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Influences of nitrogen input 
forms and levels on phosphorus 
availability in karst grassland soils
Jing Zhou 1, Fugui Yang 1, Xuechun Zhao 1, Xinyao Gu 1, 
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The availability of soil phosphorus (P), a crucial nutrient influencing plant 
productivity and ecosystem function, is impacted by continuously increasing 
nitrogen (N) enrichment, which changes the soil P cycle. The effect of varying 
forms of N input on soil P dynamics in P-limited karst grassland ecosystems 
remains unclear. To address this knowledge gap, we conducted a greenhouse 
experiment to explore the effects of various forms of N addition [Ca(NO3)2, 
NH4Cl, NH4NO3, Urea] on soil P fractions in these ecosystems, applying two 
levels (N1: 50  mg  N  kg−1soil, N2: 100  mg  N  kg−1soil) of N input in two soils (yellow 
soil, limestone soil). Results indicated that P fractions in both soil types were 
significantly affected by N additions, with yellow soil demonstrating a higher 
sensitivity to these additions, and this effect was strongly modulated by the 
form and level of N added. High N addition, rather than low N, significantly 
affect the P fractions in both soil types. Specially, except for Ca(NO3)2, high N 
addition significantly increased the available P in both soils, following the order: 
Urea and NH4NO3  >  NH4Cl  >  Ca(NO3)2, and decreased NaHCO3-Pi in both soils. 
High N addition also significantly reduced NaOH-Po and C.HCl-Po fractions in 
yellow soil. Additionally, the response of root biomass and alkaline phosphatase 
activity in both soils to N input paralleled the trends observed in the available P 
fractions. Notably, changes in soil available P were strongly correlated with plant 
root biomass and soil alkaline phosphatase activity. Our study highlights that the 
N addition form significantly influences soil P availability, which is closely tied to 
plant root biomass and alkaline phosphatase activity. This finding underscores 
the importance of considering N input form to boost soil fertility and promote 
sustainable agriculture.
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1 Introduction

Phosphorus (P) is a crucial nutrient required for plant growth and the integrity of 
terrestrial ecosystem function, playing a pivotal role in biodiversity conservation, global 
sustainability, and biogeochemical cycling (Sattari et  al., 2016; Hou et  al., 2021; Bai and 
Cotrufo, 2022). A significant amount of P in soil is bound by insoluble compounds, leaving 
only a limited amount of inorganic P accessible to plants and microbes, leading to widespread 
P limitation across terrestrial ecosystems (Ashley et  al., 2011; Ahmad et  al., 2018). 
Concurrently, nitrogen (N) enrichment from atmospheric deposition, biological fixation, and 
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over-fertilization has more than doubled the input of reactive N in 
various forms, such as ammonium, nitrate, and organic N, including 
urea and amino acids (Penuelas et al., 2020). This increase in N input 
not only alters P cycling in the soil but also exacerbates P scarcity in 
ecosystems (Hou et al., 2021). Understanding the effects of N input on 
soil P cycling is therefore crucial for predicting the future functioning 
of terrestrial ecosystems.

P in soil exists in multiple complex chemical forms, and its 
availability, behavior, and mobility change with varying soil conditions 
(Wang et al., 2022). Previous studies have developed a framework 
categorizing inorganic (Pi) and organic P (Po) into different labile and 
non-labile pools via a sequential fractionation procedure (Hedley 
et  al., 1982; Tiessen and Moir, 1993). N input can affect these P 
fractions by altering factors such as soil pH, microbial activity, content 
of alkaline cations, cation exchange capacity, and plant biomass 
(Mahmood et al., 2021; Cui et al., 2022). Despite extensive research, 
findings on the effects of N on soil P fractions are inconsistent. For 
instance, some studies have found that N input increases NaHCO3-Pi 
and decreases or does not affect moderate-labile P fractions (Liu et al., 
2022; Guan et al., 2023). Conversely, other studies indicate that N 
addition reduces labile P (Resin-Pi, NaHCO3-Pi and NaHCO3-Po) 
while increasing moderately labile P (NaOH-Pi, NaOH-Po) (Kai et al., 
2014; Chen et al., 2018; Zhang and Shenglei, 2020). At the same time, 
compared to labile and moderately labile P, non-labile P fractions are 
less affected by N input (Chen et al., 2018; Liu et al., 2022; Guan et al., 
2023). Additionally, while some studies suggest that N input generally 
increases soil inorganic P and reduces soil organic P fractions (Jing 
et al., 2021), there are also reports to the contrary (Zhang et al., 2022). 
Such variation could be attributed to the different N forms used in 
these studies (Hu et  al., 2022). As terrestrial ecosystems receive a 
variety of N inputs, it’s important to understand how these different N 
forms affect soil P fractions.

Phosphatases, particularly acid phosphatase, and alkaline 
phosphatase, secreted by plant roots and soil microorganisms, are 
crucial in the transformation and cycling of soil P (Fan et al., 2019; 
Wang et al., 2023). N input is known to alter the activity of these 
enzymes, which catalyze the conversion of organically bound P to 
inorganic P (Yokoyama et al., 2017; Chen et al., 2020). While acid 
phosphatase is primarily produced by plants, bacteria, and fungi, 
alkaline phosphatase is predominantly secreted by soil 
microorganisms, especially bacteria (Nannipieri et al., 2011; Cao et al., 
2022). The phoC gene and phoD gene, encoding soil acid and alkaline 
phosphatase respectively, play a significant role in the soil P cycle (Tan 
et al., 2013; Wang et al., 2021). However, the specific effects of different 
N forms, such as ammonium, nitrate, and organic N, on phosphatase 
activity and the abundance of these genes are not well understood.

Karst ecosystems are widely distributed around the world, and the 
subtropical karst area located in southwest China is one of the largest 
carbonate bedrock development areas in the world (Li et al., 2018; Wu 
et al., 2020). In the past 20 years, most degraded land in the karst 
region has been gradually transformed into woodland and grassland 
(Wen et al., 2016). During this succession process, the soil N content 
has increased, primarily due to atmospheric N deposition, fertilizer 
application, and biological N fixation. However, due to the shallow, 
uneven and fragile characteristics, the soil in this area is susceptible to 
leaching, resulting in the loss of N and P (Wen et al., 2016; Fenton 
et  al., 2017; Xiao et  al., 2020). Moreover, in karst areas, the high 
calcium ion content in the soil leads to a serious lack of P, which makes 

P a key nutrient limiting secondary succession and ecological 
restoration in the southwest karst area (Liu et al., 2018). Despite the 
substantial N input from land use activities, few studies have focused 
on the impact of different N forms on soil P fractions in karst areas. 
This study aims to explore these effects through greenhouse 
experiments, examining changes in soil P fractions, phosphatase 
activity, and the abundance of phoC and phoD genes under various N 
additions. We hypothesize that: (1) different N forms have distinct 
impacts on soil P fractions, considering that different forms of N have 
different effects on factors that control soil P cycling; (2) alterations in 
soil P fractions due to N input are predominantly influenced by biotic 
factors, considering that abiotic factors typically exhibit less variability 
in the short term.

2 Materials and methods

2.1 Experimental design and treatments

We conducted a greenhouse experiment to explore the effect of N 
input on soil P fractions at Guizhou University (106° 39′ 29″ E, 26° 26′ 
59″ N), Guiyang, Guizhou. The experiment comprised three N addition 
levels (N0: 0 mg N kg−1 soil，N1: 50 mg N kg−1 soil, N2: 100 mg N kg−1 
soil) combined with four forms of N [Ca(NO3)2, NH4Cl, NH4NO3 and 
Urea] and two soil types (yellow soil and limestone soil). This resulted 
in a total of 72 experimental pots, with each treatment replicated four 
times. Topsoil samples (0–15 cm) of two types of soils were collected 
from Guizhou, located in the southwestern karst area’s core area, which 
are the primary soil types in the karst region (Piao et al., 2000; Zhang 
et al., 2021). The limestone soil was collected from Dafang County 
grasslands and yellow soil from Huaxi County grasslands (Table 1). 
Based on the FAO-UNESCO soil classification framework, the 
limestone soil utilized in our research is classified as Calcic Cambisol, 
and the yellow soil is designated as Ferralsol. The soils were air-dried at 
room temperature, homogenized and placed into pots (16 cm in 
diameter, 12 cm in depth), each containing 1,500 g of soil with an 
average particle size of <2 mm. The greenhouse was maintained under 
a 20°C/15°C day (16 h)/night (8 h) temperature cycle.

White clover (Trifolium repens L.) and perennial ryegrass (Lolium 
perenne L.) were selected as their prevalence in the area’s mixed 
plantings. Each pot was planted with eight seedlings (four perennial 
ryegrass and four white clovers). The experiment was carried out in a 
greenhouse during the autumn and winter (August to December), 
with plants watered 1–2 times weekly to maintain soil water holding 
capacity at about 60%. Seedling management and pest control were 
also conducted (Van Lenteren, 1988). Specifically, clear weeds in time 
during seedling stage, spray 50% carbendazim and 50% mancozeb 500 
times solution to control pests and diseases after thin out seedling 
(Zhang et al., 2004).

2.2 Sampling and chemical analysis

After 4 months, the plants were harvested, divided into above and 
below-ground parts, and the roots were dried at 65°C for 48 h to 
measure dry weight. Soil from each pot was sieved (2 mm mesh) and 
divided into three subsamples for different analyses. The first 
subsample was stored at −80°C for phoC and phoD gene abundance 

https://doi.org/10.3389/fsufs.2024.1343283
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Zhou et al. 10.3389/fsufs.2024.1343283

Frontiers in Sustainable Food Systems 03 frontiersin.org

analysis. The second subsample was kept at 4°C for phosphatase 
activity determination, and the third subsample was air-dried for 
assessing soil physical and chemical properties and P fractions.

2.3 Soil chemical and biological properties

Soil samples were dried at 105°C for soil moisture content (SM) 
determination (Geng et al., 2022). Soil pH was measured in triplicate 
at a 1: 5 soil to deionized water (w/v) using digital PHS-3E/pH meter 
(Leici Instrument Branch of Shanghai Yidian Scientific Instrument 
Co., Ltd., Shanghai, China); NH4

+-N and NO3
−-N concentrations were 

assessed with a continuous flow analyzer (Vario EL III, Elementar, 
Germany) after 2 mol L−1 KCl solution leaching (Ding et al., 2023). Soil 
phosphatase activities (S-ACP and S-ALP) were measured using 
commercially available kits (Beijing Solarbio Technology Co., Ltd.), 
with the activity determined by the phenol produced at 660 nm after 
hydrolyzing benzene disodium phosphate (Ding et al., 2023; Yang 
et al., 2023).

2.4 Soil P fractions

The soil P fractions were determined using the Hedley continuous 
extraction method (Hedley et al., 1982). The procedure is detailed 
below: A 0.5 g sample of air-dried soil, sieved through a 2 mm mesh, 
was placed in a 50 mL centrifuge tube. Sequential extractions were 
conducted using 30 mL of distilled water, 0.5 mol L−1 NaHCO3, 
0.1 mol L−1 NaOH solution, 0.5 mol L−1 HCl solutions, and 1 mol L−1 
HCl solutions. Each extraction involved shaking the sample for 4 h 
using an overhead shaker. After shaking, the soil suspension from 
each step was centrifuged for 10 min to separate the supernatant. The 
final extract was then digested using concentrated H2SO4 and H2O2. 
The P content in 0.5 mol L−1 NaHCO3, 0.1 mol L−1 NaOH, and 
concentrated HCl extracts was determined using the molybdate-
ascorbic acid method, post-digestion with H2SO4 and potassium 
persulfate. Total P in the extracts was quantified, and the concentration 
of organic P (Po) was calculated by subtracting inorganic P (Pi) from 
the total P in each extract (Tiessen and Moir, 1993).

2.5 DNA extraction and real-time PCR

Soil microbial genomic DNA was extracted from 0.5 g of fresh soil 
using the Omega soil DNA isolation kit (Omega Biotek Inc., Georgia, 
USA), following the manufacturer’s instructions. The concentration 
of extracted DNA was evaluated through agarose gel electrophoresis 
and quantification with a NanoDrop ND-2000 spectrophotometer 
(Thermo Scientific, Wilmington, DE, USA). Quantitative PCR (qPCR) 

was performed using the ABI 7500 Real-Time PCR System (Applied 
Biosystems, Germany) to amplify the phoC and phoD genes (Walker, 
2001). The primer pairs for amplifying the phoC and phoD genes were 
phoC-A-F1 and phoC-A-R1, and phoD-ALPS-F730 and phoD-
ALPS-1101 (Sakurai et al., 2007).

The PCR mixture consisted of 10 μL of Power SYBR® Green PCR 
Master Mix (Applied Biosystems™, Thermo Fisher Scientific Inc., 
MA, USA), 0.4 μL of each primer, and 1 μL of the extracted DNA 
template. The PCR conditions were as follows: an initial denaturation 
at 95°C for 5 min, followed by 40 cycles of denaturation at 95°C for 
15 s, and annealing at 60°C for 30 s. The specificity of the amplification 
was verified by analyzing the melting curve. To quantify the gene 
copies, a standard curve was constructed by serial tenfold dilution of 
a plasmid containing the target gene. The copy numbers of the phoC 
and phoD genes were calculated based on this standard curve and 
expressed in units per gram of dry soil. These copy numbers represent 
the abundance of the phoC and phoD genes.

2.6 Statistical analyses

Statistical analyses were performed using SPSS 20.0 (SPSS, Inc., 
Chicago, IL, USA). A three-way ANOVA was conducted to assess the 
effects of N addition level (NL), N addition form (NF), and soil type 
(SF) on soil physical and chemical properties, plant root biomass, soil 
phosphatase activity, and the abundance of phoC and phoD genes, as 
well as soil P fractions. Additionally, an independent samples T-test 
was utilized to compare differences between the various N treatments 
and the control group. Pearson correlation analysis was used to 
explore the relationships between soil P fractions and other variables, 
including soil physiochemical properties, plant root biomass, 
phosphatase activity, and the abundance of phoC and phoD genes. All 
statistical tests were performed with a significance level set at 0.05.

3 Results

3.1 Effects of N addition on soil properties 
and root biomass

Soil properties responded variably to N addition, dependent on 
the level and form applied (Table 2 and Figure 1). Low-N treatment 
generally did not significantly affect soil properties (p > 0.05; Figure 1), 
whereas high-N treatment significantly altered these characteristics 
(p < 0.05; Figure 1). Specifically, under high N levels, all four forms of 
N input [NH4Cl, Ca(NO3)2, NH4NO3, and Urea] significantly reduced 
the NH4

+ and AN content in yellow soil. However, in limestone soil, 
this significant reduction in NH4

+ and AN content was only observed 
with the addition of NH4NO3 and Urea. There were significant 

TABLE 1 Basic physicochemical properties of the soil.

Characteristic BD pH SOM NH4
+-N NO3

−-N AP
Exchangeable 

Ca2+
Exchangeable 

Mg2+

(g cm−3) (g kg−1) (mg kg−1) (mg kg−1) (mg kg−1) (mg kg−1) (mg kg−1)

Limestone soil 1.04 6.01 31.05 31.57 4.75 3.02 4050.32 258.73

Yellow soil 1.08 5.46 9.54 19.67 1.41 7.99 3375.67 582.81
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TABLE 2 Effects of soil type (ST), N addition levels (NL), N addition forms (NF) and their interaction on soil properties (NH4
+, NO3

−, AN, pH, and SM), 
phosphatase activity (ACP, ALP), phoC and phoD gene abundance, root biomass (RB) and soil P fractions.

ResponseVar ST NL NF ST  ×  NL ST  ×  NF NL  ×  NF ST  ×  NL  ×  NF

NH4
+ 2.11 118.28*** 7.93*** 0.20 4.72** 10.75*** 7.78***

NO3
− 440.32*** 12.82*** 8.35*** 1.06 2.15 1.25 3.75*

AN 0.03 100.43*** 8.08*** 0.03 5.75** 12.8*** 9.10***

pH 3165.01*** 11.46** 198.13*** 3.18 17.48*** 25.06*** 5.67**

SM 268.30*** 0.07 6.22** 5.33* 1.42 8.31*** 4.70**

RB 338.40*** 54.36*** 10.39*** 15.36*** 1.39 9.50*** 4.26*

ACP 15.95*** 0.03 3.23* 0.29 3.12* 3.03* 1.90

ALP 63.61*** 0.56 58.08*** 3.82 1.71 8.27*** 3.38*

phoC 997.82*** 27.15*** 24.78*** 6.02* 7.51*** 22.13*** 6.56***

phoD 775.24*** 0.58 1.66 0.92 1.34 1.47 1.49

H2O-Pi 137.60*** 166.28*** 29.91*** 26.46*** 9.43*** 19.62*** 6.74***

NaHCO3-Pi 367.35*** 44.99*** 1.60 17.15*** 1.27 1.12 2.10

NaHCO3-Po 237.31*** 6.50* 1.25 0.01 1.16 2.97* 4.18*

NaOH-Pi 1268.89*** 9.12** 22.75*** 11.21** 23.35*** 38.38*** 37.81***

NaOH-Po 78.29*** 1.23 3.94* 10.22** 5.44** 2.43 8.31***

DHCl-Pi 232.70*** 6.52* 6.69*** 0.56 8.44*** 0.88 1.28

CHCl-Pi 761.04*** 29.21*** 6.08** 2.23 0.97 0.66 3.21*

CHCl-Po 4.54* 0.11 2.50 0.67 2.71 3.40* 1.38

Residue-Pt 333.13*** 102.32*** 0.10 0.50 2.53 4.60** 2.02

Asterisks denote significance: *P < 0.05; **P < 0.01, ***P < 0.001.

FIGURE 1

The effects of different N addition levels (N0, 0  mg  N  kg−1 soil; N1, 50  mg  N  kg−1 soil; N2, 100  mg  N  kg−1 soil) and N addition forms [Ca(NO3)2, NH4Cl, 
NH4NO3 and Urea] on the properties of yellow soil and limestone soil. The error bars represent the standard error (n  =  4). “*” Indicates significant 
differences between the N addition treatment and the control group (p  <  0.05).
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differences in NH4
+ and AN contents across different N forms 

treatments in both soil types, following a consistent pattern: 
NH4Cl > Ca(NO3)2 > NH4NO3 > Urea. Regarding NO3 content, high 
NH4Cl and NH4NO3 had a negative effect in both soils. Additionally, 
soil pH significantly decreased under high NH4Cl, more so than with 
other N forms. Although N treatments generally had less effect on soil 
moisture (SM), high Urea addition significantly reduced SM in 
both soils.

All N treatments significantly increased plant root biomass (RB) 
in both soil types (p < 0.05; Figure 2). In our study, Urea resulted in the 
greatest increase in RB, whereas Ca(NO3)2 contributed to the least 
increase in this parameter (p < 0.05; Supplementary Table S2). In 
addition, limestone soil exhibited a higher RB compared to yellow soil, 
with increased N levels contributing to more significant enhancements 
in RB (Figure 2 and Supplementary Table S2).

3.2 Effect of N addition on soil P fractions

In both yellow and limestone soils, inorganic P was the 
predominant form, accounting for 66.55 and 56.78% of total P, 
respectively (Supplementary Table S1). Additionally, yellow soil 
exhibited higher contents and proportions of moderately labile P 
fractions (NaOH-Pi, NaOH-Po) and non-labile P fractions (C.HCl-Pi, 
C.HCl-Po, and Residual-Pt) compared to limestone soil. However, the 
content and proportion of NaHCO3-Po and H2O-Pi were lower in 
yellow soil than in limestone soil (Table S1).

The influence of N addition on soil P fractions varied based on soil 
type, N level, and form (Table 2 and Figures 3, 4). Generally, high-N 
additions significantly affected the P fraction in both soils, unlike low-N 
additions (Figures  3, 4). With the exception of Ca(NO3)2, high N 
addition significantly increased the H2O-Pi fraction and decreased the 
NaHCO3-Pi fraction, without affecting the NaHCO3-Po fraction 
(p < 0.05; Figures 3, 4). Significant differences in the soil H2O-Pi fraction 
were found among various high-N treatments, with NH4NO3 and Urea 

showing higher levels than Ca(NO3)2 (Supplementary Table S3). Other 
P fractions in the two soils, however, exhibited divergent responses to 
N inputs (Figures 3, 4). In yellow soil, high N negatively affected the 
C.HCl-Pi, C.HCl-Po, and NaOH-Po fractions, except for C.HCl-Pi 
fractions with Urea and NaOH-Po fractions with Ca(NO3)2 (Figure 3). 
Conversely, these P fractions in limestone soil were not significantly 
impacted. Moreover, at high N levels, there were significant differences 
between various N forms in C.HCl-Pi and NaOH-Po fractions (p < 0.05; 
Figure  3). Specifically, the NaOH-Po fraction in Ca(NO3)2 was 
significantly higher than in other N forms, and the C.HCl-Pi fraction 
was significantly higher with NH4NO3 and Urea compared to other N 
forms (Supplementary Table S3).

3.3 Effect of N addition on soil phosphatase 
activity and phoC and phoD gene 
abundance

In both yellow and limestone soils, the activity of acid phosphatase 
(ACP) exceeded that of alkaline phosphatase (ALP). While ACP 
activity generally remained unaffected by N addition, ALP activity was 
significantly influenced by various N treatments (p < 0.05; Figure 5). 
The impact of N treatments varied based on soil type, N level, and form 
(Table 2). The Ca(NO3)2 treatment significantly reduced ALP activity 
in both soils, regardless of the addition level. Conversely, high levels of 
the other three N forms significantly increased ALP activity in yellow 
soil but decreased it in limestone soil, with the exception of NH4Cl 
(p < 0.05; Figure 5). Notably, the ALP activity with Ca(NO3)2 treatment 
was significantly lower than that with the other three N forms in both 
soils (p < 0.05, Figure 5). Moreover, low-level additions of Urea and 
NH4NO3 significantly increased ALP activity in yellow soil (p < 0.05), 
but did not significantly affect limestone soil (p > 0.05; Figure 5).

The abundance of phoC and phoD, in response to N input, varies 
based on N level, and N form (Figure 5 and Table 2). Notably, high 
Urea addition significantly increased the phoC abundance in both soils 

FIGURE 2

The effects of different N addition levels (N0, 0  mg  N  kg−1 soil; N1, 50  mg  N  kg−1 soil; N2, 100  mg  N  kg−1 soil) and N addition forms (Ca(NO3)2, NH4Cl, 
NH4NO3 and Urea) on the root biomass of yellow soil and limestone soil. The error bars represent the standard error (n  =  4). “*” Indicates significant 
differences between the N addition treatment and the control group (p  <  0.05).
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(p < 0.05; Figure  5). On the other hand, Ca(NO3)2 addition only 
decreased phoC abundance in limestone soil, while other N forms did 
not notably affect phoC abundance in either soil type (p < 0.05; 
Figure  5). Furthermore, in both soil types, the phoC abundance 
resulting from high Urea addition was significantly higher compared 
to other N additions (Supplementary Table S2). As for the phoD gene 
abundance in yellow soil, all forms of N addition generally had a 
positive effect, showing the same order as above (p < 0.05; Figure 5). 
In contrast, in limestone soil, high NH4Cl and Ca(NO3)2 addition 
significantly reduced phoD gene abundance, while other N treatments 
had no significant effect. Additionally, compared to yellow soil, 
limestone soil exhibited higher phoC and phoD gene abundance 
(Figure 5 and Table 2).

3.4 Correlation between soil properties and 
P fractions

Correlation analysis revealed distinct relationships between soil 
properties and P fractions in yellow and limestone soils. In yellow soil, 
H2O-Pi exhibited a significant negative correlation with NH4

+-N, 

NO3
−-N and AN (p < 0.05; Figure 6A), while it showed a positive 

correlation with ALP activity, phoC gene abundance, phoD gene 
abundance, and RB (p < 0.05; Figure 6A). Conversely, NaHCO3-Pi 
displayed an opposite trend in its correlations with these factors. 
Additionally, both NaOH-Po and C.HCl-Po were significantly 
negatively correlated with RB in yellow soil (p < 0.05; Figure 6A). In 
limestone soil, H2O-Pi was significantly negatively correlated with 
NH4

+-N and AN, and positively correlated with phoC gene abundance 
and RB (p < 0.05; Figure 6B). Furthermore, NaOH-Pi, D.HCl-Pi, and 
C.HCl-Po in limestone soil showed significant positive correlations 
with RB (p < 0.05; Figure 6B).

4 Discussion

4.1 The impact of N input on soil P 
availability depends on the input level and 
form of N

N input modifies P fractions by influencing biotic and abiotic 
factors in the soil P cycle (Sales et al., 2017; Hou et al., 2018; Fan et al., 

FIGURE 3

The effects of different N addition levels (N0, 0  mg  N  kg−1 soil; N1, 50  mg  N  kg−1 soil; N2, 100  mg  N  kg−1 soil) and N addition forms (Ca(NO3)2, NH4Cl, 
NH4NO3 and Urea) on the P fractions concentrations (mg  kg−1) in yellow soil. The error bars represent the standard error (n  =  4). “*” Indicates significant 
differences between the N addition treatment and the control group (p  <  0.05).
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2019). Based on the availability of plants and organisms, soil P can 
be categorized into available P (H2O-Pi), labile P fraction (NaHCO3-Pi 
and NaHCO3-Po), moderately labile P fraction (NaOH-Pi, NaOH-Po 
and D.HCl-Pi), non-labile P fraction (C.HCl-Pi, C.HCl-Po and 
residual-Pt), respectively (Hedley et  al., 1982; Redel et  al., 2019; 
Mahmood et al., 2021). Notably, available P and labile P are more 
influenced by human activities than moderately and non-labile P 
fractions (Chen et al., 2018; Guan et al., 2023). In this study, two 
distinct soil types were examined: limestone soil and yellow soil. In 
yellow soil, the fractions of H2O-Pi, NaHCO3-Pi, NaOH-Po, C.HCl-Pi, 
and C.HCl-Po were significantly affected by N input, while in 
limestone soil, only H2O-Pi and NaHCO3-Pi fractions were 
significantly influenced, suggesting a higher sensitivity of yellow soil 
to N inputs (Figures  3, 4). The variation in soil available P can 
be attributed to the differences in initial available P concentrations and 
soil pH between these soil types. A recent meta-analysis reported that 
pH plays an important role in change of soil P contents (Li et al., 
2023). In comparison to limestone soil (available P: 1.22 mg kg−1, pH: 
6.01), yellow soil has lower available P and soil pH (available P: 
0.68 mg kg−1; pH: 5.46). Prior research has highlighted that soil P 

dynamics are highly responsive to N inputs in P-limited environments, 
particularly in acidic soils (pH < 5.5) (Deng et al., 2017). Addition of 
N significantly affects soil properties, primarily by lowering soil pH 
and leading to soil acidification (Fan et al., 2019). This change can 
substantially alter soil phosphorus availability by influencing the 
chemical and biological reactions that control P migration (Li 
et al., 2019).

Furthermore, our findings support the first hypothesis that N 
input significantly alters soil P fractions, with the effect depending on 
both the N level and form. This aligns with Liu et al. (2021), who 
found that low-level N inputs in the short term do not significantly 
affect soil P fractions, while high-level inputs do. This difference might 
be attributed to the lesser influence of low-level N on biotic and abiotic 
factors controlling soil P fractions in the short term (Figures 1, 5). 
Fertilization and land use mainly influence H2O-Pi and NaHCO3-Pi 
fractions (Tian et al., 2020). Our findings indicated that high N inputs, 
except for Ca(NO3)2, significantly increased available P and decreased 
the NaHCO3-Pi fraction in both soils (Figures 3, 4). This result is 
similar to previous findings in subtropical forests and temperate larch 
plantations (Fan et  al., 2019; Huang et  al., 2021). Additionally, in 

FIGURE 4

The effects of different N addition levels (N0, 0  mg  N  kg−1 soil; N1, 50  mg  N  kg−1 soil; N2, 100  mg  N  kg−1 soil) and N addition forms [Ca(NO3)2, NH4Cl, 
NH4NO3 and Urea] on the P fractions concentrations (mg  kg−1) in limestone soil. The error bars represent the standard error (n  =  4). “*” Indicates 
significant differences between the N addition treatment and the control group (p  <  0.05).
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FIGURE 5

The effects of different N addition levels (N0, 0  mg  N  kg−1 soil; N1, 50  mg  N  kg−1 soil; N2, 100  mg  N  kg−1 soil) and N addition forms [Ca (NO3)2, NH4Cl, 
NH4NO3 and Urea] on the activities of acid phosphatase (ACP) and alkaline phosphatase (ALP), the abundance of phoC and phoD genes in yellow soil 
and limestone soil. The error bars represent the standard error (n  =  4). “*” Indicates significant differences between the N addition treatment and the 
control group (p  <  0.05).

FIGURE 6

Relationship (Pearson’s) between P fractions of yellow soil (A) and limestone soil (B) and biotic and abiotic factors. Only significant correlation 
coefficients are marked in the figure (p  <  0.05). AN, available nitrogen; ACP, acid phosphatase; ALP, alkaline phosphatase; RB, root biomass; SM, soil 
water contents.
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yellow soil, but not limestone soil, N input also reduced the NaOH-Po 
and C.HCl-Po fractions. The dynamic behavior of soil P, which 
involves processes like dissolution, adsorption, desorption, 
precipitation, and transformation (Rawat et al., 2020), implies that N 
additions could increase the availability of soil P. This potential 
increase may result from the enhanced desorption of inorganic P and 
the accelerated mineralization of organic P. This interpretation was 
supported by the significant correlation between soil available P and 
ALP activity, and plant root biomass (Figure 6A).

In our study, different forms of nitrogen exhibited varied effects 
on the available phosphorus, consistently following the order in both 
yellow soil and limestone soil: NH4NO3 and Urea >NH4Cl > Ca(NO3)2 
(Figures 3, 4). This pattern was consistent with Amin’s (2023) research 
on the efficiency of different N fertilizers in increasing P availability. 
The differential effects of N forms on soil available P can be attributed 
to several factors. Firstly, Ca2+, as an alkaline cation, can form 
low-soluble calcium phosphate with phosphate anions in soil, 
potentially reducing available P, especially when adding Ca(NO3)2 
(Jalali and Jalali, 2016; Deng et al., 2017; Xu et al., 2020). Furthermore, 
the higher soil pH following Ca(NO3)2 addition could contribute to 
this phenomenon (Penn and Camberato, 2019). Conversely, NH4Cl 
application leads to more severe soil acidification due to nitrification, 
promoting inorganic P desorption (Raza et al., 2019; Mahmood et al., 
2021). Differently, in contrast to Ca(NO3)2 and NH4Cl, the addition of 
Urea, particularly in limestone soil, results in a greater increase in root 
biomass and phosphatase activity, thereby enhancing the availability 
of soil P. Similarly, high NH4NO3 treatment significantly increased soil 
available phosphorus compared to the addition of Ca(NO3)2 and 
NH4Cl, yet this trend was not mirrored in the root biomass (Figure 2). 
Considering that this study included only white clover and perennial 
ryegrass, we speculate that the enhanced soil available phosphorus due 
to NH4NO3 treatment may be associated with a higher proportion of 
white clover in the community (unpublished data). Previous research 
shows that white clover is more efficient than perennial ryegrass at 
releasing organic ions, which aids in the desorption, chelation, and 
complexation of iron and aluminum oxides, ultimately improving 
phosphorus release for plant uptake (Touhami et  al., 2020). 
Considering urea’s affordability and accessibility (Apthorp et  al., 
1987), using it as the primary N source can improve soil P availability, 
reduce fertilizer costs in the studied grasslands. Additionally, the role 
of different N forms should be considered in future research on N 
deposition, given the global changes in N deposition components, to 
accurately evaluate their impact on grassland soil P cycling.

4.2 Relationship between changes in soil 
available P and plant root biomass and 
phosphatase activity

Our research revealed a clear connection between alterations in 
soil available P, plant root biomass, and phosphatase activity, aligning 
with our second hypothesis. These findings illuminate the dynamic 
interplay among these factors in soil P cycling, particularly under N 
input. In both yellow and limestone soils, we observed a close link 
between available P and plant root biomass. This finding is consistent 
with previous studies in various ecosystems, which highlight the 
pivotal role of plant roots in soil P dynamics (Fan et al., 2019).

Plant roots are critical in mediating soil P availability, especially 
following N input. Increased N leads to a greater P demand, 

consequently stimulating root growth and enhancing carbon 
allocation towards P acquisition (Zhang et al., 2016; Fan et al., 2018). 
The resulting increase in root biomass facilitates the release of root 
exudates, including organic acids and phosphatases, which are 
instrumental in mobilizing mineral P and promoting phosphate 
dissolution (Kai et al., 2014; Yang et al., 2019). Our study observed a 
significant rise in soil available P, particularly H2O-Pi, under N input, 
which is likely a direct consequence of enhanced P desorption and 
bioavailability. This observation parallels findings by Yang et  al. 
(2019), who noted similar effects in short-term N addition studies.

Soil phosphatase, pivotal in mineralizing soil organic P, is also 
influenced by N input (George et al., 2018; Cao et al., 2022; Ma et al., 
2023). We found that N input significantly increased ALP activity and 
the abundance of the phoD gene in yellow soil, while the response was 
less pronounced for acid phosphatase (ACP) and phoC abundance 
(Figure 5). This variation might be due to the distinct origins of these 
enzymes. Microorganisms that harbor the phoD gene tend to increase 
alkaline phosphatase production under soil P scarcity, a response that 
is likely exacerbated by N input (Marklein and Houlton, 2012; Nasto 
et  al., 2015; Wang et  al., 2021). Conversely, the response of these 
enzymes to N input in limestone soil differed (Figure 5). This may 
be related to the fact that the pH in limestone soil is more sensitive to 
N input, N-induced decreases in soil pH are positively correlated with 
N-induced changes in soil phosphatase activity (Chen et al., 2020). 
The significant increase in alkaline phosphatase activity under N 
input, particularly with Urea and NH4NO3 treatments, underscores 
the role of these enzymes in mitigating P limitation. This is further 
supported by the observation that N-induced changes in soil 
phosphatase activity are positively correlated with alterations in soil P 
fractions (Figure 6A). This may be due to the Urea input providing 
microbially available carbon, enhancing microbial activity (Zhang 
et  al., 2020). However, Ca(NO3)2 appeared to inhibit phosphatase 
activity, likely due to Ca2+ inhibition (Halstead, 1964), suggesting it 
may not be the optimal N source for enhancing P availability in these 
soils. The discrepancy in phoD gene abundance and alkaline 
phosphatase activity trends under different N inputs (Figure 5) could 
stem from the fact that alkaline phosphatase is encoded not only by 
phoD but also by phoA and phoX genes (Hu et al., 2018).

Our study highlights the importance of considering the form of 
N input when assessing its impact on soil P dynamics. While all forms 
of N input altered alkaline phosphatase activity to some degree, the 
distinct patterns observed suggest varying effects on the microbial 
processes involved in P mineralization, necessitating further 
exploration to fully grasp the implications of different N forms on soil 
P cycling and plant-microbe interactions.

5 Conclusion

This study investigated the effects of N addition on two typical soil 
P fractions in the karst grasslands of southwestern China and found 
that this effect was significantly and strongly modulated by both the 
form and amount of N added. In particular, compared with Ca(NO3)2 
addition, other high-level N sources (especially Urea and NH4NO3) 
significantly increased available P in both soils, with the order of 
effects being Urea and NH4NO3 > NH4Cl > Ca(NO3)2. This highlights 
the considerable role of N form in determining soil P availability. 
Further analysis revealed a significant correlation between changes in 
soil available P and factors such as plant root biomass and alkaline 
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phosphatase activity, underscoring the importance of biological 
factors in the dynamics of soil P in the context of N input. In terms of 
management implications, we recommend that high levels of Urea and 
NH4NO3 be prioritized over Ca(NO3)2 in management practices to 
increase soil P availability and plant utilization. This has important 
implications for improving soil fertility in the region and supporting 
sustainable agricultural practices.
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