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A Kalman filter fusion algorithm was proposed, and an online monitoring system 
was developed for real-time monitoring of the moisture content of materials 
in an air-impingement dryer. The Kalman filter algorithm was used to estimate 
the optimal state of the original detection values of the weighting sensor and 
air velocity sensor. A backpropagation (BP) neural network fusion model was 
established, where the weight detection value, elastic substrate temperature, air 
velocity, and impingement distance were considered inputs and the real weight 
of the material was the output. The optimal topology of the BP neural network 
was selected, and the initial weights and thresholds of the BP neural network 
were optimized using a genetic algorithm. The coefficient of determination (R2) 
and root mean square error (RMSE) of the optimized BP neural network fusion 
model were 0.9995 and 4.9, respectively. The Kalman filter fusion algorithm, 
which can realize online monitoring of moisture content, was established using 
the Kalman filter algorithm and fusion model. Moreover, an online monitoring 
system for material moisture content was developed, validation experiments were 
carried out, and the R2 and RMSE of the nine sets of validation experiments were 
0.9963 and 0.78, respectively. The monitoring system satisfied the requirements 
of material moisture content detection accuracy in the drying process. The 
developed monitoring system is greatly important for improving the automation 
level of the drying equipment for fruits and vegetables. The proposed Kalman filter 
fusion algorithm also provides a reference for other multifactor fusion detection.

KEYWORDS

online monitoring, moisture content, Kalman filter, neural network, fusion model

1 Introduction

Food security and storage have always been one of critical challenges worldwide, especially 
for fruits and vegetables, which have severe postharvest losses (Zartha Sossa et al., 2021). At 
present, one of the best ways to solve this problem is drying. By reducing the moisture content 
to a safe level, drying can significantly minimize deterioration due to microbial conditions, 
extend the shelf life of products, reduce the cost of packaging, transportation, and storage, and 
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effectively reduce postharvest losses (Xiao and Mujumdar, 2020). 
Air-impingement drying technology realizes drying through the 
impact and heating of hot air on the material; it is crucial for post-
harvest drying treatment of agricultural products. Air-impingement 
drying technology is characterized by a high drying rate and high heat 
transfer coefficient (Yang et al., 2023) and has been widely used in the 
drying process of kumquat (Tan et al., 2022), tomato (Tan et al., 2021), 
kiwifruit (Li et al., 2023), apple (Peng et al., 2019), shiitake mushroom 
(Liu et al., 2020), and other agricultural products.

Moisture content is a critical parameter in air-impingement 
drying and other drying processes, and its online monitoring plays 
a vital role in improving the drying automation level, optimizing the 
drying process, and ensuring the continuity of drying. Existing 
online moisture content detection methods include the model 
prediction method (Dalvi-Isfahan, 2020), dielectric properties 
method (Celik et al., 2022), hyperspectral imaging method (Cho 
et al., 2020), nuclear magnetic resonance method (Li et al., 2021), 
and weighing method (Pongsuttiyakorn et al., 2019). The model 
prediction and dielectric characterization methods only apply to the 
moisture content detection of the same material in a fixed drying 
condition and require improved versatility. Hyperspectral imaging 
and nuclear magnetic resonance methods cannot be  applied to 
agricultural drying products with low added value due to their high 
cost and complex operation steps. The weighing method is not 
limited by the type of material and drying condition and is more 
versatile. At the same time, it is widely used for online monitoring 
of moisture content in the drying process of fruits and vegetables 
due to its low cost and simple operation.

The weighing method utilizes the oven method to obtain the 
initial moisture content of a batch of materials (Wang et al., 2022). 
Under the premise of defaulting to the same batch of materials with 
the same initial moisture content, based on the principle of a 
constant mass of dry matter in the drying process, the weighing 
method converts the material’s weight in the drying process into 
moisture content. The key to realizing accurate detection of moisture 
content of materials in the drying process by weighing method is the 
accurate measurement of real-time weight of materials using a 
weighting sensor. The uncertainty of the drying environment caused 
substantial difficulties in realizing the accurate measurement of 
material weight. The impact of the airflow on the weighing tray 
during the drying process directly and remarkably affects the 
detection results of the weighting sensor (Xie et al., 2018). Moreover, 
in different drying processes with different set values of airflow 
velocity, the influence of airflow on the moisture content detection 
results is not fixed. The weighting sensors used for online monitoring 
of moisture content are mostly resistance strain pressure sensors. 
Variation in the temperature of the sensor’s elastic substrate can 
cause many errors in the detection results of the weighing sensor 
given some unique properties of this sensor (Xue et al., 2018). The 
variation of temperature in the existing drying process of fruits and 
vegetables is roughly in the range of 40°C–70°C. The effect of drying 
temperature on the material weight detection results becomes 
nonlinear and complex to correct due to the considerable 
temperature difference. In addition, airflow disturbances and 
equipment vibrations cause fluctuations in the detection value of the 
weighting sensor with considerable noise.

To address these problems, Ju et al. (2023), Yang et al. (2023), and 
Wang et al., 2014 stopped the equipment operation while performing 

the material moisture content detection. This method effectively 
avoided the influence of airflow and equipment vibration on material 
weight detection. The moisture content of the material in the drying 
process must be detected more frequently with the development of the 
drying process and the improvement of drying automation. In this 
context, the equipment-stop detection program seriously damages the 
continuity of the material drying process, and ensuring the quality of 
dry products becomes challenging. To address the nonlinear effect of 
drying temperature on the measurement results of the weighting 
sensor, Reyer et al. (2022) installed the weighting sensor outside the 
drying chamber, thereby fundamentally solving the problem. 
However, this solution destroyed the drying chamber structure, 
affected the sealing of the drying chamber, and increased the difficulty 
of temperature and humidity control in the drying chamber.

The air-impingement drying process can be optimized by varying 
the distance between the air nozzle and the material, i.e., the 
impingement distance. Pre-experimentation found that the 
impingement distance significantly affected the weighting sensor’s 
detection value. In summary, the real-time moisture content 
detection of the material in the drying process is affected by the 
weight detection value, the elastic substrate temperature, the airflow 
velocity, and the impingement distance. A complex nonlinear 
relationship exists between the material moisture content and the 
four factors. Machine learning can model the complex nonlinear 
relationship between the variables. Backpropagation (BP) neural 
network, a type of machine learning, has been widely used in the 
fields of drying process modeling (Liu et  al., 2020), trajectory 
prediction (Zheng et al., 2023), fault diagnosis (Wang et al., 2023), 
and residual life prediction (Ji et al., 2023) because of its powerful 
nonlinear mapping ability. The BP neural network can be used to 
build a nonlinear model with weight detection value, elastic substrate 
temperature, air velocity, and impingement distance as inputs and the 
real weight of the material as output, resulting in an accurate 
prediction of the moisture content of the material during the 
drying process.

The weight of the material, the temperature of the elastic substrate, 
and the air velocity can be  detected sequentially by weighting, 
temperature, and air velocity sensors. Many fluctuations and noise are 
observed in the detection values of the three sensors, especially the 
weighting and air velocity sensors, due to the airflow disturbance, 
equipment vibration, and the sensors’ limitations. Therefore, the raw 
signals obtained from the sensors should be filtered prior to building 
the moisture content prediction model. Kalman filter is an efficient 
autoregressive filter that can estimate the state of the dynamic system 
in the information, where many uncertainty situations exist and can 
make an optimal estimation of the detected values of the three sensors 
mentioned above (Li et al., 2022).

Aiming at these problems, the Kalman filter fusion algorithm was 
proposed. The Kalman filter algorithm was used to make an optimal 
estimation of the measured values of the weight sensor, air velocity 
sensor, and temperature sensor at the same moment. Then, the BP 
neural network was used to establish a fusion model among the 
optimal estimation of the three sensors, the impingement distance, 
and the real weight of the material. Combined with the initial moisture 
content of the material, the online detection model of moisture 
content of the material was established, and the Kalman filter fusion 
algorithm was completed. The online monitoring system of material 
moisture content was built using this algorithm.
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In summary, this study aims (1) to build an information 
acquisition system of material moisture content in the 
air-impingement dryer and to obtain the training data used to 
establish the Kalman filter fusion algorithm; (2) to develop an optimal 
state estimation of the original monitoring data of the three types of 
sensors by using the Kalman filter algorithm; (3) to train the BP 
neural network, and to establish a fusion model with the weight 
detection value, elastic substrate temperature, air velocity, 
impingement distance as inputs, and the real weight of the material 
as outputs; (4) to build an online monitoring system for moisture 
content and complete the validation experiments of online moisture 
content detection. This study is expected to realize the online 
monitoring of the moisture content of materials in air-impingement 
drying for fruits and vegetables.

2 Principles and methods

2.1 Operating principle of air-impingement 
dryer

The centrifugal fan realized the internal air circulation in the inner 
and outer chambers. The air passing through the nozzles was squeezed 
into a high-pressure stream, impacting the material on the trays. The 
infrared tube installed in the upper part of the inner chamber heated 
the materials on the tray. The material was dried under the double 
effect of airflow impact and heating. The wet air was discharged 
through the moisture drain valve in the outer chamber. The operation 
principle of the air-impingement dryer is shown in Figure 1.

A temperature sensor detected the temperature of the hot air at 
the nozzle. The closed-loop adjustment of the hot air temperature was 
realized by adjusting the power of the infrared tube. The detection 
result of the thermosensitive air velocity sensor was greatly affected by 
temperature. Thus, accurate detection of the airflow velocity in the 
drying inner chamber is difficult at different drying temperatures. 

Consequently, the centrifugal fan realized the open-loop control of 
wind speed by adjusting the frequency of the inverter (Yang et al., 
2023). The open-loop control of the centrifugal fan also obtained an 
unstable airflow in the inner chamber.

In the air-impingement drying process, in addition to the drying 
temperature and air velocity, the tray position was an essential 
parameter for process optimization (Chang et al., 2022). The positions 
of the tray in the material rack, the temperature of the material surface, 
and the air velocity were different, as well as the final quality of the dry 
products obtained.

2.2 Principle of material moisture content 
detection based on the weighing method

The material moisture content detection prerequisite, based on the 
weighing method, was obtaining the material’s initial moisture 
content. The dry matter mass of the material md was obtained after the 
material was continuously dried in a hot air dryer at a drying 
temperature of 105°C for 24 h (Zahoor et  al., 2022). The initial 
moisture content of the material (wet basis) was calculated from 
Equation 1 (Liu et al., 2021).
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where W0 was the initial moisture content of the material, %; m0 
was the initial weight of the material, g; md was the dry matter mass of 
the material, g.

Material moisture content detection based on the weighing 
method defaulted to the same batch of material with the same initial 
moisture content. It converted the real-time weight of the material in 
the drying process to the moisture content of the material. The 
formula for calculating the real-time moisture content (wet basis) of 
the material is as follows:

FIGURE 1

Operation principle diagram of air-impingement dryer. (1) Air velocity regulating switch; (2) touch panel; (3) centrifugal fan; (4) moisture drain valve; (5) 
tray; (6) temperature sensor; (7) outer chamber; (8) air nozzle; (9) infrared tube; (10) material; (11) inner chamber.
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where Wt is the wet base moisture content of the material at time 
t, %; mt is the weight of the material at time t, g.

The above principle indicates that the accurate detection of 
material weight by the weighting sensor is the core to ensure the 
accuracy of moisture content detection based on the weighing 
method. According to the previous experiment and theoretical 
analysis, air velocity, weighting sensor elastic substrate temperature, 
impingement distance, and equipment vibration affect the detection 
of the weighing sensor. Among them, equipment vibration only 
caused fluctuation and noise to the measurement value of the 
weighting sensor without direct influence. Airflow disturbances also 
exacerbated the instability of the weighting sensor measurements.

2.3 Information acquisition of material 
moisture content

The information acquisition system of material moisture content 
was built to obtain the training data for the Kalman filter fusion 
algorithm. The information acquisition system utilized the weighting 
sensor, air velocity sensor, and temperature sensor to collect the raw 
data of material weight detection value, elastic substrate temperature, 
and air velocity, respectively. The flow of material moisture content 
information acquisition is shown in Figure 2.

2.3.1 Information acquisition system of material 
moisture content

The weighting sensor was installed at the bottom of the material 
rack and was used to detect the real-time weight of the material. The 
weighting sensor was a resistance strain pressure sensor (HYPX017, 
Hengyuan Sensor Technology Co., Ltd., Bengbu, China) ranging from 

0–3 Kg. The temperature of the outer chamber was significantly lower 
than that of the inner chamber due to the lack of heating from the 
infrared tube. The air velocity sensor was installed in the outer 
chamber to avoid the influence of temperature on the measured value 
of the air velocity sensor. The thermosensitive air velocity sensor 
(WM4200, Chaozhi Reed Technology Co., Ltd., Changchun, China) 
has a range of 0–20 m/s. A temperature sensor was used to detect the 
temperature of the elastic substrate of the weighting sensor. A 
thermally conductive silicone was used to bond the temperature 
sensor to the elastic substrate. The temperature sensor was a 
thermocouple-type (PT100, Songguide Heating Sensor Co., Ltd., 
Shanghai, China) with a range of −45°C–125°C. All three sensors 
communicated with the host computer by RS485 module. The upper 
computer was a Legion Y7000P computer from Lenovo, which was 
responsible for collecting and storing material moisture 
content information.

2.3.2 Experimental design of information 
acquisition of material moisture content

The information acquisition experiments of material moisture 
content were carried out under different drying process parameters to 
ensure the accuracy of the Kalman filter fusion algorithm. The range 
of drying process parameters was initially defined, and that of drying 
temperature for fruits and vegetables was generally 40°C–70°C. An 
extremely temperature reduces the drying rate and significantly 
increases the total energy consumption of the equipment. An 
extremely high temperature causes the material to produce scorching, 
browning, and other phenomena, significantly reducing the quality of 
dry products (Espinoza-Espinoza et al., 2023). The air velocity in the 
outer chamber was 16 m/s when the centrifugal fan operated at the 
maximum output wind speed. The minimum air velocity was set to 
4 m/s to prevent the phenomenon of low drying rate caused by 
extremely low air velocity. The structure of the material rack 
determined the impingement distance. Three layers of material racks 
are available, and the distance of each layer from the nozzle was 80, 

FIGURE 2

Flow chart of information acquisition of material moisture content.
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120, and 160 mm. In summary, the information acquisition 
experiments of material moisture content were carried out at different 
drying temperatures (40°C, 50°C, 60°C, and 70°C), different air 
velocities (4, 8, 12, and 16 m/s), and different impingement distances 
(80, 120, and 160 mm), totaling 48 groups of experiments (4 × 4 × 3). 
In each group of experiments, the information acquisition period of 
material moisture content was 1 min.

Fresh cantaloupe (variety Xizhou Honey No. 17), free from pests, 
diseases, and damage, was selected as the experimental material. After 
being peeled and deseeded, the cantaloupe was cut into 30 × 50 × 7 mm 
slices for drying experiments. The average initial moisture content of 
fresh cantaloupes was 90.16 ± 1.02% (wet basis).

2.4 Kalman filter processing of sensor data

Equipment vibration and airflow disturbance affected the 
weighting sensor detection signal, and its noise was the most 
serious. The air velocity sensor was affected by the uncertainty of 
the dry environment; coupled with the limitations of the sensor, 
its detection signal had considerable noise and fluctuations. 
Noise in the detection signals of the two sensors was difficult to 
avoid. The original detection signals of the two sensors should 
be filtered prior to data fusion.

The temperature of the elastic substrate of the weighting sensor 
was less affected by the radiation of the infrared heating tube given 
that the weighting sensor was mounted on the bottom of the pallet. 
Changes in the elastomeric substrate temperature were caused by heat 
conduction with the air in the inner chamber, achieving a relatively 
stable elastic substrate temperature without significant fluctuations. 
Preliminary experiments revealed that the detected value of the elastic 
substrate temperature was 70 ± 0.5°C during the constant temperature 
drying process at 70°C. Therefore, in this study, only the detection 
data of the weight sensor and air velocity sensor were subjected to 
Kalman filtering.

Kalman filtering algorithm is developed for optimal state 
estimation of a linear system using the equation of the system state 
and the observed data of the system’s current state (You et al., 2022). 
The optimal estimation can also be considered a filtering process 
because the observation data include a large amount of noise and 
disturbance. The Kalman filtering algorithm can reduce the random 
measurement errors caused by the sensor’s limitations during the 
sensor data acquisition process and the noise pollution caused by 
uncertain environmental factors. Kalman filtering carries out the 
next operation using the results of the previous operation without 
storing the data; its operation cycle is short and is suitable for the 
real-time state estimation process (Yang et  al., 2021). Kalman 
filtering can update and process the data collected in the field in 
real-time. It can be  used to estimate state variables that cannot 
be accurately measured by the system.

The flow of the Kalman filter algorithm can be divided into two 
phases: the prediction update phase and the observation update phase. 
In the prediction update phase, the current state was predicted using 
the previous moment state estimate. In the observation update phase, 
the observed value of the current state was used to correct the 
predicted value in the prediction update phase to obtain a relatively 
accurate state estimate of the current moment.

The discrete equation of state for the linear system was initially 
established, as follows:

 x k Ax k w k� � � �� � � �� �1 1  (3)

 y k Hx k v k� � � � � � � � (4)

where x(k) is the state vector of the system; A is the state transfer 
matrix; y(k) is the observation value; H is the observation matrix; w(k) 
and v(k) are the process noise and observation noise, respectively.

In the prediction update phase, the system state at time k was 
predicted based on the system state at time k − 1, as follows:

 x k k Ax k| �� � � �� �1 1  (5)

where: x(k|k − 1) is the state prediction result at time k; x(k − 1) 
is the optimal state estimate at time k − 1.

The covariance of the system at time k should also be forecasted 
during the prediction update phase of the system, as follows:

 P k k AP k A QT
| �� � � �� � �1 1  (6)

where P(k|k − 1) is the prediction of the covariance of the system 
at time k; P(k − 1) is the covariance of the system at time k − 1, and Q 
is the covariance of the system process noise.

In the observation update stage, the Kalman gain Kg(k) at time k 
was initially computed using the prediction covariance at time k and 
the covariance R of the observation error v(k), as follows:

 
K k P k k H HP k k H Rg

T T� � � �� � �� � �� ��| |1 1
1

 
(7)

Finally, the optimal state estimate x(k) at time k was obtained, 
as follows:

 x k x k k K k y k Hx k kg� � � �� � � � � � � � �� �� �| |1 1  (8)

Corrections were made to x(k) to obtain the real value at 
moment k:

 x k Ax k w k


� � � � � � � � (9)

The covariance of the system at time k was also updated for the 
next Kalman filter run, as follows:

 P k I K k H P k kg� � � � � �� � �� �| 1  (10)

where I is the unit matrix. When the system entered the time k + 1, 
P(k) is equal to P(k − 1), and the Kalman filter continued running until 
the end of the process.
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2.5 Fusion modeling

Kalman filtering of sensor detection data provided statistically 
accurate and valid data for data fusion. This study used a BP neural 
network for data fusion of weight detection value, elastic substrate 
temperature, air velocity, and impingement distance. Moreover, the 
Kalman filter fusion algorithm was established. The flowchart of the 
Kalman filter fusion algorithm is shown in Figure 3. Furthermore, a 
fusion model based on partial least squares regression (PLSR) and 
support vector machine (SVM) was developed and compared with 
the BP neural network fusion model, and the effectiveness of the BP 
neural network fusion model was further verified.

2.5.1 BP neural networks
BP neural network, one of the most widely used neural 

network models, can learn and store many mapping relationships 
between inputs and outputs (Liu et al., 2020). In this study, the BP 
neural network was used to establish a fusion model, where the 
actual weight of the material is the output, and to accurately 
predict the moisture content of the material. The topology of the 
BP neural network model consisted of three layers of neurons and 
two activation functions between the three layers of neurons, as 
shown in Figure 4. The input layer had four neurons, representing 
the weight detection value, elastic substrate temperature, airflow 
velocity, and impingement distance. The output layer had only one 
neuron, representing the actual weight of the material. The 
number of neurons in the hidden layer must be obtained by trial 
and error. The activation function between the input and hidden 
layers is usually nonlinear, including the logsig and transig 
functions. The transfer function between the hidden and output 
layers is usually linear (Pureline) (Yang et al., 2023). The optimal 
topology of the network, i.e., the number of neurons in the hidden 
layer and the activation function between the input layer and the 
hidden layer, should be determined to improve the generalization 

ability of the model and reduce the training time of the network 
(Liu et al., 2020).

 j n� �1 (11)

 j m n a� � �  (12)

 j n= log2  (13)

 j n� �2 1 (14)

where n is the number of neurons in the input layer, m is the 
number of neurons in the output layer, j is the number of neurons in 
the hidden layer, and a is a constant from 0–10.

The number of neurons in the hidden layer ranged 2–12 based on 
the union of Equations 11–14 (Martin and Howard, 2002). The 
optimal topology of the neural network was determined based on the 
root mean square error (RMSE) and the coefficient of determination 
(R2) of the model test set (Kalathingal et al., 2020). The R2 and RMSE 
were calculated using Equations 15 and 16, respectively.
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FIGURE 3

Flowchart of Kalman filter fusion algorithm.
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Where n is the number of data groups in the set, yi and yi


 are the 
real value and predicted value of the ith data groups, and ym is the mean 
value of all the data groups.

Neural networks underwent network training after obtaining 
the optimal topology. The essence of neural network training was 
the optimization of weights and thresholds. The initial weights and 
thresholds of the neural network were randomly generated. 
However, the training results of the neural network were sensitive 
to the initial weights and thresholds. A genetic algorithm with 
global optimization characteristics was used to optimize the initial 
weights and thresholds of the neural network to ensure the accuracy 
and generalization ability of the model (Raj and Dash, 2020). The 
neural network was trained based on the optimized initial weights 
and thresholds.

Ten data groups were randomly selected from each set of 
information acquisition experiments of material moisture content, 
totaling 480 groups of data (48 × 10) for the training of the fusion 
model. Each group of data included four input variables and one 
output variable. A total of 480 groups of data were randomly 
sorted to ensure the reliability of the training results: 70% of the 
data were used as training data, 15% as validation data, and 15% 
as test data.

2.5.2 Partial least squares regression
The central idea of PLSR is to maximize the synergistic explanation 

of the relationship between the independent and dependent variables 
by finding one or more latent factors. These latent factors construct 
the model by linearly combining the independent variables, and their 
weight coefficients are determined by minimizing the covariance 
between the predicted and true values. PLSR has significant 
advantages in dealing with high-dimensional data and small samples 
and is an essential tool in data modeling and analysis (Camarrone and 

Van Hulle, 2019). PLSR has shown excellent predictive performance 
in several areas.

The input variable matrix and output variable matrix 
are decomposed:

 X DP ET� �  (17)

 Y UQ FT� �  (18)

Where X RN M� � , is the input variable matrix, N is the number 
of samples, and M is the dimension of the input variable; D, U are the 
principal factor score matrices; P, Q are the loading matrices; E, F are 
the fitted residuals matrices; and Y RN K� � , is the output variable 
matrix, and K is the dimension of the output variable.

The linear relationship between matrices D and U is:

 U DB=  (19)

 Y D BQpre pre=  (20)

In Eq. (19) and Eq. (20), B D D D UT T� � ��1
 is the regression 

coefficient matrix. After that, the training set data is inputted, and its 
principal factor score matrix Dpre is obtained according to Eq. (17). 
Then the output variable matrix Ypre is obtained according to Eq. (20). 
By projecting the regression coefficient matrix, the regression model 
of PLSR can be obtained.

2.5.3 Support vector machines
SVM is a robust learning algorithm for classification and 

regression tasks. Its main goal is to find a hyperplane that can classify 

FIGURE 4

Topology of the BP neural network model.
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data points into different fit data while maximizing the interval 
between the hyperplane and the nearest data points. SVM has 
excellent generalization performance, robustness, and applicability 
and is particularly suitable for dealing with high-dimensional, 
complex, or nonlinear datasets (Jain and Rastogi, 2022).

Define the training set ( ){ }, | 1,2, , ,i iQ x y i N= = …  where xi is 
4-dimensional as the input vector, yi is the output vector, and N is the 
total number of samples. Taking the quadratic sum of the error e as 
the loss function, the SVM optimization problem can be expressed as 
(Ashtiani et al., 2020):

 
min , ,w s e

T

i

N
iJ w e w w e,� � � �

�
�1

2

1

2
1

2�
 

(21)

 
s t y w x s ei

T
i i. . .� � � � ��

 (22)

Where w is the weight variable; λ is the regularization parameter, 
here 100; s is the threshold; ei is the error value; � xi� � is a nonlinear 
mapping in the kernel space. The original problem is transformed into 
the problem of finding the great value of the multiplier ai according to 
the Lagrange multiplier method, and the following function 
is constructed:
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The regression function of SVM is:
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Where x is the input vector in the training set; K is the kernel 
function, and the radial basis function with a simple and stable 
structure is chosen as the kernel function, and its expression is:
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Where σ 2 is the width of the kernel function, according to 
Equation (24), to predict the real weight of the material.

2.6 System performance verification 
experiments

In the material moisture content online monitoring system based on 
the Kalman filter fusion algorithm, the upper computer was still Lenovo’s 
Legion Y7000P computer. It was used to complete the collection of 
material moisture content information. In MATLAB software, the 
Kalman filter fusion algorithm was written, including of the following: the 
Kalman filter and BP neural network fusion model. The impingement 
distance should be input into the MATLAB software in advance given that 
the impingement distance may not be detected by the sensor. In addition, 

the material’s initial weight and initial moisture content should be input 
into the MATLAB software to further calculate the real-time moisture 
content of the material when the real-time weight of the material was 
obtained by the Kalman filter fusion algorithm.

After completing the construction of the monitoring system, 
performance verification experiments were conducted, following the 
construction of the monitoring system. The drying experiments of 
jujube slices were carried out in three drying environments set at 
random to ensure the reliability of the results of the validation 
experiments. Three data groups were randomly collected in each 
drying experiment and input into the BP neural network fusion model 
to complete the moisture content detection. The time interval between 
each data acquisition group was greater than 15 min. After each data 
acquisition, the material tray was removed, and the material was 
weighed to determine the actual moisture content of the material 
according to the oven method in Section 2.2. The initial moisture 
content of the jujube pieces was 51.98% ± 0.50%.

The setup parameters of the three drying environments are shown in 
Table 1. The air velocity refers to the air velocity of the air duct in the outer 
chamber, measured by the air velocity sensor in Figure 2. The sectional 
dimension of the air duct is 60 mm × 70 mm. The impingement distance 
refers to the distance between the air nozzle and the material, as shown in 
Figure 3. Drying temperature refers to the air temperature in the inner 
chamber, measured by the temperature sensor in Figure 1.

3 Results and discussion

3.1 Results and analysis of Kalman filter 
processing

Figure 5 illustrates the estimated optimal state of the weight and 
air velocity sensors using the Kalman filtering algorithm. The expected 
value refers to the detected index in the ideal state. The observed value 
was the original value acquired by the sensor. The Kalman filter value 
was the optimal estimate of the system state made by the Kalman filter 
algorithm. The real value was not the real state of the measured metric 
but the ideal value without bias. The two data sets were obtained under 
the same set of experiments, with 100 sampling points, and the 
sampling interval at both experiments was 1 min.

Figure  5A shows the optimal state estimation results of the 
Kalman filtering algorithm for the original monitoring data of the 
weight sensor under the conditions of drying temperature of 70 °C, 
wind speed of 16 m/s, and constant load of 500 g. The fluctuation 
range of the observed values was 562.1–574.1 g, and the fluctuation 
amplitude was 12 g. The optimal state estimation results of the Kalman 
filtering algorithm were consistent with the real values, and the overall 
tendency was stable. Experimental results indicated that the Kalman 
filtering algorithm adequately suppressed the noise and fluctuations 
in the original monitoring data of the weight sensor. A significant 

TABLE 1 Parameter settings for validation experiments.

Factor Groups

1 2 3

Air velocity (m/s) 8.4 15.5 5.3

Impingement distance (mm) 60 140 100

Drying temperature (°C) 68 53 46
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error was found between the Kalman filtered value and the expected 
value, with a maximum error of 68.2 g. The detected value of the 
weighting sensor was affected by multiple factors other than the 
equipment vibration and the airflow disturbance, mainly the elastic 
substrate temperature and the air velocity. The experimental results 
also confirmed the need to establish a fusion model with 
multifactor inputs.

Figure  5B demonstrates the optimal estimation results of the 
Kalman filtering algorithm on the raw monitoring data of the air 
velocity sensor in the same set of experiments. The fluctuation range 
of the observed values was 15.75–17.63, and the fluctuation amplitude 
was 1.88 m/s. The Kalman filtered values of the air velocity sensor and 
the real values had evident fluctuations because the air velocity in the 
air-impingement dryer was open-loop control, and large fluctuations 
were observed in the wind speed. The air velocity of the centrifugal 
fan was controlled by adjusting the frequency of the inverter to realize 
the open-loop control, and the steady state error between the target 
value of air velocity and the output value was inevitable. Therefore, the 
Kalman-filtered and real values of the air velocity sensor had 
significant deviations from the expected value.

3.2 Pearson correlation analysis

Pearson correlation analysis of the four input variables and the 
detection error was conducted in this study to further quantitatively 
analyze the relationship between the weight detection value, elastic 
substrate temperature, airflow velocity, impingement distance, and 
the actual weight of the material. Detection error indicates the 
deviation between the detected value and the actual value of 
material weight. The results of the Pearson correlation analysis are 
shown in Figure 6.

The correlation between airflow velocity and detection error was as 
high as 0.811, suggesting that the leading cause was the airflow velocity. 
This result also proved the feasibility of using the air-stop detection 
scheme to detect the moisture content of the material in the existing 
studies. The positive correlation between air velocity and detection error 

was caused by the effect of the airflow on the material on the material tray 
from top to bottom. In addition, a large air velocity indicates large impact 
force of the airflow on the material tray and large detection.

The impingement distance negatively correlated with the detection 
error with a correlation coefficient of −0.357. The impingement distance 
represented the distance between the airflow nozzle and the tray. The 
larger distance indicates more dispersed airflow, smaller impact on the 
tray, and smaller detection error. The effect of the impingement distance 
on the detection error was highly dependent on the air velocity. When the 
air velocity is zero, the change in impingement distance does not affect the 
detection of material weight.

The temperature of the elastic substrate and the weight 
detection value were positively correlated with the detection error, 
with correlation coefficients of 0.226 and 0.329, respectively. In 
resistance strain pressure sensors, the pressure to be  detected 
deforms the elastic substrate, which is transformed into a change in 
electrical resistance, thereby realizing the weight detection. The 
temperature significantly affected the resistance, exhibiting a 
positive correlation (Burnos and Rys, 2017). Therefore, when the 
temperature of the elastic substrate was high, the detection value of 
the weighting sensor was large, as well as the detection error.

The weight detection value and the detection error are correlated 
because the effect of temperature on the detection error was related to 
the load of the weighting sensor. The relationship between temperature 
and detection error was different at varied load intervals. The weight 
detection value had the most direct relationship with load; thus, the 
effect of temperature on the detection error resulted in the correlation 
between the weight detection value and the detection error. Wang 
et al. (2014) has linearly corrected the detection value of the weighing 
sensor in different subtemperature segments and subload segments.

3.3 Training results and analysis of BP 
neural network fusion models

After confirming the correlation between the weight detection 
value, elastic substrate temperature, airflow velocity, and impingement 

FIGURE 5

Optimal state estimation results of the Kalman filtering algorithm for the original monitoring data of the (A) weight sensor and (B) air velocity sensor.
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distance on the true weight of the material, the four input variables 
were fused to establish a BP neural network fusion model with the 
actual weight of the material as the output.

3.3.1 Optimal topology selection
Test experiments were conducted for different activation 

functions and the number of neurons in the hidden layer to 
obtain the optimal topology of the BP neural network. The test 
results are shown in Figure 7. The uncertainty of the test results 
was large because the initial weights and thresholds of the current 
BP neural network were randomly generated. Thus, the results of 

the test experiments were considered the average of 10 test trials. 
The learning rate of the training process of the BP neural network 
was 0.001, and the maximum number of iterations was 150.

Figure 7A shows the RMSE and R2 of the three data sets with 
different numbers of neurons in the hidden layer under the 
condition that the activation function between the input layer 
and the hidden layer was Tansig. The RMSE of all three datasets 
roughly showed a tendency to decrease and then increase, and it 
reached the lowest point when the number of neurons in the 
hidden layer was 5. The R2 of all three datasets showed a trend of 
increasing and then decreasing, reaching the highest point when 

FIGURE 7

Prediction results for the test set of BP neural network fusion models. The fitting plot (A) and error plot (B) of the predicted and actual values of the test set.

FIGURE 6

Results of Pearson correlation analysis.
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the number of nodes in the hidden layer was 5. This finding was 
because of the inability of the topology of the neural network to 
satisfy the requirements of the training dataset when the number 
of neurons was extremely small, thereby reducing the model’s 
accuracy. When the number of nodes was extremely high, the 
network was highly susceptible to overfitting, which decreased 
the model’s accuracy (Yang et al., 2023). When the number of 
neurons in the hidden layer was 5, the RMSE and R2 of the test 
set were 0.9844 and 25.3, respectively.

Figure  7B shows the RMSE and R2 for three data sets with 
different numbers of neurons in the hidden layer. The activation 
function was Logsig between the input layer and the hidden layer. 
Figure 7B shows approximately the same pattern as Figure 7A, except 
that the optimal neuron number was 9, and the RMSE and R2 of the 
test set were 0.9812 and 28.3, respectively. After comprehensively 
comparing the RMSE and R2 for the two optimal neuron numbers, 
we obtained the optimal topology of the BP neural network with the 
activation function between the input layer and the hidden layer, 
which was Tansig. Moreover, the number of neurons in the hidden 
layer was 5.

3.3.2 Genetic algorithm optimization
After determining the optimal topology of the BP neural 

network, the model’s training results were still unsatisfactory 
because the initial weights and thresholds of the neural network 
were randomly generated. This randomness results in  local 
optimal training results, but not the global optimal. Figure  8 
shows the training results after the genetic algorithm optimized 
the initial weights and thresholds of the BP neural network. The 
RMSE and R2 of the test set were 4.9 and 0.9995, respectively, and 
the RMSE was reduced by 80.6% compared with the 
preoptimization. Figure 8A shows the fitting plot of the predicted 
and actual values of the test set, and the model had an excellent 
prediction effect. Figure 8B demonstrates the error plot of the test 
set’s predicted and actual values. The maximum error within the 
permissible range of the online monitoring system for moisture 
content was 0.046.

3.4 Model performance comparison

Figures 9A–C show the scatter plots of the three datasets of PLSR, 
SVM, and BP neural networks, respectively. The scatter points of the BP 
neural network fusion model were more centrally distributed near the 
regression line than those of the two other models. The PLSR and SVM 
models showed satisfactory prediction results, but the RMSEs of the two 
prediction models were 41.4 and 39.2, which cannot satisfy the accuracy 
requirements of the online moisture content monitoring system. 
Although the structure and topology of the BP neural network are more 
complex compared to the other two models, collectively, the excellent 
prediction results of the BP neural network indicate that it can better 
capture the complex nonlinear relationship between the inputs and the 
outputs, and is also more suitable for online detection of moisture content. 
Each prediction model and structure has its applicable scenarios and 
limitations. Selecting a prediction model and structure depends on the 
problem and data characteristics in practical applications.

3.5 Validation experiment results and 
analysis

Table 2 shows the results of the validation experiments of the 
moisture content online monitoring system. The R2 value of the 
nine sets of validation experiments was 0.9963, which was smaller 
than the R2 of the weight fusion model (0.9995). A more 
significant uncertainty in the material moisture content detection 
than the material weight detection was observed. The moisture 
content detection based on the weighing method was based on 
the premise that the moisture content of the same batch of 
materials was the same. The samples used for the moisture 
content detection in the oven method always had error with the 
materials in the actual drying process, thereby increasing the 
material moisture content detection error. Nine groups of 
validation experiments had an RMSE of 0.78, and the maximum 
error was 6.27. The results of the validation experiments indicate 
that the online monitoring system of moisture content satisfies 

FIGURE 8

Test results for different topologies. The RMSE and R2 of the three data sets with different numbers of neurons under the condition that the activation 
function were Tansig (A) and Logsig (B).
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the accuracy requirements of moisture content detection in the 
drying process.

4 Conclusion

An information acquisition system of material moisture content 
was developed, and the raw data used to establish the Kalman filter 
fusion algorithm were obtained. The Kalman filter processing was 
carried out on the raw detection values of the weight sensor and air 
velocity sensor, and the optimal state estimation of the weight 
detection value and air velocity was obtained. The information 

fusion processing of weight detection value, elastic substrate 
temperature, airflow velocity, and impingement distance was 
carried out using the estimated value, and the BP neural network 
fusion model with material weight as the output was established. 
The optimal topology of the BP neural network fusion model was 
selected; the activation function is Tansig, Pureline, and the number 
of neurons in the hidden layer is 5. The initial weights and 
thresholds of the BP neural network were optimized using genetic 
algorithms. The R2 and RMSE of the test set of the optimized fusion 
model were 0.9995 and 4.9, respectively, and the RMSE was reduced 
compared with the preoptimization by 80.6%. Fusion models based 
on PLSR and SVM were also developed and compared with the BP 

FIGURE 9

Comparison results of fusion model performance. The scatter plots of the three datasets of PLSR (A), SVM (B), and BP neural networks (C).

TABLE 2 Results of validation experiments.

Groups 1 2 3 R2 RMSE

Number 1 2 3 1 2 3 1 2 3

True moisture content (%) 39.51 17.28 12.53 45.18 20.92 11.32 37.83 16.42 10.6 0.9963 0.78

Predicted moisture content (%) 38.48 17.89 13.21 44.42 20.09 11.99 38.62 17.45 10.98

Error (%) 2.61 3.53 5.43 1.68 3.97 5.92 2.09 6.27 3.58
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neural network fusion model. The accuracy of the BP neural 
network model was significantly better than the two other models. 
An online moisture content monitoring system was constructed 
using the Kalman filter fusion algorithm, and validation 
experiments were carried out for the detection accuracy of the 
system. The R2 and RMSE of the nine groups of validation 
experiments were 0.9963 and 0.78, respectively, indicating that the 
monitoring system satisfies the accuracy requirements of the 
material moisture content detection in the drying process. This 
study provides technical support for optimizing the drying process 
based on the change in moisture content, as well as a reference for 
online monitoring of moisture content in other drying equipment.
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