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Introduction: In the era of climate change, sugarcane used to face a problem

associated with water shortage due to erratic rainfall patterns and lowered

water tables. Improved water use e�ciency using innovative crop management

strategy is needed for sustainable sugarcane production. Trash mulching with

di�erent irrigation regimes can e�ectively modify the plant’s hydrothermal

micro-environment for increasing cane yield and water productivity.

Methods: Keeping this in the background, a field experiment was conducted

at Sugarcane Research Institute, RPCAU, Pusa, India, from 2016–17 to 2018–19

to investigate the e�ects of trash mulching and irrigation regimes on sugarcane

productivity, water use e�ciency (WUE) and soil properties in di�erent planting

systems. The field experiment comprised 12 treatments including four planting

methods viz. conventional flat planting (CF; 75 cm row spacing) with trash

mulching (6 t ha−1), CF planting (75 cm row spacing) without trash mulching

(6 t ha−1), paired row trench (PT) planting (30: 120 cm row spacing) with trash

mulching (6 t ha−1), PT planting (30: 120 cm row spacing) without trashmulching

(6 t ha−1) and three irrigation schedules consisted of irrigation water (IW);

cumulative pan evaporation (CPE) ratio of 0.60, 0.80, and 1.00 was laid out in

strip plot design with three replications.

Results and discussion: The cane yield (103.5 t ha−1) was found

significantly higher in PT planting with trash mulching over the CF

planting method with or without mulching. Concerning irrigation regimes

using the IW/CPE ratio, it was found that the IW/CPE of 0.6 resulted in

16.9, 13.3% higher water-use e�ciency, and 37.1, 40.7% higher water

productivity over those under IW/CPE of 0.8, and 1.00, respectively.

Furthermore, soil parameters like soil microbial biomass carbon (SMBC) and
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dehydrogenase activity were increased by 12.5, and 17.5 % due to trashmulching

with trench planting as compared to those under conventional flat planting

without mulching. The results suggest that planting sugarcane in paired rows

and irrigation scheduling at 1.00 IW/CPE with the adoption of trash mulching

practices is e�ective for increasing profitability by way of higher sugarcane

productivity and water productivity and also in sustaining soil health.

KEYWORDS

cane yield, irrigation scheduling, mulching, plantingmethods, water productivity, water

use e�ciency

1 Introduction

Sugarcane is not only used for sugar production, but it is

also becoming a major biofuel crop due to its exceptional dry

matter yield. Several factors affect the production of sugarcane,

including climate, soil type, crop management techniques, nutrient

management (Kumar et al., 2023a), irrigation scheduling, and soil

moisture availability during the growth phase (Sulaiman et al.,

2015). Despite being a C4 crop, sugarcane has a very high water

requirement due to its long formative phase, during which it

remains young and tender, as well as the hot and desiccating

summer when evaporative demand is high (Wiedenfeld, 2000).

Using trashmulch in these circumstances is especially beneficial

since it protects the soil’s surface from evaporation loss by acting

as a barrier to direct contact with solar radiation and also inhibits

weed growth through the smothering effect. Therefore, mulching

exerts direct and indirect effects on microclimates and increases

yields and water productivity (Jiang et al., 2016; Yang et al.,

2023). Additionally, crop residue layers can cut down surface

evaporation by up to 50% in comparison to bare soil (Denmead

et al., 1997; Kingston et al., 2005). Braunbeck and Magalhaes

(2010) and Aquino et al. (2017) demonstrated that maintaining

soil cover reduces soil moisture losses by 70%, minimizes soil

erosion, improves soil physicochemical properties, and improves

soil microbes in sugarcane. Sufficient soil moisture must be

available throughout the crop growth period to achieve high yields

(Kumar et al., 2013). On the other hand, traditional irrigation

management issues include inadequate capacity for peak demand,

unpredictable supply rates, and poor irrigation efficiency and

regularity (Rajput et al., 2022). With the pan evaporation irrigation

scheduling approach, farmers can change the amount of water

used from one irrigation system to another without changing the

amount of water used in each irrigation system and rainfall is also

taken into account. Based on this approach, irrigation schedules can

be computed, provided pan evaporation does not varymuch during

the growing season (Singh et al., 2007).

Agricultural productivity in arid and semiarid areas of South

Asia is limited by a lack of precipitation and low water availability

(Zhang D. Q. et al., 2005; Turner and Meyer, 2011; Pramanick

et al., 2023); due to the significant impacts of global climate

change on agricultural systems, this issue has become even more

important (Gan et al., 2009; Singh et al., 2021). A large part of

the country is under intensive agriculture and mostly irrigated by

groundwater which has significantly contributed toward increased

food production in India (Dangar et al., 2021). Over the last 10

years in India, the depletion of the groundwater table has increased

by ∼23% for irrigation (Dalin et al., 2017). Furthermore, intensive

pumping and unregulated use of water have caused rapid declines

in water tables, putting crop production at risk (Ahmad et al.,

2023). Earlier sugarcane productions were still conducted using the

conventional planting system. However, in order to deal with this

issue, new plantation techniques have been developed to guarantee

greater crop homogeneity, which results in a dramatic increase in

cane yield (Bhullar et al., 2008; da Silva et al., 2020; Kumar et al.,

2023b). Additionally, mulching combined with a proper planting

method increases soil water availability (Wang et al., 2011).

Due to changes in soil physical properties, soil organic

matter decomposes rapidly if it is continuously cultivated for

agricultural production, especially in tropical and semiarid regions

(Ashagrie et al., 2007), causing soil productivity to decline

and soil carbon depletion (Ranjan et al., 2023). It is possible

to enhance carbon sequestration and reduce atmospheric CO2

enrichment by implementing proper input management practices

(Paustian et al., 1997; Prosdocimi et al., 2016). Moreover, soil

microclimate can be affected by the incorporation of plant residues

(Laik et al., 2021).

Considering the above points, it was hypothesized that different

planting techniques, mulching, and irrigation scheduling may

influence sugarcane growth, yield, and soil properties. Thus, the

present study was carried out with the following objectives: (i) to

optimize irrigation regime in sugarcane under different planting

methods and trash mulching, (ii) to find out the best planting

method and trash mulching practice in higher growth, productivity

and juice quality of sugarcane under different irrigation schedule,

(iii) to assess the short term impact of various planting method

with or without trash mulching and irrigation in sugarcane

on soil properties, and (iv) to work out the profitability of

sugarcane under different planting method and irrigation regime

in South Asia.

2 Materials and methods

2.1 Experimental site

The field experiment was carried out during the spring

seasons of 2016–17 to 2018–19 at Sugarcane Research Institute
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FIGURE 1

The rainfall (mm) and mean weekly maximum relative humidity (%), minimum relative humidity (%), maximum temperature (◦C), and minimum

temperature (◦C), for the (i) 2016–2017, (ii) 2017–2018, and (iii) 2018–2019.

(SRI) farm in Pusa, Bihar, India, with precise coordinates

of 85◦ 40′ E longitude, 25◦ 59′ N latitude, and 52.1m

above mean sea level. This study was carried out as part

of the Project Directorate of ICAR. The study area has a

subtropical, hot and humid environment with a mean annual

rainfall of 1,210mm (Supplementary Table 1). Between July and

September, 75–80% of the rain occurs. There were significant

patterns of rainfall variability during the 3 years of the

experiment, both in terms of amount and distribution, raising

concerns about the reliability of the EIGP rainfall data. As

illustrated in Figure 1, the mean maximum and minimum

temperatures, relative humidity, and rainfall during the harvest

period are presented. The total rainfall was 1,015.6mm (2016–

17), 1,134.6mm (2017–18), and 871mm (2018–19). During the

growing year 2016–17, the mean weekly maximum and minimum

temperatures ranged from 18.9 to 40.6◦C and 6.2 to 27.2◦C,

respectively. Accordingly, in the year 2018–19, maximum and

minimum relative humidity ranged from 75 to 92 and 48 to

82%, respectively.

2.2 Experimental design and treatment
details

The experiment was laid out in strip plot design

with combinations of four planting methods and

three irrigation schedules with three replications.

In Table 1, detailed treatment combinations

are presented.

TABLE 1 Treatment details of this study.

Treatment Sugarcane

Planting method with and without mulch

PM1 Conventional flat planting (75 cm row spacing) with

trash mulching (6 t ha−1)

PM2 Conventional flat planting (75 cm row spacing) without

trash mulching

PM3 Paired row trench planting (30: 120 cm row spacing)

with trash mulching (6 t ha−1)

PM4 Paired row trench planting (30: 120 cm spacing)

without trash mulching

Irrigation schedule (IW/CPE)

IS1 0.60

IS2 0.80

IS3 1.00

2.3 Crop management

Prior to cultivation, the experimental site was cleared, plowed,

and harrowed manually. The gross plot size was 10m × 9m

(90 m2) and the net plot size was 8 × 6m (48 m2). Sugarcane

variety “CoP 112” was planted on 10, 8, and 5 March during

2016, 2017, and 2018, respectively, using 150,000 buds ha−1. Before

planting, the cane setts were treated with chlorpyriphos 20% EC

to protect them from insect attack. To supply 150:37.1: 49.8 kg N,

P, and K ha−1, diammonium phosphate (DAP), urea, and muriate
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TABLE 2 Irrigation requirement, soil moisture contribution, and water requirement of sugarcane (pooled data of three years).

Treatment∗ Irrigation requirement E�ective rainfall
(cm)

Soil profile moisture
contribution (cm)

Water requirement
(cm)

Number Depth (cm)

Planting method with and without mulch

PM1 3.5 25.8 71.06 1.88 98.78

PM2 3.5 25.8 71.06 2.00 98.89

PM3 3.5 25.8 71.06 1.59 98.48

PM4 3.5 25.8 71.06 1.87 98.76

Irrigation schedule (IW/CPE)

IS1 2.7 20.0 71.06 2.03 93.09

IS2 3.0 22.5 71.06 1.82 95.38

IS3 4.7 35.0 71.06 1.66 107.7

∗Refer to Table 1 for treatment details.

of potash (MOP) were used. To provide a basal dose, half N

and full P and K were applied. Sugarcane was top-dressed with

remaining N doses in equal splits after the first irrigation and at

the maximum tillering stage. In accordance with the treatments,

sugarcane trash of 6 t ha−1 was applied 50 days after planting.

Based on ameteorological approach, irrigation water was scheduled

based on a ratio between IW and CPE. To ensure good germination

of sugarcane, sufficient moisture conditions were required, and

irrigation was applied according to designated irrigation schedules

based on a meteorological approach. As a constant depth of

irrigation water (75mm), irrigation was applied to achieve a pre-

calculated CPE based on daily evaporation from a USWB Class A

open pan. Each plot was irrigated with water measured by water

meters. To prevent water from flowing from one plot to another,

all plots were separated by double bunds. A conventional flat (CF)

planted crop was irrigated throughout, whereas a paired row trench

(PT) planted crop was irrigated only in trenches, resulting in a

40% reduction in the wettable area, which is 30 cm (trench) +

30 cm (15 cm + 15 cm both sides of the trench) out of 150 cm of

30:120 cm. To determine the amount of irrigation water applied

over the growth season, the depth of water delivered to each

treatment plot was multiplied by the total number of irrigations

throughout the season. By using the gravimetric method, the

moisture content of the soil was determined. The pooled mean of 3

years of number of irrigation, depth, effective rainfall, soil moisture

contribution, and water requirement were given in Table 2. Before

crop harvesting, irrigation was stopped 20 days in advance.

Water use efficiency (WUE) was estimated as follows (Tayade

et al., 2020):

WUE (kg ha−1cm−1) =
Cane yield (kg/ha)

Total irrigation water applied (cm)

Water productivity is calculated as follows (Das et al., 2018):

Waterproductivity (Rs m−3)

=
Gross income in rupees

Area under cultivation (ha) × depth of irrigation (m) × number of irrigation

In accordance with recommended practices, other agronomic

practices viz., weeding, herbicide application and earthing up were

followed as required. Sugarcane was harvested on 31st January of

2017, 2018, and 2019, respectively.

2.4 Growth and yield contributing
characters

During a 3-year study, biometric observations of the cane

growth and yield parameters were recorded, including germination

percentage, number of tillers, plant height, millable stalk, single

cane weight, and cane yield. In each 8m long plot, the middle

four rows were counted 45 days after planting (DAP) to determine

the germination percentage. During 120 DAP, tillers were counted

similarly for each plot and presented per hectare. The distance from

ground level to the last fully expanded leaf was measured on 10

randomly selected plants from each plot at 240 DAP. Then, their

average was calculated for the estimation of plant height.

At harvest, yield contributing characters and yield

characteristics were observed. To avoid border effects, cane

yield was harvested manually from net plots. For each plot, the

cane yield was measured after topping the plants and removing

the trash from the stems. In net plots, the number of millable stalks

was manually counted and converted to thousands per hectare.

During harvesting, 10 randomly stripped canes were collected

for measuring cane diameter. By using a vernier caliper, the top,

middle, and base of the cane were measured and averaged. From

each plot, 10 randomly selected canes were weighed separately,

and their respective values were presented as single cane weights.

To extract cane juice, 10 randomly selected clean millable canes

were crushed in an electric roller cane crusher. According

to standard procedures (Meade and Chen, 1977), sucrose %

was calculated.

2.5 Soil characteristics and analysis

In this experiment, the soil of the experimental site was

sandy loam (Typic Haplustept). Initially, soil samples were pooled
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TABLE 3 Initial physicochemical properties of the soil at the study site.

Parameter Value Methods
used

References

Sand (%) 57.55 Bouyoucos

Hydrometer

Piper, 1966

Silt (%) 28.95

Clay (%) 13.27

Texture Sandy loam Textural Diagram Black, 1965

Bulk density 1.41 Mg m−3 Core sampler Black, 1965

Soil pH (1:2.5 soil

water suspension)

8.2 Potentiometric Jackson, 1973

Electrical

conductivity

0.32 dS m−1 Potentiometric Jackson, 1973

Organic carbon 4.9 g kg−1 Walkley and Black

method

Nelson and

Sommers,

1996

Available

nitrogen (N)

227 kg ha−1 Alkaline KMnO4 Subbiah and

Asija, 1956

Available

phosphorus

(P2O5)

23 kg ha−1 Olsen’s method Olsen et al.,

1954

Available potash

(K2O)

126 kg ha−1 1N neutral

ammonium acetate

method

Page et al.,

1982

TABLE 4 Methods used in soil sample analysis.

Parameters Methods used References

Bulk density (Mg m−3) Core sampler Black, 1965

Organic carbon (g kg−1) Walkley and Black’s rapid

titration method

Jackson, 1973

Ex-situ soil respiration

(mg CO2-C kg−1 soil

day−1)

Quantities of CO2-C that are

mineralized from

unfumigated samples using 30

days incubation at 28± 2◦C

Page et al.,

1982

Soil microbial biomass

carbon (SMBC; mg

Cmicrob kg
−1 soil day−1)

Chloroform fumigation

extraction method

Jenkinson and

Ladd, 1981

Dehydrogenase activity

(µg TPF g−1 24 hr−1)

Triphenly tetrazolium

chloride method

Casida et al.,

1964

together, and a representative homogeneous sample was drawn

and analyzed. At the beginning of the experiment (2016), detailed

soil characteristics were determined, and the data are presented in

Table 3.

After the harvesting of sugarcane in 2019, samples were taken

from the cultivated soil layer at depths of 0–15 cm and collected

with a screw sampler from each experimental plot. After drying,

powdering, and sieving soil samples through a 2mm plastic sieve,

cloth bags were used to store the soil samples. We analyzed these

processed soil samples for the parameters listed in Table 4.

Soil organic carbon stock (Mg ha−1) in 0–15 cm depth = SOC

(g kg−1)× 2.22× BD (Mg m−3).

2.6 Statistical analysis

An analysis of the data from the experiment was performed for

each of the 3 years and then pooled together. Statistical Package for

Social Sciences (SPSS v. 23.0) software was used for the analysis of

variance (ANOVA). F-tests at a 5% significance level were used to

determine the significance of the treatment effect. Using the critical

difference (CD) approach, differences between treatment means

were assessed (Gomez and Gomez, 1984).

3 Results

3.1 Growth parameters

Germination percentage and growth attributes are presented in

Table 5. The results represent the pooled mean data of the crop of

3 years. Among the planting methods, PT planting (30: 120 cm row

spacing) without trash mulching (PM4) showed a significantly (p

≤ 0.05) higher germination percentage (37.6%) as compared to CF

planting (75 cm row spacing) without mulching (PM2; 33.3%) and

was on par with rest of the planting method and trash management

practices at 45 DAP. With regard to irrigation scheduling, IW/CPE

ratio of 1.00 (IS3) had the highest germination percentage (36.7%)

accounting for an increase of 6.4% when compared to the IW/CPE

of 0.6 (IS1).

At 120 DAP, PT planting with trash mulching (6 t ha−1;

PM3) produced the highest number of tillers (208,300 ha−1) and

was statistically significant (p ≤ 0.05) over other treatments. CF

planting with (PM1) or without (PM2) trash mulching resulted

in minimum tillers, accounting for 21.1 and 34.6% reduction

respectively as compared to the treatment PM3 (Table 5). Among

irrigation schedules, IS3 treatment recorded the maximum tiller

number (215,500 ha−1) which was 47.1 and 16.4% higher as

compared to IS1 and IS2, respectively.

At 240 DAP, PT planting with trash mulching of 6 t ha−1

(PM3) resulted in the tallest plants which were 18.9, 21.8, and 4.4%

higher as compared to CF planting with mulch (PM1) or without

mulch (PM2) and PT planting without mulch (PM4), respectively.

Similarly, among the different irrigation scheduling, plant height

of the crop was significantly higher in IW/CPE ratio of 1.00 (IS3;

342.1 cm) as compared to IW/CPE ratio of 0.60 (IS1; 303.4 cm) and

at par with the IW/CPE of 0.8 (IS2; 332.0 cm; Table 5). Hence, IS3
enhanced plant height to the tune of 11.3% over IS1.

3.2 Yield attributes and yield

The planting method with or without trash mulching and

irrigation regimes had a significant (p ≤ 0.05) influence on the

yield and its attributes, i.e., cane diameter, weight and millable

stalk (Table 6). PT planting with trash mulching (6 t ha−1; PM3)

significantly (p ≤ 0.05) enhanced the cane diameter to the

tune of 8.6 and 11.6% over CF planting with mulching and

without mulching, respectively. Among the irrigation schedule,

the treatment IS3 recorded a maximum cane diameter (2.41 cm).

However, single cane weight was not affected by planting methods

with or without trash mulch and different irrigation schedules.
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TABLE 5 Growth parameters in sugarcane as a�ected by planting method and irrigation scheduling (pooled data of 3 years).

Treatment∗ Germination percentage at
45 DAP

Tillers (×103 ha−1) at 120
DAP

Plant height (cm) at 240
DAP

Planting method with and without mulch

PM1 35.9a 172.1c 302.8c

PM2 33.3b 154.9d 295.7c

PM3 36.3a 208.3a 360.1a

PM4 37.6a 194.4b 344.8b

Irrigation schedule (IW/CPE)

IS1 34.5b 146.5c 303.4b

IS2 36.1a 185.2b 332.0a

IS3 36.7a 215.5a 342.1a

∗See Table 1 for treatment details; statistically significant differences are found in means among columns denoted by different letters at p ≤ 0.05.

TABLE 6 Yield attributes, yield and sucrose content of sugarcane as influenced by planting methods with or without trash mulching and irrigation

schedules (pooled data of 3 years).

Treatment∗ Cane diameter (cm) Single cane
weight (g)

Millable stalk
(×103 ha−1)

Cane yield

(t ha−1)

Sucrose in
juice (%)

Planting method with and without mulch

PM1 2.21b 745.1a 120.8b 86.4b 17.46a

PM2 2.15b 741.3a 112.7b 81.7b 17.55a

PM3 2.40a 765.7a 140.2a 103.5a 17.57a

PM4 2.36a 760.8a 134.8a 99.1a 17.64a

Irrigation schedule (IW/CPE)

IS1 2.14b 739.2a 108.5c 79.2c 17.40a

IS2 2.29ab 756.7a 129.0b 94.9b 17.61a

IS3 2.41a 763.7a 143.9a 103.9a 17.65a

∗See Table 1 for treatment details; statistically significant differences are found in means among columns denoted by different letters at p ≤ 0.05.

Results showed that the number ofmillable stalks was highest in

the treatment PM3 which was at par with PM4 but significantly (p

≤ 0.05) superior to the treatments of CF planting techniques. This

PT planting with trash mulching exhibited about 16.0 and 24.4%

increments in millable stalk numbers as compared to the millable

stalk numbers under the CF planting method with or without trash

mulching, respectively. Moreover, the number of millable stalks

was significantly (p ≤ 0.05) higher for sugarcane irrigated with an

IW/CPE of 1.0 (143,900), as compared to crops irrigated with 0.60

and 0.80 IW/CPE schedules.

In sugarcane production, genotype, management techniques,

and environment have a major impact on the yield of the crop. By

harvesting at the right time of crop maturity, maximum yields and

minimal losses can be achieved. The present study indicated that

in PT planting with trash mulching of 6 t ha−1 (PM3), cane yield

(103.5 t ha−1) was significantly (p ≤ 0.05) higher compared to CF

planting method. The CF planting treatment produced the lowest

cane yield (81.7 t ha−1) compared to the other planting methods

and trash management practices. Similarly, among the treatment

IS3 (103.9 t ha−1) significantly (p ≤ 0.05) higher cane yield as

compared to other irrigation regime treatments. Furthermore, cane

yield was found to be increased by 31.2% and by 9.5% with IW/CPE

ratios of 1.00 as compared to treatments with IW/CPE ratios of 0.60

and 0.80 (Table 6). However, juice-quality traits like sucrose content

were not significantly (p ≤ 0.05) influenced by all methods of

planting with or without trash mulching and irrigation schedules.

3.3 Water use e�ciency and productivity

Based on pooled data for 3 years (Table 7), significantly (p ≤

0.05) higher water use efficiency was obtained under PT planting

with trash mulching of 6 t/ha (1,049 kg ha−1 cm−1) than the PT

planting without trash mulching and was statistically as efficient

as the other treatments. A similar trend was observed in water

productivity. It was also observed that PT planting with trash

mulching resulted in the highest water productivity, accounting

for an increase of ∼35.9 and 46.6% over the CF planting with

or without trash mulching, respectively (Table 1). As well, among

the different irrigation scheduling strategies, the highest water

use efficiency was associated with IW/CPE of 0.80 (995.4 kg ha−1

cm−1) which was comparable to IW/CPE of 1.00 (964.4 kg ha−1

cm−1) but significantly higher than IW/CPE of 0.60 (p ≤ 0.05).
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TABLE 7 Water use e�ciency, water productivity and economics analysis of sugarcane as influenced by planting methods and irrigation schedules

(pooled data of 3 years).

Treatment∗ Water- use
e�ciency (kg ha−1

cm−1)

Water productivity

(Rs m−3)

Cost of cultivation
(×103 Rs ha−1)

Net returns
(×103 Rs
ha−1)

B/C ratio

Planting method with and without mulch

PM1 872.4bc 12.62b 124.8 125.7b 2.01b

PM2 824.9c 11.70b 120.5 116.6b 1.96b

PM3 1049.0a 17.15a 130.3 169.9a 2.30a

PM4 1002.0ab 16.46a 124.0 163.4a 2.31a

Irrigation schedule (IW/CPE)

IS1 851.4b 11.50b 122.8 107.1c 1.87c

IS2 995.4a 15.77ab 124.9 150.4b 2.20b

IS3 964.4ab 16.18a 127.1 174.2a 2.37a

∗See Table 1 for treatment details; statistically significant differences are found in means among columns denoted by different letters at p ≤ 0.05.

Whereas, water productivity was maximum in treatment IS3 which

was 40.7% higher as compared to the treatment IS1 (Table 7).

3.4 Soil properties

3.4.1 Soil physicochemical parameters
The bulk density under conventional flat planting (75 cm

row spacing) with trash mulching of 6 t ha−1 and IW/CPE of

1.00 showed the lowest value (1.38, 1.37Mg m−3), respectively.

However, the bulk density of the post-harvest soil was not

significantly (p ≤ 0.05) influenced by the different planting

methods and irrigation schedules. Using trash mulching also

resulted in a positive trend toward an increase in SOC. In spite

of this, SOC was not significantly (p > 0.05) impacted by the

planting method with or without mulch. The SOC under trash

mulching was slightly increased over the 3 years compared to

no mulch. Furthermore, SOC also showed significant (p ≤ 0.05)

changes among irrigation scheduling, where a maximum (5.2 g

kg−1) was found under the treatment IS3 and a minimum (4.7 g

kg−1) was found in the treatment IS1 significantly at par with IS2
(Table 8).

The SOC stock at 0–15 cm soil depth ranged between 15.11

(PM2) to 16.09Mg ha −1 (PM3) among the planting method and

15.06 (IS1) to 15.99Mg ha−1 (IS3) among the irrigation schedules.

However, planting methods with or without trash mulch under

different irrigation schedules did not exert significant (p ≤ 0.05)

variation in the SOC stock among all the treatments.

3.4.2 Biological activity
The ex-situ soil respiration did not differ significantly between

the planting methods. However, ex-situ soil respiration was the

highest in PT planting with trash mulching of 6 t ha−1 (28.42mg

CO2-C kg−1 soil day−1) followed by CF planting with trash

mulching (27.38mg CO2-C kg−1 soil day−1) and the lowest in

CF planting without mulch (25.83mg CO2-C kg−1 soil day−1).

Whereas, irrigation schedules significantly influenced the ex-situ

soil respiration the treatment IS3 was significantly superior to

the treatment IS1. Moreover, the treatment IS3, IW/CPE of 1.00

resulted in 12.2 and 6.7% greater rates of ex-situ soil respiration as

compared to the treatment IS1 and IS2, respectively.

As a soil quality indicator, the SMBC is useful for comparing

organic matter content across soils in relation to the extent of

organic matter accumulation. SMBC is another form of labile

carbon and paired row trench planting with trash mulching

significantly increased SMBC by 7.5, 12.5, and 12.2% over the

treatment PM1, PM2, and PM4, respectively. However, IW/CPE

did not exert a significant (p ≤ 0.05) effect with respect to SMBC.

However, among the planting methods, PM3 recorded significantly

highest dehydrogenase activity (255.4 µg TPF g−1 24 h−1) which

is statistically comparable with PM1 (237.7 µg TPF g−1 24 h−1)

but superior and 21.1, 17.9%more than PM2 and PM4, respectively

(Table 8). Furthermore, the increased dehydrogenase activity was

noted for the treatment IW/CPE of 0.8 which was at par with

IW/CPE of 1.00 but significantly (p ≤ 0.05) superior to IW/CPE

of 0.6 (IS1).

4 Discussion

4.1 Growth parameters

Growth of sugarcane was found to improve under the PT

planting method with or without mulch under IW/CPE of 1.00.

There is a possibility that this may be due to optimal sugarcane

metabolism (Wang et al., 2013), better soil microclimates that allow

for root growth, and other favorable conditions for germination

(Singh et al., 2019) in comparison with CF plantings. A better

root system contributes to a better swelling and sprouting of

cane buds. Similarly, in our study, 0.80 and 1.00 IW/CPE ratios

enhanced sugarcane germination by maintaining adequate soil

moisture around cane setts. Moisture in the soil is essential for this

mechanism. Water infiltration into cells produces turgor pressure,

which displaces soil particles, overcomes friction, and allows the

plant to extend through the soil (Cole, 1939). As roots grow,

their apical meristem undergoes cell division and a zone just
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TABLE 8 Bulk density, soil microbial, and dehydrogenase activity as influenced by planting method and irrigation regimes (pooled data of 3 years).

Treatment∗ Bulk density

(Mg m−3)

Soil organic
carbon (g

kg−1)

Soil organic
carbon stock
(Mg ha−1)

Ex-situ soil
respiration (mg

CO2-C kg−1 soil

day−1)

SMBC (mg

Cmicrob kg
−1

soil day−1)

Dehydrogenase
activity (µg TPF

g−1 24 hr−1)

Planting method with and without mulch

PM1 1.38a 5.1a 15.86a 27.38a 174.53bc 237.7ab

PM2 1.41a 4.8a 15.11a 25.83a 166.76c 210.8c

PM3 1.39a 5.2a 16.09a 28.42a 187.62a 255.4a

PM4 1.42a 4.9a 15.60a 26.10a 167.27c 216.5bc

Irrigation schedule (IW/CPE)

IS1 1.43a 4.7b 15.06a 25.45b 172.20a 216.7b

IS2 1.40a 5.1a 15.94a 26.78ab 175.03a 242.4a

IS3 1.37a 5.2a 15.99a 28.57a 174.91a 231.2ab

∗See Table 1 for treatment details; statistically significant differences are found in means among columns denoted by different letters at p ≤ 0.05.

behind their apex undergoes cell expansion. Root development and

germination are therefore dependent on a proper soil moisture

regime (Clark et al., 2003; Singh et al., 2022). High daytime

temperatures are associated with water stress leading to low growth,

high tiller mortality, and low cane yields. However, in our study,

planting method and irrigation schedules significantly impacted

the tillers at 120 DAP and paired row planting (30:120 cm)

row spacing with trash mulching @ 6 t ha−1 produced a higher

number of tillers and it was increased by 34.5% than conventional

flat planting without mulching this might be due to the reason

that paired row planting provided adequate aeration, water and

nutrients for the roots, resulting into a greater number of tillers.

In addition, trash mulch application may serve to retain water

in the rhizosphere for a longer period, thereby retaining soil

moisture. According to Singh (2012), PT planting at 105 DAP

showed significantly higher tiller counts than furrow-irrigated

raised beds. Furthermore, Wiedenfeld and Enciso (2008) report

that irrigation water increases soil water potential and the ability

of the roots to absorb water, thus controlling hydric balance.

Optimal hydrological balance helpsmaintain stomatal conductance

and photosynthetic activity in plants. Furthermore, Kumar et al.

(2013) and Dingre and Gorantiwar (2021) found that water use

is related to the crop growth demand and soil aeration improves

the speed of cell division and elongation. Hence, due to irrigation

schedules, the difference in water led to significant variability in

plant height.

4.2 Yield attributes and yield

There was a significant reduction in cane yield with deficit

irrigation, showing that water quantity has a direct impact on

cane yield. Further, cane yield is directly proportional to water

transpiration (Tayade et al., 2020). In this regard, it is necessary to

maintain good soil moisture throughout the various growth stages

of sugarcane (Dhanapal et al., 2019). In general, it is believed that

PT plantings with IW/CPE of 1.00 have higher yield attributes

than CF ones with IW/CPE of 0.6 based on factors such as the

number of millable stalks, the cane diameter, and the weight of

each cane. There may have been an improvement in microclimate

conditions as well as less competition for resources in the crop

during reproductive stages as a result of better sprouting and

tillering of the crop under frequent watering under PT planting

with trash mulching under IW/CPE 1.00, which leads to greater

cane diameter (Nadeem et al., 2020). As a result of PT planting,

synchronized tillers were able to form in this study, which may

have facilitated improved soil water conservation, a cooler soil

environment, and effective weed control. Adding trash mulch at

these rates resulted in significant yield increases in canes that

were thicker, heavier, and more desirable in terms of quality.

Consistent with our results, Singh and Brar (2015) also reported

that paired row trench planting recorded the highest cane diameter,

cane weight, and millable stalks. This investigation found that

the application of trash as the mulch of (6 t ha−1) could not

improve the cane yield significantly as compared to trash mulching

in the PT planting system. In contrast, Concenco et al. (2016)

and Bassey et al. (2021) found that trash mulch application of 6–

9 t ha−1 produced taller plants, thicker cane stalks, higher brix

content of sugarcane and higher cane yield. Moreover, Kumar et al.

(2015) reported that the tallest plants, maximum tillers, millable

canes, average cane weight, and cane yield were observed when

trash mulch was applied at 10 t ha−1. This investigation found

that irrigation scheduling at an IW/CPE ratio of 1.00 resulted in

maximum cane yield. In such circumstances, soil moisture might

reach an optimum level during growth periods, leading to better

leaf area expansion and photosynthesis, resulting in increased plant

growth. A similar observation has been made by Singh and Brar

(2015), who also reported a higher yield for crops irrigated at

1.0 IW: CPE than those irrigated at 0.75 and 0.50. Whereas, a

significant increase in cane yield was reported by Singh et al. (2007)

and Singh (2012) when irrigation scheduling for IW/CPE ratios

of 0.75 over 0.50 was used. Moreover, 56% cane yield reduction

due to irrigation at 50% CPE as compared to 100% CPE had been

reported by Vasantha et al. (2020). In PT plantings with an IW/CPE

of 1.00, trash application significantly affected the millable stalks

by affecting the emergence and tillering patterns and, in turn, the
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yield of sugarcane, since it affected the diameter and weight of the

canes at a later stage. Whereas, green cane trash blanket reduced

the soil temperature and its variability as compared to the bare

soil treatment; but did not show difference in evapotranspiration,

soil moisture, and growth attributes of sugarcane (Gonçalves et al.,

2023).

4.3 Water use e�ciency and productivity

In this study, we have observed higher water use efficiency and

water productivity with trash mulching with an irrigation schedule

of 1.00 over non-mulching with IW/CPE of 0.6 and 0.8. This was

due to a reduction in irrigation water losses through percolation

and evaporation. Increasing yield and reducing irrigation water

usage increases water use efficiency and productivity. Similar

results findings given by Banerjee et al. (2016). Earlier studies

showed that under mulched PT planting, water use efficiency,

and water productivity were greater than under no-mulch

planting, demonstrating the effectiveness of mulch in reducing soil

evaporation and increasing plant respiration (Zhao et al., 1996;

Zhang et al., 1999). With an increase in irrigation water applied,

water use efficiency decreased, but water productivity increased

(Singh andMohan, 1994; Zhang X. Y. et al., 2005; Singh et al., 2007).

The results from our study indicate that surface retention of crop

residues reduces water requirements by conserving soil moisture

through reduced evaporation losses (Jat et al., 2015; Sandhu et al.,

2019). In our study, an increment in water productivity was

observed and the increment was 28.9% under IS3 (IW/CPE: 1.0)

over IS1 (IW/CPE: 0.60). The increase in irrigation amount may

lead to a more efficient utilization of light and heat (Zou et al.,

2020), resulting in a higher yield. Conversely, an excessive supply

of water can result in an excessive use of light and heat, as

well as an extended period of vegetative growth and a delayed

period of reproductive growth. In addition, excessive irrigationmay

have caused some deep drainage and leaching of soil nutrients,

which resulted in decreased sugarcane production (Fan et al.,

2018).

The ultimate goal of agriculture is to maximize economic

benefits. It is thus expected that paired row trench planting with

trash mulching under IW/CPE of 1.00 should result in increased

net returns and B/C ratio because of enhanced cane yield (Showler,

2023) and the results of the present study confirm this. Similarly,

as compared to conventional planting of sugarcane, paired-row

trench planting showed 34.0% higher returns (Singh and Brar,

2015), while 120 cm PT planting with lentils as intercrop yielded

a maximum net return of Rs. 321,254 ha−1 (Nadeem et al.,

2020).

4.4 Soil properties

The findings of the current investigation showed that the

SOC dynamics under different planting methods with trash

mulch applications under various irrigation schedules differed

significantly. The amount of SOC in post-harvest soil is dependent

on the rate of organic matter decomposition and the addition of

residual biomass (Yadav et al., 2009). Trash mulch can improve soil

organic carbon and consequently improve soil health for longer

periods under CF planting or PT planting (Shukla and Yadav, 2011).

In contrast, Preet et al. (2022) found that soil organic carbon was

slightly decreased withmulching. Nevertheless, Lal (1997) observed

that mulching crop residue increased carbon accumulation on

clayey Oxisol by 15% after 6 years, which represents 0.65Mg of C

ha−1 year−1 and 14% ofmulched carbon. Further, residue retention

under a cereal-based cropping system contributed significantly to

an increase in SOC stock at 0–30 cm soil depth in South Asia

(Chatterjee et al., 2018; Das et al., 2018).

Under planting methods with or without mulching-irrigation

modulated conditions, soil enzyme activity may be altered,

resulting in alterations in soil characteristics. In this study, it

was observed that trash mulching enhances decomposition by

altering moisture content, enhancing heat in the topsoil, and

stimulating microbial activity. In these treatments, higher soil

microbial activities might have resulted from increased moisture

leading to fresh residue being added by root biomass, which has

boosted soil respiration with irrigation. Alternatively, sugarcane

trash could allow nutrients and carbon to slowly release as required

by the crop, resulting in reduced losses and a soil C pool that

builds over time (Yadav et al., 1994; Sparling et al., 1998). The

experimental results revealed that the plots under trash mulching

with PT planting accumulate more soil C and, thereby could be

reckoned to promote the C sequestration potential of soil (Shukla

et al., 2013). Earlier research has shown that organic mulches

increase soil organic carbon levels significantly (Saroa and Lal,

2003), with an increase of 33.0% over 10 years (Blanco-Canqui

and Lal, 2007). Surendran et al. (2016) found that trash shredding

with composted pressmud and application of microbial consortia

resulted in higher soil microbial biomass carbon which increased

soil available nutrients under a sugarcane planting system. In

calcareous arid and semiarid soils with a low percentage of organic

matter, mulching materials have been reported to improve soil

microbial activity (Khadem and Raiesi, 2017; Mubarak et al.,

2021). However, dehydrogenase activity is associated with intact

cells of microorganisms and is thought to represent the range of

oxidative activities of soil microorganisms (Pramanick et al., 2022).

This research suggests that trash mulching in the PT planting

might provide a conducive environment for microbe growth,

which would increase soil enzyme activity. When soil moisture

is adequate, high soil dehydrogenase activity may be achieved

because microorganisms develop more rapidly in soil conditions

with good oxygen (Stepniewska and Wolinska, 2005; Borowik and

Wyszkowska, 2016).

In addition, a significant increase in SOC was observed due to

an increase in root biomass due to a positive relationship between

SOC dynamics and long-term residue mulching (Maharana et al.,

2012; Liu et al., 2014). Moreover, organic carbon content and

microbial activity in surface soil increased significantly due to

the application of optimum moisture under suitable planting

methods helped in increasing biomass production (Tank and

Patel, 2013). Accordingly, the complementary effect of trash

mulching of 6 t ha−1 with PT planting and irrigation at

IW/CPE of 1.00 could be considered a significant practice

for raising and sustaining sugarcane productivity as well as

soil health.
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5 Conclusions

Since sugarcane is a wide-spaced crop, irrigation applications

to the entire field require a large amount of water. However, water

supplies are becoming increasingly scarce. Irrigation methods that

save water are increasingly advocated and yet other aspects are

neglected, especially irrigation scheduling. Furthermore, farmers

have lack of knowledge of standard planting methods and the

benefits of trash mulching in sugarcane. Therefore, it is necessary

to generate knowledge of planting methods with or without trash

mulching, and irrigation scheduling, and this study specifically

focuses on this. This study indicates that PT planting and mulching

(6 t ha−1) under IW/CPE of 1.00 resulted in better germination

and vigor of the crop, resulting in enhanced yield attributes

which increased cane yield by 26.7% and net monetary return by

35.2% respectively as compared to CF planting. Increased plant

growth parameters due to different plantingmethods and irrigation

schedules presented a higher correlation with cane yield. The

crop should be irrigated at 0.8 or 1.00 IW/CPE for higher water

productivity and water-use efficiency in sugarcane. Furthermore,

there was an increase of 6.5% in the SOC in PT planting with trash

as compared to CF planting without trash. Similarly, SMBC and

dehydrogenase activity increased due to different planting methods

with trash mulch, and irrigation scheduling. SOC and biological

properties of the soil are significantly positively correlated with

cane yield. Therefore, irrigating sugarcane with IW/CPE of 1.00 in

paired row trench (PT) planting technique (30:120 cm) with mulch

of 6 t ha−1 is the best planting system in sugarcane to attain higher

crop yield, water productivity, soil quality, and higher B/C ratio in

sugarcane especially in this agroecology of South Asia.
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