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A systematic review and
meta-regression analysis of
technical e�ciency in Ethiopian
wheat farming

Asmamaw Mulusew and Mingyong Hong*

School of Economics, Guizhou University, Guizhou, China

Replications are important for science, both statistically and philosophically. A

plethora of empirical studies that have been done so far show that there are

always variations, errors and inconclusive findings on the technical e�ciency (TE)

scores of wheat output in Ethiopia. In this study, we intend to contribute to these

controversies by providing the first thorough investigation of the magnitude of

mean-e�ect size and the underlying factors ofmean technical e�ciency variations

in wheat production across studies in Ethiopia. These e�ciency scores are

retrieved from 31 studies, or a household size of 12,754 over the years 2011–2022.

The analysis of meta-regression was done using a random e�ect model using

Comprehensive Meta-analysis (CMA-4) software. The Begg and Mazumdar rank-

correlation test, egger test, and funnel plot were used to determine publication

bias across studies. Since 2022, we have utilized the classic fail-safe-N test. One

issue with publication bias is the omission of some non-significant studies from

the analysis, which, if they were included, would cancel out the observed e�ect.

Further, the missing study problem or “file drawer” problem, of the study would

also be computed using the “Trim and Fill” estimation approach. To evaluate

heterogeneity, a forest plot is used. The e�ect size is also determined using the

random e�ect model along with the I-squared statistic, the tau-squared and tau,

and the Q-test. As a result, a mean e�ect size of 71.6% with a 95% confidence

interval of 67.9%−75.3% is observed. The meta-regression demonstrates that

the 31 mean technical e�ciency studies included in the research had varying

e�ciency scores due to variations in sample size, methodologies used, publication

status, and study range. It suggests that, with all other factors held constant, a 1%

change in these regressors causes a 0.01%, 10.88%, 21.22%, and 6.74% change,

respectively, in the mean technical e�ciency scores across studies in Ethiopia.

In addition, the technical e�ciency score across studies is also a�ected by the

location in which the study is conducted.

KEYWORDS

meta-regression, systematic review, random-e�ect, mean technical e�ciency, wheat,

Ethiopia

1 Introduction

Ethiopia’s economy is centered primarily on agriculture. Ethiopia’s agricultural sector

contributed 37.57% of its GDP in 2021 (Ministry of Agriculture, 2021). In the country’s

agriculture-based economy, grain production ranks among the most significant subsectors.

Sixty percent of the rural workforce is employed there, and it makes up about 80% of the

area that is being farmed (International Trade Administration, 2022). The Ethiopian diet
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is completely dependent on grains. In actuality, wheat, sorghum,

and corn account for more than 50% of the daily calories consumed

by a typical household. Cereals account for an average of 40%

of household food budgets (International Trade Administration,

2022). The Ethiopian government launched a ten-year economic

growth strategy in 2021, with agriculture as its top priority sector

(2021–2030). The Ethiopian government has an audacious plan

to achieve wheat self-sufficiency and stop imports, and it has

vowed to start exporting wheat to neighboring nations by 2023.

Currently, Ethiopia is the 2nd largest African wheat producer

(USDA, 2022). Ethiopia imported wheat and meslin from Ukraine

alone for US$418.26 million in 2021, according to the UN’s

COMTRADE database on international trade. Within the next

40–50 years, Africa is predicted to experience the majority of the

global population increase, with Ethiopia accounting for a sizable

portion of that growth (World Bank, 2022). Ethiopia’s population is

anticipated to double over the subsequent 30 years, reaching 210

million people by 2060 if current growth rates continue. Hence,

increasing productivity and efficacy in the primary sector are

crucial to overcoming these obstacles and narrowing the growing

food demand.

Studying wheat-producing smallholder farmers’ technical

efficiency1 levels and the factors that influence them, then,

has a significant advantage in selecting development strategies

in Ethiopia. The reason for the country’s comparatively low

grain yields is due to the country’s rough topography, technical

inefficiencies, poor land management, insufficient mechanization,

unpredictable rainfall, small-scale landholdings, and insufficient

supply of fertilizer and improved seed. Making the agricultural

sector more technically efficient is one of the lynchpins of rural

development plans and a crucial step in enhancing food security

and farm earnings.

Studies on technical efficiency in Ethiopia have resulted in

conflicting findings with regard to the agricultural productivity

of wheat and factors that affect technological efficiency. However,

outcomes were erratic. Some have revealed low MTE with a value

of 0.48 (Eskeziaw et al., 2021), while others have revealed highMTE

with a score of 0.858 (Jeilan Husen and Fentaw, 2019). Evidently,

depending on a number of parameters, including the methodology

employed, the kinds of data used, the range, the sample size

used, and the state or region where the studies are conducted,

the empirical estimations of the study’s technical efficiency would

differ. Some of the key variables that affected wheat production’s

technical efficiency between 2011 and 2022 in Ethiopia include

an increased percentage of smallholder households’ fertilizer

consumption, more complete adoption of high-yielding seed

varieties, and the number of retail stores selling fertilizer. The

study then identified the factors under control that were responsible

for the variation in efficiency scores, including factors like off-

farm income, education, age, and extension activities (Mussa,

1 Mean Technical E�ciency (MTE): The ability of the household to harvest

far more return than is achievable from its resources is known as technical

e�ciency. If a household produces greater production compared to another

at the same input utilization and technology level, it is considered to be more

technically e�cient. MTE, thus, refers to a household’s overall average of its

entire technical e�ciency.

2011; Asfaw et al., 2019; Jeilan Husen and Fentaw, 2019; Hailu,

2020; Bezu et al., 2021). The goal of the current study is to lay

the groundwork for understanding the distribution of the mean

TE on the output of Ethiopian wheat. A meta-regression dataset

created from the existing 31 pieces of studies on wheat technical

efficiency in Ethiopian agriculture covering the period 2011–2022

is employed in the empirical analysis. To make it evident how

technical efficiency is distributed, this research can be summarized

quantitatively. Therefore, the study’s primary goals are to deal with

these issues:

➣ This study’s main purpose was to determine the magnitude of

mean-effect size and examine the underlying factors of MTE

variations in wheat production across studies in Ethiopia.

➣ Systematic review of the empirical estimates of social,

demographic, and economic factors that have an impact on

Ethiopia’s MTE for wheat cultivation.

In addition, the study would predict the mean efficiency score

intervals of future technical efficiency studies for future policy and

study inferences. Low productivity and technical inefficiency are

the main issues that farmers in Ethiopia have faced for a long

time. Before pinpointing the factors contributing to low agricultural

output, it is, in our opinion, preferable to comprehend the output

losses brought on by technical inefficiencies. Researchers have

been particularly interested in figuring out how much Ethiopian

households would be able to boost production yield with the same

inputs. Similarly, technical inefficiencies should be the concern

of researchers in Ethiopia. Because the availability and supply of

inputs used for production are very limited, food insecurity is very

high, and its population will grow a lot over the coming decades. So,

we selected wheat since it ranks as the thirdmost extensively farmed

crop in Ethiopia and because adopting this crop would allow

us to comprehend the nation’s agricultural technical efficiency.

From a policy standpoint, the Ethiopian government unveiled a

new initiative named “The nationally developed summer irrigation

strategy for wheat production” by 2022 to replace imported wheat

with domestic production for the purpose of reducing hunger and

exporting it by 2023. As a result, this study would also be relevant

to policy in order to support Ethiopia’s recently proposed national

strategy. Finally, as far as the authors are aware, no statistical study

has been carried out that has synthesized the data from various

studies utilizing a systematic review and meta-regression analysis,

given the MTE studies in Ethiopian agriculture. Henceforth, in

terms of meta-analysis and systematic review, this study would be a

pioneering effort in the country.

2 Method

2.1 Techniques for systematic reviews and
meta-analyses data extraction

2.1.1 Reporting approach
This paper has adopted the Preferred Reporting Items for

Systematic Review and Meta-Analysis (PRISMA) standard, as

shown below in Figure 1. Our methods for conducting searches,

gathering data, and publishing results all adhere to Havránek et al.’s
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FIGURE 1

The preferred reporting items for systematic review and meta-analysis flowchart used for meta-analysis and systematic review.

(2020) and Wang et al.’s (2023) standards for performing meta-

analyses.

2.1.2 Querying strategy
We used Herzing’s publish or perish software to collect

the relevant studies. We searched English databases, including

Google Scholar, Crossref, Scopus, Web of Science, and African

Journals Online. We also browsed through gray literature and

conference proceedings related to technical efficiency, with an

emphasis on Ethiopia. The search included key terms and keywords

independently and/or in combination using the Boolean operators

“OR” or “AND.” The searched keywords were (“East Africa

Countries” or “Sub-Sahara Africa” or Ethiopia) AND (“Technical

Efficiency of Wheat” or “MTE of Wheat” or “Agricultural

Performance”) AND (determinants, factors, drives, or causes) in

English databases.

2.1.3 Exclusion and inclusion criteria
We comprised studies published in English from 2011 through

2022 that were searched and reviewed from June 1, 2022, to

September 30, 2022. We included studies that: (I) include at least

one driver or determinant of the TE of wheat (II) uses data

from at least one region, or Ethiopia. (III) Are not meta-analyses

themselves. (IV) Use household or plot-level data. (V) Reports the

coefficients of all control variables. (VI) All studies and those with

unclear methods were excluded. (VII) Had a sufficient sample size

(n > 50) because of the poor reliability of the estimates. (VIII)

Discusses drivers in a conceptual way with empirical analysis. Then,

a total of 1,491 articles, book chapters, reports, and 561 studies

that were found in the initial search were duplicated and excluded

from the list in the first phase. And then, the first searches yielded

951 studies investigating the drivers of TE in wheat output. Finally,

considering the abstracts and titles of all the selected papers, the two

authors systematically assessed them in two steps. First, inclusion

criteria were checked against the titles and abstracts. Then, a
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recursive search was conducted, and entire texts were reviewed for

inclusion. In the final meta-database, there were 31 articles that

matched the requirements. Five publications from the database

were randomly selected to serve as the pilot for the data abstraction

form. The extraction form was modified once the template had

been tested.

2.2 Model specifications

The meta-analysis utilizes two models. The fixed-effect

approach can only be used if there are key indicators that

demonstrate that the included studies are almost identical

(Borenstein et al., 2010). But the fixed-effect approach can rarely

be used in actual practice. In real-world synthesis, depending on

the study, the effect size varies. It is due to a variety of reasons, like

differences in participant mixes and intervention implementation.

A random-effects approach, therefore, seems to be adequate and

effective in the majority of meta-analyses (Gavriilidis et al., 2020).

Therefore, pooled estimates of the scale of technical efficiency or

the summary effect of a meta-analysis for this paper were estimated

by a random effect model.

The study’s observed effect, Ti, is determined by the true effect

θi plus the within-study error εi. In turn, θi, is determined by the

average of all true effects µ and the between-study error ζi. More

generally, given any observed effect of Ti,

Ti = θi + εi = µ + ζi + εi.

So, the issue that needed to be addressed was how the weights

in the random-effect approach were spread. We must consider

two levels of sampling and two sources of errors when using the

random effect estimation approach. First, the true effect sizes θ

are distributed around µ with a variance of τ 2 that corresponds

to how the true effects are actually distributed around their mean.

Second, for any given θ, the observed effect T will be dispersed

about that θ with a variance σ2 that is mostly determined by the

study’s sample size. Therefore, we must address both within-study

(ε) and between-study (ζ) sampling errors when allocating weights

to estimate µ.

In a random-effects analysis, the observed variance is divided

into two components: within studies and between studies, and both

portions are used for determining the weights. The variance is

decomposed by first computing the overall (observed) variance and

then segregating the within-study variance.

A number of formulas operationalize this logic. If all studies had

the same genuine effect, we would calculate Q, which stands for the

overall variance, and df, which stands for the expected variance. The

excess variance would be the result of the difference,Q – df. Finally,

this value would be converted to match the within-study variance

in scale. The tau-squared (τ 2) value is the most recent one. The Q

statistic, which indicates overall variance, is described as follows:

Q =
∑K

i=1
Wi (Ti− T)2 (1)

That is, the sum of the “squared deviations” of each research

study (Ti) from the overall mean (T). As shown by the “Wi”

in the calculation, the “inverse variance” of the study is used to

weight each of the squared deviations. A large study that deviates

significantly from the mean would have a greater influence on

Q than a small study conducted in the same area. An equivalent

formula that can be used in calculations is:

Q =
∑K

i=1
WiTi2 −

(
∑k

i=1 WiTi )2

∑k
i=1 Wi

Q must now be dissected into its constituent pieces since it

represents the overall variance. The predicted value of Q would be

the degrees of freedom (df) for the meta-analysis if the only source

of variance was a within-study error.

Df = (studies in number) − 1

Consequently, we are able to calculate the between-study

variation, τ 2, as

T2 =

{

Q − DF
C , if Q > df

0, if Q < df

Where, C =
∑

Wi−
∑

Wi2
∑

Wi
.

The extra variance (observed minus predicted) makes up the

numerator, Qminus df. Due to the fact that Q is a weighted sum of

squares, the denominator, C, is a scaling factor. We made sure that

the tau-squared was measured using the same unit as the variance

within studies by using this scaling factor.

Each study was weighted by the inverse of its variance in this

random effect analysis. The distinction is that the variance now

consists of both the initial (within-study) variance and the tau-

squared variance, which is between-study variance. In particular,

the weight given to each study in the random effects model is:

Wi =
1

Vi

where v∗i is the between-studies variance plus the within-study

variance for study (i), tau-squared. That is,

V∗i = Vi+ T2

Following that, the weighted mean (T) is calculated as:

T =
∑k

i=1 WiTi,
∑K

i=1 Wi
(2)

This is equal to the sum of the products (effect size times

weight) divided by the total weights. The reciprocal of the weights’

sum is used to calculate the variance of the combined effect, or

V =
1

∑k
i=1, Wi

(3)

then the square root of the variance is the combined effect’s

standard error,

SE(T) =
√
V (4)

For the combined effect, the 95% confidence interval would be

calculated as:

Lower− Limit = T− 1.96 ∗ SE (T)

Upper− Limit = T+ 1.96 ∗ SE (T)
} (5)
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Last but not least, if one so desired, the Z-value might be

calculated using:

Z = T / SE(= T) (6)

Assuming an effect in the hypothesized direction, the one-tailed

p-value is given by

P = 1 − ø (Z) (7)

and the two-tailed p-value by

P = 2[1 − ø(/ Z/)] (8)

where Φ(Z) is the standard normal cumulative

distribution function.

2.3 Empirical estimation models

2.3.1 Publication bias
The fundamental problem with publication bias is that not

all completed studies are published, and the selection process is

biased. When “editors, reviewers, or researchers” favor statistically

significant findings, publication selection occurs (Stanley, 2005).

We employed the funnel plot, the Egger test, or the Begg

and Mazumdar rank correlation test to find the publication bias

problem. Additionally, we employed the “classic, fail-safe N test”

since publication bias raises the possibility that any non-significant

papers are omitted from the analysis, which, if true, would cancel

out the effect that was observed. The “Trim and Fill” estimating

approach would also be used to compute the study’s “file drawer” or

missing studies problem. The funnel plot is a representation of the

relationship between effect size on the horizontal axis and a metric

of study size (often standard error or precision) on the vertical axis.

The optimum option for the vertical axis is typically the standard

error (Sterne and Egger, 2001). Large studies are visible near the top

of the “graph” and frequently congregate close to the mean effect

size. Smaller studies are shown at the “bottom of the graph” and

will be spread throughout a range of values because there is more

“sampling variation” in effect-size estimates in smaller studies. Any

asymmetry in a funnel plot could be a sign of publication bias.

2.3.1.1 Begg and Mazumdar “rank-correlation” test

The funnel plot illustrates a typical instance of publication

bias. Small studies are more “likely” to be included when they

demonstrate a relatively large treatment effect, while large studies

are more “likely” to be included regardless of their treatment effect.

In these conditions, the size of the study and the magnitude of the

effect will be inversely correlated. This association was proposed

as a test for publication bias by Begg and Mazumdar. Hence, we

calculated the rank-order correlation (Kendall’s tau b) between

the treatment effect and the standard error (which is mostly

determined by sample size) for each individual.

2.3.1.2 Egger’s test of the intercept

In order to forecast the standardized effect (effect size divided

by the standard error), Egger advises utilizing precision, which

is the inverse of the standard error, to assess the same bias. In

this test, the regression line’s slope (B1) captures the magnitude

of the treatment effect, whereas the intercept (B0) captures the

bias. The rank correlation strategy may not be as advantageous

as this one. This could be a stronger test in some situations.

Additionally, Egger’s linear regression might be used to assess the

statistical significance of the funnel plot’s asymmetry. Therefore, we

employed the inverse variance-weighted Egger’s test regression of

the observed effect size from trial i (MTEi) on its standard error.

MTEi = ∂ + µ ∗ sei + εi where εi ∼ N(0, sei
2 ∗ φ) (9)

Where Φ is a “multiplicative dispersion parameter” computed

from the data which allows for “heterogeneity.”

2.3.1.3 Classic fail-safe N

Instead of merely speculating on the effects of the missing

research, Robert Rosenthal suggested that we determine the

number of papers necessary to cancel out the effect. There are

grounds for alarm if this number is in fact quite tiny. However, if

this number is high, we may be confident that the treatment effect

is present, even though it may have been overstated due to the

omission of some trials. The phrase “Fail-Safe N,” coined by Harris

Cooper, refers to the “number of studies” that must be present

for the effect to be valid. There are two significant flaws with this

approach. In the first place, it makes the assumption that there is

no effect on the hidden research, rather than taking into account

the likelihood that some of the investigations may have revealed

an effect in the opposite direction. The amount of paper needed

to reverse the effect may therefore be less than the “fail-safe N.”

Second, and maybe more importantly, this approach emphasizes

statistical significance. In other words, it may allow us to assert

that the treatment effect is not zero, but it raises the question of

whether it will remain statistically significant after accounting for

themissing trials. Every study’s p-value is calculated by the “fail-safe

N.” algorithm, which then aggregates these values. The commonly

accepted approach nowadays, however, is to calculate an effect size

for each study, aggregate the effect sizes, and then calculate the p-

value for the total effect. This approach is also the one that this study

employs. The two methods typically provide different outcomes.

2.3.1.4 Duval and Tweedie’s “Trim and Fill”

A technique created by Duval and Tweedie enables us to impute

missing studies. In this study, we identified the likely positions of

the missing studies in the funnel plot, included them in the analysis,

and then recalculated the cumulative effect. Iteratively trimming

the asymmetric results from the right side to identify the unbiased

effect gives rise to the term “Trim and Fill,” which refers to the

process of filling in the plot with the mean effect by re-inserting the

trimmed studies on the right as well as their imputed counterparts

on the left. A formal test for asymmetry might also be performed by

regressing effect sizes on sample sizes. Similar to the presence of a

link between effect sizes and sample sizes, an asymmetric funnel

plot can identify publication bias (Card and Krueger, 1995). If

there is a substantial negative correlation between sample size and

mean technical efficiency estimates in this study, publication bias

would be obvious. Therefore, this study used regression to test for

asymmetric funnel plots that might indicate publication bias.

MTEi = α0+ β1SSizei + εi (10)

whereMTEi mean, technical efficiency of study i, SSizei, sample size

of study i, and εi error terms.
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2.3.2 Analysis of study heterogeneity
A “forest plot” is employed in this investigation to identify

heterogeneity. A forest plot offers a detailed visual representation

of the findings from each study included in the meta-analysis at

a glance.

2.3.3 Determining e�ect size
According toHedges andVevea (1998), Borenstein et al. (2010),

Borenstein (2019); Higgins and Thomas (2019), and Borenstein

et al. (2021), the articles used in the analysis are thought to

constitute a representative sample of all possible studies. Therefore,

a conclusion about that universe would be drawn using this

approach. In order to determine both parameters for the current

study, the software is fed information on the t-statistics and sample

size. We were also thinking about the constraints of this approach

when used in this manner. In particular, we need enough research

to produce a trustworthy estimate of tau-squared in order for the

model to function properly. Furthermore, while we can state that

the results apply to the field of comparable research, it’s not always

apparent what exactly falls within that field. We compared the

following test statistics across studies to ascertain the effect size of

the study.

2.3.3.1 Q-test for heterogeneity

The “null hypothesis,” that all studies included in the analysis

have a uniform effect size, is tested by the Q-statistic. If every study

had the same true effect size (the number of papers minus 1), the

expected value of Q would be equal to the degrees of freedom.

Even if the test for heterogeneity is not “statistically significant,”

we should infer that the impact size varies between trials if logic

dictates that it does.

2.3.3.2 The I-squared statistic

We used I-squared statistics since it is widely believed that I-

squared indicates the degree of effect size heterogeneity between

studies. In some instances, I-squared has been used in this study to

categories the level of variance as low, moderate, or high. I-squared

is a percentage, not an exact sum. It demonstrates the relative

contribution of sampling error and variation in actual effects to the

variation in observed effects. The exact differences in the impacts

are unknown to us.

2.3.3.3 Tau-squared and tau

In this investigation, tau-squared is employed to comprehend

the variance of true effect sizes.

2.3.4 Meta-regression model; moderator analysis
According to Card and Krueger (1995) and Tesfaye and Tadele

(2019), the main goal of a “meta-analysis” of observational studies

is not to determine an overall estimate of effect but rather to

look into the causes behind variations in estimates between studies

and identify patterns of estimates. In a meta-analysis, there are

commonly two ways to create the quantitative review. One method

is to combine probability values or Z scores; a different method

is to combine effect sizes like Cohen’s d, correlation coefficients,

or effect sizes like Cohen’s d. The central premise of this research

is that the characteristics of the studies can account for the

difference in technical efficiency indices reported in the literature.

The following meta-regression model is estimated to look at how

technical efficiency scores vary among studies:

MTMic = ∂0 + γ 1 PUBYEARic +
∑m

m=1
ψmXmic + εio;

εic ∼ N(0, σm) (11)

where MTEic represents the mean technical efficiency scores from

the ith primary study, conducted in the c region in Ethiopia, and

∂0 is the intercept; PUBYEARic is the year in which the research is

conducted, which starts from 2011, 2012, 2013, etc. Xmic is a vector

of other research attributes used in the meta-regression analysis. It

includes, AREA is a categorical variable, equal to one for Tigray,

two for Amhara, three for Oromia, four for SNNP, and five for

Ethiopia in general; METHOD is a dummy variable that is equal

to one if the model is a stochastic frontier and zero otherwise;

When a manuscript has been published in a journal, the dummy

variable PUBLICATION STATUS is equal to one; otherwise, it is

equal to zero. Dummy_2010 is a dummy variable that will be one

if the research article covers the years 2010 through 2019 and zero

otherwise; a dummy variable called Dummy_2022 has a value of

one if the study was carried out between 2020 and 2022 and a

value of zero otherwise; the SAMPLE SIZE represents the number

of observations used; N0_VARIABLES stands for the number of

variables used in the primary study; the final variable, RANGE,

represents the difference between the minimum and highest MTE

scores reported in the study. The list of moderator variables and

their descriptions, which are employed in the study, are displayed

in Table 1 below.

TABLE 1 Moderator variables and descriptions of them.

Variable Variable description

MTEi Each study’s mean, technical efficiency score

Study reporting year (Xyt) The year when the initial study’s data were collected

Publication status (X1i) =1 if the study is published, otherwise 0

Sample-size (X2i) In a primary study, the number of sampled

households (observations)

No. Variables (X3i) Number of predictors, used in the study

Range (X4i) Technical efficiency scores maximum and minimum

difference

Method (X5i) = 1if a study used the Cobb-Douglas frontier model,

otherwise 0

Tigray_Dummy (X6i) = 1 if a study is conducted in the Tigray region,

otherwise 0

Area_Dummy (X7i) Area dummy where a study is conducted (Tigray=
1, Amhara= 2, Oromia= 1, SNNPR= 4, Ethiopia

= 5)

Amhara_Dummy (X8i) = 1 if a study is conducted in the Amhara region,

otherwise 0

Oromia_Dummy (X9i) = 1 if a study is conducted in the Oromia region,

otherwise 0

SNNPR_Dummy (X10i) = 1 if a study is conducted in the SNNPR region,

otherwise 0

National_Dummy (X11i) = 1 if a study is conducted in all regions of Ethiopia

Dummy_2010s (X12i) = 1 if a study is conducted in the 2010s, otherwise 0

Dummy_2020s (X13i) = 1 if a study is conducted in the 2020s, otherwise 0
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3 Discussion and results

3.1 Descriptive statistics and e�ect size

3.1.1 Descriptive statistics
The descriptive summary of the main studies that were

chosen and used in the meta-analysis is shown in Table 2. The

average mean efficiency score of the entire set of research (both

published and unpublished) is 71.6% and ranges between 48 and

85.8%. Additionally, a detailed examination of Table 3’s efficiency

estimates by breaking it down according to numerous moderator

variables, such as the publication year, the number of variables used,

the methodologies used, the range, the region of the study, etc.,

provided more information. Thus, this measure does not account

for the precision (standard deviation and sample size) of each

study in estimating the mean efficiency score of households in

Ethiopia. Therefore, the average mean efficiency score like this

is not the effect size of all the selected studies. Consequently, it

is important to use caution when interpreting this outcome. The

software for comprehensive meta-analysis assists in recalculating

the mean effect size by converting the mean technical efficiency

into Fisher’s Z estimates to account for relative study size and any

deviation from a normal distribution.

3.1.2 Calculation of e�ect size of all included
studies

Because we are employing the random-effects model,

the summary effect size is associated with the mean

effect size rather than the common effect size. A 95%

confidence interval is used in Table 3 to estimate the

mean effect size on the premise that the studies are

not homogeneous.

We are calculating the mean of these effects (across all included

research) because, in a random-effect model, the true effect size

varies from study to study. Thus, the 95% confidence interval

for the mean effect size is between 0.679 and 0.753, with a

mean of 0.716. The average effect size across all similar trials

could lie anywhere within this range. The null hypothesis—

that the mean impact size is zero—is tested using the Z-

value. The Z-value is 37.693, and the “p-value” is 0.001. We

reject the “null hypothesis” using a criterion alpha of 0.050

and come to the conclusion that the mean effect size is not

exactly zero in the universe of populations similar to those in

the research.

The Prediction Interval (effect size) of future technical

efficiency studies; between study variance and other

heterogeneity statistics are determined in Table 4. It shows

the prediction interval of future technical-efficiency studies

along with their “between study variance” and other

heterogeneity statistics. The computed test statistics show

as follows:

3.1.2.1 The Q-test for heterogeneity

The anticipated value of Q would be equal to the degrees of

freedom (the number of studies minus 1) if the genuine effect

sizes of all studies were equal. The result in Table 4 shows that

TABLE 2 The meta-regression model’s moderator variables’ summary statistics.

Moderating factors Observation Mean SD. Min Max

MTE 31 0.7162161 0.0951085 0.48 0.858

Sample size 31 411.4194 525.3804 68 2017

Publication status 31 0.6774194 0.475191 0 1

No. variables 31 11.45161 2.69370 5 19

Method 31 0.9032260 0.3005372 0 1

Range 31 0.7056360 0.1504230 0.31 0.92

Tigray_Dummy 31 0.0322560 0.1796053 0 1

Amhara_Dummy 31 0.2580645 0.4448027 0 1

Oromia_Dummy 31 0.3870968 0.4951376 0 1

SNNPR_Dummy 31 0.0967742 0.3005372 0 1

National_Dummy 31 0.2258065 0.4250237 0 1

Dummy_2010s 31 0.7419355 0.4448027 0 1

Dummy_2020s 31 0.2258065 0.4448027 0 1

TABLE 3 E�ect size estimated based subgroups as a unit of analysis.

Model 95% confidence interval and e�ect size

Num of studies Point-estimate Std-error Variance Lower-limit Upper-limit Z-value p-value

Fixed 31 0.760 0.001 0.00 0.759 0.761 1196.076 0.00

Random 31 0.716 0.019 0.00 0.679 0.753 37.693 0.00
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TABLE 4 Prediction interval of MTE e�ect-size of future studies.

Prediction-interval Between-study Other statistics of heterogeneity

Lower-limit Upper-limit Tau TauSq. Q-value Df (Q) p-value I-squared

Random 0.498 0.934 0.105 0.011 23,072.9 30 0.001 100 %

Fixed 23,072.9 30 0.000 99.87

FIGURE 2

The funnel plot (precision of studies vs. mean), stratified by publication type for the mean technical e�cacy of the sampled research. The majority of

the research, both published and unpublished, are evenly distributed across the right and left sides of the grid line.

the Q-value is 23,072.88 with 30 df and a p-value < 0.001. We

can reject the null hypothesis that the true effect size is the

same across all of these trials using a criteria alpha of 0.100.

Hence, the fact that the effect magnitude varies among studies

is supported by empirical data in this circumstance. Researchers

occasionally believe that the Q-statistic or the associated p-value

provide information on the degree of variation in the effects.

This is incorrect. Only the “Is there any variation in effects?”

question is addressed by the Q-value and p-value. In most cases,

the key concern is, “How much does the effect size vary?”

The prediction interval addresses this query, which could be

covered later.

3.1.2.2 The “I-squared” statistic

Many individuals believe that I-squared represents how much

the “effect size” varies among studies. The 100% I-squared

statistic indicates that some 100% of the variance in observed

effects actually represents variance in true effects as opposed

to sampling error. The prediction interval, which is described

below, is the statistic that indicates how widely the effect

size fluctuates.

3.1.2.3 Tau-squared and tau

The variation of actual effect sizes, tau-squared, is 0.011 in raw

units. Tau, the true effect size standard deviation, is 0.105 in raw

units. Therefore, the study further revealed that both published and

unpublished researches effect size variation is very low and close to

the actual effect size.

3.1.2.4 Prediction interval (future studies)

The assumption that the effects are normally distributed

around the mean is one of several that affect the prediction

interval’s accuracy. Therefore, it would be crucial to determine

whether there are truly observable effects that support this
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FIGURE 3

The funnel plot (standard error vs. mean) stratified by publication type for the mean technical e�cacy of the sampled research. The researches are

evenly distributed across the right and left sides of the grid line.

conclusion if the prediction interval includes effects that suggest

an intervention is hazardous (DerSimonian and Laird, 1986;

Higgins and Thompson, 2002; Higgins et al., 2003; Higgins, 2008;

IntHout et al., 2016; Borenstein et al., 2017; Higgins and Thomas,

2019; Borenstein, 2020). We could determine that the prediction

interval is between 0.498 and 0.934 if we assume that the true-

effects are normally distributed (in raw units). And the true

effect size in 95% of all comparable populations falls within this

interval. The interval could be misleading, though, if our estimates

of the mean, standard deviation, and/or effects don’t follow a

“normal distribution.”

3.2 Meta-regression analysis

We have to investigate the publication bias and heterogeneity

issues using a funnel plot, regression model, and forest plot before

applying the meta-regression model.

3.2.1 Exploring publication bias
The publication bias is shown either visually using

the funnel plot, the Egger test, or the Begg and

mazumdar rank correlation test. In addition, the “Trim

and Fill” and classic fail-safe N test estimation tests are

given below.

3.2.1.1 Funnel plot test result

Figures 2, 3 show the funnel plot for the mean technical

efficiencies of the sampled research, stratified by publication type

for both standard error and precision. Without publication bias,

we would anticipate a symmetrical distribution of the studies

around the aggregate effect size. The bottom of the plot, however,

should show a higher concentration of studies on one side of

the mean (the vertical grid line) than the other if bias exists.

This would be in line with the reality that smaller studies (placed

at the bottom) are more “likely” to be published if they have

“larger than” the “average effects,” increasing their likelihood of

satisfying the need for statistical significance. Figures 2, 3 shown

below are found to be distributed symmetrically about the total

effect size. Further, the majority of the studies, both published and

unpublished, on the right and left sides are evenly distributed. This

revealed that the study has not found any publication bias. Further,

various diagnostic tests are also performed to quantify or augment

this display.

3.2.1.1.1 Classic “fail-safe N” test

The outcome of the classic “fail-safe N” test is displayed in

Table 5. Data from 31 papers were used in this analysis, which

resulted in a z-value of 843.87609 and a 2-tailed p-value of 0.00000.

The fail-safe-N value is 5,746,727.0. This implies that for the total

two-tailed p-value to exceed 0.050, we should need to find and add

5,746,727 “null” studies. To put it another way, the effect would

have to be eliminated if there were 185,378.3 missing studies for
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TABLE 5 Classic “fail safe N” test result.

Observation Z-value p-value (2-tailed) Fail safe N-value Missing studies

31 843.87609 0.00000 5,746,727 185,378.3

TABLE 6 Begg and Mazumdar “rank-correlation” test.

Kendall’s S statistics (P–Q) −22.000

Without continuity correction, Kendall’s tau

Tau −0.04741

Z-value for tau 0.37392

p-value (1-tailed) 0.35423

p-value (2-tailed) 0.70846

Continuity correction, Kendall’s tau

Tau −0.04526

Z-value for tau 0.35692

p-value (1-tailed) 0.36057

p-value (2-tailed) 0.72115

every study that was seen. A 31-study meta-analysis demonstrating

that one should not be concerned that the entire observed effect

size is an artifact of a bias to modify the mean effect size, which

is implausible.

3.2.1.1.2 Begg and Mazumdar’s “rank correlation” test

The results of the Begg and Mazumdar “rank correlation”

test are displayed in Table 6. Although a substantial association

raises the possibility of bias, it does not specifically address its

effects. A non-significant association, on the other hand, may

not be indicative of bias because of poor statistical power. In

this instance, the one-tailed p-value (recommended) is 0.36057,

while the two-tailed p-value (based on continuity-corrected normal

approximation) is 0.72115. Kendall’s tau b (adjusted for ties, if any)

is −0.04526. Generally speaking, the test result can also show that

the study was free of publication bias.

3.2.1.1.3 Egger’s test of the intercept

Regression of the Egger test according to Table 7’s results: the

intercept (B0) is −12.19777 with a 95% confidence interval of

(−26.68053, 2.28499), t = 1.7255, and df = 29. The recommended

one-tailed p-value is 0.04781, while the two-tailed p-value is

0.09562. Egger’s test of the intercept favors the informal test result

and fails to reject the hypothesis of zero intercepts indicating no

publication bias. In light of the fact that the problem is not present

in this research, the result further shows that the mean and effect

size would not be adjusted for publication bias.

3.2.1.1.4 Duval and Tweedie’s “Trim and Fill”

Based on a random effects model, the program searches solely

for studies that are absent on the left side of the mean effect.

The result suggests that four research exists according to these

variables estimate. The fixed effect model pooled studies are shown

in Table 8, with a 95% confidence interval and point estimate of

0.76131 and (0.75881, 0.76131) respectively. The imputed point

TABLE 7 Results of the Egger’s regression test.

Intercept −12.19777

Standard-error 7.08124

95% lower-limit (2-tailed) −26.68053

95% upper limit (2-tailed) 2.28499

T-value 1.72255

Df 29.0000

p-value (1-tailed) 0.04781

p-value (2-tailed) 0.09562

estimate using Trim and Fill is 0.69131 (0.69033, 0.69229). The

pooled studies’ point estimate and 95% confidence interval for the

random-effects model are 0.71615 (0.67891, 0.75338). The imputed

point estimate using Trim and Fill is 0.69933 (0.65792, 0.74075).

Additionally, as our model is a random effect model, the test

confirms that the mean effect size is equal to the MTE effect size

of the outcome. As a result, we can draw the conclusion that

the papers chosen for the meta-regression analysis can be trusted

to accurately represent the distribution of technical efficiency in

Ethiopian agriculture for further study.

3.2.2 Detecting heterogeneity among studies
The random effect meta-analysis estimate in Figure 4 shows the

forest plot for the mean technical efficiency for each study by kind

of publication, i.e., journal (=1) or thesis (=0). The area of each

square in the plots corresponds to the study’s weight in the meta-

analysis and represents the mean technical efficiency evaluated in

each of the 31 observations. According to Figure 4, research that has

been published in journals has an average mean technical efficiency

that is lower than studies that have not been published.

Additionally, the “forest plot” shows that studies that have not

yet been published in journals are less heterogeneous (based on

the square distribution), while research that has been published in

journals is more heterogeneous. Due to the heterogeneity of the

published studies, the overall meta-analysis average mean technical

efficiency estimate is significantly diverse (pooled MTE = 72.6%).

Furthermore, Figure 5 shows that, with a 95% confidence interval

between 0.68 and 0.75, the mean technical efficiency effect size

is 0.72. This further demonstrates that in 95% of all comparable

groups, true effect size lies within the interval of 0.50 to 0.93.

3.3 Meta-regression analysis: moderator
analysis

Meta-regression in this section answers possible factors for

variations in effect sizes among studies. The sample papers were

assessed over a 12-year period (2011–2022). The MRA in Table 9 is

based on the random effect model. The regression result in Table 9
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TABLE 8 Trim and Fill test result.

Observation Model Mean, e�ect-size (imputed) Confidence interval: 95% (imputed values)

Lower-limit Upper-limit

31 Fixed effect 0.69131 0.69033 0.69229

31 Random Effect 0.69933 0.65792 0.74075

FIGURE 4

The forest plot for the mean technical e�ciency for each study by kind of publication, i.e., journal (=1) or thesis (=0).

displays that the 31 mean technical efficiency studies included in

the analysis have shown different efficiency scores because they

differ in sample size, methods employed, publication status, range,

and location of the study. The following is a summary of the main

conclusions concerning the variables influencing the variations in

efficiency ratings of families producing wheat in Ethiopia from

earlier studies.

According to the estimates, the result of meta-regression shows

that study characteristics such as methods employed, publication

status, range of the efficiency scores, location of the study, and

sample size significantly affect the variation in effect size among

the sample studies at a 10 % significant level. Implying that, other

things remaining constant, a 1 % change in these regressors leads

to a 10.88%, 6.74%, 21.22%, 0.01% change in the MTE scores

across studies in Ethiopia respectively. In addition, the MTE score

in studies is also affected by the location in which the study

is conducted.

3.3.1 The method employed
According to the meta-regression estimates, the parameter

estimates of models using stochastic frontiers are positive and

significant and have different technical efficiency scores than

deterministic models. This outcome is in line with a priori
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FIGURE 5

The true e�ect size distribution of all the sampled studies and their e�ect size.

predictions that deterministic models have higher inefficiency

scores than stochastic frontiers.

In addition, empirical research by Ekanayake and Jayasuriya

(1987) revealed that the bias in deterministic techniques is

unknown and tends to exaggerate the level of technical inefficiency

on the whole. Accordingly, these tests demonstrate that the chosen

frontier studies that were used in the Meta-regression analysis

can be trusted to accurately represent the distribution of technical

efficiency in Ethiopian agriculture for further study.

3.3.2 Publication status of a study
Themean TE scores across trials are negatively and significantly

impacted by journal-publication status, implying that the mean

technical efficiency of studies published in a journal was found with

lower MTE scores than those unpublished in a journal (Thesis)

in Ethiopia. This result is in line with the findings of Tesfaye and

Tadele (2019) and in contrast with the finding of Ogundari (2014).

3.3.3 Area of the research
Location effect or “area of the study,” the overall effect of

all regions (Tigray, Amhara, Oromia, SNNPR, Ethiopia) with a

combined p-value of 0.0007 (Q = 19.41, df = 4) is significant

and different across regions. The study is also in line with Tesfaye

and Tadele (2019). The empirical results also show that the

mean efficiency score in the Tigray region is the lowest, followed

by SNNPR, Amhara, and Oromia. This shows that systematic

variation in the reported “mean efficiency” estimates based on

particular attributes in the study is largely caused by geographical

differences, which may be significant in some cases.

3.3.4 Range
The “econometric result” shown in Table 9 also reveals that the

range of the mean “technical efficiency” scores significantly affects

MTE estimates across studies. This study is in line with Ogundari

and So (2009), Tekalign (2021).

3.3.5 Sample size
The meta-regression results also confirm that the number

of observations being examined in each study affects the mean

efficiency estimate across studies: the average mean technical

efficiency score decreases as more observations are included.

The likelihood that the new households were inefficient is

greater than the probability that they were efficient as the

number of observations rises. As a result, the “mean efficiency”

which is computed by dividing the total number of households

by the average efficiency scores of all wheat growers will

probably decline. This research supports Tesfaye and Tadele’s

(2019) findings.

However, the number of variables used in the studies, and the

year of the study conducted have insignificant impacts on the mean

technical efficiency of studies in Ethiopia. In the years to come,

when more cutting-edge studies become available, we propose that

additional studies on Ethiopia’s agriculture sector are important

and may add to that discussion.
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TABLE 9 Meta-regression analysis result.

Set Covariate Coe�cient Standard-error 95% lower 95% upper Z-value 2-sided, p-value VIF

Intercept −2.1569 8.2187 −18.2653 13.9515 −0.26 0.7930 799,966.3

Study year 0.0014 0.0041 −0.0066 0.0094 0.35 0.7270 1.491

No variables 0.0070 0.0045 −0.0019 0.0158 1.54 0.1246 1.720

Publication status −0.0674 0.0229 −0.1123 −0.0225 −2.94 0.0033 1.357

Method 0.1088 0.0364 0.0373 0.1802 2.99 0.0028 1.352

Range −0.2122 0.0902 −0.3890 −0.0354 −2.35 0.0187 2.141

Tigray_ (1) −0.0741 0.0568 −0.1854 0.0373 −1.30 0.1924 1.212

Amhara_ (2) 0.0540 0.0279 −0.0007 0.1087 1.94 0.0528 1.734

Oromia_ (3) – – – – – – –

SNNPR_ (4) −0.0038 0.0361 −0.0745 0.0669 −0.11 0.9155 1.318

Ethiopia_ (5) 0.1259 0.0377 0.0521 0.1998 3.34 0.0008 3.015

Sample size −0.0001 0.0000 −0.0001 0.0000 −1.80 0.0725 2.551

Dummy_2010s – – – – – – –

Dummy_2020s −0.0132 0.0262 −0.0645 0.0381 −0.50 0.6140 1.566

Statistics for the Meta-regression model (Random-effect)

Simultaneous testing that all coefficients (apart from the intercept) in the model are zero

Q= 71.20, df=11, p= 0.0000

The goodness-of-fit: verify that the variance that cannot be explained is zero.

Tau2 = 0.0025, Tau= 0.0499, I2 = 99.87%, q=2575.82, df= 19, p= 0.0000

Total, between-study-variance (intercept only)

Tau2 = 0.0110, Tau= 0.1050, I2 = 99.87%, Q= 23072, df= 30, p= 0.0000

the percentage of total between-study variance that can be explained by random effect model 1

R2-analog= 0.77
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4 Conclusion

This review epitomizes the first endeavor to use a meta-

analysis and a systematic review to scrutinize the mean technical

efficiency of wheat farming in Ethiopian agriculture. Between

2011 and 2022, 31 studies utilizing farm- and household-level

data from Ethiopia were assessed. Using random-effect estimation

methods, the mean effect size is 71.6% and the farm-level

MTE scores from all the research analyzed to have a 95%

confidence interval of 67.9%−75.3%. It implies that there is still

hope for boosting Ethiopia’s wheat farming productivity. The

results further indicate that, with the same level of input use,

Ethiopian agricultural farming productivity still has room to

rise by 28.4%. Therefore, increasing the technical efficiency of

households should be a key priority on nations’ national agendas

in order to comprehend the nutritional demands of high-risk

groups in Ethiopia. The findings also reveal that, at the 10%

level of significance, study attributes such as the methods used,

publication status, range of efficiency scores, study location, and

sample size have a substantial impact on the variation in effect

size among the sample studies in Ethiopia. The results also urge

academics and researchers to be observant in order to pinpoint

study-specific characteristics that are crucial for duplicating farm-

level efficacy. Therefore, as it is systematically reviewed in this

study, the researchers should take into account additional factors

that have an impact on the productivity of the agricultural

sector and agricultural efficiency, such as labor, fertilizer cost,

cooperative membership, access to credit, size of cultivated land,

access to machinery, extension service access, educational level,

agricultural farm size, and family size. From a policy point of

view, more precise TE estimates of wheat yield are essential for

directing policy choices and supporting the newly announced

economic development plan (2021–2030), a 10-year strategy, where

agriculture is the top priority. With an ambitious strategy to

produce enough wheat for everyone, end imports, and make a

commitment to start selling wheat to nearby countries, among

other things.
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