which indicates a strong 
adaptation to that environment. This ratio helps to identify the 
environments where the genotype performs particularly well or poorly 
and to understand the influence of GEI on the genotype’s performance.

The predictive accuracy of the AMMI models was evaluated using 
a cross-validation procedure based on the methodology outlined by 
(Piepho, 1994). In this procedure, the original dataset was divided into 
two sets: a training set and a validation set. The training set comprised 
two complete and randomly selected blocks per environment, while 
the validation set consisted of the remaining block per environment. 
Several AMMI models (AMMI0, AMMI1, and AMMIF), were fitted 
to the training data, and their predictive performance was 
comparatively assessed using the root mean square prediction 
difference (RMSPD) between the model estimates and validation data. 
In order to obtain a robust estimate of the model, this process was 
repeated 1,000 times, and a boxplot was used to represent the 
distribution of the RMSPD of each AMMI model.

The study also employed a multitrait genotype-ideotype distance 
index (MGIDI) to select the best genotypes based on information 
about multiple trait information (Olivoto and Nardino, 2021). In the 
first step, each trait was scaled using the following equation:

 
rX xij

nj nj

oj oj
ij oj nj=

−( )
−( )

−( ) +η ϕ

η ϕ
θ η η

Where ϕoj  and ηoj  represent the minimum and maximum 
original values for the jth trait, respectively, while ϕnj  and ηnj  
represent the new minimum and maximum values for the jth trait 
after rescaling, respectively. The original value for the jth trait of the 
ith genotype is represented by θij . The values of ϕnj  and ηnj  were 
selected based on the desired gains for each trait: for traits with 
positive gains, ϕnj  = 0 and ηnj =100 were used, while for traits with 
negative gains, ϕnj  = 100 and ηnj = 0 were used, as suggested by 
(Olivoto and Nardino, 2021). In the subsequent step, we conducted a 
factor analysis (FA) to account for the dimensionality reduction of the 
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data and relationship structure. This analysis was carried out using the 
following model:

 
F Z A RT

T
= ( )−1

F is a g × f matrix consisting of the factorial score, Z is a g × p 
matrix representing the rescaled means, A is a p × f matrix of canonical 
loading, and R is a p × p correlation matrix between the measured 
traits. The variables g, f, and p indicate the number of genotypes, factor 
retained, and measured traits, respectively. In the third step of the 
analysis, a [1 × p] vector was counted as the ideotype matrix. Finally, 
the multitrait genotype-ideotype distance index (MGIDI) was 
calculated as the Euclidean distance between the scores of the 
genotypes and the ideal genotypes. This index was computed using the 
following formula:

 
MGIDI

j

f
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The score of the ith genotype in the jth factor (i = 1, 2,…,t; 
j = 1,2,…,f) is represented by γ ij , where t and f denote the number of 
genotypes and factors, respectively. The score of the jth trait for the 
ideal genotype is represented by γ j. The MGIDI was calculated as the 
Euclidean distance between the scores of the genotypes and the ideal 
genotype. The genotype with the lowest MGIDI is considered closer 
to the ideal genotype and reflects the desired values for all the 
measured traits. The selection of genotypes involved all traits using a 
selection intensity of approximately 30%.

Running the AMMI model was done using the open-source 
software AMMISOFT, which is accessible at https://scs.cals.cornell.
edu/people/hugh-gauch. Approximately 130 megabytes of disk space 
were required to download the packages. This software package 
requires about 256 MB of high-speed memory and is designed only 
for PCs with a Windows operating system installed. Users’ interfaces 
and graphs have been coded using Python, while AMMI computations 
and tables have been written in Fortran. In addition, the setup and all 
dependencies are also available at https://github.com/tequa/ammisoft. 
In addition to AMMISOFT, the R package “metan” was used within 
the R Studio environment to create genotype-versus-environment 
plots and MGIDI calculation (Olivoto et al., 2019). This was achieved 
by utilizing the gamem and mgidi functions from the ‘metan’ package. 
The package provides additional tools for analyzing and visualizing 
multi-environment trial data. The package can be found online at the 
following website: https://tiagoolivoto.github.io/metan/reference/
ge_plot.

3. Results and discussion

3.1. Analysis of mean performance using 
AMMI model

3.1.1. Analysis of variance
The 15 hybrid maize genotypes that were evaluated in this study 

were developed through a crossbreeding process involving 13 female 
lines and 6 male lines. These hybrid varieties represent a combination 

of different genetic traits and characteristics from their parent lines, 
and their performance was tested at 10 different locations to determine 
their grain yield and other key characteristics. The homogeneity of 
error variance was evaluated through a residual versus fitted value plot 
(figure not shown) and no obvious pattern was observed, indicating 
that the homogeneity of variance assumption is approached and a 
combined ANOVA could be performed. The best genotypes were then 
selected based on their greatest mean yields within different 
environmental conditions. The results of the evaluation of the grain 
yield of 15 hybrid maize genotypes and two control varieties are 
displayed in Table 3. In addition, the genotype-versus-environment 
plot of maize hybrids during the 2018–2020 trials is shown in Figure 2.

The average yields of the hybrids vary from 6.43 to 13.67 t ha−1 
throughout the 10 sites, depending on the location. The genotype 
HM04 showed the highest grain yield across the different locations 
that were studied, with an average yield of 11.80 t ha−1. On the other 
hand, the genotype CHK1 had the lowest average grain yield, which 
was 9.29 t ha−1. This implies that the genetic material used in the 
experiment has some variability. There were also several hybrids that 
experienced a reduction in grain yield in medium and highland areas 
compared to low-land areas due to the impact of the Fusarium sp. 
fungal pathogen. The Fusarium sp. is known to flourish in areas of 
high humidity, particularly at middle and high elevations in Indonesia 
(ICERI, 2017).

The results of the analysis of variance, as presented in Table 4, 
indicate that the grain yield in hybrid maize genotypes is influenced 
by the factors of genotype (G), environment (E), and the interaction 
between genotype and environment (G × E). This was determined by 
analyzing both the additive main effects and the multiplicative 
interaction effects in the analysis of variance. The major effects of 
genotype and environment, as well as their interactions, were highly 
significant (p < 0.001). The statistically significant effects of genotype 
and environment on maize yields revealed that genetic diversity had 
a significant effect on the yield of maize, as well as the highly 
heterogeneous conditions of the 10 trial sites. Most of the variation is 
explained by the G × E interaction component (39.96%), followed by 
the environment component (28.68%), while the genotypic 
component (G) accounts for the least variation (13.58%). This suggests 
that the grain yield of the maize hybrids is highly influenced by the 
interaction between the genotypes and the environment, with the 
environment itself being the next largest factor, and the hybrid’s 
genetic makeup contributing the least to the variation. Thus, solely 
examining the genetic nature of the hybrid is not sufficient to 
determine its grain yield. The environment in which the hybrid is 
grown also has a substantial impact and must be considered. This 
interaction has a significant impact on various aspects of plant 
breeding, including the selection of testing environments, germplasm, 
and breeding strategies (de Leon et  al., 2016). AMMI analysis 
indicated that the environment plays a key role in yield variability, 
indicating the presence of heterogeneous conditions. Related research 
has consistently shown that significant G × E interaction effects are 
common in multi-location trials of maize and rice production 
(Sitaresmi et  al., 2019; Katsenios et  al., 2021), aligning with the 
findings of (Mohammadi et al. (2017)).

The analysis of variance (ANOVA) and model diagnosis revealed 
a statistical significance at p < 0.01 for the effects of grain yield, G, E, 
and GEI in diverse agroclimatic conditions, soil types, and observation 
years. The significance of these components was further demonstrated 
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TABLE 3 Grain yield of 15 hybrid maize genotypes and two checks over 10 testing locations (2018–2020).

Genotype 
code

Pedigree Environment Mean

Bajeng Maros Muneng Malang Tomohon Pandu Tondano Palolo Palu Lombok

HM01
CI100422/

G102612
6.43 12.27 12.80 11.33 9.53 9.03 7.47 10.13 9.00 11.63 9.96

HM02
CI272022/

G102612
10.10 13.03 12.47 13.60 12.50 11.27 8.50 11.83 10.47 11.03 11.48

HM03 CI180515/Mal03 8.47 11.50 11.57 10.27 12.63 9.67 7.93 9.60 10.20 12.30 10.41

HM04
CI301032/

G102612
10.20 13.47 13.67 13.27 12.70 11.23 9.53 12.87 10.73 10.37 11.80

HM05 CI820231/Mal03 8.07 11.90 13.20 10.60 11.30 10.60 8.60 11.47 12.17 10.03 10.79

HM06 CI510752/Mal03 7.33 9.40 10.87 10.57 12.60 9.83 9.30 11.27 12.57 9.17 10.29

HM07 CI190724/Mal03 7.87 10.37 11.70 11.27 12.03 11.37 7.83 12.97 9.70 10.77 10.59

HM08 CI292431//CY16 8.00 10.53 12.83 10.57 11.87 9.47 8.07 12.40 10.83 9.37 10.39

HM09
G102612/CLYN 

231
11.67 12.07 11.77 13.57 11.87 10.53 11.63 12.37 9.17 11.23 11.59

HM10
MAL03/

CLYN231
11.73 12.63 9.13 11.83 12.20 9.83 11.47 10.17 11.43 9.20 10.96

HM11 CLYN 231/AL-46 10.33 13.17 8.60 12.03 10.93 7.77 9.23 10.73 11.87 10.87 10.55

HM12 DYW 10/CY 11 10.73 11.17 9.10 12.40 7.73 8.40 8.17 9.90 11.17 9.47 9.82

HM13 DYW 24/CY 11 10.03 10.27 9.43 12.70 11.53 10.00 10.60 10.43 10.20 11.93 10.71

Checks

CHK1 BISI 2 8.47 9.73 11.93 8.37 9.57 8.20 6.80 9.97 9.53 10.30 9.29

CHK2 MAL03/G102612 8.73 12.93 12.33 11.03 11.30 11.10 8.70 11.97 9.63 10.10 10.78

Mean 11.63 11.43 11.56 11.35 9.89 8.92 11.20 10.58 10.52 10.63

CV 9.30 9.50 5.30 6.70 9.30 7.30 8.80 10.20 10.40 9.60 8.40

LSD 0.64 0.72 0.39 0.53 0.69 0.48 0.53 0.74 0.83 0.76 0.37

SE 0.23 0.25 0.13 0.19 0.24 0.17 0.19 0.26 0.28 0.26 0.13
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through the examination of seven partitioned interactions principal 
components (IPC1–IPC7). The results of model diagnosis indicate a 
clear correlation between the GEI effects and grain yields, highlighting 
the importance of considering GEI in maize yield predictions. It is 
important to use GEI as a diagnostic for assessing superior genotypes 

because the magnitude of GEI influences the stability of performance 
in a variety of conditions (Gauch, 2013). When GE interactions 
between genotypes and environments are substantial, dividing the 
experimental location into mega-environments might assist in 
achieving the objective of increasing yield. A comprehensive 

FIGURE 2

Genotype-versus-environment plot of 15 maize hybrids in 10 environments (2018–2020).

TABLE 4 Additive main effects and multiplicate interaction analysis of variance for grain yield in hybrid maize genotypes under distinct environments.

Source of 
variation

df SS MSS

Proportion of variation

Total 
variation (%)

Main and 
interaction 

variation (%)

GEI variation 
(%)

GEIs variation 
(%)

Treatment 149 1142.26 7.67*** 82.22

Genotype (G) 14 188.73 13.48*** 13.58

Environment (E) 9 398.45 44.27*** 28.68

Interaction (GxE) 126 555.09 4.41*** 39.96

IPC1 22 236.36 10.74*** 42.58 51.40

IPC2 20 93.05 4.65*** 16.76 20.23

IPC3 18 65.88 3.66*** 11.87 14.33

IPC4 16 56.89 3.56*** 10.25 12.37

IPC5 14 34.93 2.49*** 6.29 7.60

IPC6 12 28.58 2.38*** 5.15 6.22

IPC7 10 17.14 1.71** 3.09 3.73

Residual 14 22.27 1.59* 4.01 4.84

Error 300 246.97 0.82 17.78

Blocks/Environment 20 30.87 1.54** 2.22

Pure Error 280 216.09 0.77 15.55

Total 449 1389.23 3.09 100 100 100 121

*Significant at p < 0.05, **Significant at p < 0.01, ***Significant at 0.001. 
GEIS = GEI signal. df, degrees of freedom; GEI, genotype × environment interaction; GEIs, genotype × environment interaction of signal; IPC, interaction principal component; MSS, mean 
sum of squares; SS, sum of squares.
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understanding of the effects of G, E, and GEI on diverse agroclimatic 
conditions, soil types, and observation years may assist the selection 
of genotypes best suited for specific conditions, leading to improved 
maize yields and productivity.

The AMMI grain yield stability model was applied to further 
analyze the G × E interactions. AMMI model involving PC1 and PC2 
explained 42.58 and 16.76% of grain yield variations in hybrid maize 
varieties studied. Table 4 presents the seven principal component (PC) 
axes that have been found to be statistically significant at a level of 
p < 0.01. These PC axes have been included in the analysis due to their 
meaningful contribution to the overall results. While the first PC axis 
of G × E interaction described 42.58% of the sum of squares of G × E 
interaction, the seven PCs accounted for 96.0%. The AMMI model 
utilized in this study demonstrated a more dynamic association. The 
results clearly demonstrate that IPC1, IPC2, and IPC3 reflect the 
AMMI model families AMMI1, AMMI2, and AMMI3, respectively, 
representing 71.21% of the GEI variance and 85.96% of the GEIS 
collectively. The inclusion of IPC1, IPC2, and IPC3 in specific maize 
experiments has been reported to contribute to over 95% of the total 
genotype × environment interaction (Katsenios et  al., 2021). 
Depending on the hybrid genetic and discrepancy of the environments 
selected, GEI variance can exhibit significant differences due to the 
effects of genotype, environment, and their interaction. Furthermore, 
assessing genotypes under varying soil and climate conditions has 
deepened the understanding of the complex interactions between 
genotypes and their environment, leading to enhanced breeding 
efficiency (Abate, 2020).

Model assessment is necessary to establish the optimal AMMI 
model family for maize yield based on sophisticated statistical 
concerns. Figure 3 depicts the AMMI biplot, which visualizes the 
variability of the principal additive effects of genotypes and 
environments, as well as the variability of the multiplicative effects of 
genotype-by-environment interaction (GEI). In the graph, the x-axis 
represents the average grain yield of maize genotypes, while the y-axis 
represents the difference in interaction effect (stability) between 

genotypes. Individual data points correspond to distinct genotypes, 
and the placement of each point represents the genotype’s average 
yield as well as its interaction effect. Genotypes that appear near each 
other in the graph tend to have comparable mean yields and 
interaction effects, while genotypes that appear farther apart tend to 
have divergent mean yields and/or interaction effects. In essence, 
genotypes that are clustered together exhibit similar behavior across 
different environments (Gauch and Moran, 2019).

The biplot of average grain yield and the first interaction principal 
component shows that HM04 had the highest mean grain yield 
(11.80 t ha−1), followed by HM09 (11.60 t ha−1), and HM02 
(11.48 t ha−1). Furthermore, in terms of stability, the biplot indicates 
that HM02, HM06, HM04, HM03, and HM09 showed greater 
stability. However, the mean yield of HM06 and HM03 is lower than 
average, and, therefore, these genotypes should not be recommended. 
Among these genotypes, MH02 (CI272022/G102612) and MH04 
(CI301032/G102612) could be highlighted. These genotypes had the 
highest mean yield and stability, exceeding the check varieties BISI 2 
(CHK1) and NASA 29 (CHK2), which are among the most widely 
grown maize varieties throughout Indonesia. With an IPC score of 
0.55 and a mean yield of 11.60 t ha−1, HM09 is also a promising 
candidate for further evaluation and development. The combination 
of the IPC score and good yield potential suggests that HM09 
potentially exhibits both stability and productivity. Genotypes with 
lower IPC absolute values produce stable grain yields as compared 
with genotypes with higher absolute IPC values (Tarakanovas, 2006).

Figure  4 presents a biplot that showcases the interaction 
between 15 maize hybrids and 10 environmental conditions, as 
captured by the IPC1 and IPC2 scores of the AMMI model. The 
abscissa of the AMMI2 biplot represents the IPC1 values, which 
reflect the main effects of the genotypes and environments on the 
interaction. The ordinate of the biplot represents the IPC2 scores, 
which capture the multiplicative interactions between the genotypes 
and environments. Based on the AMMI biplot model of the yield 
response of 15 genotypes, IPC1 explained 42.58% of the total 

FIGURE 3

AMMI biplot presenting mean grain yield versus IPC1 of 15 genotypes tested in 10 environments (2018–2020).
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TABLE 5 Details of the “winner” genotypes and mega-environments in the additive main effects and multiplicative interaction (AMMI) model.

No 
Genotype* Genotype Yield IPC1

AMMI model family

AMMI 
0

AMMI 
1

AMMI 
2

AMMI 
3

AMMI 
4

AMMI 
5

AMMI 
6

AMMI 
7

AMMI 
F

12 HM10 10.963 1.376 2 3 2 2 2 1 1

11 HM09 11.587 0.628 3 2 1 1 1 2 3 1

2 HM02 11.480 −0.127 1 1

6 HM06 10.290 −0.267 1 2 2 2 2 1 1

4 HM04 11.803 −0.320 10 5 4 4 4 4 4 4 3

3 HM03 10.413 −0.376 1 1 1 2 1

7 HM07 10.587 −0.787 2

Mega-environment 1 3 4 5 5 5 5 4 7

*Never-winning genotypes are not listed in the table.

variation, whereas IPC2 explained 16.76% of the total variation. 
Their combined contribution to grain yield during multi-year trials 
conducted at 10 locations during the period 2018–2020 was 59.34%. 
It appeared from the analysis that the biplot of IPC1 and IPC2 
accurately matched the data that was centered on the environment. 
Hongyu et al. (2014) reported that AMMI2 can help identify which 
genotypes perform best in specific environments. Genotypes in 
proximity to the biplot origin exhibit insensitivity to environmental 
interactive forces, whereas those further away from the origin are 
sensitive to environmental conditions and demonstrate substantial 
interactions. Furthermore, both genotypes and environments in 
close proximity exhibit comparable interaction patterns, while those 
farther apart exhibit dissimilar interaction patterns (Simon and 
Getachew, 2018).

3.1.2. Model diagnosis and hybrid selection
The diagnosis of the AMMI model comprises the evaluation of 

model stability and representativeness, which is performed through 
various diagnostic techniques and tools. Typically, the number of 
winners is linked to the complexity of the AMMI model, which 
includes greater sets of genotypes and trial sites. Table 5 indicates 
genotypes that are winners for grain yield attributes based on the 
AMMI model family. The genotype HM04 was winning in all AMMI 
model families, as well as in terms of the largest number of distinct 
environments, with 10, 5, 4, 4, 4, 4, 4, and 3 in the AMMI0, AMMI1, 
AMMI2, AMMI3, AMMI4, AMMI5, AMMI6, AMMI7, and AMMIF 
as the full model, respectively. The sum of squares (SS) for the 
genotype-by-environment (GE) interaction signal is 2.43 times larger 
than that for the genotype (G) main effect in our datasets, which 

FIGURE 4

AMMI biplot showing IPC1 and IPC2 scores of 15 maize hybrids and 10 distinct environments (2018–2020).
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highlights the importance of narrow adaptations for this dataset. 
Moreover, even considering IPC1 alone shows it is 1.25 times larger 
than the G main effect. It is also important to note that the GE noise 
is only 0.52 times the G main effects, and removing this noise may 
enhance the accuracy and repeatability of the results and simplifies 
the conclusions.

Figure  5 shows an AMMI1 model IPC1 mega-environment 
visualization with grain yield for 15 maize genotypes across 10 
locations. A high IPC score and yield value is a good indication that 
genotypes with narrow adaptations are more likely than others to 
be unstable across the whole crop cycle; however, in a lot of instances, 
such genotypes are the best options for production under certain 
conditions (Mafouasson et al., 2018). The AMMI1 biplot graph, with 
the addition of horizontal lines, is designed to demonstrate the 
connection between the mega-environment and each genotype 
winner. Each winning genotype is represented by a unique horizontal 
strip, indicating its superiority in all environments contained within 
the strip. Hence, a horizontal strip represents a mega-environment. 
The genotype winner for the mega-environment that involves the 
IPC1 score of zero is considered the overall winner of the genotype 
yield. Hybrids HM04, HM09, and HM10 emerged as winners in five, 
three, and two environments respectively, as visually indicated in 
the graph.

A cross-validation procedure was applied to evaluate the 
predictive accuracy of the AMMI model. To assess the predictive 
accuracy of the AMMI model, a cross-validation procedure was 
implemented. The original dataset was divided into a training set 
containing two complete and randomly selected blocks per 
environment, and a validation set consisting of the remaining block 
per environment. Using the modeling data, n AMMI models were 
generated, and the optimal model was selected based on the root mean 
square prediction difference (RMSPD) between the model estimates 
and validation data models. The selection of the optimal model was 
based on the RMSPD between the estimates and the validation data 
models. A boxplot was utilized to present the distribution of the 1,000 

RMSPD values for each model, as shown in Figure 6. Based on the 
RMSPD values, the AMMI model identified AMMI4 as the most 
accurate, with the lowest RMSPD value. This finding supports the 
hypothesis that unique GEI patterns are present across 
different locations.

In this study, the SS for GE signal (GES) was estimated using a 
method proposed by Gauch (2013) as an alternative to cross-
validation. This approach is computationally simple and has 
demonstrated high reliability. The amount of noise SS present in an 
interaction can be estimated as G × E df times Error MS. Considering 
this, the G × E SS comprises approximately 82.48% G × E Pattern, 
equivalent to 457.84, and 17.52% G × E noise, equivalent to 97.24. The 
G × E total is calculated to be 555.09. Given the significant amount of 
signal detected, the AMMI4 model is suggested. AMMI4 diagnosed 
five mega-environments and winning genotypes. These winning 
genotypes have been found to be the most predictive within their 
respective mega-environments when analyzed using the AMMI4 
model family. However, since there is no consensus, parsimony favors 
the simpler AMMI4 for the current dataset, although AMMI7 also 
deserves consideration. Nonetheless, practical limitations necessitating 
fewer mega-environments may justify choosing a lower model such 
as AMMI1 model. Gauch (2006) found that either AMMI1  
(RMSPD =1.25 t ha−1 and SD = 0.04) or AMMI2 (RMSPD =1.23 t ha−1 
and SD = 0.05) are typically the most accurate models due to their 
ability to perform differently on a given dataset. However, the current 
study identified AMMI4 as the most accurate (RMSPD =1.18 t ha−1 
and SD = 0.06). Despite AMMI4 outperforming AMMI1 in terms of 
accuracy, AMMI1 is still significantly more accurate than the raw data 
model AMMIF. Therefore, for delineating mega-environments, 
AMMI1 is the most suitable and practical, while AMMI4 is 
recommended for optimizing predictive accuracy and AMMIF is used 
to represent the raw data.

By selecting the AMMI1 model, three mega-environments 
were subsequently identified by grouping 10 test environments 
together. The first mega-environment (ME-1) included two 

FIGURE 5

AMMI1 model IPC1 mega environment with grain yield for 15 maize genotypes and 10 locations (2018–2020).
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FIGURE 6

Boxplots representing the distribution of RMSPD estimates, highlighting the predictive accuracy of the AMMI family.

TABLE 6 Ranking table displays the top five genotypes for the 15-hybrid maize based on the AMMI1 and AMMIF model families.

Mega-
env.

Env. 
codea

IPC1 
score

Ratio
AMMI1 ranks AMMI F ranks

1 2 3 4 5 1 2 3 4 5

ME-1 E01 1.54 1.179 HM 10 HM 09 HM 11 HM 13 HM 12 HM 10 HM 09 HM 12 HM 11 HM 04

E07 1.04 1.109 HM 10 HM 09 HM 11 HM 13 HM 04 HM 09 HM 10 HM 12 HM 04 HM 06

ME-2 E04 0.76 1.0405 HM 09 HM 10 HM 04 HM 11 HM 02 HM 02 HM 19 HM 04 HM 13 HM 12

E09 0.31 1.0066 HM 09 HM 04 HM 02 HM 10 HM 13 HM 06 HM 11 HM 05 HM 10 HM 12

E02 0.24 1.0006 HM 09 HM 04 HM 02 HM 10 HM 13 HM 04 HM 11 HM 02 CHK 02 HM 10

ME-3 E10 −0.22 1 HM 04 HM 02 HM 09 CHK 02 HM 05 HM 03 HM 13 HM 01 HM 09 HM 02

E05 −0.46 1 HM 04 HM 02 HM 09 HM 05 CHK 02 HM 04 HM 03 HM 06 HM 02 HM 10

E06 −0.65 1 HM 04 HM 02 HM 05 HM 09 HM 07 HM 07 HM 02 HM 04 CHK 02 HM 05

E08 −0.66 1 HM 04 HM 02 HM 05 HM 09 HM 07 HM 07 HM 04 HM 08 HM 09 CHK 02

E03 −1.89 1 HM 04 HM 07 HM 05 HM 08 HM 02 HM 04 HM 05 HM 08 HM 01 HM 02

aEnvironment code as described in Table 2.

environments, i.e., E01 (IPC1 = 1.54, ratio = 1.179) and E07 
(IPC1 = 1.04, ratio = 1.0944), the second mega-environment 
(ME-2) included three environments, i.e., E04 (IPC1 = 0.76, 
ratio = 1.0405), E09 (IPC1 = 0.31, ratio = 1.0066), and E02 
(IPC1 = 0.24, ratio = 1.00006) and the third mega-environment 
(ME-3) included five environments, i.e., E10 (IPC1 = −0.22), E05 
(IPC1 = −0.46), E06 (IPC1 = −0.65), E08 (IPC1 = −0.66), and E03 
(IPC1 = −1.89). All environments included in the ME-3 have a 
ratio value of 1. The AMMI1 model showed that the hybrid HM04 
performed the best out of all the genotypes in five different 
environments (ME-3), coming in as the top performer (Table 6). 
The second-best performer was hybrid HM02, which was the 
winner in four environments. HM07 won a single environment, 

namely Muneng, Probolinggo, East Java (E03). In the ME-1 mega-
environment, the genotypes HM10, HM09, and HM11 were ranked 
in the top three positions, with HM10 ranking first, while 
genotypes HM09 and HM11 were ranked second and third, 
respectively. Similarly, in the ME-2 mega-environment, genotype 
HM09 was ranked in the first position. It is worth noting that a 
genotype’s ranking among mega-environment may vary depending 
on the specific environmental conditions that existed. In contrast, 
genotype HM04 was ranked second in the E09 and E02 
environments and ranked third in the E04 environment. Similarly, 
genotype HM10 was ranked second in the E04 environment, and 
genotype HM02 was ranked third in the E09 and E02 environments 
of the ME-2 mega-environment.
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In selecting or suggesting the best genotypes, the primary 
considerations are conducting the selection process within the 
context of the mega-environment scheme and using yield estimates 
based on treatment and experimental designs. Figure  6 shows 
adaptive responses for hybrid maize based on environment IPC1. 
To evaluate the importance of narrow adaptation caused by G × E 
interactions, a ratio of the yield of the winner in each environment 
divided by the overall winner’s yield can be used (Gauch, 2013). A 
ratio of 1 denotes a successful genotype across environments, 
while a ratio of ≥1.10 indicates considerable prospects for yield 
increases through narrow adaptation. However, adopting this 
approach may result in subdividing a growing region into multiple 
mega-environments. Thus, the genotypes that emerged as winners 
were HM04 and HM02, each with a ratio of 1, which makes them 
broadly suitable for diverse stress environments. On the other 
hand, hybrid HM10 displayed narrow adaptation to E01, with a 
predicted yield increment of 9.44%, and to E07, with a 17.90% 
yield increase over the winning genotype under broad adaptation. 
On average, HM10 triumphed in E01 and E07, providing a yield 
boost of 13.69%. The genotype HM09, which was a winner in the 
ME-2 scheme, provided a slightly lower yield increase in three 
environments, namely E02 with a 0.06% increase, E09 with a 
0.66% increase, and E04 with a 4.05% increase. However, on 
average, HM09 performed well in E02, E04, and E09, with a 
combined yield increment of 1.60%. Bajeng (E1) and Muneng (E3) 
are two locations that exhibit the highest level of productivity, 
supported by the availability of permanent irrigation and drainage 
networks, enabling better control over crop maintenance 
procedures. On the other hand, the Pandu location (E6) 
experienced drought stress during the latter part of the generative 
phase, which significantly impacted crop yield. Two genotypes, 
HM04 and HM02 displayed high adaptability and stability across 
various mega-environments, whereas HM10 and HM09 were 
narrowly adapted to the ME-1 and ME-2 mega-environments 
(Figure 7).

3.2. Genotype selection based on multiple 
traits using MGIDI

3.2.1. Phenotypic correlation among traits
A multiple traits approach was employed to select the most 

suitable hybrid pairs, taking into consideration not only grain yield 
(GY) but also agronomic and yield components, namely plant 
height (PH), ear diameter (ED), number of kernel rows (NRW), 
1,000 kernel weight (1000KRN), ear length (EL), number of kernels 
per row (NKR), plant aspect (PA), days to maturity (MT), and 
shelling percentage (SP). The process of genotype selection involved 
a preliminary examination of traits that contribute to 
multicollinearity. A heatmap of correlation analyses conducted 
between 10 traits to identify the traits related to grain yield is shown 
in Figure 8. A significant positive correlation was found between 
grain yield and ear diameter (r = 0.31), number of kernels (r = 0.20), 
1,000 kernel weight (r = 0.18) and ear length (r = 0.16) at p < 0.001. 
A greater ear diameter and length, along with an increased kernel 
weight, were expected to result in a substantial improvement in the 
overall grain yield. Furthermore, the number of kernels and the 
number of rows within the maize ear demonstrated a robust and 
statistically significant positive correlation with both ear length and 
diameter at a significant level of p < 0.001. Conversely, days to 
maturity and shelling percentage had weak relationships with grain 
yield, indicating their insignificant contribution to grain yield. 
Previous studies by (Li et al. (2021)) found positive correlations 
between 1,000 kernel weight and grain yield, which supports the 
findings of this study. Exploring the genetic relationships between 
different traits can enable the identification of potential targets for 
selective breeding, which can ultimately lead to the development of 
more desirable and high-yielding maize varieties (Olivoto and 
Nardino, 2021). Assessing correlations is essential in evaluating 
maize crosses as it enables the identification of positive selection 
impacts through the analysis of genetic and phenotypic correlations, 
resulting in more favorable outcomes.

FIGURE 7

Adaptive responses for hybrid maize based on environment IPC1.
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FIGURE 8

Correlations among traits of maize hybrids across 10 environments (2018–2020).

TABLE 7 Factorial loadings and communalities obtained from the factor 
analysis.

Trait FA1 FA2 FA3 Communality Uniqueness

PA −0.20 0.40 −0.61 0.57 0.43

PH 0.84 −0.14 −0.19 0.76 0.24

MT −0.08 −0.17 0.89 0.82 0.18

GY −0.63 −0.57 −0.13 0.74 0.26

SP −0.19 −0.14 −0.81 0.71 0.29

EL −0.03 −0.92 −0.03 0.84 0.16

ED −0.89 −0.15 −0.22 0.87 0.13

NRW −0.94 0.01 −0.27 0.96 0.04

NKR 0.05 −0.66 0.30 0.54 0.46

1000KRN 0.73 −0.61 0.08 0.91 0.09

Traits associated with FA1: PH, GY, ED, NRW, 1000KRN; FA2: EL, NKR; FA3: PA, MT, SP; 
PH = plant height, GY = grain yield, ED = ear diameter, NRW = number of kernel rows, 
1000KRN = 1,000 kernel weight, EL = ear length, NKR = number of kernel per row, PA = plant 
aspect, MT = days to maturity, SP = shelling percentage.

3.2.2. Factor analysis and selection gains
Analyzing the components that contribute to traits is a crucial step 

in genotype selection, which is essential for gaining insight into the 
evaluated multi location trials. The REML/BLUP models were 
employed to estimate variance components in a mixed-effects model 
with genotype treated as the random effect and replication as the fixed 
effect. The likelihood ratio test values indicated all analyzed traits 
showed a highly significant (p < 0.01) genotype effect. Further analysis 
of traits using REML/BLUP identified five principal components, 
which together accounted for 91.9% of the total variation. This 
suggests that the five principal components were successful in 
capturing a substantial amount of variability in the traits. Likewise, the 
communality values for the variables ranged from 0.54 for the number 
of kernels per row trait to 0.96 for the number of rows, with an average 
of 0.77. These values suggest that a significant portion of the variability 
of each variable was explained by these factors. The assessment of 
accuracy value for the mean trait value showed significant genetic 
variation among the genotypes used, as evidenced by an accuracy level 
>0.80. This high level of accuracy enables precise prediction of the 
genetic value of the trait. To maintain high interpretive strength and 
reduce the dimensionality of the data, the 10 studied traits were 
compiled into three factors (FA). Table 7 shows the factorial loadings 
and communalities obtained from the factor analysis using varimax 
rotation. FA1 is associated with plant height, grain yield, ear diameter, 
number of rows, and 1,000 kernel weight. FA2 represents ear length 
and number of kernels per row, while FA3 is associated with the plant 

aspect, days to maturity, and shelling percentage. Factor values reveal 
the degree to which each trait relates to the underlying factor, with 
higher loadings representing stronger associations.

An orthogonal rotation was applied to the factor loadings, 
resulting in correlation coefficients ranging from −1 to +1. In the FA1 
group, the traits with the highest positive correlations include plant 
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height (0.84), and 1,000 kernel weight (0.73) while ear diameter 
(−0.89), number of rows (−0.94), and grain yield (−0.63) have 
negative correlations. On the other hand, for FA2, ear length (−0.92) 
and number of kernels per row (−0.66) have negative correlations. 
FA3 has a positive correlation with days to maturity (0.89) and 
negative correlations with shelling percentage (−0.81) and plant 
aspect (−0.61), indicating that they are strongly associated with this 
factor. Ear diameter, number of rows, grain yield and plant height also 
have negative but relatively low loadings on FA3, indicating weak 
negative correlations with this factor. This suggests that these variables 
are not strongly associated with this factor and may be more strongly 
associated with other factors in the analysis.

The multi-trait genotype-ideotype distance (MGIDI) index was 
utilized to select maize hybrids by considering all the measured traits. 
The process includes scaling the trait using BLUP for genotype mean 
performance, calculating factor analysis, and determining the distance 
of each genotype from the ideotype. By utilizing a two-way table as 
input data and enabling the ranking of rows based on desired 
outcomes in columns, offering an effective means of evaluating 
selected genotypes’ strengths and weaknesses. Furthermore, with the 
ability to evaluate multiple dependent traits, it proves to be a valuable 
tool in such assessments. The predicted genetic gain for effective traits 
in the MGIDI index is presented in Table 8. Results indicated a higher 
genetic gain percentage for major measured traits, such as 1,000 kernel 
weight, grain yield, number of kernel rows and ear length. The 
estimates of heritability on the entry-mean basis ranged from 0.65 for 
plant aspect to 0.96 for number of kernel rows, which were high for 
all filtered traits. This suggests that there are good prospects of 
selection gains for these traits. The selected traits with the highest 
genetic gains were 1,000 kernel weight (7.29%), grain yield (4.05%), 
number of kernel rows (2.41%), and ear length (2.23%). The plant 
height trait showed a decreased selection gain of −1.51%. Andayani 
et al. (2018) reported that although higher plant height may accelerate 
the growth of the ear, excessive height may have negative consequences 
on plant stability and productivity. In addition, taller maize plants are 
positively correlated with an increased risk of lodging, especially in 
regions with heavy rain and wind, such as equatorial areas.

Figure 9 presents a concise visual representation of the rankings 
of genotypes according to their MGIDI index values, and highlights 

selected genotypes based on the given selection criteria. Out of all 
the genotypes, HM04 and HM02 were selected and highlighted in 
red, indicating their significant performances. Additionally, two 
other genotypes, CHK02 and HM08, were also ranked among the 
top four best genotypes based on their performance across multiple 
traits. These genotypes possess favorable characteristics for the 
given traits, making them suitable for the study or the desired 
purpose. However, although there is a strong association between 
genotype properties and trait values, the expression of high trait 
values may be restricted by environmental factors (Al-Ashkar et al., 
2022). MGIDI index offered a perspective on the strengths and 
weaknesses of different genotypes that made it simple to identify 
both their advantages and limitations based on a multiple trait 
framework (Olivoto and Nardino, 2021).

3.2.3. Strengths and weakness of hybrids
Figure 10 depicts the strengths and weaknesses of the genotype, 

categorizing the contribution of factors toward MGIDI into three major 
categories. Factors with a greater contribution are plotted closer to the 
center, while those with a lesser contribution are plotted toward the edge. 
The information provided by these contributions can aid in the selection 
of appropriate parent contributors in crossbreeding programs. FA1 had 
the lowest effect on hybrids HM02 and HM04, indicating that these 
hybrids were good performers for most FA1-associated traits, namely 
PH, GY, ED, NRW, and 1000KRN. FA2 had a smaller effect on genotypes 
HM02, CHK2, and HM04, indicating that these three genotypes have 
strengths in EL and/or NKR. Finally, FA3 had a lower impact on the 
HM05 hybrid, suggesting that this hybrid performed well for most of the 
FA3-correlated traits, namely the PA, MT, and SP. The ranking of selected 
genotypes based on their combinations of multiple traits has revealed 
that hybrids HM04 (CI301032/G102612) and HM02 (CI272022/
G102612) are the two highest performing. By using the multiple trait 
combination index as a tool to assess the performance of these hybrids, 
researchers were able to select genotypes that are close to the ideotype. 
Yan and Frégeau-Reid (2018) suggest that the evaluation of a genotype’s 
superiority should not be based solely on its individual trait levels but 
rather on its ability to combine yield with other target traits.

In this study, both the AMMI and MGIDI models were found to 
be  effective in selecting superior maize hybrids well-suited to the 

TABLE 8 Predicted genetic gain for the effective traits in the MGIDI index.

Factor Trait X0 XS SD SD (%) h2 SG SG (%) Goal

FA1 PH 206.00 203.00 −3.95 −1.91 0.79 −3.11 −1.51 Decrease

FA1 GY 10.60 11.10 0.50 4.73 0.86 0.43 4.05 Increase

FA1 ED 46.90 47.20 0.27 0.57 0.77 0.21 0.44 Increase

FA1 NRW 14.90 14.90 0.00 −0.03 0.96 0.00 −0.03 Increase

FA1 1000KRN 296.00 318.00 22.80 7.73 0.94 21.60 7.29 Increase

FA2 EL 17.80 18.40 0.59 3.33 0.67 0.40 2.23 Increase

FA2 NKR 38.20 39.30 1.09 2.85 0.85 0.92 2.41 Increase

FA3 PA 2.22 2.26 0.04 1.68 0.65 0.02 1.09 Decrease

FA3 MT 117.00 118.00 0.72 0.61 0.86 0.62 0.53 Increase

FA3 SP 0.81 0.81 0.00 0.08 0.78 0.00 0.07 Increase

X0 = overall mean, XS  = mean of selected hybrids, SD = selection differential, h2 = broad-sense heritability on entry-mean basis, SG = selection gain, PH = plant height, GY = grain yield, 
ED = ear diameter, NRW = number of kernel rows, 1000KRN = 1,000 kernel weight, EL = ear length, NKR = number of kernel per row, PA = plant aspect, MT = days to maturity, SP = shelling 
percentage.
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FIGURE 9

Genotype ranking for MGIDI index with highlighted selection in red and cut point.

FIGURE 10

Strengths and weaknesses of selected genotypes demonstrated in 
proportional view of MGIDI index.

equatorial climate. The analysis revealed that both AMMI and MGIDI 
models demonstrated that the HM04 and HM02 hybrids exhibited high 
adaptability and stability across various environments, with maximum 

grain yields of 11.803 and 11.480 t ha−1, respectively. These yields were 
significantly higher than the grand mean yield of 10.620 t ha−1. The 
AMMI model further identified HM10 and HM09 as the best-suited 
hybrids for specific environments, suggesting that these hybrids possess 
specific traits that make them better adapted to certain conditions. For 
instance, HM10 (MAL03/CLYN231) and HM09 (G102612/CLYN231) 
were found to be narrowly adapted to the ME-1 and ME-2 mega-
environments, indicating their suitability for these specific environments.

The factor analysis of the MGIDI model showed that FA2 had a 
lower impact on the CHK2 hybrid, while FA3 had a lower impact on 
the HM05 hybrid. This suggests that the hybrid candidate HM05 
possesses favorable traits, specifically in relation to plant aspect and 
shelling percentage. The integration of both models has proven 
valuable in identifying the most effective traits for each genotype, 
enabling stakeholders to select desired traits while considering their 
strengths and weaknesses. The models’ comprehensive data interaction 
analysis can streamline the process of selecting desirable genotypes in 
multi-environment plant breeding programs.

4. Conclusion

The study demonstrated the advantage of AMMI and MGIDI 
models for selecting superior maize hybrids well-suited to the equatorial 
climate. Both models identified the HM04 and HM02 hybrids as 
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displaying high adaptability and stability across different environments, 
with AMMI additionally identifying HM10 and HM09 as best suited 
for specific environments. HM04 and HM02 displayed high adaptability 
and stability across various environments, with maximum grain yields 
of 11.803 and 11.480 t ha−1, respectively, which were significantly higher 
than the grand mean yield of 10.620 t ha−1. The integration of AMMI 
and MGIDI models has proven valuable in identifying the most 
effective traits for each genotype, allowing stakeholders to select desired 
traits while taking into account their strengths and weaknesses. Overall, 
these models can provide a comprehensive data interaction analysis and 
streamline the process of selecting desirable genotypes in multi-
environment plant breeding programs.
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