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As countries prioritize climate action under the Paris Agreement, determining 
the overlap in agricultural areas requiring both adaptation and mitigation (A&M) 
interventions could lead to more efficient use of resources and support for 
farmers. Here, we identify global priorities for A&M by evaluating global datasets 
on greenhouse gas (GHG) emissions and climate hazards related to agriculture. 
We show that joint A&M hotspots cover <23% of global agricultural emissions and 
include 52% of the areas with significant climate hazards. The major portion of 
the joint area is croplands (ranging from 213 to 364 Mha), followed by pastures 
(3–74 Mha), and is concentrated in countries with limited ability to investment in 
adaptation actions. The most substantial A&M hotspots are situated across South 
Asia, with smaller areas in South East Asia, Africa, and Latin America. We highlight 
three findings from this analysis. First, most emissions and climate hazards do not 
occur in the same agricultural areas, suggesting the need for different strategies 
to address adaptation and mitigation separately in these areas. Second, in the 
areas where emissions and climate hazards do overlap, coordinated climate 
interventions that address emission reductions and adaptation at the same time 
would be a more effective use of scarce climate action investments. Third, A&M 
hotspots span national borders, emphasizing the importance of setting priorities 
and implementing action at regional and international scales. While our analysis 
highlights that focusing on adaptation and mitigation actions in the agricultural 
landscapes where they are most needed could help make the best use of climate 
finance, we recognize the pragmatic and justice-related implications may limit 
the extent of such prioritization. Balancing these considerations is essential for 
effective climate finance allocation and equitable climate action outcomes.
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1 Introduction

Mitigating greenhouse gas emissions (GHG) and adapting to the impacts of climate change 
hold significance for the agricultural sector. Both climate actions are necessary to meet food 
demands and the goals of the Paris Agreement, and calls for their integration at the field, 
landscape or national and international policy level are common (Lipper et al., 2014; Di Gregorio 
et al. 2017; Kongsager, 2018).

The agricultural sector’s dependence on climatic stability makes it vulnerable to shifting 
patterns, necessitating proactive measures. Emission reduction strategies, such as the adoption 
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of improved nitrogen fertilizer efficiency, direct seeding in rice and 
manure management, contribute to curbing climate impacts (Smith 
et al., 2008). Concurrently, adaptation efforts involving resilient crop 
varieties, irrigation practices, and weather forecasting enhance the 
sector’s capacity to cope with changing conditions (Steiner et  al., 
2020). Addressing these challenges not only secures food production 
but also ensures the livelihoods of farmers and the sustainability of 
agricultural systems, aligning with global climate goals and the sector’s 
long-term viability (Crippa et al., 2021; Roe et al., 2021; Costa et al., 
2022; Gebre et al., 2023).

Therefore, identifying global adaptation and mitigation (A&M) 
hotspots for climate change action in agriculture could play a vital role 
in shaping investment and policy strategies to effectively realize 
climate policy targets. By channeling resources strategically into 
regions of geographical significance, the international community 
could optimize resources and reduce overlap, and establish a tangible 
pathway for collaboration in tackling climate, food security, and 
poverty challenges on a global scale (Zhao et al., 2018; Islam and Kieu, 
2020). Hotspot information could target investment, such as private 
sector participation in more sustainable ventures, as businesses are 
compelled to adjust to evolving environmental demands. For instance, 
the utilization of public-private partnerships to raise capital, 
encompassing foreign direct investments for climate-resilient 
development projects (Awuni et al., 2023).

As stipulated by the Paris Agreement, nations outline their 
agendas for climate change A&M, as they have the option of including 
priorities and plans for adaptation to climate change in their 
Nationally Determined Contributions (NDCs). By 2021, the majority 
of low, lower middle-, and upper middle-income countries (135 
nations) undertook this action, with 89 among them prioritizing 
agriculture for adaptation (Rose et al., 2021). These numbers might 
evolve as more countries revise and submit updated NDCs. However, 
despite their interconnectedness, A&M efforts are frequently treated 
in isolation across policy, research, and technological advancement.

Although, there is a growing recognition of the need for integrated 
approaches, this isolation persists due to various factors. For example, 
A&M actions usually operate on different timeframes. Mitigation 
seeks to reduce emissions now to prevent long-term climate change, 
while adaptation addresses immediate and long-term impacts. 
Second, stakeholders often hold conflicting interests, as mitigation 
may necessitate structural changes (e.g., economic and industrial 
shifts), whereas adaptation focuses on safeguarding communities and 
ecosystems, and typically, agricultural agencies prioritize adaptation 
measures, while mitigation efforts often fall within the scope of 
environmental offices. Third, resource constraints sometimes force 
prioritization, driving a wedge between the two approaches. Thus, 
addressing A&M together demands a deep understanding of their 
interconnections and synergies (Klein et al., 2007; Richards et al., 
2016; Kongsager, 2018; Malhi et al., 2021).

In this context, a major question is whether A&M hotspots in 
agriculture occur in the same geographic areas, thereby enabling more 
efficient investment and action in the delivery of support to farmers. 
To guide global geographic priorities, in this article we demonstrate 
one approach to identify global biophysical hotspots for climate 
change adaptation and mitigation and examine the extent to which 
hotspots for adaptation and mitigation spatially coincide. By 
investigating this interplay, the research aims to shed light on the 
potential harmony between adaptation and mitigation efforts, 

uncovering synergies that can be harnessed to foster climate resilience. 
This examination contributes to a comprehensive understanding of 
how these intertwined priorities can be  strategically aligned to 
maximize their impact on a global scale.

2 Methods

To locate mitigation and adaptation hotspots, we  used global 
datasets for greenhouse (GHG) emissions and climate hazards related 
to agriculture. We  developed a mitigation hotspots map in CO2 
equivalents using EDGAR data (5-min resolution) for agricultural 
CH4 and N2O emissions in 2015 (EDGAR, 2021). Mitigation hotspots 
were identified as those spatial units representing the global top 95th, 
90th, 85th, and 80th percentiles (pctl) of agricultural GHG emissions.

The adaptation hotspots map was generated using the IPCC’s risk 
framework to reflect agricultural climate risk (Climate Change, 2014). 
In this framework, climate risk is defined as the intersection of hazard 
exposure, sensitivity to the hazard, and vulnerability to the hazard. 
Accordingly, hotspots were mapped as those places with high exposure 
to current and future climate hazards, high sensitivity owing to the 
importance of agriculture in the region, and high vulnerability arising 
from low county-level incomes (Jarvis et al., 2021). Additional details 
regarding the estimation of the potential reach of adaptation and 
mitigation (A&M) are provided below.

2.1 Mitigation hotspots

We develop the mitigation hotspots map by first creating a global 
agricultural GHG emissions map in equivalents of CO2 using 
EDGAR’s data (5-min resolution) on global agriculture CH4 and N2O 
emissions for the year of 2015, which were combined using the global 
warming potential values of the 5th IPCC Assessment Report (CH4 = 28 
and N2O = 265; Climate Change, 2014). The mitigation hotspots were 
determined by considering emissions values representing the top 5%, 
10%, 15%, and 20%, which correspond to global areas with emissions 
at the 95th, 90th, 85th, and 80th percentiles, respectively (i.e., higher 
than 1.8, 1.0, 0.6 and 0.4 tCO2e ha−1y−1, respectively).

In order to generate a global spatially distributed Ag-GHG 
emissions layer, this work used the GHG emissions layers from 
agricultural practices for the year of 2015 of the Emissions Database 
for Global Atmospheric Research (EDGAR) of the Joint Research 
Center (JRC). For better data handling, the memos were converted 
from NetCDF (Network Common Data Form) format to GeoTIFF 
using a Python language together with the GDAL (Geospatial Data 
Abstraction Library) raster and vector processing library.

Next, data layers emissions were converted into CO2 equivalent 
(CO2e) by multiplying CH4 and N2O emissions by their respective 
global warming potential (GWP) of the 5th IPCC Assessment Report 
(Climate Change, 2014): CO2 * 1, CH4 emission * 28 and N2O emission 
* 265. Finally, it was performed the conversion of values   from kg/
m2s-1 (base unit of EDGAR data) to Gigaton/cell area (~ 120km2)/year.

Estimates of CO2e were carried out using total emission values   
and above the top 20th, 15th, 10th and 5th percentiles for countries 
present in the boundaries provided by the GADM (Global 
Administrative Area Database) and, aiming at the inclusion of 
emissions from offshore sources or near the sea, an extension of the 
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limits of coastal countries by 0.1 degrees (~11 km) was carried out. 
Emission estimates were also performed for pasture and agriculture 
areas, climate hazards, value of production, population and their 
respective intersections by country.

2.2 Adaptation hotspots

The adaptation hotspots map was generated by using the 
Climate Change (2014) risk framework. For exposure, we used the 
extent of cropland and pastureland (Ramankutty et al., 2008). For 
vulnerability, we followed Ericksen et al. (2011). Countries with 
“high” and “very high” levels of stunting (UNICEF/WHO/World 
Bank Group, 2021) were defined to be  vulnerable. Adaptation 
hotspots refer to the intersection of the climate hazards, exposure 
and vulnerability data layers. These hotspots are widely spread 
across the agricultural areas of sub-Saharan Africa and South Asia, 
with more localized pockets in Central America and South-East 
Asia, affecting some 73 countries.

We further overlayed the developed mitigation and adaptation 
hotpots maps with the following maps:

 • Crop and pasture area: spatially disaggregated dataset (5-min 
resolution) for the year of 2000 provided by Ramankutty et al. 
(2008). For defining agricultural land, we used a threshold of 12% 
for cropland and 35% for pasture land.

 • Value of production (VoP): spatially disaggregated global 
livestock dataset (5-min resolution) containing information on 
VoP (in US$/km2/yr) for 28 world regions, 8 livestock production 
systems (including mixed crop-livestock systems), 4 animal 
species (cattle, small ruminants, pigs, and poultry), and 3 
livestock products (milk, meat, and eggs) for the year of 2000 
(Herrero et  al., 2013). We  used this as a proxy for total 
agricultural VoP.

 • Country readiness: measure of the ability of countries to leverage 
investments and convert these investments into adaptation 
actions. This indicator measures the overall readiness by 
considering the following components: economic, governance 
and social readiness (ND-GAIN, 2020). Values range from 0 
(weak) to 1.0 (strong) readiness.

3 Results

Our global map comprises an agricultural area of 5.8 billion 
hectares, of which 44, 42 and 14% are crops, pastures/grassland 
and undefined areas, respectively. These areas emitted 
approximately 5.0 GtCO2e in 2015 and include 952 mil ha 
vulnerable to climate hazards.

Joint adaptation and mitigation (A&M) hotspots account for less 
than 25% of global agriculture emissions and the area subject to 
climate hazards, suggesting that setting global priorities to achieve 
both adaptation and mitigation in the same geographic area has 
limited impact. A&M hotspot clusters nevertheless warrant attention, 
with South Asia as a priority (Table  1; Figure  1). Joint hotspots 
comprise less than 10% of the global agricultural area for cropland 
and pasture.

Mitigation hotspots, when defined as spatial units with emissions 
in the top 80th pctl globally (top 20% of hotspots), account for 89% of 
agricultural GHG emissions and 48% of the global agriculture area 
(Table  1; Figure  1). They occur mostly in croplands (61%), and 
secondarily pasture (22%) and undefined areas (17%). The hotspots 
comprise almost 80% of the VoP of livestock production globally and 
are in countries with medium (0.42–0.43) readiness. Hotspots are 
located across continents, with significant regional areas of 
concentration in China-Southeast Asia, South Asia, Brazil-Argentina, 
European Union, and North America-Central America-Colombia. 
More fragmented zones of hotspots exist in East and West Africa.

Adaptation hotspots collectively account for 952 Mha or 16% of 
the global agricultural area. Hotspots are in croplands (47%), followed 
by pasture (38%) and undefined areas (15%). Adaptation hotspots 
encompass only about 9% of the global livestock VoP and are in 
countries with lower level of readiness (0.36) compared to emission 
hotspots (Table  1). Adaptation hotspots are geographically 
concentrated in Southern Africa and sub-Saharan Africa generally 
(except the Congo Basin) and South Asia. Smaller regional hotspots 
occur in Southeast Asia; Central Asia; Middle East; Ecuador, Bolivia, 
Haiti and the Dry Corridor of Central America; and Eastern Europe 
(primarily Ukraine) (Figure 1).

Joint A&M hotspots, defined most broadly using the top 20% 
mitigation hotspots, capture 52% of the area under adaptation 
hotspots, but only 18% of the area under mitigation hotspots (Table 1; 
Figure  1). Focusing on the top  5% mitigation hotspots captures 
proportionally more emissions than area of climate hazards (Table 1; 
Figure 1). Most of the joint area is cropland (213 to 364 Mha), follow 
by pasture (3–74 Mha) and in countries with an average readiness of 
0.35 compared to the global average of 0.43.

The largest A&M hotspots, using the range of top  5 to 20% 
mitigation hotspots, occurred, across six countries in South Asia (71% 
in India) (160–236 Mha). A&M hotspots also occurred over 10 
countries in Africa (15–113 Mha) in Latin America (5–18 Mha) and 
South East Asia (36–53 Mha) over four countries in each location. 
Constraining the mitigation hotspots (from the top 20 to the top 5%) 
reduces A&M hotspots most sensitively in Africa, as this region has 
lower emissions (Table 1; Figure 1).

4 Discussion

Our results demonstrate an approach to determining global 
adaptation and mitigation priorities based on the geographic 
distribution of top percentile values. We  found that joint A&M 
hotspots constituted less than 20% of the agricultural area affected by 
the climate hazards identified and contributed less than 20% of global 
agriculture emission (Table 1; Figure 1). From our analysis, we draw 
three conclusions. First, treating climate change adaptation and 
mitigation jointly to set global priorities only gets us so far. The 
majority of emissions and agricultural areas vulnerable to high climate 
hazards are not captured in joint hotspots (Figure 1). Focusing on the 
hotspots specific to adaptation and mitigation, respectively, will have 
the largest impact globally.

This points to the need for more careful consideration of where 
calls for integrated approaches to adaptation and mitigation in 
agriculture or climate-smart agriculture, which seeks to jointly achieve 
productivity, adaptation and mitigation (Lipper et al., 2014), or make 
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TABLE 1 Characterization of global adaptation and mitigation (A&M) hotspots and clusters in agriculture.

Mitigation (M) 
Hotspots

Adaptation (A) 
Hotspots

Joint A&M LAC Africa Asia

Extent
Global 
share

Extent
Global 
share

Extent
Global 
share

Top 5% mitigation hotspots**

Agriculture area (Mha) 812.5 14% 951.5 16% 225.5 4% 11.7 17.6 191.5

Crop 590.9 10% 449.0 8% 213.3 4% 9.1 11.8 190.0

Pasture 121.7 2% 359.8 6% 3.4 0% 0.2 2.6 0.2

Undefined 99.9 2% 142.8 2% 8.7 0% 2.4 3.2 1.2

Value of production (B USD) 261 35% 67 9% 44.5 6% 1.4 1.8 39.5

Emissions (MtCO2e) 2,654.1 54% – – 897.6 18% 471.5 181.0 1708.0

Crop 2,065.9 42% – – 851.7 17% 164.9 110.9 1611.1

Pasture 304.7 6% – – 14.1 0% 197.3 32.9 25.8

Undefined 283.5 6% – – 31.9 1% 109.3 37.1 71.1

Readiness* 0.42 – 0.36 – 0.35 – 0.38 0.31 0.41

Top 10% mitigation hotspots

Agriculture area (Mha) 1,519.8 26% 951.5 16% 320.6 6% 20.7 40.8 247.3

Crop 1,029.5 18% 449.0 8% 289.1 5% 15.4 24.2 244.7

Pasture 273.7 5% 359.8 6% 11.4 0% 0.9 7.6 0.4

Undefined 216.6 4% 142.8 2% 20.1 0% 4.4 9.0 2.2

Value of production (B USD) 425 56% 66.9 9% 52 7% 2.1 2.5 44.7

Emissions (MtCO2e) 3,558.1 73% – 0 1011.1 21% 753.3 253.2 1,980.1

Crop 2,636.8 54% – 0 942.8 19% 264.0 151.8 1,824.1

Pasture 489.0 10% – 0 23.1 0% 320.3 48.3 49.7

Undefined 432.2 9% – 1 45.1 1% 169.0 53.1 106.3

Readiness* 0.42 – 0.36 – 0.35 – 0.36 0.31 0.41

Top 15% mitigation hotspots

Agriculture area (Mha) 2,162.1 37% 951.5 16% 401.2 7% 26.4 82.1 269.2

Crop 1,404.5 24% 449.0 8% 331.7 6% 19.4 37.9 265.2

Pasture 410.7 7% 359.8 6% 32.3 1% 1.6 23.2 0.6

Undefined 346.9 6% 142.8 2% 37.2 1% 5.4 21.0 3.3

Value of production (B USD) 536 71% 66.9 9% 57.1 8% 2.5 3.9 45.8

Emissions (MtCO2e) 4,053.6 83% – 0 1,066.2 22% 843.8 325.0 2,085.4

Crop 2,935.3 60% – 0 972.2 20% 302.1 179.8 1,884.4

Pasture 586.2 12% – 1 37.2 1% 358.9 72.8 66.2

Undefined 532.2 11% – 1 56.9 1% 182.8 72.4 134.8

Readiness* 0.42 – 0.36 – 0.35 – 0.38 0.31 0.41

Top 20% emissions hotspots

Agriculture area (Mha) 2,778.3 48% 951.5 16% 498.3 9% 29.5 150.3 282.3

Crop 1,681.0 29% 449.0 8% 364.4 6% 21.0 50.8 276.7

Pasture 620.6 11% 359.8 6% 74.3 1% 2.7 59.6 1.1

Undefined 476.7 8% 142.8 2% 59.6 1% 5.8 39.9 4.6

Value of production (B USD) 605 80% 66.9 9% 61.3 8% 2.7 5.5 46.3

Emissions (MtCO2e) 4,371.5 89% – 0 1,110.4 23% 881.2 390.6 2,165.5

Crop 3,082.8 63% – 0 987.7 20% 316.8 196.1 1,908.8

Pasture 688.8 14% – 1 55.6 1% 377.3 104.4 102.3

Undefined 599.9 12% – 1 67.2 1% 187.1 90.0 154.4

Readiness* 0.43 – 0.36 – 0.35 – 0.4 0.3 0.4

*Ability of countries to leverage investments and convert these investments into adaptation actions; **Emissions hotspots in the top 5, 10, 15, and 20% correspond to areas with 95th, 90th, 
85th, and 80th percentiles of emissions, respectively.
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FIGURE 1

Hotspot areas of adaptation (1) and mitigation (top 20, 15, 10 and 5% of emission hotspots) (2), and joint adaptation and mitigation hotspot areas (3).
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sense. For example, focusing on joint hotspots would exclude large 
areas of sub-Saharan Africa (SSA) from climate investment, despite 
the region being a major cluster of adaptation hotspots. While 
governments, corporations and donors increasingly needing to show 
action for both adaptation and mitigation, their emphasis is often on 
productivity and adaptation, and mitigation becomes a co-benefit, 
with insignificant impacts for global targets. For example, at the field 
level, an agricultural development project in Mali may improve 
farmer’s resilience with irrigation infrastructure, and then claim 
mitigation impacts due to higher crop yields leading to better nitrogen 
use efficiency and lower nitrous oxide emissions per ton of crop, even 
though fertilizer use is very low. A separate investment to optimize use 
of nitrogen fertilizer in places of overuse, such as some parts of India, 
would have a much higher mitigation impact (Hijbeek et al., 2019). 
Ticking the adaptation or mitigation box may be sufficient to meet an 
organization’s reporting requirement, but tick box climate action is not 
an effective strategy for making rapid progress toward 2030 climate 
policy targets. Emphasizing the need for a nuanced approach, it’s 
important to recognize that certain geographic regions may prioritize 
adaptation over mitigation, while others may prioritize mitigation 
over adaptation. Climate responses should be tailored to each region’s 
specific needs and vulnerabilities.

Second, for the hotspots where joint A&M action is indicated, 
there still may be benefits from a coordinated approach, rather than 
siloed adaptation and mitigation action as IPCC reports have tended 
to do (Porter et al., 2019). Focusing on the top 5% mitigation hotspots 
yields the most impact in the smallest area. Further refinement of 
adaptation indicators to enable consideration of a range of 95 to 80% 
percentile of hazards would similarly help focus investments in the 
most geographically efficient areas for adaptation. Coordinated 
adaptation and mitigation planning and support to farmers can have 
synergistic effects and reduce the costs of scaling up actions (Barrett 
et al., 2020; Rosenzweig et al., 2020). At national scales, India stands 
out as a country for joint A&M action due to the large area of joint 
A&M hotspots. But even here, to achieve maximal impact, action 
likely would need to target differing systems, as livestock produce the 
highest emissions, while cropping systems remain highly vulnerable 
to climate hazards.

Third, significant areas of adaptation or mitigation hotspots 
concentration occur across national boundaries and most countries 
with joint A&M hotspots also have areas that are just adaptation 
hotspots or mitigation hotspots, so priority setting at different scales 
matters. Global priority setting is necessary to efficiently achieve the 
Paris Agreement net zero emissions targets. Even the best priority 
setting within a country may not be significant globally if that country 
is not a major emitter (Wiese et al. 2021). Subnational hotspots can 
be  used to refine countries’ National Determined Contributions, 
which often refer to climate-smart agriculture as a technical measure 
(Richards et al., 2016; Ross et al., 2016). As spatial datasets improve to 
have higher-resolution and use more accessible remote sensing, 
crowd-sourcing, big data approaches, multi-scale analysis will be more 
feasible. Socioeconomic and policy data also should be included in 
prioritization exercises and investment returns analyzed. For 
adaptation, the ongoing lack of widely accepted, simple-to-measure 
indicators for tracking progress at different scales remains a 
significant challenge.

Regarding some data sets used in this work, it’s important to note 
that there are no more recent published datasets available on the VOP 
that provide livestock information at the same level of detail, leaving 

only FAOSTAT (2023) national data as an alternative source. 
Furthermore, acknowledging changes in land use, recent studies, such 
as Potapov et al. (2022) for cropland, which indicates a 9% increase 
between 2003 and 2019, and Winkler et al. (2021) for pastureland, 
showing a downward trend in pasture and rangeland areas, provide 
valuable insights into these evolving dynamics. However, it’s worth 
noting that, to the best of our knowledge, there are no more recent 
datasets that offer harmonized cropland and rangeland extent data for 
the same year. This suggests that our results may underestimate the 
extent of adaptation hotspots, considering the growth in both cropland 
and rangeland since 2000. We anticipate refining our analysis in the 
future as more suitable datasets become accessible.

5 Conclusion

Our analysis shows the spatial distribution of A&M hotspots and 
highlights the importance of global priority setting. We found that 
joint A&M hotspots covered less than 23% of global agriculture 
emissions and 52% of the regions with significant climate hazards. 
Although addressing joint A&M actions could have synergistic effects 
and reduce the costs of scaling up practices, our results show that 
A&M jointness occurs less frequently than previously thought.

For geographic efficiency, global strategies should consider 
adaptation and mitigation action in their respective hotspots. 
Coordinated approaches are still warranted where joint hotspots occur 
and setting priorities at global, regional, national and subnational 
levels hotspots can also enhance the efficiency of investments. A better 
understanding of global A&M hotspots contributes to the growing 
evidence for science-based targets and efficient allocation of resources 
to achieve climate goals.
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