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Editorial on the Research Topic

Continuous living cover: adaptive strategies for putting regenerative

agriculture into practice

Introduction

Continuous Living Cover (CLC) is a term used to describe agricultural systems that

include year-round vegetative cover above ground and living roots below ground. Examples

of CLC include agroforestry, perennial biomass, perennial forages and grazing lands,

perennial grains, and systems of summer and winter annuals and cover crops managed to

maximize soil coverage (Jewett and Schroeder, 2015; Chrisman et al., 2021). Continuous

Living Cover offers a framework for studying and implementing agricultural strategies that

keep land in production while maintaining or enhancing soil and water quality in the long

term. These strategies promote a diversified agricultural landscape and can be combined in

myriad ways to help farmers achieve both economic and environmental goals.

Strategies for achieving CLC addressed in this Research Topic include spring planted

winter cereal rye (Secale cereale L.) interseeded with soybeans (Glycine max (L.) Merr).

(Brockmueller et al.), pennycress (Thlaspi arvense L.) relay-cropped with soybeans (Gesch

et al.), silvopasture systems (Mayerfeld et al.), perennial grains (Chamberlain et al.; Pinto

et al.; Reilly et al.; Cureton et al.; Mulla et al.), perennial forages (Chamberlain et al.;

McPheeters et al.), perennial grasslands (Audia et al.; Wepking et al.; Rissman et al.),

and cover crops (Ingram; Koehler-Cole et al.; Myers and Wilson; Nichols and MacKenzie;

Thompson et al.). While CLC can be employed on a global scale, most of the research in

this Research Topic was conducted in the context of the predominant cropping systems

in the Midwestern United States, but conclusions are suitable for broader geographies and

agroecological systems.
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History of the CLC concept

Continuous Living Cover strategies have been used since

ancient times. Virgil’s (c 29 BCE) writings reference diverse annual

rotations, legume cover crops, animal integration and reduced

tillage, noting their beneficial effects on soil (Mackail, 1950). North

American Indigenous agriculture has long integrated perennial

and annual polycultures, intercropping, animals, and agroforestry

(Salmón, 2012; Carlisle, 2022; Nabhan et al., 2022; Kapayou et al.,

2023). Benefits of these agricultural practices include stabilizing

crop yields over time, soil health enhancement, crop pest and

pathogen management, and weed reduction, all of which have

been reported since at least 1939 (Blake, 1939) and supported by

scientific literature since at least the 1980s (Lewandowski, 1987;

Rossier and Lake, 2014; Mueller et al., 2019), though they have been

observed by practitioners for much longer.

In the early 2000s, a coalition of partners across the U.S.

Upper Midwest, including the Green Lands Blue Waters steering

committee, was looking for a term to convey the sustainable

agriculture practices and goals they wanted to promote. They

initially used “continuous cover” and “conservation cover” before

arriving at “Continuous Living Cover”, which became an umbrella

term around which others began organizing (Aaron Reser, personal

communication, June 25, 2023; Jeff Berg, personal communication,

June 30, 2023). The term appears in titles and keywords of scientific

literature from 2010 (Jordan and Warner, 2010), and in U.S.

government agency funding and support beginning slightly later

(e.g., SARE, 2014).

The benefits of CLC systems in the U.S. Upper Midwest are

relatively well-documented (Feyereisen et al., 2006; Basche and

DeLonge, 2017; Franco et al., 2018, 2021a; Liebig et al., 2018;

Jungers et al., 2019; Reilly et al.), and a renewed interest in them

has been brought about by the continuing dominance of low

diversity, input-intensive cropping systems and the adverse impacts

associated with them.

Rationale

There is an urgent need for agriculture systems that keep land

in production while preserving soil and water quality, providing

wildlife habitat, and limiting greenhouse gas emissions. In the

U.S. Upper Midwest, summer annual row crops have replaced

much of the historical native forests and prairies (Schulte et al.,

2006; Liebman and Schulte, 2015) that built deep soils and

supported diverse ecosystems. The current agricultural paradigm

is supported by federal policy, notably crop insurance, along

with well-developed infrastructure and supply chains, technical

assistance, industry interests, and dominant narratives about

American agriculture (Boody et al., 2005; Jordan et al., 2007).

For example, agricultural subsidies totaled $276.1 billion from

1995 to 2021, the majority of which supported a few annual

commodity crops including corn (Zea mays L.), soybeans, wheat,

and cotton (Gossypium hirsutum L.) (EWG, 2023). While modern

row crop agriculture produces high yields, it also results in negative

externalities which are well-documented and widespread (Boody

and DeVore, 2006; Davis et al., 2012; Liebman and Schulte, 2015).

Rates of soil erosion from farm fields in the U.S. Midwest

are 10–1,000 times higher than natural systems (Quarrier et al.,

2023), resulting in the loss of an estimated ∼57.6 billion tons of

soil over the past 150 years (Thaler et al., 2022), as well as large

losses of soil organic carbon (Sanford et al., 2012; Sanderman et al.,

2017). Widespread nitrogen fertilizer continues to contribute to the

hypoxic zone in the Gulf of Mexico (Rabalais and Turner, 2019),

nitrate leaching into groundwater, and formation of the potent

greenhouse gas nitrous oxide (Wang and Li, 2019), threatening

human health, ecosystem function, and long-term climate stability.

Globally, the food system is the largest driver of biodiversity

loss and continues to threaten species as land is converted to

agricultural uses (Williams et al., 2020; Knapp and Sciarretta, 2023).

Consolidation has also led to fewer, larger farms and decreased

diversity of farm owners (USDA, 2019; Congressional Research

Service, 2021).

Continuous Living Cover systems offer an evidence-based

avenue to address these challenges. They facilitate longer periods of

crop growth that maximize solar energy use, minimize erosion and

nutrient loss, support greater wildlife diversity, incorporate more

crop and livestock species, and provide socioeconomic benefits

such as diversified income streams (Boody et al., 2005; Jordan

et al., 2007; Davis et al., 2012; Tamburini et al., 2020). In addition,

by increasing soil organic matter, CLC systems can increase soil

water retention, conferring greater resilience to floods and droughts

that are becoming more common due to climate change (Hatfield

and Dold, 2017; Lal, 2020; Berdeni et al., 2021). Some practices,

especially agroforestry and managed grazing, can increase soil

organic carbon and could be avenues for agricultural carbon

sequestration (Becker et al., 2022; Mayer et al., 2022). Several

articles in this Research Topic further describe ecosystem-scale soil,

water, and habitat benefits from CLC strategies (Audia et al.; Reilly

et al.; Chamberlain et al.; Wepking et al.). There is also evidence

that diversified CLC systems can improve agronomic outcomes

including yield, yield stability, and weed and pest suppression

(Davis et al., 2012; Isbell et al., 2017; Tamburini et al., 2020).

Scientific basis for CLC

The science of CLC is firmly rooted in ecology. Soil ecosystems

require energy and nutrient inputs, the means for nutrient cycling

and nutrient loss minimization, and protection from degradative

forces. Inputs must be of a biochemical diversity commensurate

with the diverse types of ecophysiology and ecological life

strategies found in these systems. In short, the scientific basis

of CLC is supported by four foundational concepts: functional

biodiversity, rhizosphere activity, year-round surface cover, and

minimal disturbance.

Functional biodiversity

Functional biodiversity is the collective of organismal and

ecological traits that increase overall ecosystem service provisions,

resistance, and resilience (Tilman et al., 1997, 2014; Loreau et al.,

2001; Hooper et al., 2005). A growing body of literature speaks

to the importance of functional biodiversity to agroecosystems.

Adding to the functional biodiversity of cropping systems has been

shown to enhance productivity (Franco et al., 2015), yield stability
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(Khan and McVay, 2019; Franco et al., 2021b), and substantially

increase soil healthmetrics (McDaniel et al., 2014; Costa et al., 2018;

Sprunger et al., 2020). Articles in this Research Topic also highlight

how functional biodiversity can increase crop pest suppression

[Brockmueller et al.; Bruce et al.(b)], retain nutrients (Wepking

et al.), and augment soil water retention (Nichols et al., 2022;

Moore, 2023).

Rhizosphere activity

Temporal and spatial expansion of the rhizosphere, along with

associated rhizodeposition, microbial activity, and nutrient cycling,

have been shown to support soil health and ecosystem functioning

(Neumann, 2007; Moore et al., 2014; Reilly et al.). Root exudates

seem to disproportionately influence soil microbial community

composition (Dennis et al., 2010) and soil organic matter cycling

(Sokol et al., 2019) more so than shoot or root decomposition.

Kelly et al. (2022) found that crop root exudates were a main

factor in determining soil microbial community composition,

as well as nitrogen cycling. Other microbes such as arbuscular

mycorrhizal fungi that inhabit the rhizosphere are also critical

in nutrient cycling and enhancing crop resiliency in response

to abiotic stressors (Begum et al., 2019). Another example from

research in this Research Topic showed that a perennial grain crop

had higher root biomass compared to annual crops, and that this

root biomass was likely associated with nitrate leaching reductions

in the perennial crop (Reilly et al.).

Year-round surface cover

Year-round cover on the soil surface substantially attenuates

wind and water erosion. Incorporation of living cover, such as

perennial grass (Acharya et al., 2019) and agroforestry systems

(Sauer et al., 2021), have been shown to be effective in reducing

sediment transport compared to conventional row crop systems.

Additionally, dead or decomposing cover, such as crop residues,

can also reduce erosion (Kaspar and Singer, 2011) and improve soil

structural stability (Kahlon et al., 2013).

Minimal disturbance

Minimizing disturbance, namely tillage, facilitates functional

biodiversity, rhizosphere activity, and perennial surface cover.

Soil structure (Kahlon et al., 2013), soil ecological community

composition (Mathew et al., 2012), and water flow (Zhang et al.,

2017) can vary significantly as a function of tillage. As such, no-

tillage and reduced tillage management systems serve to facilitate

many of the soil ecosystem services detailed herein.

Challenges and barriers to adoption

While Continuous Living Cover strategies offer many

environmental benefits, adoption has been slow. For instance,

although cover crop usage has increased by 50% from 2012 (4.2

million ha) to 2017 (6.3 million ha), cover crops were used on only

3.9% of total U.S. cropland (USDA, 2019).

Some challenges are related to the climate. In the U.S. Upper

Midwest and other cold climates, the short growing season and

limited planting window after harvest of summer annual crops have

necessitated research on cover crop interseeding, which has yet

to produce consistent results, limiting its use by growers. Even in

corn silage production systems, which have a shorter seeding-to-

harvest window than corn harvested for grain, cover crops should

generally be planted on or before September 15 to provide the

greatest benefits (Feyereisen et al., 2006), leaving little time for

establishment and biomass production.

Slow adoption is also a result of lack of policy support

and incentives (Rissman et al.), as well as limited availability

of technical assistance (Cureton et al.). For example, while

the United States Department of Agriculture (USDA) Natural

Resources Conservation Service (NRCS) encourages year-round

cover through practices like cover cropping and intercropping, the

Risk Management Agency imposes varying planting limitations

for insurance eligibility (NRCS, 2014, 2019; RMA, 2019). Further,

though cover crop cost share funding is sometimes available, it may

not adequately compensate the farmer for the cost of seed, planting,

and potential yield reductions, meaning that implementation

may entail personal income loss (Plastina et al., 2018). When

CLC practices are incentivized, adoption increases. For example,

participation in an incentive program doubled average cover crop

acreage among farmers in the Northeastern United States, a region

with similar climatic challenges to the U.S. Upper Midwest (Chami

et al., 2023).

Another factor is variability and trade-offs in on-farm

performance due to regional or other factors, a topic addressed

by several of the articles in this Research Topic. For example,

Brockmueller et al. observed more variability in yields of organic

soybeans with an interseeded rye living mulch compared to the

tilled control. Effective weed suppression depended on having

enough soil moisture for sufficient rye biomass production, thus,

soil moisture influences the success of this CLC practice. Bruce

et al.(a) demonstrated that cover crops and reduced tillage

management of organic squash (Cucurbita pepo L.) resulted in

trade-offs: weed pressure was reduced, but yield was also reduced

and there was a similar negative outcome on pest pressure. Other

work by Bruce et al.(b) shows how living cover crop mulches can

reduce both pest and weed pressures, but may also reduce crop

yield. Similarly, soybean-pennycress relay systems show promise,

but require more regional adaptation research (Gesch et al.).

Also addressed by this literature is one of the challenges for

broader CLC adoption, the fact that the factors that affect the

scope, extent, or rate of improvement are not well-identified,

so it is difficult to predict conditions for the greatest success.

Modeling helps to illustrate these dynamics. Grass bioenergy crops

strategically integrated into an Iowa watershed could provide

ecosystem services, but projected watershed-wide revenues ranged

from –$44.2 to $128.8 million (Audia et al.). This variability

in outcomes, whether it is the magnitude of improvement or

simply trade-offs between positive and negative effects, is a

key limiting factor in widespread adoption (Ingram) because it

creates a high-risk decision-making environment for producers,

compounded in some cases by increased management needs. For
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example, top concerns reported by non-adopter farmers in a

national farmer survey about adopting cover crops were related to

variability in system performance (Myers and Wilson). Potential

reduction in crop yields and economic returns, and poor stand

establishment were second only to the additional time and labor

needed to manage an integrated system with cover crops.

A theme that appears throughout this Research Topic is

concern about on-farm performance being compounded by the

disconnect between institutional resources and support as research

attempts to gain a deeper understanding of the nuances in

performance of these systems. Koehler-Cole et al. note a significant

discrepancy in outcomes in cover crop research between controlled,

replicated researcher-led trials and “real world” performance in

farmer-led trials, indicating a need for more of the latter. A survey

of Wisconsin farmers using cover crops also identified needs for

more regionally-specific information, which is deeply entwined

with availability of research, as well as better contextualized data—

the “story” behind the numbers (Ingram). Though these challenges

exist, CLC practices can also be implemented with few apparent

downsides. For example, intercropping Kernza (Thinopyrum

intermedium [Host] Barkworth & D.R. Dewey), perennial grain

with legumes increased forage value without decreasing grain yield

(Pinto et al.). Reduced tillage didn’t affect the profitability of

conventional or organic systems (Pearsons et al.), and occasional

tillage could reduce herbicide reliance without harming soil health

when combined with cover crops and perennial grains (McPheeters

et al.).

The existence of successful CLC systems, ongoing challenges,

and the growing interest among farmers (Mayerfeld et al.)

underscores the need for continued research efforts to assess

which factors influence outcomes under different conditions, as

well as for improved policy and technical assistance to encourage

adoption and manage risk. This requires building a deeper

understanding of agroecological interactions in order to provide

practitioners with nuanced recommendations, which can help

generate more reliable performance and make the increased effort

a worthwhile investment.

Putting CLC into action

Implementing multifunctional agriculture systems built

on CLC practices will require ongoing research, consistent

communication of technical information to producers,

development of relevant enterprises to support sustainable

commercialization, and reshaping public policy and

opinion (Boody and DeVore, 2006; Jordan and Warner,

2010; Liebman and Schulte, 2015; Jordan et al., 2016).

Each article in this Research Topic offers insight from

a different perspective into how CLC adoption could

be expanded.

Foundational research continues to demonstrate how CLC can

achieve the goals of many different stakeholders (Chamberlain

et al.; Reilly et al.; Mayerfeld et al.). As research on CLC

crops and strategies advances, the findings can be translated

into applied practices and tested by researchers and early-

adopter growers to determine how to integrate them into

conventional cropping systems (Gesch et al.; Koehler-Cole et al.).

Underutilized strategies can help identify research needs (Nichols

and MacKenzie), which in some cases should be expanded to

on-farm experimentation at a range of scales (Koehler-Cole

et al.).

As more empirical data are generated from experiments

and on-farm studies, researchers can model where to best

promote specific CLC practices for optimized economic and

agronomic outcomes (Audia et al.). Innovative strategies

such as remote sensing can pinpoint hotspots of adoption,

providing useful insights (Thompson et al.). Throughout

the development and testing process, researchers also must

measure the economic and environmental implications

of CLC implementation (e.g., Pearsons et al.; Pinto

et al.).

Grower adoption and successful marketing of CLC crops

requires effective, ongoing communication between farmers,

researchers, intermediaries, technical service providers,

policy makers, and food processors (Jordan et al.; Conway).

Empirical data and models are important for guiding policy

recommendations to support grower adoption of CLC (Mulla

et al.; Thompson et al.). Early partnerships are also critical to

prioritize research goals and ensure that new CLC practices are

deployed in scenarios with high likelihood of success (Mayerfeld

et al.).

Conclusion

The articles in this Research Topic span a range of disciplines,

describe several topics in agronomic and environmental quality

research, and address several key factors for implementation:

identifying and addressing research needs; shaping policy and

program supports for CLC; and equipping the people and

entities central to the transition. The Research Topic compiles

research that represents current work and needs around CLC,

but perhaps more importantly, it aims to define and establish

the concept in the scientific literature. Although there are

barriers to establishing CLC systems that are practically and

economically viable and accessible to all farmers, CLC strategies

offer a pathway to mitigate and perhaps avoid some of the

worst harms caused by the dominant agricultural system in the

U.S. Upper Midwest. Exciting opportunities are emerging in

current research and through innovative partnerships. Pairing

new science with an openness to learning more from historical

and Indigenous approaches, CLC holds promise to create

an agriculture that supports resilient farms, ecosystems, and

rural communities.
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