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Effects of steam explosion (SE) treatment (0.3–1.0  MPa, 30–90s) on the 
physicochemical and functional properties of dietary fiber (DF) extracted from 
tea residue were investigated. Results showed that SE led to the formation 
of porous and less compact microstructures of tea residues. Compared with 
the control sample (12.41  g/100  g), the content of soluble dietary fiber (SDF) 
was markedly increased by SE, reaching the maximum of 23.03  g/100  g when 
steam explored at 0.5  MPa for 90  s, due to the degradation of insoluble dietary 
fiber (IDF). The physicochemical and functional properties were significantly 
influenced by SE treatments. IDF exhibited decreased water holding capacity 
(WHC), swelling capacity (SC), oil holding capacity (OHC) after SE, whereas the 
physicochemical properties of SDF from SE-treated tea residues (0.3  MPa, 90s) 
were greatly improved. The glucose absorption capacity (GAC), cholesterol 
adsorption capacity (CAC), and nitrite ion adsorption capacity (NIAC) of both 
IDF and SDF showed trends of first increasing and then decreasing, indicating 
that excessive SE treatment resulted in poor properties of DF. These findings 
are of great value for the high-value utilization of agricultural by-product and 
development of functional foods.
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1 Introduction

Tea is widely consumed in the world as a non-alcoholic beverage, and its derived products, 
such as bottled tea drinks, instant tea powder and tea extracts have attracted increasing 
attentions due to its unique flavor, taste, and healthy benefits (Sui et al., 2019; Guo et al., 2021). 
As the by-product of the tea industry, the amount of tea residues rapidly increased. Owing to 
low quality and unsatisfactory physicochemical properties, tea residues are usually discarded 
or utilized as feed additive, which resulted in the waste of resources and increase of 
environmental stress (Wang et al., 2011; Miao et al., 2022).

Tea residues are rich in dietary fiber (DF), and numerous studies have demonstrated that 
DF has a variety of potential health benefits for our human bodies, such as the ability to lower 
cholesterol and regulate glucose metabolism, the promising regulatory effects on the intestinal 
flora for preventing gastrointestinal disorders (Barber et al., 2020; Gill et al., 2020). Moreover, 
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DF is also of great significance for the stability of food during processing 
and storage, including effectively stabilizing the fat in food, improving 
gel properties, providing special taste and texture, and extending the 
shelf life, as well as being used as a fat substitute (Jiapan et al., 2021).

DF can be classified into insoluble dietary fiber (IDF, includes 
cellulose, lignin and insoluble hemicelluloses) and soluble dietary 
fiber (SDF, mainly consists of pectin, gums and soluble hemicelluloses) 
based on their solubility in water (Rodríguez et al., 2006). According 
to previous researches, it has been demonstrated that SDF exhibits 
more functional properties than IDF, such as emulsion capabilities, 
binding of toxic elements and inhibiting tumor cells (Guo et al., 2018; 
Xiaoqiang et al., 2019; Chen et al., 2020; Han et al., 2020). Zheng et al. 
found that the glucose adsorption ability of the SDF extracted from 
bamboo shoot shell was larger than that of IDF (Zheng et al., 2019). 
In total dietary fiber (TDF), the proportion of SDF should be greater 
than 10% for high-quality dietary fiber and the ratio of SDF/IDF is 
recommended to be approximately 1/2 as a right food ingredients 
(Jaime et al., 2002; Khanpit et al., 2021). Despite the high proportion 
of DF in tea residues, the SDF content is comparatively low, which 
limits its application in food manufacture, and it is crucial to develop 
modification technique to increase the content of SDF in tea residues 
to achieve dietary fibers with excellent functionalities.

The modification of DF to promote the conversion of IDF into 
SDF includes chemical (acid and alkali method), physical (extrusion), 
and biological methods (enzymatic hydrolysis and fermentation) (Niu 
et al., 2017; Chen et al., 2018, 2020). These methods, however, have 
certain disadvantages such as introduction of chemicals, high cost, 
time consuming, and environmentally unfriendly, etc. Steam 
explosion (SE), recognized as an effective, clean and economical 
technique to dissolute or degrade large molecular carbohydrate 
polymers to small ones, is defined as the steam hydrolysis at high 
temperature and pressure, followed by sudden decompression for 
physical tearing of hydrolyzed materials (Shen et al., 2019; Sui et al., 
2019). During SE processing, insoluble macromolecular 
polysaccharides such as cellulose and hemicellulose can be converted 
into small-molecule soluble polysaccharides through thermal 
degradation, mechanical fracture and hydrogen bond destruction 
(Dechao et al., 2021), thus increasing the content of SDF. In recent 
years, SE technology has attracted much attention in food processing, 
such as enhancing extraction efficiency of phenolics, increasing the 
SDF content of plant material by-products (Li et al., 2019; Wan et al., 
2022; Xi et  al., 2022). In tea industry, SE has been adopted as an 
effective modification way to enhance the extractability of bioactive 
compounds and improve the quality of tea seed oil (Sui et al., 2019).

In this study, SE was applied to treat tea residue at different 
pressures (0.3, 0.5, and 1.0 Mpa) and holding times (30, 60 and 90s). 
The influences of SE treatment on the microstructures and DF 
composition of tea residue were analyzed. The changes in the 
physicochemical and functional properties of IDF and SDF before and 
after different SE treatments were also evaluated.

2 Materials and methods

2.1 Materials

Green tea residue was purchased from a local market in Nanping 
(Fujian province, China), which contains 6.1% water, 25.8% protein, 
2.1% fat, 61.8 dietary fiber and 3.2% ash. All analytical reagents were 

of analytical grade unless otherwise stated, which were purchased 
from Sinopharm Chemical Reagent Co., Ltd. (Beijing, China), Xilong 
Scientific Co., Ltd., Shanghai Yi En Chemical Technology Co., Ltd., 
and kits were purchased from Suzhou Keming Biotechnology Co., Ltd.

2.2 Steam explosion treatment

The tea residue (40 mesh) was loaded into the reactor of QB-300 
steam explosion machine (Qingzheng Ecological Technology 
(Suzhou) Co., Ltd., China), and allowed to exploded at 0.3, 0.5 and 
1.0 MPa for 30, 60, and 90 s, respectively. The exploded tea residue 
samples were collected and dried under 45°C, and stored at room 
temperature for further use.

2.3 Color measurement

The tea residue samples after SE treatments (80 mesh) were placed 
in glass culture dishes to completely cover the bottom, and then 
photographed and recorded under the same conditions. The color of the 
samples was analyzed with an ADCI-60-C colorimeter (Beijing 
Chentaike Instrument Technology Co., Ltd., China). The colorimeter was 
calibrated using standard white and black calibration plates. L* (lightness, 
0 as black and 100 as white), a* (color range from green to red), and b* 
(color range from blue to yellow) values were recorded and analyzed.

2.4 Microstructure of tea residue

The microstructures of the tea residue samples before and after SE 
treatments were observed with a scanning electron microscope (SEM, 
Quanta 250, FEI, Hillsboro, OR, United States) at an accelerating 
voltage of 15 kV. Before observation, the dried samples were sputter-
coated with gold using an ion sputter coater (SCD 005, BAL-TEC, 
Switzerland).

2.5 Preparation of SDF and IDF

The SE treatment tea residue was dispersed in 15 times volume of 
phosphate buffer and the pH was adjusted to 6.5. Then α-amylase 
(0.05 g/g) was added and allowed to hydrolyze at 95°C for 30 min. 
After the temperature of the hydrolysate was decreased to 60°C, 
0.002 g/g papain was added to further hydrolyze for another 60 min at 
pH 6.0. The enzyme activity was inactivated in boiled water for 10 min. 
After that, the hydrolysate was centrifuged at 3,000 × g for 10 min at 
room temperature, and the sediment was washed with distilled water 
to get IDF. The supernatant was condensed to one-third in rotary 
evaporator, followed by mixing with 4 times 95% (v/v) ethanol for 12 h 
and subjecting to centrifugation at 3,000 × g for 5 min, SDF was 
defined as the precipitation after freeze-drying.

2.6 Chemical composition of DF

Cellulose, hemicellulose and lignin contents of DF were measured 
by the method according to Jiang et al. (2021). The AOAC methods 
(1990; method no. 973.18) was used to detected the neutral detergent 

https://doi.org/10.3389/fsufs.2023.1326102
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Xing et al. 10.3389/fsufs.2023.1326102

Frontiers in Sustainable Food Systems 03 frontiersin.org

fiber (NDF) and acid detergent fiber (ADF). Acid detergent lignin 
(ADL) were determined by treating samples with 72% H2SO4 (20°C) 
for 3 h, then the samples were washed and dried, followed by heating 
in a furnace. The lignin content (%) was defined as the weight loss (%) 
before and after heating. Cellulose was calculated as ADF-ADL (%) 
and hemicellulose was calculated as NDF-ADF (%).

2.7 Sugar content of tea residue

The content of sugar in tea residue with or without SE was 
determined according to Geater and Fehr (2000). The phenol-sulfuric 
acid method was used to analyze the total sugar content and the 
3,5-Dinitrosalicylic acid method was used for the determination of 
reducing sugar content.

2.8 Fourier transform infrared 
spectroscopy analysis

The FTIR spectra of SDF and IDF were recorded according to Xi 
et al. (2022), all dry samples were mixed with KBr (FT–IR grade) 
before grinding and pressing. A FTIR spectrometer was used to 
measure the spectra of samples (Nicolet 6,700, Thermo Fisher, 
United  States). FT-IR spectra in the wavenumber range of 
400–5,000 cm−1 were recorded.

2.9 Physicochemical and functional 
properties

2.9.1 Water holding capacity
Water holding capacity was determined according to Yang et al. 

(2022) with minor modification. 0.5 g IDF and SDF were dissolved 
with 10 mL distilled water for 1 h at ambient temperature. The samples 
were centrifuged at 2,000 × g for 10 min and the supernatant was 
removed, tubes with precipitate were accurately weighed. WHC was 
calculated as follows:

 
WHC g g W W

W
/( ) = −2 1

3

where W1 was the weight of the centrifuge tube, W2 was the weight 
of the centrifuge tube after supernatant was removed, W3 was the 
original weight of DF.

2.9.2 Swelling capacity
0.1 g IDF and SDF were weighted and the initial volume was 

recorded. 5 mL of distilled water was mixed with sample for 24 h at room 
temperature, and the final volume of the hydrated sample was recorded. 
The swelling capacity (SC) was calculated by the following equation:

 
SC mL g V V

W
/( ) = −2 1

1

where W1 was the weight of DF, V1 was the volume of the dried 
sample, V2 was recorded as the final volume of the hydrated DF.

2.9.3 Oil holding capacity
The OHC of the samples was measured based on a method 

reported by Jiang et al. (2021) with slight modifications. Briefly, 0.5 g 
IDF and SDF were mixed with 10 mL sunflower oil for 1 h. Then 
centrifuged at 1,000 × g for 30 min, supernatant and excess oil were 
removed. The weight of sample was recorded and the OHC was 
calculated as follows:

 
OHC g g W W

W
/( ) = −2 1

3

where W1 was the weight of the centrifuge tube, W2 was the weight 
of the precipitate, and W3 was the weight of DF.

2.9.4 Glucose adsorption capacity
Based on the method described by Qianyun et al. (2021), the 

GAC of samples was determined using the DNS method. 0.2 g 
lyophilized IDF and SDF sample was mixed with 20 mL glucose 
solution (100 mmol/L), which was immersed into a 37°C water 
bath for 6 h. After the mixture was centrifuged at 3,000 × g for 
10 min, the absorbance of the supernatant was determined 
at 540 nm, and the GAC was calculated according to the 
standard curve.

2.9.5 Cholesterol adsorption capacity
The CAC was measured based on a method reported by Si et al. 

(2022). 10 mL of egg york was added to 90 mL distilled water and 
mixed into the emulsion. 1 g of IDF and SDF were blended with 25 mL 
emulsion, respectively. Then the mixtures were adjusted to pH 2.0 
(simulating the gastric environment) and pH 7.0 (simulating the 
intestinal environment) and shaken at 37°C for 2 h, and diluted yolk 
without DF was blank. The mixture was centrifuged at 2,200 × g for 
10 min, and the supernatant was collected and distilled. The 
absorbance 0.4 mL sample was determined at 550 nm, and 
the cholesterol adsorption capacity was calculated according to the 
standard curve.

2.9.6 Nitrite ion adsorption capacity
Analysis of NIAC was based on the previously established 

method Luo et  al. (2017). In brief, the NaNO2 solution 
(100 μmol/L) was adjusted to pH 2.0 and pH 7.0, representing 
the simulated of gastric environment and small intestinal 
environment, respectively. 0.5 g IDF and SDF samples were 
weighed and mixed with 25 mL NaNO2 solution in a conical flask 
at 37°C water bath for 30 min. An ultraviolet spectrophotometer 
(GENESYS 10S, Thermo Fisher Scientific Inc., United States) 
was used to determine the absorption spectra of NaNO2 at 
wavelength of 538 nm, and the NIAC was estimated using the 
standard curve.

2.10 Statistical analysis

Each experiment was carried out in triplicate and results were 
expressed as mean values ± standard deviation (S.D.). Statistical analysis 
was performed with SPSS 20 and chart drawing were completed by 
Origin. Data were analyzed by analysis of variance (ANOVA) and the 
Duncan method, which used a significance level of p < 0.05.
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3 Results and discussions

3.1 Effects of SE on the color of tea residue

Photographs of the tea residues after different SE treatments are 
shown in Figure 1. The color of the tea residues gradually changed 
from green to tawny with the increase in the steaming pressure and 
holding time. The darkening of colors may be related to the oxidation 
of tea polyphenols and Maillard reactions between proteins and 
reducing sugars caused by high temperatures and pressures (Zhang 
et al., 2019; Yan et al., 2021). The color properties (L*, a*, b*) of the tea 
residue samples are presented in Table 1. It can be found that the L* 
values decreased with the increase in the steaming temperature and 
holding time, indicating decreases in the lightness of the samples. 
A decrease in the b* (blue-yellow) value but increasing trend of a* 
(green-red) value were observed in the SE-treated samples when the 
steam intensity was elevated. This demonstrated that the color of the 
tea residues was closer to the red and blue regions (Minz and 
Saini, 2021).

3.2 Effects of SE on the microstructure of 
tea residues

The microstructures of tea residues before and after SE 
treatment were observed using scanning electron microscopy 
(SEM), which are shown in Figure  2. The sample without SE 
treatment (Control, Figure 2A) exhibited a complete morphology 
with intact cell wall structure and smooth surface. SE treatment 
disrupted the integrity of the structure and led to the separation 
of leaf mesophyll and veins, accompanied by the formation of 
small fragments and large cavities were formed on the surface of 
tea residues, resulting much rougher texture. Particularly, when 
the tea residues were steam exploded under 0.5 MPa (60 and 90 s) 
and 1.0 MPa, vortex shaped cavities could be  observed. This 

might be caused by the entrance of supersaturated steam and an 
instantaneous release of high pressure, which contributed to the 
rupture of the plant cell wall due to the expansion work and 
flashing effect during the instantaneous decompression (Nasir 
et al., 2020).

3.3 Effects of SE on the DF compositions of 
tea residue

The content of SDF and ratio of SDF/IDF are comparably low 
in tea residue, which limit its application in food processing. 
Therefore, increasing the SDF content could improve the quality 
of tea residue. Figure 3 shows the changes in the SDF and IDF 
content in tea residues modified by SE. From the figure, the 
content of IDF and SDF in the control sample were 53.34 g/100 g 
and 12.41 g/100 g, respectively. SDF content was significantly 
increased by SE, reaching the maximum of 23.03 g/100 g 
(increased by 85.58% compared with the control) when exploded 
under 0.5 MPa for 90 s, and the IDF content was simultaneously 
decreased by 18.24% from 53.34 g/100 g to 43.61 g/100 g, 
indicating depolymerization of some material binding with fiber 
and partial degradation of high molecular weight polysaccharides 
(Gong et al., 2012). Meanwhile, the ratio of SDF/IDF increased 
from 1:4.3 to 1:1.9, which reached the recommended value 
(approximately 1:2) for using as food ingredients (Khanpit et al., 
2021). However, further increasing the SE intensity (1.0 MPa) led 
to the decrease in the content of SDF, one reasonable explanation 
is that some polysaccharides in tea residue were over-degraded 
and converted into oligosaccharides with smaller molecular 
weight, which cannot be  precipitated by ethanol when 
determining the SDF content (Li et al., 2019). The total content 
of DF did not differ significantly among the samples, indicating 
that SE did not cause obvious loss in essential ingredients of tea 
residue (Kong et al., 2020).

FIGURE 1

Appearance of tea residues under different steam explosion conditions.
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TABLE 1 Effects of steam explosion on the color parameters of tea residues under different steaming conditions.

Samples L* a* b*
Control 44.40 ± 0.03a 4.71 ± 0.15f 23.58 ± 0.03a

0.3 MPa, 30 s 41.95 ± 0.60b 4.84 ± 0.12f 22.15 ± 0.05b

0.3 MPa, 60 s 41.32 ± 0.09b 5.05 ± 0.12ef 22.77 ± 0.05b

0.3 MPa, 90 s 39.05 ± 0.25c 5.37 ± 0.47e 21.73 ± 0.28c

0.5 MPa, 30 s 38.34 ± 0.26c 13.14 ± 0.12d 18.63 ± 0.48d

0.5 MPa, 60 s 37.30 ± 0.05d 13.49 ± 0.24d 17.97 ± 0.12e

0.5 MPa, 90 s 34.82 ± 0.10e 15.64 ± 0.35c 17.24 ± 0.28f

1.0 MPa, 30 s 32.26 ± 0.94f 20.22 ± 0.11b 15.30 ± 0.11g

1.0 MPa, 60 s 29.45 ± 0.48g 20.21 ± 0.11b 15.19 ± 0.07g

1.0 MPa, 90 s 28.90 ± 0.72g 21.49 ± 0.15a 15.29 ± 0.33g

Values in the same column with different letters differ significantly (p < 0.05).

FIGURE 2

Effect of steam explosion on the microstructure of tea residues. (A), Control; (B), 0.3  MPa, 30  s; (C), 0.3  MPa, 60  s; (D), 0.3  MPa, 90s; (E), 0.5  MPa, 30  s; 
(F), 0.5  MPa, 60  s; (G), 0.5  MPa, 90  s; (H), 1.0  MPa, 30  s; (I), 1.0  MPa, 60  s; (J), 1.0  MPa; 90  s.
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3.4 Effect of SE on the IDF composition and 
sugar content of tea residue

Table 2 shows the effects of SE (0.3, 0.5, and 1.0 MPa for 90 s.) on the 
content of cellulose, hemicellulose and lignin. These components decreased 
significantly with the increase in SE intensity. Under the condition of 
1.0 MPa, 90 s, the content of cellulose, hemicellulose and lignin decreased by 
30.35, 66.20, and 22.48%, respectively. The differences in the decrease extent 
of these three IDF components could be due to the fact that the chemical 
stability of hemicellulose and cellulose is weaker than that of lignin (Dai 
et al., 2017; He et al., 2019). The content of reducing sugar and total sugar in 
tea residue markedly increased after SE treatments, which confirmed that 
SE treatment degrade the IDFs into soluble polysaccharides. These findings 
were consistent with the DF compositions presented in section 3.3.

3.5 Effect of SE on the molecular structure 
of IDF and SDF

The FTIR spectra of DF from tea residue before and after 
SE are shown in Figure  4. The absorption peaks near 

3,400 cm−1, 2,920 cm−1, 1,630 cm−1, and 1,060 cm−1 represented 
stretching vibration generated by O-H, C-H, C=O, and 
C-O-C/O-H of DF, respectively, which conformed to the 
typical infrared absorption spectrum characteristics of 
polysaccharides (Ma and Mu, 2015; Dong et al., 2020). After 
SE treatment, the IDF generated a red shift from 3,400 cm−1 to 
3,357 cm−1 (Figure  4A), indicating partial degradation of 
cellulose and hemicellulose components in the raw material 
(Zheng et  al., 2021). Figure  4B shows the FTIR spectra of 
SDF. We can find that when compared with the control sample 
(0-SDF), the intensity of the absorption peak near 3,440 cm−1 
increased, indicating that SE promoted more exposure of -OH 
groups, which is beneficial for improving the hydrophilicity of 
the sample. Nevertheless, there were no new vibration peaks in 
the dietary fiber of tea residue after SE treatment, or significant 
differences in the peak shape, quantity, and position. Only the 
intensity of some absorption peaks was changed, indicating 
that the structure of DF was disrupted to some extent by SE, 
but without formation of new chemical groups, suggesting no 
changes in the composition of both IDF and SDF from 
tea residue.

FIGURE 3

Effect of steam explosion on the dietary fiber composition of tea residue.

TABLE 2 Chemical compositions of steam explosion treated tea residues.

Samples Cellulose (mg/g) Hemicellulose (mg/g) Lignin (mg/g) Reducing sugar (mg/g) Total sugar 
(mg/g)

Control 38.26 ± 0.27a 23.76 ± 0.73a 7.25 ± 0.17a 6.72 ± 0.08d 22.39 ± 0.25d

0.3 MPa 90 s 36.60 ± 0.18b 20.13 ± 0.84b 6.66 ± 0.15b 7.75 ± 0.22c 24.88 ± 0.15c

0.5 MPa 90 s 31.99 ± 0.59c 17.15 ± 0.93c 6.04 ± 0.12c 8.65 ± 0.29b 26.75 ± 0.20b

1.0 MPa 90 s 26.65 ± 0.38d 8.03 ± 0.82d 5.62 ± 0.13d 9.39 ± 0.31a 27.34 ± 0.23a

Values in the same column with different letters differ significantly (p < 0.05).
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3.6 Effects of SE on the physicochemical 
and functional properties of DF

3.6.1 Swelling, water-, and oil-holding capacity
The influence of SE on the SC, WHC, and OHC of DFs from tea 

residue is shown in Figure  5. The SC of IDF decreased with the 
increase of SE intensity. At SE intensity of 0.3 MPa for 90 s, 0.5 MPa for 
90 s and 1.0 MPa for 90 s, the swelling capacity decreased by 13.53, 
21.10 and 46.33%, respectively, compared to the control. 
Comparatively, the SC of SDF increased first and then decreased, and 
at the SE intensity of 0.3 MPa for 90 s, the maximum value of 3.05 g/g 
was obtained, which was 41.86% higher than that of the SDF in 
control sample. The WHC and OHC of the IDF and SDF showed 
consistent variation trends with SC values. The improvement of SC, 
WHC and OHC of SDF might be attributed to the increase in the 
surface area of DF and short-chain fibers caused by appropriate SE 
treatment (Wang et al., 2017; Xi et al., 2022). On the other hand, 
cellulose and hemicellulose molecules contain hydrophilic groups 
with excellent water-holding and swelling capacities, and furthermore, 
highly hydrated cellulose and hemicellulose molecules can absorb oil 
and cholesterol (Shen et al., 2019). Therefore, the IDF from non-SE 
treated tea residue possessed the highest SC, WHC and OHC. SE may 

break the porous structure and channels in the raw fibers, thus causing 
the decrease in the physicochemical properties of IDF (Li et al., 2019; 
Zhu et al., 2021).

3.6.2 Glucose absorption capacity
GAC is an important indicator for accessing the ability of DF to 

adsorb glucose in the intestine (Tang et al., 2023). The GAC values of 
DFs from tea residue were presented in Figure 6A. From the figure, 
we can observe that SE at 0.3 MPa for 90s significantly increased the 
GAC of both IDF and SDF with values of 5.02 mmol/g and 
7.59 mmol/g. It has been demonstrated that SDF exhibited better 
GAC than IDF, probably due to increase in the viscosity of the 
system, which delayed the diffusion rate of glucose molecules (Qiao 
et  al., 2021). It was also reported that the modification of SDF 
exposes more polar and non-polar groups on the surface of fiber, 
thus enhancing the interaction between SDF and glucose (Liu et al., 
2021). Tang et al. (2023) and Huang et al. (2021) found that SE could 
increase the specific surface area and result in honeycomb structure 
of DF, which might be responsible for the improved GAC in the 
present study. However, excessive SE treatment may destroy the 
porous structure and lead to the decrease of glucose 
adsorption capacity.

FIGURE 4

FTIR spectra of insoluble dietary fiber (A) and soluble dietary fiber (B) from tea residue with or without steam explosion.

FIGURE 5

Effects of steam explosion on swelling capacity (SC), water holding capacity (WHC) and oil holding capacity (OHC) of dietary fiber from tea residue.
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3.6.3 Cholesterol absorption capacity
It was reported that the hypolipidemic feature of DF could 

effectively alleviate the hazards caused by cholesterol accumulation in 
vivo (Li et al., 2022), and the CAC is an essential indicator of the DF’s 
capacity to lower serum cholesterol levels. According to the results 
shown in Figure 6B, appropriate SE treatment (0.3 or 0.5 MPa, 90 s) 
significantly enhances the CAC compared to the control sample, 
particularly for the SDF. It was reported that the surface of SE-treated 
SDF exhibits more binding sites, thus promoting the adsorption (Zhai 
et al., 2021). Moreover, the internal disordered structure of dietary 
fiber was disrupted by SE, thus increasing the exposure degree of polar 
groups on the surface, which favored its adsorption of cholesterol (Liu 
et al., 2021; Tang et al., 2023).

3.6.4 Nitrite ion adsorption capacity
DF contains side chain groups such as carboxyl and hydroxyl 

groups, which have a certain adsorption effect on nitrite. The NIAC 

indicates the capacity of DF to prevent the toxicity caused by the over 
intake of nitrite and protect against gastric cancer development (Song 
et  al., 2018). Gastric (pH 2.0) and small intestine (pH 7.0) 
environments were simulated to investigated the NIAC of the samples. 
As shown in Figure 7, the NIAC of DFs at pH 2.0 was higher than that 
at pH 7.0. This could be attributed to the fact that in acidic condition, 
HNO2 was formed by the reaction between H+ and nitrite ion, and 
nitrogen-oxide compounds were further generated that can readily 
combine with the DFs (Zhu et al., 2018). With the increase of SE 
intensity, the NIAC of the DFs from tea residue first increased and 
then decreased at both pH 2 and pH 7, the IDF and SDF pre-treated 
under steaming pressure of 0.3 MPa for 90 s displayed the highest 
NIAC. It has been demonstrated that the enlarged surface area and 
more active groups induced by SE contribute to the binding of nitrite 
ion, thus resulting in the improvement of NIAC of DFs (Xi et al., 
2022). However, excessive SE caused the destruction of chemical 
groups in the IDF and the instability of the structure, thereby reducing 

FIGURE 7

Nitrite ion adsorption capacity (NIAC) of dietary fibers from tea residues. (A), pH=2; (B), pH=7.

A B

FIGURE 6

GAC (A) and CAC (B) of dietary fibers from tea residues.
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the NIAC (Feng et al., 2022). Accordingly, the DFs obtained through 
moderate SE from tea residue can be  used as a candidate for 
scavenging of nitrite ion.

4 Conclusion

In the present study, SE was used to modify the structural, 
physicochemical and functional properties of DFs from tea residue. 
The results suggested that SE changed the morphology of tea 
residue and lead to the formation of porous and loose 
microstructures. The content of SDF was effectively increased by 
85.58% (up to 23.03 g/100 g) through appropriate SE treatments 
(0.5 MPa, 90s), resulting from the degradation of IDF. The ratio of 
SDF/IDF reached approximately 1:2 when the tea residue was 
exploded at this condition. The SC, WHC and OHC of IDF were 
impaired after SE treatments, whereas for SDF, these properties 
were significantly improved by SE at 0.3 MPa for 90 s. The GAC, 
CAC and NIAC of IDF and SDF showed trends of first increasing 
and then decreasing under various SE conditions, and SDF 
exhibited better functional properties than those of IDF. These 
results indicated that SE can be  an effective technique for the 
modification of DF and improves the added value of tea residue, 
thereby promoting the application of agricultural processing 
by-products in food industry.
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