
Frontiers in Sustainable Food Systems 01 frontiersin.org

Three-dimensional reconstruction 
of the furrow shape in orchards 
using a low-cost lidar
Xinzhao Zhou 1,2,3,4, Yanfeng Wu 1,2,3, Hewei Meng 1,2,3, 
Shujie Han 1,2,3, Za Kan 1,2,3, Yaping Li 1,2,3*† and Jie Zhang 5*†

1 College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China, 2 Key Laboratory of 
Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China, 3 Engineering 
Research Center for Production Mechanization of Oasis Characteristic Cash Crop, Ministry of 
Education, Shihezi, China, 4 Foshan-Zhongke Innovation Research Institute of Intelligent Agriculture, 
Foshan, China, 5 Research Institute of Agricultural Mechanization, Xinjiang Academy of Agricultural 
Sciences, Urumqi, China

Efficient furrow fertilization is extremely critical for fertilizer utilization, fruit yield, 
and fruit quality. The precise determination of trench quality necessitates the 
accurate measurement of its characteristic parameters, including its shape and 
three-dimensional structure. Some existing algorithms are limited to detecting 
only the furrow depth while precluding the tridimensional reconstruction of the 
trench shape. In this study, a novel method was proposed for three-dimensional 
trench shape reconstruction and its parameter detection. Initially, a low-cost 
multi-source data acquisition system with the 3D data construction method of the 
trench was developed to address the shortcomings of single-sensor and manual 
measurement methods in trench reconstruction. Subsequently, the analysis of 
the original point cloud clarified the “coarse-fine” two-stage point cloud filtering 
process, and then a point cloud preprocessing method was proposed based on 
ROI region extraction and discrete point filtering. Furthermore, by analyzing the 
characteristics of the point cloud, a random point preselection condition based on 
the variance threshold was designed to optimize the extraction method of furrow 
side ground based on RANSAC. Finally, a method was established for extracting 
key characteristic parameters of the trench and trench reconstruction based on 
the fitted ground model of the trench side. Experimental results demonstrated 
that the point cloud pretreatment method could eliminate 83.8% of invalid 
point clouds and reduce the influence of noise points on the reconstruction 
accuracy. Compared with the adverse phenomena of fitting ground incline and 
height deviation of the original algorithm results, the ground height fitted by the 
improved ditch surface extraction algorithm was closer to the real ground, and 
the identification accuracy of inner points of the ground point cloud was higher 
than that of the former. The error range, mean value error, standard deviation 
error, and stability coefficient error of the calculated ditch width were 0  ~  5.965%, 
0.002  m, 0.011  m, and 0.37%, respectively. The above parameters of the calculated 
depth were 0  ~  4.54%, 0.003  m, 0.017  m, and 0.47%, respectively. The results of 
this research can provide support for the comprehensive evaluation of the quality 
of the ditching operation, the optimization of the structure of the soil touching 
part, and the real-time control of operation parameters.
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1. Introduction

Fruit cultivation and production have emerged as critical 
components of global agriculture and economy. According to the 
Food and Agriculture Organization of the United Nations (FAO), the 
total value of fruit production has increased steadily, as shown in 
Figure 1 (FAO, 2023). In the planting and management of perennial 
fruit trees such as grapes, pears, oranges, apples, and so on, furrow 
fertilization is an important link affecting fruit quality and yield. 
However, furrow fertilization in orchards is characterized by limited 
working cycles as well as being labor-intensive and time-consuming.

With the rapid progress of industrialization and the aging of the 
population, the rural labor force is rapidly dwindling (Wu et al., 2021; 
Zhou et al., 2023b). This has led to an increasing conflict between 
labor demand and labor cost, which is having a significant adverse 
impact on traditional manual ditch fertilization methods (Akdemir 
et al., 2022). In response to these challenges, research into ditching 
fertilizer machines and related fields has been actively pursued (Babu 
et al., 2020; Zhan et al., 2022; Aikins et al., 2023; Han et al., 2023). In 
the process of mechanical ditching fertilization, the quality of ditching 
operation has a crucial impact on the depth of fertilization and the 
utilization rate of fertilizer, which directly affects the nutrient 
absorption and root growth of fruit trees and is crucial for the 
improvement of fruit yield and quality. Reasonable ditching depth is 
an important measure to ensure the root growth, yield increase, and 
quality of fruit trees (Zeng et al., 2008). However, achieving a high-
quality trench fertilization operation at the optimum depth is a 

challenging task, as soil resistance changes affect the depth of the 
trench cutters, resulting in variations in the trench depth. Traditionally, 
the depth of a field trenching operation is adjusted based on the 
operator’s experience, and the quality of the operation is evaluated by 
manually sampling the trenching depth at random. This measurement 
method is easily affected by subjective consciousness, and it is difficult 
to reflect the overall furrow situation. All of the above factors present 
a great challenge for high-quality discarding fertilization in orchards. 
With the rapid development of precision agriculture and modern 
information technology, Smart sensors and the intelligent ditching 
depth monitoring system have gained widespread attention among 
scholars (Hassoun et al., 2022, 2023).

Lou et al. (2021a,b) proposed an independent control method for 
single-row tillage depth based on ultrasonic sensor detection and 
hydraulic adjustment, which significantly improved the stability of 
tillage depth between rows and within rows in deep tillage operation 
of subsoilers. Kirkegaard Nielsen et al. (2018) measured the current 
seeding depth using a plow position sensor combined with an 
ultrasonic soil surface sensor. Luo et al. (2022) proposed a Remote 
Monitoring System for Agricultural Machinery Operation in 
Conservation Tillage, which realized tillage depth measurement 
based on the dual attitude compound of a tractor body and three-
point hitch mechanism with a lower pull rod. Zhao et  al. (2022) 
established a mathematical model of rotation Angle and terrain height 
by using the encoder feedback of the rotation Angle of the sensing 
trailboard (STB) and realized the measurement of contact terrain 
height. Zhang et al. (2021) designed the mechanical structure of the 

FIGURE 1

World gross production value of fruits.
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equipment and then used the inclination sensor to build a control 
system to realize the automatic adjustment of the ditching depth of 
the double-row ditching fertilizer machine in orchards. Du et  al. 
(2019) built a tillage depth measurement model with an error 
compensation coefficient based on the analysis of the influence of 
structural deformation and wheel sag on the measurement accuracy 
of the hanging rototiller set, which improved the measurement 
accuracy of the system. In our previous study, ultrasonic sensors were 
used to monitor the depth of ditching, and a wavelet denoising and 
Kalman filtering algorithm was proposed to reduce the noise of the 
ditching depth data, which improved the reliability of the data (Zhou 
et al., 2021, 2022, 2023a).

The research mentioned above has shown that conventional 
sensor measurement methods are effective in monitoring the furrow 
depth, which lays a solid foundation for improving the quality of 
mechanized ditch operations. However, to make a comprehensive 
judgment of the ditch operation quality, it is necessary to obtain the 
other parameters, such as ditch width, furrow shape, and additional 
indicators. The methods based on ultrasonic and tilt sensors still have 
some shortcomings in the acquisition of 3D data and the construction 
of furrow shapes.

Lidar overcomes the shortcoming of traditional sensors in 
obtaining spatial information and can work all day long to obtain the 
point cloud data of real trench spatial information. Lidar has been 
widely used in obstacle detection (Qin et al., 2023; Shang et al., 2023), 
terrain mapping (Kim and Choi, 2021; García-López et al., 2023), map 
construction (Su et al., 2021; Ao et al., 2022; Eisoldt et al., 2022; Rivera 
et al., 2023), agricultural information monitoring, and plant model 
reconstruction (Perez et  al., 2018; Tsoulias et  al., 2019; Campbell 
et al., 2023).

Therefore, in view of the challenges associated with measuring the 
feature parameters of ditches, reconstruction of ditches by 
conventional sensors, and comprehensive evaluation of the quality of 
ditches by depth data of individual ditches after field operation by 
ditchers, a lidar-based 3D reconstruction method for orchard ditches 
was proposed in this paper. The main contributions of this paper were 
as follows:

 (1) Currently, numerous studies have focused on monitoring of 
tillage depth without considering the reconstruction of a three-
dimensional furrow shape, which is detrimental to the real-
time control of the ditching operation and the overall quality 
evaluation of the operation. Motivated by the measurement 
requirements for 3D trench shape and characteristic parameters 
for quality evaluation of the ditching operation, this study 
proposed a framework for a 3D reconstruction method of 
orchard trenches based on low-cost lidar. This framework lays 
a foundation for evaluating the working quality of the ditching 
fertilizer machine, thereby enabling improvement and 
optimizing the structure and operating parameters of the soil-
touching parts of the equipment.

 (2) A low-cost multi-source data acquisition system with a trench 
3D data construction method was developed in this paper, 
which not only reduced the system cost but also realized real-
time collection of multi-source data and the construction and 
storage of the 3D point cloud.

 (3) Due to the irrelevant objects and environmental disturbance 
factors in orchard, the original point cloud included a lot of 

noise and background points. Based on the “coarse-fine” 
two-stage filtering process, this paper proposed a method of 
ROI extraction and discrete point preprocessing for the 
orchard gully point cloud. The algorithm effectively reduced 
the influence of irrelevant background on gully reconstruction, 
the calculation amount of gully reconstruction. 
Simultaneously, this approach improved the quality of gully 
reconstruction, and further enhanced the adaptability of the 
reconstruction system to interference factors in the field 
complex environment.

 (4) A Furrow side ground surface model and feature parameter 
extraction algorithm were constructed. On the basis of point 
cloud noise reduction, the characteristics of the point cloud 
were analyzed, and a random point preselection condition 
based on variance threshold was designed. Subsequently, an 
improved extraction method of the ground surface model 
based on random sample consistency (RANSAC) was proposed 
to improve the extraction efficiency of the model. Finally, based 
on the fitted ground, a method was proposed to extract the key 
characteristic parameters of the trench shape and reconstruct 
the gully shape. The key parameters such as depth and width 
were extracted, and the trench shape reconstruction 
was realized.

This study establishes a foundation for achieving real-time control 
of mechanized trench fertilization. It is of great significance for the 
comprehensive evaluation of the quality of trench operation, the 
detection and monitoring of the trend of trench shape change, and the 
exploration of the optimal combination of mechanical structure and 
operation parameters.

The rest of this report is organized as follows. Section 2 introduced 
the methods and materials. Section 3 explained the structure of the 
system and algorithms. Section 4 presented the experimental results 
and discussion. Finally, Section 5 summarized the study and plans for 
future work.

2. Materials and methods

2.1. Experimental platform for orchard 
trench shape 3D reconstruction

The experimental platform of orchard trench shape 3D 
reconstruction in this research is shown in Figure 2A. The platform 
was mainly composed of a portable computer, lidar, bracket, encoder, 
elastic coupling, etc. The system power was provided by Beeste AS300 
Mobile Power Supply (Shenzhen Beeste Technology Co., LTD., 
China). The lidar used in this study was LMS141-15100 
two-dimensional lidar (SICK AG, Germany), as shown in 
Figure 2B. The protection class is IP67, with good dust-proof and 
waterproof performance. To sum up, the lidar can be adapted to a 
ditching operation environment.

The OidEncoder absolute encoder (Oid Technology Co., LTD., 
China) was used to provide forward distance data, as shown in 
Figure  2C. The resolution of the encoder is 4,096 P/R, and the 
protection level is IP68. Compared with the photoelectric encoder, the 
encoder was more adaptable to vibration, shock, water, gas, oil, and 
other interference factors.
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2.2. The overall flow of the reconstruction 
method

The reconstruction method content of this research was 
primarily divided into four parts: original point cloud acquisition, 
point cloud pretreatment, trench side ground model and 
characteristic parameter extraction, and 3D trench shape 
reconstruction method, as illustrated in Figure 3. The original point 
cloud was acquired jointly by lidar and encoder. However, due to 
sensor system errors, unstructured environmental interference 
factors, and other reasons, many discrete points and background 
point clouds were generated in the original point cloud. To improve 
the reliability and reduce the computational cost of trench 
reconstruction, point cloud ROI region extraction and point cloud 
filtering technology were utilized for point cloud pretreatment to 
reduce the influence of irrelevant objects and point cloud noise on 
the reconstruction result. Based on this, the trench ground model 
was fitted, and the characteristic parameters of the groove shape were 
calculated. Finally, the construction of the three-dimensional furrow 
was completed.

3. System and algorithm description

3.1. Multi-source data acquisition and 
three-dimensional data construction 
system

To obtain the point cloud information, Microsoft Visual Studio.
NET 2019 was used as the development platform for building a multi-
source data acquisition and 3D data construction system. This system 
primarily completed the collection, analysis, and conversion of lidar 

FIGURE 2

Overall layout of test platform and key modules. (A) Overall layout of test platform. Computer power conversion module, 1; Portable computer, 2; 
Lidar, 3; Encoder fixed frame, 4; Coupling, 5; Encoder, 6; Removable power socket, 7; JOHN DEERE 454 45HP Wheel Tractor, 8. (B) LMS141-15100 
two-dimensional Lida. (C) OidEncoder Absolute encoder. (D) Beeste AS300 mobile power.

FIGURE 3

Schematic diagram of the data processing flow.
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and encoder data and realized the construction and preservation of 
three-dimensional point cloud data. The system interface is shown in 
Figure 4A.

During system operation, initialization parameters were initially 
set followed by sending startup instructions to the lidar and encoder. 
The system then analyzed the received data to complete the calculation 
of the traveling distance and the conversion of the lidar coordinate 
system, which laid the foundation for the construction of 3D data. 
Subsequently, 2D lidar data and encoder data were integrated to 
achieve the construction and preservation of 3D point cloud data, 
completing a single cycle of system operation. The system repeated the 
above operation process according to the set scanning frequency until 
the system stopped running. The system operation process is shown 
in Figure 4B.

The resolution of the angular step width of the lidar was 0.5°, the 
scanning field of vision was −45 ~ 225°, and the lidar was 1.3 m from 
the ground. The raw data output of the lidar was given in polar 
coordinates, with the angle denoted as θ  and the detected distance as 
r . To realize the calculation of 3D point cloud coordinates, polar 
coordinate data were converted into a rectangular coordinate system 
using the conversion formula shown in Eq. (1) (Li and Liu, 2013):

 

X r
Y r
lidar

lidar

= ∗ ( )
= ∗ ( )







sin

cos

θ
θ  

(1)

where X Ylidar lidar,( )  is the point coordinates of the converted 
cartesian coordinate system, r is the distance scanned by the lidar, and 
θ  is the angle value corresponding to r.

When calculating the trench depth data, the current trench depth 
data is usually calculated according to Eq. (2) based on the reference 
plane of the trench surface, as shown in Figure 5:

 D D DB M S= −  (2)

where DB is the trench depth, DM is the distance between the lidar 
and the trench bottom, and DS is the distance between the radar and 
the trench surface, DS = 1.3 m.

As evidenced by Eq. 2, different from the reconstructed objects 
above the ground such as buildings and trees, the research focus of 
this paper was the point clouds on both sides and below the trench 
ground, while most of the point clouds above the ground were 
considered as background noise. Therefore, when constructing point 
cloud data, the origin of the coordinate system reconstructed was 
placed below the ground to improve Eq. 1. The improved lidar data 
conversion method is shown in Eq. 3:

 

X r
Z D r

S

S O

= ∗ ( )
= − ∗ ( )







sin

cos

θ
θ  

(3)

where DO is the distance between the lidar and the origin of the 
reconstructed coordinate system.

Typically, the depth and width of ditching fertilization in orchards 
range from 20 to 40 cm (Liu et al., 2020). Considering the range of 
trench depth and width, the distance between lidar and ground DS, DO 
was set as 1.60 m in this paper.

Before the operation of the 3D reconstruction platform, the 
current position was set as the zero point of the encoder, and the 
walking distance was obtained in real time during the operation of the 
platform. The forward distance of the platform is calculated as follows 
(Lee et al., 2020; Oid Technology Co., LTD., 2023a,b):

 Y L M= ∗π / 4096 (4)

where L is the diameter of the tractor wheel, and M is the 
encoder value.

The winding number of the encoder is 16. When the driving 
distance of the platform is too long and exceeds the winding number 

FIGURE 4

The system interface and operation process. (A) The system interface. (B) The operation process.
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range of the encoder, the encoder value will return to zero and 
recalculate the winding number. Therefore, this paper improved the 
calculation method of platform advance distance, as shown in Eq. 5:

 Y nL L MS = + ∗16 4096π π /  (5)

where n is the number of times the coded value returns to zero.
Following data conversion, the point cloud data were assembled 

by utilizing the lidar data as the X and Z axes coordinates and further 
incorporating the encoder data as the Y axis coordinates. The platform 
coordinate system is shown in Figure 5. CL was the coordinate system 
of the lidar, and CS was the 3D coordinate system of the furrow point 
cloud. The X-axis of the CS was the same as the CL, the z-axis of the CS 
was provided by the Y-axis of the CL, and the Y-axis data of the CS was 
provided by the encoder.

3.2. Orchard gully point cloud ROI region 
extraction and discrete point pretreatment 
method

In this paper, the pretreatment of the point cloud in orchards was 
mainly divided into two steps: rough and fine treatment. Initially, the 
rough processing of the original point cloud was achieved by 
extracting the regions of interest (ROI) of the orchard point cloud and 

subsequently removing a significant number of irrelevant background 
noise points. On this basis, the influence of environmental noise and 
other adverse factors on the quality of the cloud was further reduced 
by the second removal of discrete points, thereby enhancing the 
overall quality of the point cloud.

3.2.1. ROI extraction of original point cloud
Due to the large field of view of lidar, many irrelevant targets, 

such as carports, trees and pedestrians, were present in the original 
point cloud data, leading to a significant increase in processing time 
for trench reconstruction. Furthermore, the critical region point 
cloud occupied a finite fraction of the original point cloud data. 
When reconstructing the prototype point cloud directly, a plethora 
of irrelevant interference details would be introduced, as depicted 
in Figure 6A. Therefore, a pass-through filter was used to select the 
ROI of the furrow to restrict the direction range of the X and Z axes 
of the point cloud.

According to the range of the ditching depth and width as well as 
the value of DR, the conditional constraints for the ROI in this paper 
are shown in Eq. 6:

 

X Y Z
X X
Y Y
Z Z

ROI ROI ROI

ROI ROI

ROI ROI

ROI

, ,

,

,( ) =
∈ −[ ]
∈ ∞[ ]

, . .

,

,

0 6 0 6

0

RROI ∈ −∞[ ]









,0 5.  

(6)

FIGURE 5

The platform coordinate system.
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The original point cloud consisted of 96,298 data points, while the 
ROI only contained 15,603 point clouds. This resulted in the 
elimination of 83.8% of invalid data points, thereby significantly 
reducing the computational load for subsequent algorithms, as shown 
in Figure 6.

3.2.2. Discrete point pretreatment
To eliminate noise points on the ground, statistical filtering (Jin 

et al., 2021) was employed in this study, and the filtering range was 
x x< −( )∪ < −( ){ }0 3 0 3. . . The principle is as follows:

 1) Creating a point set of neighborhoods for each point 
using kd-tree

 2) Traversing the point cloud to calculate the average distance di 
between the current point P x y zi i i i, ,( )  and its neighboring 
points P x y z j kj j j j, , , , ,( ) = …( )1 2 , where k = 5

 
d

x x y y z z

ki
i
k

j i j i j i
=

−( ) + −( ) + −( )=∑ 1

2 2 2

 
(7)

 3) Points in the point cloud whose di is greater than the threshold 
T are defined as outlier noise points and removed from the data. 
The formula for calculating the threshold T is as follows:

 T ∈ − +( )µ σ µ σ3 3,  (8)

where μ and σ are the mean and standard deviation of the mean 
distance in all point clouds, respectively.

When comparing the average distance of the point clouds, it was 
observed that statistical filtering retained the details of the furrow and 
effectively removed outliers, as shown in Figures 7A,B.

FIGURE 6

Comparison of original point cloud and ROI extraction results. (A) Original point cloud. (B) ROI extraction results. (C) Point cloud quantity comparison.
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3.3. Extraction of trench side ground model 
and characteristic parameters

3.3.1. Improved furrow side ground model 
extraction method based on RANSAC

The ground model of the trench served as the reference surface 
for determining the depth and width of the trench, thereby playing a 
critical role in the calculation of the characteristic parameters. The 
quality of the trench surface model directly affected the accuracy of 
the calculation of the trench characteristic parameters. The 
mathematical equations are as follows:

 ax by cz d+ + + = 0 (9)

where (x, y, z) are the three-dimensional space coordinates of the 
points on the plane and (a, b, c) are the normal vector in the plane. In 
addition, since the trench ground has a certain thickness, as shown in 
Figure 8A, the thickness of the ground at the trench side was set as 2β 
in this paper.

The steps of ground detection at the ditch side of the orchard 
based on the RANSAC algorithm (Fischler and Bolles, 1981) are 
as follows:

 1) Randomly selected three points 
〈 ( ) 〉p x y z p x y z p x y z1 1 1 1 2 2 2 2 3 3 3 3, , , , , ,( ) ( )  from the point 
cloud in the filtered ROI region to construct the initial trench 
surface L, and the parameter values of a, b, and c are calculated 
according to Eq. (9).

 2) Calculate the distance dp from point pi(xi, yi, zi) to ground L 
according to Eq. (10), with a threshold of ground point cloud 
range q. When dp < β, point pi(xi, yi, zi) is labeled as an inlier and 
Ci the number of inliers.

 
d ax by cz d

a b c
p

i i i=
+ + +

+ +

| |

2 2 2

 
(10)

FIGURE 7

Effect of statistical filtering. (A) The di value before statistical filtering. (B) The di value after statistical filtering. (C) The contrast result of the red area on 
the left of the point cloud. (D) The trench shape before statistical filtering. (E) The trench shape after statistical filtering. (F) The contrast result of the red 
area on the right of the point cloud.
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 3) Repeat steps 1 and 2 for M times to obtain the ground L* 
containing the largest inlier set Cimax as the best ditch side 
ground model.

However, the aforementioned method necessitates the traversal 
of all point cloud data at each iteration, leading to a rapid increase in 
computational cost with an increase in point cloud data. Moreover, 
the selection quality of the three random points significantly 
influences the efficiency of optimal model extraction. The orchard 
ground, unlike the cement road, is typically rough and undulating, 
thereby presenting a challenge for the selection of random points 
and reducing the speed of the best trench side ground 
model extraction.

To improve the computational efficiency of the optimal trench 
side ground model, the characteristics of point clouds were analyzed, 
and the RANSAC algorithm-based detection method for orchard 
furrow side ground was refined.

As can be seen from Figure 7E, the ground point clouds exhibited 
small spacing and a tightly packed distribution, whereas the 
non-ground point clouds were widely spaced and sparsely distributed. 
Leveraging these distinctive features, an enhanced RANSAC 
algorithm was developed, which involved the construction of a 
variance threshold preselection condition to evaluate the discretization 
level among the randomly selected points. The steps of the optimized 
method are as follows:

 1) Randomly selected three points 
〈 ( ) 〉p x y z p x y z p x y z1 1 1 1 2 2 2 2 3 3 3 3, , , , , ,( ) ( )  from the point 
cloud in the filtered ROI region. Calculate the variance γ of the 
three points on the z-axis according to Eq. (11).

 
γ = −( )

=
∑1
3

1

3
2

i
iz z

 
(11)

where z  is the average value of the three points on the z-axis.

 2) Set the height variance threshold γ*. When γ ≥ γ*, discard 
the current three points and repeat step 1, otherwise go 
to Step 3.

 3) Construct the initial trench surface L, and calculate the 
parameter values of a, b, and c according to Eq. (9). Then, 
calculated the distance dp from point pi(xi, yi, zi) to ground L 
according to Eq. (10), with a threshold of ground point cloud 
range q. When dp < β, point pi(xi, yi, zi) is labeled as an inlier and 
Ciwas the number of inliers.

 4) Repeat steps 3 for M times to obtain the ground L* 
containing the largest inlier set Cimax as the best ditch side 
ground model.

FIGURE 8

Schematic diagram of ground point cloud structure and characteristic parameter calculation method. (A) Schematic diagram of the selection of 
ground point clouds on the trench side. (B) Calculation diagram of ditch depth and width.
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3.3.2. Calculation method of trench characteristic 
parameters

Based on the selected optimum trench side ground model and 
combined with the coordinate system of the trench point cloud, a 
calculation diagram of the trench depth and width is shown in 
Figure 8B.

Equation (2) was improved by taking the optimum ground model 
as the reference surface for the calculation of trench depth. The 
calculation method of trench depth is shown in Eq. (12):

 D D DC L= −∗ min  (12)

where DC is the trench depth, DL∗  is the value of Z-axis of the 
selected optimum trench side ground model in the CS, and Dmin is the 
minimum value of Z-axis in the CS.

The inliers region of the ground model was designated as the 
candidate area for computing the trench width. Subsequently, the 
distance between point I x y zi Ii Ii Ii, , ,( )  and its adjacent point 
I x y zi Ii Ii Ii+ + + +( )1 1 1 1, ,  on the X-axis was iteratively traversed. The 
maximum distance between two adjacent point clouds was considered 
as the ditch width under the current scanning. The calculation method 
is illustrated in Eq. (13), and the definition of point cloud candidate 
region is shown in Eq. (14):

 W x xC Ii Ii MAX= −( )+1  (13)

 I I x z x z D DIi Ii T T, . .+ ∗ ∗∈ ( ) ∈ −[ ] ∈ − +[ ]{ }1 0 6 0 6, , , ,β β  (14)

3.4. Trench reconstruction

The Delaunay triangulation algorithm has a sound geometrical 
concept and strong theoretical basis, and this makes it ubiquitously 
used in various fields, such as surface reconstruction, digital terrain 
model, finite element analysis, and so on. Therefore, in this paper, a 
point-by-point insertion method was used to construct a Delaunay 
triangulation network to reconstruct the trench surface. Furthermore, 
the Laplace algorithm was used to smooth the furrow and enhance the 
reconstruction effect to make it more accurate and closer to the 
actual effect.

4. Experimental results and discussion

4.1. Experiment

To assess the performance of the trench reconstruction platform 
and evaluate the efficacy of the system, a field performance test was 
conducted in the experimental field located in the North district of 
Shihezi University. A ditching operation was carried out in the test 
field, with a total length of 10 m. The ditch depth range was 
30  ±  5 cm and the width range 30  ±  10 cm, as shown in 
Figure  9A. Due to the phenomenon of soil collapse and 
accumulation at the beginning and end of the trench after ditching 

operation, a 0.5 m-wide zone on both sides of the trench was 
deemed invalid, thereby resulting in an effective trench length of 
9 m, as illustrated in Figure 10B.

4.2. Evaluation index

In this study, the correlation coefficient (R), root mean square error 
(RMSE), and coefficient of variation of stability (V) were used as the 
evaluation indices of extraction performance of characteristic parameters 
and the calculation equations of each evaluation index expressed in 
Eqs. 15–18 (Wang et al., 2018; Fu et al., 2020; Kim et al., 2023):
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where xi is the artificially measured value, x  is the mean value of 
manual measurement, yi is the calculated value of groove characteristic 
parameter, y  is the calculated mean value of groove characteristic 
parameters, S is the standard deviation of the calculated value of the 
groove characteristic parameter, V is the variation coefficient of the 
stability of the calculated value of the groove characteristic parameter, 
and n is the number of measuring points.

4.3. Extraction results of ditch side ground 
model

To verify the performance of the improved trench side ground model 
extraction method, a comparison was conducted between the results 
obtained from the original algorithm and the improved algorithm. The 
preprocessed point cloud was taken as input, and the two algorithms 
were compared with the same parameter settings, including 1,000 
iterations (M), the ground point cloud range threshold (β) of 0.05, and 
the height variance threshold (γ*) of 0.001. The comparison results of the 
ground model extraction are presented in Figure 10.

To evaluate the fitting performance of the ground surface model, 
this paper mainly evaluates based on the following two aspects:

 1) Whether the model can determine the ditch side ground point 
cloud as the inliers
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 2) Whether the extracted ground model exists with a tilt phenomenon

The results in Row (a) were generated using the original orchard 
ditch side-ground extraction algorithm, while the images in Row (b) 
were obtained using the optimized orchard ditch side-ground 
extraction algorithm. In the first and second column images, the 
purple plane depicts the ground model of the extracted ditch side. The 
red point cloud denotes the inner point of the ditch side ground that 
was extracted by the algorithm, while the remaining colored points 
represent the outer point of the ground. Furthermore, it is worth 
noting that some models identify most of the ground surface clouds 
as internal points, which can lead to a significant impact on the 
accuracy and reliability of subsequent feature parameters when the 
model is tilted. To evaluate the tilt degree of the model, the leftmost 
point cloud in the ROI region was taken as the starting position, and 
the distance variation trend of dp was described in the order from left 
to right, as shown in the fourth column in Figure 10.

The optimized algorithm produced a well-fitted model for the 
ground point cloud, where a majority of the ground point cloud was 
correctly classified as internal points. In contrast, while the original 
algorithm demonstrated good performance, it generated more 
points that were identified as incorrect results (Figure 10A). The 
optimized algorithm produced a model that was located at the 
midpoint of the ground point cloud, while the model fitted by the 
original algorithm was located at the lower middle part of the 
ground point cloud. Consequently, a portion of the ground point 
cloud was erroneously classified as outer points, while some of the 
trench wall point cloud was improperly identified as an internal 
point, thus increasing the number of point cloud misclassifications 
(Figure 10B). The dp mainly fell within the range of 0–0.1 and 0.25–
0.37. This portion of the point cloud was mainly distributed in the 
ground and trench bottom, which was consistent with the actual 
situation. By comparison, it was observed that within the range of 
0–0.1 point clouds, the number of point clouds in the range of 

FIGURE 9

Schematic diagram of the performance test. (A) Image of the partial ditch. (B) Schematic diagram of test area and driving direction.

FIGURE 10

Comparison of ground model extraction results. (A) Extraction results of ditch side ground model. (B) Schematic diagram of the spatial relationship 
between the ground model and the point cloud of the ditch. (C) Histogram of distance between the ground model and point clouds in the ROI region. 
(D) Variation trend of distance between point cloud and ground model in ROI region.
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0–0.05 was more in the optimized algorithm, while the distribution 
of point clouds in the range of 0.05–0.1 was higher in the 
non-optimized algorithm. This phenomenon further indicated that 
the plane fitted by the optimized algorithm was closer to the actual 
furrow (Figure 10C).

As depicted in Figure  10D, the abscissa extent of 5,000–10,000 
corresponded to the part of the ditch, whereas the remaining extent 
correspond to the ground on both sides of the ditch. Moreover, the 
fluctuation of the distance variation trend of the original algorithm was 
more prominent and the dp of the right side of the ground was larger than 
that of the left side of the ground, indicating that the ground model fitted 
by the algorithm was skewed. Instead, the point cloud distance variation 
trend of the optimized algorithm was relatively smooth, and the distance 
distribution of the left and right ground points were relatively uniform, 
which can also be proved by Figure 10B.

4.4. Furrow reconstruction result

The furrow was reconstructed using the point-by-point 
insertion method, which effectively depicted the contour, width, 
and depth of the trench while retaining many features of the actual 
furrow shape. Nonetheless, as shown in Figures  11A,C, the 
reconstructed results were uneven and had many burrs compared 
to the real trench. Therefore, it is necessary to conduct further 
processing on the reconstructed results. After smoothing the 
reconstructed grooves with the Laplace algorithm, the results 
retained the main features, while the overall contours became 
smoother and the burrs disappeared. Additionally, the roughness of 
the mesh was significantly reduced, resulting in a more realistic 
reconstruction (Figures 11B,D).

After real-time data acquisition using the multi-source data 
acquisition and three-dimensional data construction system, the 
single running time of all steps, including reading the original point 
cloud, pre-processing the point cloud, extracting the trench side 
ground model and characteristic parameters, and reconstructing the 
trench, was approximately 13.1 s. It is important to note that the 
duration of the program’s information processing may vary depending 
on the volume of data being processed. Larger datasets may require 
additional time for processing and analysis.

4.5. Extraction results of furrow 
characteristic parameters

To analyze the accuracy of the calculations, random sample 
points were selected, and the calculated values of the furrow 
characteristic parameters were compared with the measured values. 
The measured values were obtained using a tape measure with a 
measuring accuracy of 1 mm. To reduce the error in manual 
measurement, the depth and width of each sample point were 
measured three times, and the average value of the three 
measurements was used as the measured value for that sample 
point. The measured depth DT and the measured width WT were 
calculated by the following formula:
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where DMi is the depth measurement for the ith time, and WMi is 
the width measurement for the ith time. The comparison results are 
shown in Figure 12 and Table 1.

In most cases, WC was smaller than WT. However, the difference 
in the mean value between them was not significant, with an error of 
only 2 mm. Similarly, most of DC were smaller than DT. And the 
average values of them were also not significantly different, with an 
error of 3 mm. However, the overall errors of DC were larger WC, as 
shown in Figure 12B.

Furthermore, the error range of WC was 0% ~ 5.965%, while the 
error range of DC was 0% ~ 4.54%. The error of WC at the maximum 
value of trench width was 2.394%, while the error of WC at the 
minimum value calculation of trench was 0.699%. The error of DC at 
the maximum value of furrow depth was 0.847%, and the error of DC 
at the minimum value was 4.912%.

As shown in Table 1, the mean error, standard deviation error, 
and stability coefficient error of WC were, respectively, 0.002 m, 
0.011 m, and 0.37%, while the mean error, standard deviation 
error, and stability coefficient error of DC were, respectively, 
0.003 m, 0.017 m, and 0.47%. In contrast, DC has a larger mean 
value error and more violent fluctuations, while WC has better 
data quality.

To further explore the correlation between measured and 
calculated values, WC and WT, DC and DT were fitted, respectively, 
(Figure 13).

The fitting model for WC and WT was y = 0.8718x + 0.0440, the R2 
was 0.8332, the p value was significantly less than 0.0001, and the 
residual sum of squares (SSR) was 0.0032, all of which demonstrate a 
good fitting effect for the model. In addition, R was 0.9128, and RSME 
was 0.0088, indicating a strong positive correlation between 
WC and WT.

The fitting model for DC and DT was y = 0.9529x + 0.017, the R2 was 
0.7537, the p value was also significantly less than 0.0001, and the SSR 
was 0.0038. Furthermore, R was 0.9128, and RSME was 0.0088, 
proving a strong correlation between DC and DT.

Although there are some errors in the calculation results, the 
furrow parameter extraction method proposed in this paper has a 
good effect.

5. Discussion

Although the low-cost three-dimensional reconstruction 
method of the furrow shape in orchards proposed in this study 
showed a good performance, it also had some limitations. First, 
compared with WC, DC had a larger range of data errors and the 
overall data quality was inferior to the former. Moreover, the 
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correlation between DC and DT was not as strong as that between 
WC and WT. The reason for this phenomenon was that the soil 
surface roughness in furrow bottom region B was more serious 
than that in ground region A and region C, which reduced the 
quality of furrow bottom point cloud data (Huang et al., 2021), as 
shown in Figure 14A.

Furthermore, the tractor was tilted due to the presence of 
asymmetric and irregular regions on both sides of the trench, such as 
region D in Figure 14A, which led to a decline in the quality of the 
trench reconstruction. Moreover, manual control of the direction 
during data acquisition failed to ensure a strictly linear progression, 
thus engendering Y-axis bending of the reconstructed trench, as 
depicted in Figure 14B.

6. Conclusion

This study developed a data acquisition system that was both 
multi-source and cost-effective, with the objective of collecting, 
constructing point clouds, and storing data related to the trench. 
To alleviate the computational burden of trench reconstruction, 
a novel methodology was developed to extract the point cloud of 

the orchard trench and preprocess the discrete points. This 
approach led to an enhancement in the quality of three-
dimensional point clouds. Through a comprehensive analysis of 
the characteristics of the trench point cloud, a variance threshold-
based random point preselection criterion was implemented. 
Subsequently, the trench-side ground model extraction method 
based on RANSAC was optimized. This optimization aimed to 
enhance the accuracy and reliability of the ground model 
extraction, leading to improved results in representing the ditch 
side ground. Utilizing the fitted ground model of the trench sides, 
a novel approach was proposed to extract key feature parameters 
and reconstructing the trench. Experimental results demonstrated 
that the calculated width exhibited an error range of 0–5.965%, a 
mean value error of 0.002 m, a standard deviation error of 
0.011 m, and a stability coefficient error of 0.37%. Similarly, the 
calculated depth of the trench exhibited an error range of 
0–4.54%, a mean value error of 0.003 m, a standard deviation 
error of 0.017 m, and a stability coefficient error of 0.47%.

Overall, this study provides a foundation for the realization of 
real-time control in mechanized trench fertilization and offers a basis 
for the optimal combination of mechanical structure and operational 
parameters. The findings of this study serve as a valuable reference for 

FIGURE 11

Furrow reconstruction results. (A) Frontal view of the result of furrow reconstruction using point-by-point insertion method. (B) Frontal view of the 
result of smoothing the groove using Laplace’s algorithm. (C) Side view of the result of furrow reconstruction using point-by-point insertion method. 
(D) Side view of the result of smoothing the groove using Laplace’s algorithm.
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FIGURE 12

Comparison result between system calculated value and real value. (A) Results of comparison between measured and calculated values of furrow 
width. (B) Results of comparison between measured and calculated values of furrow depth. (C) Results of comparison of statistical parameters for 
measured and calculated values of furrow width. (D) Results of comparison of statistical parameters for measured and calculated values of furrow 
depth.

TABLE 1 Measurement results and evaluation parameter results of characteristic parameters.

Evaluation index Maximum error 
point of ditch 

width /m

Error /% Maximum ditch 
width point /m

Error /% Minimum ditch 
width point /m

Error /%

Measured value 0.352
4.54

0.376
2.394

0.286
0.699

Calculated value 0.336 0.367 0.288

Evaluation index
Maximum error 
point of ditch 

depth /m
Error /%

Maximum ditch 
depth point /m

Error /%
Minimum ditch 
width point /m

Error /%

Measured value 0.285
5.965

0.354
0.847

0.285
4.912

Calculated value 0.302 0.351 0.271

Evaluation 
index

The mean 
value of 

the width 
/m

Standard 
deviation of 

width /m

Coefficient of 
stability of width 

/%

The mean 
value of the 

depth /m

Standard 
deviation of 

depth /m

Coefficient of 
stability of depth 

/%

Measured value 0.329 0.0203 6.13 0.312 0.0167 5.37

Calculated value 0.331 0.0214 6.50 0.315 0.0184 5.84

Error 0.002 0.0011 0.37 0.003 0.0017 0.47
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enhancing the efficiency and benefits of agricultural operations. In 
future research, there will be a specific focus on developing tilt error 
correction algorithms and groove alignment control algorithms. These 
advancements aim to further enhance the accuracy and quality of 
groove reconstruction.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding authors.

FIGURE 13

Fitting results of calculated values and true values. (A) The fitting model of measured and calculated values of furrow width. (B) The fitting model of measured and 
calculated values of furrow depth. (C) R value and RMSE value of furrow depth and furrow width. (D) R2 value and SSR value of furrow depth and furrow width.

FIGURE 14

Adverse conditions. (A) Different regions of the ground. (B) The problem of reconstruction result.
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