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Vermicompost and zeolite
improve yield, nutrient uptake,
essential and fixed oil production,
and composition of Nigella
sativa L.
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Ali Mokhatssi-Bidgoli2

1Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj,

Iran, 2Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran

The exogenous application of organic and natural inputs is a key strategy for

producing healthy and high-quality crops in sustainable agricultural systems.

Black cumin (Nigella sativa L.) is a highly popular plant used worldwide in the

medical and food industries. According to the authors’ knowledge, no research

has been published to examine the e�ects of zeolite and vermicompost on

yield components, nitrogen (N), phosphorous (P), and potassium (K) contents

in seeds, essential and fixed oil contents, or the composition of black cumin in

the organic agricultural system. In a semi-arid area of Iran in 2017 and 2018,

an experiment with a full factorial layout was conducted using a randomized

complete block design with three replications. The experimental treatments

included four vermicompost rates (0, 2, 4, and 6 tons ha−1) and four zeolite

rates (0, 3, 6, and 9 tons ha−1). There were linear responses between either

vermicompost or zeolite application rates and the majority of the attributes

studied. The integrated treatment of 6 tons of vermicompost and 9 tons of zeolite

ha−1 produced the maximum seed and biological yields (466.2 and 3716.7 kg

ha−1, respectively). The utilization of 6 tons of vermicompost ha−1 increased the

N, P, and K contents of seed by 13.5%, 10.8%, and 14.1%, respectively, compared

with the control. Seed essential oil content was enhanced by 24.1% in plots treated

with 9 tons of zeolite ha−1 compared to the untreated control. The use of 6 tons of

vermicompost ha−1 resulted in higher production of unsaturated fatty acids such

as linoleic (53.3%), oleic (25.36%), and linolenic acid (0.6%) in oil. Overall, both the

quantity and quality of black cumin improved when vermicompost and zeolite

were used for 2 consecutive years. This showed the agronomic potential of both

amendments in promising and environmentally friendly agricultural systems.

KEYWORDS
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1. Introduction

In the 21st century, environmental degradation is one of the most critical agricultural

issues. Soil organic matter decrement is a key facet of soil degradation, such as loss of

soil fertility and capacity to produce crops (Karami et al., 2023). The arid and semi-arid

agricultural soils do not have enough organic matter, cannot hold enough water, and

are getting worse (Guo et al., 2019). The intensive use of synthetic inorganic inputs
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such as chemical fertilizers has resulted in soil organic matter

depletion, groundwater contamination, air pollution, and

production quality reductions in the regions (Hernandez et al.,

2015; Zambon et al., 2017). Hence, sustainable strategies, such

as organic fertilizers and natural inputs, are becoming more

important to enhance soil organic matter and plant yield (Yang

et al., 2013; Vafadar-Yengeje et al., 2019). Exogenous application

of vermicompost and zeolite in organic systems was thought

to be an ecological and environmentally friendly strategy for

producing high-quality plant products and increasing yield

stability (Hosseinzadeh et al., 2021).

The use of organic fertilizers such as vermicompost is a key

part of organic systems. Vermicompost is a great soil amendment

and a good source of nutrients for plants, especially nitrogen,

phosphorus, potassium, calcium, and magnesium during the

growing season (Arancon et al., 2005; Hait and Tare, 2011;

Yang et al., 2013). Vermicompost not only increases soil organic

matter but also decreases environmental pollution in terms of

recycling waste into valuable organic fertilizer (Nagavallemma et al.,

2006).Moreover, vermicompost improves soil respiration, biomass,

and soil organism abundance (Xu et al., 2016). The favorable

effects of vermicompost application on the yield and biochemical

profile of Dracocephalum moldavica L., Moringa oleifera Lam.,

and nutrient uptake of Ocimum basilicum L. have been previously

documented (Vafadar-Yengeje et al., 2019; Guzman-Albores et al.,

2020; Celikcan et al., 2021).

Zeolites are a natural substance that can help improve soil,

water storage, and the availability of soil nutrients. They do this

by increasing the soil’s cation exchange capacity without changing

its structure much and by reducing nitrogen leaching out of the

soil (Leggo, 2000; Powlson et al., 2008; Tsintskaladze et al., 2016).

Nitrogen leaching losses in agroecosystems enhance the potential

for human health impacts from contaminated drinking water

sources as well as environmental degradation such as water body

eutrophication (Diaz and Rosenberg, 2008). Hence, research on

agricultural systems leading to management practices that improve

nitrogen use efficiency (NUE) and reduce N losses is vital. When

zeolite was incorporated into the soil, plants such as Zea mays L.

(Ippolito et al., 2011), Trigonella foenum-graecum L. (Baghbani-

Arani et al., 2017), and Allium cepa L. (Bybordi et al., 2017) would

induce their growth andmetabolism. Therefore, zeolite application,

due to its properties such as water storage and slow nutrient release,

could be an appropriate input in the current global water crisis,

especially in Iran.

Black cumin (Nigella sativa L.) is an annual herb that is part

of the Ranunculaceae family. It is currently used a lot in the

food and medicine industries (Hosseini et al., 2018; Shahbazi,

2019). This crop is farmed mostly in dry and semi-arid areas of

the Middle East, Western Asia, the Mediterranean, and central

Europe (Randhawa and Alghamdi, 2011; Ozer et al., 2020). In

Iran, black cumin is cultivated in various areas and is widely used

in people’s diets and traditional medicine (Rezaei-Chiyaneh et al.,

2018). Essential and fixed oil, protein, saponin, and alkaloid are

all found in black cumin seeds. The fixed oil has an abundance of

unsaturated fatty acids, including linoleic and oleic acids. This plant

is antiviral, antibacterial, antipyretic, carminative, and relaxing to

the muscles (Ali and Blunden, 2003; Majdalawieh et al., 2010).

The demand for Nigella sativa L. oil is growing worldwide (Asif

and Ansari, 2019). Furthermore, many food and pharmaceutical

firms employ components generated from plant farming methods

that are organic (Fonseca-Santos et al., 2015). Hence, producing

high-quality Nigella sativa L. and improving its oil in sustainable

agricultural systems are of great importance.

Research studies have shown that vermicompost and zeolite

can have a positive impact on plant growth in various species

(Bybordi et al., 2017; Celikcan et al., 2021; HabibiSharafabad et al.,

2022). However, there is limited information available regarding

their effects on Nigella sativa L., including any potential interaction

between the two amendments. With the negative impacts of

chemical fertilizers and the increasing importance of sustainable

agricultural systems, this study aimed to assess if these organic

inputs can provide a natural and effective alternative for increasing

Nigella sativa L. yield and improving its nutrient content and

essential and fixed oils. The objective was also to confirm the

potential interaction of vermicompost and zeolite on the agronomic

performance and fatty acid composition of Nigella sativa L. while

reducing the cost and toxicity of chemical fertilizers. According to

the scientific hypothesis, exogenous application of vermicompost

and zeolite at various levels can improve both the quantitative and

qualitative traits of Nigella sativa L., offering a useful strategy for

sustainable production in soils where soil organic matter and water

availability are the main factors limiting crop growth.

2. Material and methods

2.1. Study site conditions and experimental
design

A 2-year experiment was carried out from April 2017 to

September 2018 at the Research Field (latitude of 35◦ 19′ N,

longitude 47◦ 18′ E, and 1865m above sea level), University of

Kurdistan, Sanandaj, Iran. The long-term average temperature is

12.1◦C, and the annual precipitation is 311.6mm for the area. The

monthly summary of weather data recorded each year is presented

in Figure 1. Before planting, soil samples from a depth of 30 cm

were taken at the site of the experiment to find out about its physical

and chemical properties (Table 1). The soil was loamy in texture.

The research was set up as a factorial experiment using

a randomized complete block design with three replications.

Treatment combinations included four vermicompost rates (V0 =

0, V2 = 2, V4 = 4, and V6 = 6 tons ha−1) and four zeolite rates

(Z0 = 0, Z3 = 3, Z6 = 6, and Z9 = 9 tons ha−1). Each plot’s

vermicompost and zeolite were added into the soil before planting.

Table 1 shows the chemical properties of vermicompost. The zeolite

(clinoptilolite type) contained 0.01% P2O5, 0.03% TiO2, 0.04%

MnO, 1.5% Fe2O3, 65% SiO2, 12.02% Al2O3, 3.0% K2O, 1.08%

Na2O, 0.1% MgO, and 12.3% CaO. The black cumin seeds were

sown on 26th April 2017 and 27th April 2018. Each experimental

plot was comprised of six rows of 3m each, spaced 30 cm apart, with

a 2-m unseeded alley. Seeds (PakanBazr Co. Isfahan, Iran) were

manually sown to a 0.5–1 cm depth at approximately 5 cm intervals.

After seed sowing, irrigation was carried out immediately. The

field was irrigated once a week using drip irrigation (Mirabesfahan

Company, Iran). Weeds were removed by hand as required. In
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FIGURE 1

Monthly mean temperature (◦C) and total precipitation (mm) in 2017 and 2018 growing seasons in the experimental area.

TABLE 1 Chemical characteristics of the soil of the experimental field and vermicompost used in the experiment.

pH EC (dS
m−1)

Total
N (%)

P (%) K (%) Mg (%) Na (%) Ca (%) Fe
(mg

kg−1)

Zn
(mg
kg-1)

Cu
(mg

kg−1)

Mn
(mg

kg−1)

Soil 7.17 0.36 0.015 0.014 0.021 0.048 0.023 0.029 8.1 0.15 - -

Vermicompost 7.9 1.1 1.34 1.17 1.52 0.11 1.15 2.27 871.9 98.2 21.6 354.6

accordance with organic management practices, plants did not

receive any chemical inputs such as fertilizers and herbicides.

2.2. Determining black cumin properties
and harvesting

2.2.1. Morphological traits, yield components,
and biological and seed yield

At the mature stage, five plants were chosen at random from

each plot to measure the morphological variables (plant height and

branch number) and yield components (1,000 seed weight, seed

number per capsule, and capsule number per plant). In the center

rows of each plot, 1 m2 of area was harvested at the end of each

growing season on 12th September 2017 and 14th September 2018,

respectively. To determine biological yield (all above-ground parts

of plants), black cumin samples were dried in the shade and cool

conditions for 2 weeks after harvest. Then, the seeds were separated

and weighted to calculate the seed yield.

2.2.2. Nitrogen, phosphorus, and potassium seed
contents

The samples were digested with H2SO4-H2O2 and then

tested for total N content using the kjeldahl technique (Bremner,

1996), P content using the photometric method (yellow vanadium

molybdate), and K content using a flame photometer (Jones et al.,

1991).

2.2.3. Seed essential oil content and yield
The essential oil from the samples (15 g of powdered seeds from

each sample) was extracted for 3 h in a Clevenger water distillation

device using the specified process (Analytical Methods Committee,

1988). Essential oil production was computed using seed yield and

essential oil content (Amani Machiani et al., 2018).

2.2.4. Seed fixed oil content and yield
To extract the fixed oil samples (5 g of powdered seeds from

each sample), a Soxhlet extraction with n-hexane solvent was used.

The extracted oil was isolated via rotary liquid solvent evaporation

(Leal et al., 2009). The recovered oil was collected, weighed, and

analyzed for its fatty acid profile. The fixed oil yield was calculated

by multiplying the seed yield by the fixed oil percentage in the seed

(Rezaei-Chiyaneh et al., 2020).

2.2.5. Fatty acid analysis
Metcalf et al. (1966) method was used to turn fatty acids into

their methyl esters (FAMEs), and FAMEs were evaluated using

gas chromatography (Model Agilent 7890A, GC system) with a

fused silica capillary column DBWAX (60m, 0.25 i.d.) and a flame

ionization detector (Wilmington, DE, USA). The oven temperature

was set to 5min at 170◦C, then 4min at 190◦C, then 15min at

190◦C. As a carrier gas, nitrogen was employed. The injector and

detector had temperatures of 260◦C and 220◦C, respectively. By
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TABLE 2 Analysis of variance (F value) and analysis of regression (F value of linear and quadratic models) of traits of Nigella sativa L. influenced by zeolite

(Z) and vermicompost rates (V).

Sources of variation Z V Z×V Z-linear Z-quadratic V-linear V-quadratic

Num DF 3 3 9 1 2 1 2

Den DF 3 3 9 94 93 94 93

Plant height 11.02∗ 19.78∗ 1.65ns 14.26∗∗ 7.06∗∗ 43.62∗∗ 21.61∗∗

Capsule number per plant 24.36∗ 56.46∗∗ 7.06∗∗ 25.86∗∗ 12.85∗∗ 57.95∗∗ 30.60∗∗

Seed number per capsule 1.03ns 1.04ns 0.99ns 0.19ns 0.09ns 0.75ns 0.37ns

Branch number per plant 66.07∗∗ 20.73∗ 1.27 ns 8.48∗∗ 4.23∗ 54.13∗∗ 27.65∗∗

1,000 seed weight 30.32∗∗ 28.30∗∗ 6.80∗∗ 11.43∗∗ 5.92∗∗ 160.21∗∗ 91.21∗∗

Seed yield 68.25∗∗ 762.24∗∗ 7.18∗∗ 9.31∗∗ 4.63 ns 363.51∗∗ 217.55∗∗

Biological yield 77.80∗∗ 273.61∗∗ 5.46∗∗ 5.79∗ 2.86ns 234.67∗∗ 166.62∗∗

Seed nitrogen content 17.79∗ 2351.32∗∗ 2.30 ns 13.53∗∗ 6.94∗∗ 178.82∗∗ 93.29∗∗

Seed phosphorus content 232.75∗∗ 228.48∗∗ 1.71ns 2.78ns 1.48ns 636.80∗∗ 320.58∗∗

Seed potassium content 20.40∗ 99.53∗∗ 1.36 ns 5.02∗ 2.55ns 374.78∗∗ 190.36∗∗

Seed essential oil content 70.77∗∗ 15.59∗ 1.15 ns 16.23∗∗ 8.03∗∗ 104.75∗∗ 52.06∗∗

Seed essential oil yield 318.41∗∗ 36.76∗∗ 1.28ns 15.56∗∗ 7.73∗∗ 222.48∗∗ 110.67∗∗

Seed fixed oil content 1151.28∗∗ 4672.70∗∗ 27.61∗∗ 14.18∗∗ 7.64∗∗ 284.53∗∗ 142.55∗∗

Seed fixed oil yield 216.73∗∗ 757.54∗∗ 21.96∗∗ 11.76∗∗ 5.82∗∗ 414.40∗∗ 205.02∗∗

Linolenic acid 11.02∗ 19.78∗ 1.65ns 14.26∗∗ 7.06∗∗ 43.62∗∗ 21.61∗∗

Linoleic acid 10.76∗ 19.65∗ 1.95 ns 17.53∗∗ 8.69∗∗ 33.55∗∗ 17.50∗∗

Oleic acid 7.96 ns 13.70∗ 1.21 ns 8.51∗∗ 5.46∗∗ 44.86∗∗ 23.58∗∗

Arachidic acid 0.95 ns 92.83∗∗ 1.07 ns 1.49 ns 0.75 ns 30.99∗∗ 16.07∗∗

Stearic acid 0.62 ns 1.00 ns 0.85 ns 0.01 ns 0.01 ns 0.17 ns 0.10 ns

Palmitic acid 13.70∗ 9.57∗ 0.81ns 5.77∗ 3.14∗ 47.58∗∗ 23.65∗∗

Myristic acid 120.02∗∗ 14.47∗ 1.08ns 16.26∗∗ 8.04∗∗ 102.76∗∗ 50.95∗∗

Ns, non-significant.
∗
α ≤ 0.05.

∗∗
α ≤ 0.01.

comparing their retention times to those of pure standards, the

FAMEs were discovered (Sigma-Aldrich, St. Louis, MO).

2.3. Statistical analysis

SAS v. 9.4 used the MIXED procedure with the type

3 method option to analyze data (SAS Institute, Cary, NC,

USA). The main impacts of vermicompost and zeolite rates,

as well as their two-way interactions, were all fixed effects.

Random effects were years, replicates × years, and years ×

vermicompost rates × zeolite rates. Using the PDIFF option

for least square means (LS-means), the means were compared.

When there were significant two-way interactions between

experimental components, the SLICE technique in SAS was

employed to examine them. A partitioned analysis of the LS-

means for an interaction may be carried out using the SLICE

statement, which offers a general mechanism for carrying out

such an analysis. To analyze the response of black cumin to

vermicompost and zeolite rates, linear and quadratic regression

analyses were conducted, and significant models (P ≤ 0.05)

were reported.

3. Results

3.1. Morphological traits and yield
components measurement

Zeolite and vermicompost had significant impacts on plant

height, number of capsules per plant, number of branches per plant,

and 1,000 seed weight (Table 2). Zeolite and vermicompost had a

strong two-way interaction for capsule number per plant and 1,000

seed weight (Table 2).

The tallest plants (54.0 and 52.5 cm) were observed for 6 (V6)

and 4 (V4) tons of vermicompost ha−1, respectively. By contrast,

the shortest plants (49.6 cm) were observed in the control (V0)

(Figure 2). Plant height increased significantly as vermicompost

rates increased. The application of each ton of vermicompost

ha−1 increased plant height by 7.5mm (Figure 2). In addition,

using the zeolite increased plant height by 3.2mm for each ton
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ha−1 (Figure 2). The tallest (50.3 cm) and shortest plants (53.2 cm)

belonged to the 9 (Z9) and 0 (Z0) tons of zeolite ha−1, respectively

(Figure 2).

The interaction of vermicompost and zeolite on the number

of capsules per plant was significant (Table 2). Figure 3 shows

these interactions by slicing in different rates of vermicompost

and zeolite. The first chart of Figure 3A demonstrated that the

lowest number of capsules per plant (4.7) belonged to the treatment

without vermicompost and zeolite (V0Z0). In this figure, the

number of capsules per plant for V2Z0, V4Z0, and V6Z0 was

5.9, 6.4, and 6.1, respectively. Furthermore, the maximum capsule

number per plant (6.4) was predicted with the application of

4.3 tons of vermicompost ha−1. The second chart showed that

the amounts of this trait for V0Z3, V2Z3, V4Z3, and V6Z3

were 5.4, 6.2, 6.8, and 7.4, respectively. Indeed, when 3 tons

of zeolite ha−1 was applied, the value of this trait significantly

increased by 0.3 with each ton of vermicompost ha−1 (Figure 3A).

Based on the results of the third chart, the capsule numbers

per plant for V0Z6, V2Z6, V4Z6, and V6Z6 were 5.4, 6.2, 6.8,

and 7.4, respectively. The maximum capsule number per plant

(7.6) was predicted using 5.7 tons of vermicompost ha−1 when

combined with 6 tons of zeolite ha−1 (Figure 3A). The fourth

chart showed that the highest capsule number per plant (8.9)

was observed in the integrated treatment V6Z9 with more slope

(0.49) than those of other zeolite rates (Figure 3A). Another

slicing (Figure 3B) showed that the capsule numbers per plant

for V0Z0, V0Z3, V0Z6, and V0Z9 were 4.7, 5.4, 5.6, and 5.9,

respectively (Figure 3B). The amounts of this trait for V6Z0, V6Z3,

V6Z6, and V6Z9 were 6.1, 7.4, 7.5, and 8.9, respectively. Indeed,

the capsule number per plant increased by 0.1, 0.1, 0.2, and

0.3 with the application of each ton of zeolite ha−1 combined

with 0, 2, 4, and 6 tons of vermicompost ha−1, respectively

(Figure 3B).

Table 2 shows that the number of seeds per capsule (66.4–82.0)

did not change significantly among vermicompost and zeolite rates.

The lowest (4.0) and highest (5.8) branch numbers per plant

were observed in 0 (V0) and 6 (V6) tons of vermicompost

ha−1, respectively (Figure 4). There was no significant difference

between V4 and V6 treatments (Figure 4). When compared to

the control, applying 6, 4, and 2 tons of vermicompost ha−1

significantly increased branch number per plant by 44.2%, 34.2%,

and 19.4%, respectively (Figure 4). In addition, the values for this

trait increased by 17.9%, 11.2%, and 4.3%, compared with the

control, when plots were treated with 3, 6, and 9 tons of zeolite ha−1

(Figure 4).

Figure 5A shows that the 1,000 seed weights for V0Z0, V2Z0,

V4Z0, and V6Z0 were 2.05, 2.23, 2.27, and 2.29 g, respectively.

Indeed, for 0 ton zeolite ha−1, the highest 1,000 seed weight was

predicted with the application of 5 tons of vermicompost ha−1

(Figure 5A). The second, third, and fourth charts of Figure 5A

showed that at different rates of zeolite (3, 6, and 9 tons ha−1),

the highest values of this trait were observed with the application

of 6 tons of vermicompost ha−1. Thus, these values were 2.31,

2.32, and 2.34 for the integrated treatments of V6Z3, V6Z6,

and V6Z9, respectively (Figure 5A). In another slicing, Figure 5B,

the fourth chart demonstrated that the 1,000 seed weights were

2.29, 2.31, 2.32, and 2,34 g for V6Z0, V6Z3, V6Z6, and V6Z9,

respectively. There was no significant difference between V6Z3,

FIGURE 2

Main e�ects of vermicompost and zeolite rates on plant height of

Nigella sativa L. The di�erent letters show significantly di�erent at

the level of 0.05. Significant linear relationships are given.

V6Z6, and V6Z9. Indeed, for each ton added increment of

zeolite in combination with 0, 2, 4, and 6 tons vermicompost

ha−1, 1,000 seed weight increased by 16.9, 2.7, 4.2, and 5.5mg,

respectively.

3.2. Seed and biological yield

Biological and seed yields were affected by all treatments and

their interactions (Table 2). Seed yield significantly increased with

increasing vermicompost rates at all zeolite rates (Figure 6A).

Additionally, all the charts in Figure 6A showed that at different

rates of zeolite (0, 3, 6, and 9 tons ha−1), the highest seed yield

was observed with the application of 6 tons of vermicompost

ha−1. Thus, these values were 957.4, 968.5, 1006.4, and 1112.3 kg

ha−1 for the integrated treatments of V6Z0, V6Z3, V6Z6, and

V6Z9, respectively (Figure 5A). Overall, the treatment without

vermicompost and zeolite (V0Z0) and the integrated treatment

of 6 tons of vermicompost and 9 tons of zeolite ha−1 (V6Z9)

resulted in the lowest and highest seed yields (466.1 and

1112.3 kg ha−1), respectively (Figure 6A). Seed yields for each

ton of zeolite ha−1 in combination with 0, 2, 4, and 6 tons

of vermicompost ha−1 were increased by 25.5, 12.9, 6.8, and

16.8 kg ha−1, respectively (Figure 6B). The highest biological

yields of 3424, 3417, 3536, and 3717 kg ha−1 were predicted
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FIGURE 3

Interaction between vermicompost and zeolite rates on capsule number per plant of Nigella sativa L. (A) sliced by zeolite rates (0, 3, 6, 9 tons ha−1);

(B) sliced by vermicompost rates (0, 2, 4, 6 tons ha−1) from top to bottom, respectively). The di�erent letters show significantly di�erent at the level of

0.05. Significant linear and quadratic relationships are given.

with the application of 0, 3, 6, and 9 tons of zeolite ha−1 in

combination with 6 tons of vermicompost ha−1 (Figure 7A). The

lowest biological yield (1900.0 kg ha−1) belonged to the control

treatment (V0Z0). The biological yield increased linearly as the

zeolite rate increased in tandem with all vermicompost rates

(Figure 7B).
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FIGURE 4

Main e�ects of vermicompost and zeolite rates on branch number

per plant of Nigella sativa L. The di�erent letters show significantly

di�erent at the level of 0.05. Significant linear relationships are given.

3.3. Contents of nitrogen, phosphorus, and
potassium in seed

The analysis of variance showed that the N, P, and K contents

of seed were influenced by the main effects of vermicompost

and zeolite (Table 2). These contents increased by increasing both

zeolite and vermicompost rates (Table 3). The lowest (3.12%) and

highest (3.54%) seed nitrogen content belonged to 0 and 6 tons

of vermicompost ha−1, respectively. Also, the highest values of P

(0.68%) and K (1.73%) seed content were observed in V6. The

application of 6 tons of vermicompost ha−1 increased N, P, and

K seed contents by 13.5%, 10.8%, and 14.1%, respectively, when

compared with the control (Table 3). The highest seed contents of

N (3.43%), P (0.65%), and K (1.65%) were reached with 9 tons of

zeolite ha−1, with no significant difference from 6 tons of zeolite

ha−1 (Table 3).

3.4. Seed essential oil content and yield

The main effect of vermicompost and zeolite on the seed

essential oil content and yield was significant (Table 2). The

essential oil content and yield tended to be linearly related to

the application of vermicompost and zeolite (Figures 8, 9). The

highest seed essential oil content (0.25%) and yield (2.52 kg ha−1)

were observed in the highest rate of vermicompost (Figures 8, 9).

The application of 6 tons of vermicompost ha−1 enhanced seed

essential oil content by 16.0%, 28.5%, and 50.9%, respectively, when

compared with 4, 2, and 0 tons of vermicompost ha−1 (Figure 8).

Essential oil yield was increased by 251.5 g ha−1 for each ton of

vermicompost ha−1 applied (Figure 9). The application of 9 tons

of zeolite ha−1 significantly increased seed essential oil content by

8.2%, 14.4%, and 24.1%, respectively, when compared with 6, 3,

and 0 tons of zeolite ha−1 (Figure 8). The highest (2.1 kg ha−1) and

lowest (1.5 kg ha−1) seed essential oil yields were observed for 9 and

0 tons of zeolite ha−1, respectively (Figure 9).

3.5. Seed fixed oil content and yield

On seed fixed oil content and yield, the primary impacts of

zeolite and vermicompost and their interaction were significant

(Table 2). Seed fixed oil content and yield improved with increasing

vermicompost rates from 0 to 6 tons ha−1 in each of the four zeolite

rates (Figures 10A, 11A). The lowest (8.9%) and highest (17.9%)

seed fixed oil content belonged to V0Z0 and V6Z9, respectively

(Figure 10A). The highest seed fixed oil yield using 6 tons of

vermicompost ha−1 without zeolite (V6Z0) was 139.1 kg ha−1

(Figure 11A). In other zeolite rates, the highest seed fixed oil yield

belonged to the V6Z3 (114.6 kg ha−1), V6Z6 (135.9 kg ha−1), and

V6Z9 (200.2 kg ha−1), respectively (Figure 11A). Indeed, in these

zeolite rates, response to increments of each ton of vermicompost

ha−1 ranged from 14.1 to 18.7 kg of seed fixed oil yield ha−1

(Figure 11A). The other slicing showed that in all vermicompost

rates except for 6 tons ha−1, there were no significant differences

between the integrated treatment of vermicompost with 9 and 6

tons of zeolite ha−1 (Figure 10B). With the application of 6 tons

of vermicompost ha−1, there was a significant difference among

all zeolite rates (Figure 10B). Applying 9 tons of zeolite and 6 tons

of vermicompost ha−1 (V6Z9) significantly increased seed fixed

oil content by 15.6%, 34.0%, and 44.0% compared with control,

respectively (Figure 10B). The lowest (83.0 kg ha−1) and highest

(200.2 kg ha−1) seed fixed oil content belonged to V0Z0 and

V6Z9, respectively (Figure 11B). Indeed, each ton of zeolite ha−1

combined with 0, 2, 4, and 6 tons of vermicompost ha−1 increased

seed fixed oil yield by 4.5, 2.5, 2.0, and 6.9 kg ha−1, respectively

(Figure 11B).

3.6. Fatty acid compositions

The analysis of variance showed that vermicompost

significantly influenced linolenic, linoleic, oleic, arachidic,

palmitic, and myristic acids (Table 2). The effect of zeolite on all

fatty acids was significant except for oleic, arachidic, and stearic

acids (Table 2). The highest concentrations of linolenic (0.64%),

linoleic (53.33%), and oleic (25.14%) acids were found for 6

tons of vermicompost ha−1 (Table 3). There was no significant

difference between 4 and 6 tons of vermicompost ha−1 for

6 tons of vermicompost ha−1. The lowest concentrations of

linolenic (0.51%), linoleic (51.87%), and oleic (24.37%) acids

belonged to the control treatment. Applying 9 tons of zeolite
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FIGURE 5

Interaction between vermicompost and zeolite rates on 1,000 seed weight of Nigella sativa L. (A) sliced by zeolite rates (0, 3, 6, 9 tons ha−1). (B) sliced

by vermicompost rates (0, 2, 4, 6 tons ha−1) from top to bottom, respectively). The di�erent letters show significantly di�erent at the level of 0.05.

Significant linear and quadratic relationships are given.

ha−1 increased linolenic and linoleic acids by 15.2% and 2.3%,

respectively, when compared to the control treatment. By

increasing vermicompost rates, arachidic, palmitic, and myristic

acids decreased. Using 9 tons of zeolite ha−1 significantly

decreased palmitic acid concentrations compared with the

other rates. The most myristic acid (0.34%) was found in 0 ton

of zeolite ha−1 and the least (0.23%) was found in 9 tons of

zeolite ha −1 (Table 3).
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FIGURE 6

Interaction between vermicompost and zeolite rates on seed yield of Nigella sativa L. (A) sliced by zeolite rates (0, 3, 6, 9 tons ha−1). (B) sliced by

vermicompost rates (0, 2, 4, 6 tons ha−1) from top to bottom, respectively). The di�erent letters show significantly di�erent at the level of 0.05.

Significant linear and quadratic relationships are given.

4. Discussion

This study provides novel evidence on the role of vermicompost

and zeolite in black cumin, for which experimental data are scarce

in the literature. Although there are many studies on the effect

of the mentioned treatments on different plants, generalization

is restricted, and consensus exists on the need to consider

specific interactions between vermicompost and zeolite on the
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FIGURE 7

Interaction between vermicompost and zeolite rates on biological yield of Nigella sativa L. (A) sliced by zeolite rates (0, 3, 6, 9 tons ha−1). (B) sliced by

vermicompost rates (0, 2, 4, 6 tons ha−1) from top to bottom, respectively). The di�erent letters show significantly di�erent at the level of 0.05.

Significant linear and quadratic relationships are given.

studied plants. Based on the results, plant height and branch

number of black cumin were higher in the plots treated with

vermicompost. The crucial significance of organic nitrogen in

boosting vegetative growth, cell divisions, and elongation may

provide an explanation (Celikcan et al., 2021). On the other

hand, vermicompost is an organic-rich source of macro- and

micro-nutrients, especially nitrogen, whichmay boost plant growth

and biomass by facilitating nutrient absorption over the growing

season according to plant requirements. It can be concluded that

vermicompost increases plant growth and biomass by absorbing
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and releasing nutrients. Indeed, vermicompost contains nutrients

in forms that are readily taken up by the plants, such as nitrates and

available phosphorus, soluble potassium, calcium, and magnesium.

In addition, vermicompost regulates the growth of nitrogen-

fixing microorganisms in the rhizosphere, which enhances N

availability by making biologically fixed N available through the

intimate mixing of ingested particles with soil (Wang et al.,

2017). Furthermore, vermicompost contains biologically active

substances such as plant growth regulators and a large number of

functionalmicroorganisms (Yang et al., 2013). This soil amendment

could improve soil structure, optimize the nutrient cycle to

improve food security, enhance moisture retention, improve soil

aeration and soil-plant relations, increase photosynthesis rate,

and accelerate the plant growth mechanism (Xu et al., 2016).

Additionally, vermicompost may improve the environment for

plant development by boosting the number and activity of soil

microorganisms (Arancon et al., 2005). It can be concluded that

by using vermicompost, the soil’s physiochemical and biological

traits and, consequently, crop growth can be improved. These

results are in agreement with Roy and Singh (2006), Rekha et al.

(2013), and Jami et al. (2021), who reported that vermicompost

increased plant height of Hordeum vulgare L., branch number of

Vigna mungo L. Hepper., and flower number of Crocus sativus L.,

respectively. Zeolite application increased plant height and branch

number of black cumin in the present study. Zeolite is able to

improve plant growth by increasing the long-term availability of

water and nutrients (Ippolito et al., 2011). Due to its porous

structure, zeolite can store water and develop humidity in the

rhizosphere horizontally (Treacy and Higgins, 2007). Utilizing

zeolite can increase vegetative growth due to selective absorption,

controlled release of nutrients, decreased nitrification rate, and

reduced nitrogen leaching (Leggo, 2000). The small molecular size

of the open-ringed structure can physically protect NH4+ ions

against microbial nitrification (Ippolito et al., 2011). So, it seems

that increasing nitrogen, phosphorus, and potassium uptake helped

black cumin grow taller and make more branches. In line with this

result, other studies showed that zeolite increased the growth of

Aleo vera L. (Hazrati et al., 2017) and Allium cepa L. (Bybordi et al.,

2017), with a significant role in retaining water and soil macro-

and micro-nutrients.

Based on the results, the interaction between vermicompost

and zeolite had a significant positive effect on seed and biological

yields. It can be said that the integrated treatments of vermicompost

and zeolite increase yield components (capsule number per plant

and 1000 seed weight) and morphological traits (plant height and

branch number), and as a result, seed and biological yield. Because

the integrated treatments had better canopy development, it is safe

to say that making nitrogen more available makes plants absorb

more sunlight, speed up photosynthesis, and produce more black

cumin yield. In addition, yield enhancement can be attributed

to an increase in soil microbial biomass after vermicompost

application due to more enzymes, hormones, or humate content

in the vermicompost (Wang et al., 2017; Celikcan et al., 2021). The

presence of chelating siderophores in vermicompost results in these

compounds chelating the minerals and consequently stabilizing

mineral nutrients in the soil (Nardi et al., 2016; Jami et al.,

2021). Furthermore, zeolite has high cation exchange capacity,

selective absorption, and structure stability over the long term.
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FIGURE 8

Main e�ects of vermicompost and zeolite rates on seed essential oil

content of Nigella sativa L. The di�erent letters show significantly

di�erent at the level of 0.05. Significant linear relationships are given.

Thus, zeolite improves vermicompost efficiency by enhancing

soil cation exchange capacity (Bybordi et al., 2017). Thus, the

utilization of vermicompost and zeolite improves soil physical

properties in the rhizosphere by maintaining soil moisture and

nutrients and indirectly enhancing crop productivity as a result.

These results correspond with the findings of Baghbani-Arani

et al. (2017), who reported that fenugreek yield was increased

by consuming vermicompost and zeolite. Furthermore, other

researchers reported the positive effect of vermicompost on the

yields ofOcimum basilicum L. (Anwar et al., 2005), Sorghum bicolor

L. Moench. (Kumar et al., 2005), and Zea mays L. (Liu et al.,

2019).

Vermicompost and zeolite had substantial impacts on seed N,

P, and K contents as well as yield and content of essential oil.

Vermicompost may promote root development by retaining more

water and nutrients in the soil, secreting more plant hormones, and

increasing the amount of inorganic material such as N, P, and K

that plants can absorb (Arancon et al., 2005). In addition, zeolite

has a vital role in the repair of soil cation exchange capacity in terms

of nitrogen leaching reduction and fertilizer availability increment

in the rhizosphere (Ippolito et al., 2011; Hazrati et al., 2017).

Hence, increasing vermicompost and zeolite rates of application

led to an enhancement in seed N, P, and K contents (Table 3).

The enhanced nutrients are used in the photosynthetic process

of the plant. This observation is also evident from the higher

transport of nitrogen to the shoots and grains and the subsequent

enhancement in biological and seed yield. Other studies have found

FIGURE 9

Main e�ects of vermicompost and zeolite rates on seed essential oil

yield of Nigella sativa L. The di�erent letters show significantly

di�erent at the level of 0.05. Significant linear relationships are given.

that vermicompost and zeolite increase the N content of Lavandula

angustifolia L. (HabibiSharafabad et al., 2022), the P content of

Vigna unguiculata L.Walp. (SailajaKumari and Ushakumari, 2002),

and the K content of Achillea millefolium L. (Harb and Mahmoud,

2009). In this study, vermicompost and zeolite increased essential

oil content. This may be attributed to the vital role of phosphorus

in secondary metabolite synthesis (Sailo and Bagyaraj, 2005).

Regarding the role of phosphorus in ATP and NADPH, it can

be said that phosphorus is an essential element to supply energy

for terpenoid compound synthesis. Increasing the availability of

N and P stimulates the biochemical processes to produce terpene

compounds of essential oil and accumulate secondary metabolites

in the plants, which is in line with our findings (Table 3). Higher

seed yield and seed essential oil content (Figures 6, 8) as a result

of vermicompost and zeolite treatments could explain the increase

in seed essential oil yield (Figure 9). Similarly, other researchers

reported that zeolite and vermicompost significantly increased the

essential oil content and yield of Thymus vulgaris L. (Zaghloul

et al., 2016), Ocimum basilicum L. (Anwar et al., 2005), Ocimum

basilicum L. (Celikcan et al., 2021), and Dracocephalum moldavica

L. (Vafadar-Yengeje et al., 2019).

The combination treatments of vermicompost and zeolite

in this research had the greatest seed fixed oil content and

yield (Figures 10, 11). This may be explained by the fact that

plants treated with vermicompost and zeolite got more water and

nutrients than plants not receiving organic inputs. This enhances

seed yield, growth, photosynthesis, and, consequently, fixed oil
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FIGURE 10

Interaction between vermicompost and zeolite rates on seed fixed oil content of Nigella sativa L. (A) sliced by zeolite rates (0, 3, 6, 9 tons ha−1). (B)

sliced by vermicompost rates (0, 2, 4, 6 tons ha−1) from top to bottom, respectively). The di�erent letters show significantly di�erent at the level of

0.05. Significant linear and quadratic relationships are given.

yield. Macro- and micro-nutrients, especially K, enhance the

metabolism and transformation of carbohydrates and influence

seed fixed oil content. In other words, proper K nutrition for

the crop is a must to get superior quality, and potassium is the

most important for many crop quality characteristics (Kumar et al.,

2019). Thus, in the current study, vermicompost and zeolite, due

to the availability of nutrients such as seed K content (Figure 10),

could affect the seed fixed oil content of black cumin. These results

are similar to those reported by Zahedi et al. (2009), who reported

that zeolite increased the fixed oil of Brassica napus L.
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FIGURE 11

Interaction between vermicompost and zeolite rates on seed fixed oil yield of Nigella sativa L. (A) sliced by zeolite rates (0, 3, 6, 9 tons ha−1). (B) sliced

by vermicompost rates (0, 2, 4, 6 tons ha−1) from top to bottom, respectively). The di�erent letters show significantly di�erent at the level of 0.05.

Significant linear and quadratic relationships are given.

Applying 6 tons of vermicompost ha−1 significantly increased

unsaturated fatty acids, including linolenic, linoleic, and oleic

acids, and decreased saturated fatty acids, consisting of arachidic,

palmitic, and myristic acids. Vermicompost can alter the soil’s

biological characteristics and macro- and micro-nutrients uptake

by plants. It may affect the enzymes and genes involved in the

biosynthesis of fatty acids (He et al., 2020). Hence, it can be said that

organic compounds can affect the biosynthesis and chain reaction
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of fatty acids. Furthermore, using 9 tons of zeolite ha−1 had a

similar effect on these fatty acids. Regarding the higher amount

of unsaturated fatty acids, it can be said that organic and natural

inputs have a positive effect on the oil quality of black cumin. These

results are in line with those of Hosseinzadeh et al. (2021), who

reported that organic fertilizers such as vermicompost-enhanced

linoleic acid in Portulaca oleracea L. This could be attributed to

the good utilization of nutrients supplied for fixed oil metabolism

(Schroder and Kopke, 2012). These findings were similar to those

reported for the positive effects of organic fertilizer on the fatty

acid composition of Nigella sativa L. (Seyyedi et al., 2015) and

Foeniculum vulgareMill. (Rezaei-Chiyaneh et al., 2020).

5. Conclusion

The plant known as black cumin (Nigella sativa L.) is a valuable

plant. Current research showed that vermicompost and zeolite,

as organic and natural inputs, had a favorable impact on the

quantitative and qualitative features ofNigella sativa. Used together,

vermicompost and zeolite treatments greatly boosted seed and

biological yield, as well as their constituent parts. The application

of vermicompost and zeolite enhanced the N, P, and K contents of

the seed. Therefore, seed essential oil content and yield increased

in plants treated with these inputs. Vermicompost and zeolite also

improved seed fixed oil content and fatty acid composition. This led

to more unsaturated fatty acids such as linolenic and linoleic acids.
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