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Crop change detection study is the foundation of agricultural sustainability. 
The inherent high spectral resolution of hyperspectral images, combined 
with multi-temporal datasets, facilitates the detection of subtle changes. To 
enhance the accuracy and applicability of hyperspectral change detection in 
agricultural scenes, this paper introduces a fast hyperspectral change detection 
approach for agricultural crops based on low-rank matrix and morphological 
feature extraction (FLRaMF). The goal is to improve detection precision and 
computational efficiency of the change detection process. The method 
initially employs rapid low-rank matrix extraction to separate changing and 
non-changing pixels in the spectral domain. Subsequently, spatial information 
is introduced using attribute profiles, restricting spectral anomalies through 
hyperspectral morphology, which ultimately improves the detection results. 
This study utilized four hyperspectral change detection datasets in agricultural 
crop scenarios, optimizing and analyzing parameters. Experimental results 
and analysis indicate that the FLRaMF method can achieve higher detection 
accuracy with reduced computation cost in unsupervised, default parameter 
scenarios when performing agricultural crop change detection tasks.
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1 Introduction

Achieving sustainable agricultural productivity and global food security are two of the 
biggest challenges of the new millennium (Wang et al., 2022). Studying crop change detection 
is the foundation of agricultural sustainability, contributing to enhancing the resilience of 
agricultural systems reducing production risks, improving the livelihoods of rural 
communities, thus ensuring the sustainability of food supply. Change detection, a pivotal 
application in remote sensing, is essential for continuously monitoring and identifying 
alterations in remote sensing image scenes (Hasanlou and Seydi, 2018; Liu et al., 2019; Hou 
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et  al., 2021), which has been widely applied in environmental 
monitoring, land change analysis, urban expansion assessment, 
disaster detection and evaluation, and military battlefield monitoring, 
and provides valuable insights (Eismann et al., 2007; Wu et al., 2013; 
Xia et al., 2024). Crop change detection, in particular, holds significant 
importance. The timely and accurate acquisition of crop sowing 
change information is crucial for developing national/regional 
agricultural economic plans, guiding structural adjustments in the 
planting industry, and enhancing agricultural 
production management.

Unlike high-resolution remote sensing images (Ma et al., 2023, 
2024), hyperspectral images (HSIs) organize data into three-
dimensional (3D) cubes with both spatial and spectral dimensions, 
providing intricate spectral “diagnostic” information (Ren et al., 2023). 
This unique capability, coupled with its inherent advantages such as 
wide coverage and short detection periods (Liu et al., 2014; Marinelli 
et  al., 2019), holds immense potential for accurate crop change 
detection and the identification of various types of agricultural 
transformations (Song et al., 2018).

Various methodologies have been proposed, thoroughly reviewed, 
categorized, and analyzed for hyperspectral image (HSI) change 
detection across diverse applications (Liu et al., 2019; Vali et al., 2020). 
HSI change detection is commonly classified into four main groups:

 1. Algebra-based methods: This category encompasses techniques 
such as image differencing, ratioing, regression, absolute 
distance (AD; Du et  al., 2012), and change vector analysis 
(CVA; Ghamisi et al., 2017). These methods are simple and 
efficient, yet their fundamental assumption is that changes 
result in noticeable differences in pixel gray level values.

 2. Transformation-based methods: Techniques like conventional 
principal component analysis (CPCA), temporal principal 
component analysis (TPCA; Nielsen et al., 1998), multivariate 
alteration detection (MAD), and independent component 
analysis fall into this group. They project hyperspectral data 
into alternative feature spaces to identify changed pixels, but 
may overlook continuous spectral signatures and 
pixel similarity.

 3. Classification-based methods: This category involves post-
classification or direct classification methods applied to 
multitemporal images (Bovolo et al., 2008; Demir et al., 2012). 
Post-classification entails separate classification of images from 
different time series, eliminating the impact of environmental 
factors. Direct classification treats multitemporal images 
collectively, using a classifier to identify changed categories 
(Khanday and Kumar, 2016; Wang et al., 2018; Hu et al., 2023). 
However, they demand a higher level of sophistication in 
classification algorithms.

 4. Other advanced methods: This group comprises unmixing-
based (Zhang et al., 2011; Ertürk et al., 2016; Liu et al., 2016), 
low-rank and sparse representation-based (Wu et al., 2018), 
and deep learning-based approaches (Hong et al., 2021; Huang 
et al., 2022; Song et al., 2022; Luo et al., 2023; Wang et al., 2023); 
Deep learning methods aim to generate data-driven 
transformations for advanced feature extraction, with their 
effectiveness dependent on the scale and accuracy of training 
databases (Lin et al., 2019; Gao et al., 2020; Zheng et al., 2020; 
Li et al., 2022; Yang et al., 2023).

Although various algorithms mentioned above have 
demonstrated excellent performance in different fields (Zhou 
et al., 2016; Seydi et al., 2021; Seydi and Hasanlou, 2021), they still 
face challenges in practical applications due to factors such as 
seasons, terrain, and weather conditions, including: (1) 
Interference from abnormal pixels; (2) Limited versatility in 
detection methods; and (3) Underutilization of spatial information 
during detection. Consequently, the focal point in hyperspectral 
change detection research is to enhance the differentiation between 
changed pixels and the background while accurately distinguishing 
changed pixels from the background (Ortiz-Rivera et al., 2006; 
Zhan et al., 2020).

In recent years, sparse representation has proven to be a powerful 
tool for interpreting hyperspectral images (Li et al., 2016; Ghasemian 
and Shah-Hosseini, 2020; Peng et al., 2021). Among these, low-rank 
and sparse matrix decomposition methods leverage the intrinsic 
properties of HSIs (Bouwmans et al., 2016; Wu et al., 2019; Xie et al., 
2019). They decompose pixels with sparse characteristics representing 
changes from those with low-rank characteristics representing 
unchanged elements, and effectively eliminating noise. Such methods 
enable modeling of spectral signals without assuming or estimating 
specific statistical distributions, which can be particularly useful for 
modeling change trends. Simultaneously, morphological feature 
extraction has been proven to be a powerful tool in fields such as crop 
classification and detection (Bosilj et  al., 2018; Li et  al., 2023). 
Expressing the topological structure and morphological attributes 
among crops enables the introduction of spatial information, forming 
a more universally applicable and effective method for detecting 
agricultural changes.

The spectral-spatial information is of great importance for change 
detection (Mou et al., 2018). Change detection based on it aims at 
extracting not only the spatial information but also explore the 
underlying information of the spectral features to obtain a better 
performance (Zhang and Lu, 2019). Based on the above discussions, 
this paper introduces a fast hyperspectral change detection approach 
for agricultural crops based on low-rank matrix and morphological 
feature extraction (FLRaMF). The proposed method takes a two-fold 
approach. Firstly, it preliminarily separates changed and unchanged 
pixels in the spectral domain by extracting a low-rank matrix. 
Secondly, it effectively captures and utilizes the spatial characteristics 
of crops through Attribute Profiles (AP). The integration of spectral-
spatial information yields reliable change detection results for dual-
temporal agricultural crops. In this study, the FLRaMF method 
exhibits outstanding performance when applied to four real dual-
temporal hyperspectral change detection datasets for agricultural 
crops. The primary contributions of this research are succinctly 
summarized as follows.

 1. FLRaMF is a non-supervised change detection method, which 
eliminates the need of prior knowledge and samples in 
agricultural change detection. Simultaneously, after carefully 
considering the data characteristics of such scenes, the 
algorithm’s parameters are simple, and the default settings 
exhibit broad applicability.

 2. The proposed method fully exploits the topological features 
and spatial morphology of agricultural crops, addressing the 
issue of poor detection performance caused by interference 
from abnormal pixels in the spectral domain. This 
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enhancement further improves the performance of 
change detection.

 3. The proposed method introduces a greedy bilateral smoothing 
model which better separates changed pixels from unchanged 
pixels considering the intrinsic characteristics of the data, 
significantly enhancing the operational efficiency of 
the algorithm.

The paper is structured as follows: Section 2 introduces the 
datasets, the basic concepts of AP and LRaSMD and the proposed 
algorithm. Section 3 presents the experiments conducted with four 
datasets and analysis. Finally, section 4 summarizes the entire study.

2 Materials and methods

Four real dual-temporal hyperspectral datasets related to 
agricultural crops was used to validate the effectiveness of the 
proposed FLRaMF algorithm.

2.1 Materials

2.1.1 The Bay Area dataset
The Bay Area dataset was collected in Patterson, California, 

United States. These images were acquired using the AVIRIS sensor in 
2013 and 2015, with high-spectral remote sensing image dimensions 
of 500 × 600 for both periods, comprising a total of 224 bands. The Bay 
Area dataset primarily includes farmland and urban areas. Due to the 
complexity of urban changes, the ground truth map in terms of 
changed and unchanged regions mainly focuses on farmland areas. In 
the ground truth map, white pixels represent unchanged elements, 
gray pixels represent changed elements, and black pixels represent 
elements where changes were not determined.

2.1.2 The Santa Barbara dataset
The Santa Barbara dataset is located in the Santa Barbara region 

of California, United States. These images were captured using the 
AVIRIS sensor in 2013 and 2014, with high-spectral remote sensing 
image dimensions of 740 × 984 for both periods, comprising a total of 

224 bands. The Santa Barbara dataset primarily includes mountainous 
and farmland areas. In the ground truth map, white pixels represent 
unchanged elements, gray pixels represent changed elements, and 
black pixels represent elements where changes were not determined. 
Analysis of the ground truth map for the Santa Barbara dataset reveals 
that the upper part of the mountainous area is labeled as unchanged 
elements, and since this area contains a variety of land cover types, 
high demands are placed on the interference resistance of 
hyperspectral remote sensing change detection algorithms.

2.1.3 The Hermiston dataset
The Hermiston dataset is located in Hermiston, Oregon, 

United States, covering farm and river regions. Images were acquired 
using the Hyperion sensor in 2004 and 2007, with high-spectral 
remote sensing image dimensions of 200 × 390 for both periods, 
comprising a total of 242 bands.

2.1.4 The Farmland dataset
The Farmland dataset was collected using the Hyperion sensor, 

capturing farmland in Yancheng City, Jiangsu Province, China. These 
images were obtained in May 2006 and April 2007, with dimensions 
of 140 × 420, and a total of 154 bands after removing the noisy bands.

The pseudo color prevent, postevent HSIs and the groundtruth 
changes of different datasets are depicted, respectively (Figures 1–4), 
specific parameters of which is given (Table 1). The experimental 
platform is a computer equipped with an Intel (R) Core(TM) i7-8750H 
CPU (2.20 GHz) and 16GB RAM, and all programs are implemented 
in MATLAB R2018a.

2.2 Methods

2.2.1 Low-rank and sparse matrix decomposition
In hyperspectral data, the spectral vectors of neighboring pixels 

exhibit similarity due to shared characteristics (Zhang et al., 2013). 
Owing to the strong inter-band correlations, the spectral vectors of 
smooth and continuous background pixels in hyperspectral images 
(HSI) can be effectively approximated as linear combinations of a 
few base vectors. Consequently, the HSI background is characterized 
by low rankness within a low-dimensional subspace. Conversely, 

FIGURE 1

Illustration of the Bay Area dataset. (A) Bay Area scene on 2013, (B) Bay Area scene on 2014, (C) Ground-truth change map.
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anomalous pixels constitute a minor fraction of the image and, 
assuming a random distribution, exhibit sparsity. The LRaSMD 
(Low-Rank and Sparse Matrix Decomposition) method represents 
the matrix as the sum of low-rank, sparse, and noise matrices. This 
approach effectively captures the low-rankness and sparsity 
associated with HSI background and anomalous features. Unlike 
aiming to establish individual models for each feature, the LRaSMD 
method concurrently considers both feature types. It extracts 
valuable information from noise and retrieves additional 
background components from restored data. The LRaSMD 
algorithm is mathematically formulated by Equation (1) (Zhou and 
Tao, 2011).

 X B A N= + +  (1)

whereX n b∈ × represents the spectral value of the nth pixel in the 
bth band. B is the low-rank matrix representing the spectral 
information for the image background. A is the sparse matrix 
representing the spectral information for the changing target. N is the 
noise matrix, and the noise in the image is assumed to follow a 
Gaussian distribution.

The algorithm minimizes the decomposition error function by 
controlling model complexity, restricting the rank of the low-rank 
matrix B, and ensuring the sparsity of the sparse matrix A. This 
process results in the rewriting of Equation (1) as Equation (2).

 

min ,X B A rank B r
card A kn

F− − ( ) ≤
( ) ≤
2

 
(2)

FIGURE 2

Illustration of the Santa Barbara dataset. (A) Santa Barbara scene on 2013, (B) Bay Area scene on 2015, (C) Ground-truth change map.

FIGURE 3

Illustration of the Hermiston dataset. (A) Farmland on 1 May 2004, (B) Farmland on 8 May 2007, (C) Ground-truth change map.
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In Equation (2), r and k represent the rank of the low-rank 
matrix and the sparsity of the sparse matrix, respectively. This 
equation effectively conveys background information by 
controlling the maximum value of r, while k expresses the 
occurrence probability of anomalous pixels in the image. With an 
increasing number of iterations, the decomposition error 
consistently decreases. Consequently, Equation (2) can 
be decomposed into two sub-problems, and their functions are 
detailed in Equation (3).

 

( )

( )

2
1

2
1

argmin

argmin

t t F
rank B r

t t F
card A kn

B X B A

S X B A

−
≤

−
≤

= − −

= − −
 

(3)

Upon uniform convergence of decomposition errors to a local 
minimum, the iteration halts, and the low-rank matrix B, sparse 
matrix A, and noise matrix N are constructed.

TABLE 1 Detailed parameters of the dataset.

Dataset name Bay Area dataset Santa Barbara Dataset Hermiston Dataset Farmland Dataset

Capture time 2013 2015 2013 2014 2004 2007 2006 2007

Capture location Patterson Santa Barbara Hermiston Yancheng

Sensor type AVIRIS AVIRIS HYPERION HYPERION

Image size 500 × 600 740 × 984 200 × 390 140 × 420

Number of bands 224 224 242 154

Changed pixels count 38,425 52,134 9,986 18,383

Unchanged pixels count 34,211 80,418 68,014 40,417

Unknown pixels count 227,364 595,608 0 0

FIGURE 4

Illustration of the Yancheng dataset. (A) Farmland on 3 May 2006, (B) Farmland on 23 April 2007, (C) Ground-truth change map.
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2.2.2 Attribute profiles
Attribute profiles (APs) originate from the morphological profile 

(Pesaresi and Benediktsson, 2001). APs are based on attribute filters 
that operate using an image’s connected components (CC). Through 
two basic operators, thinning and thickening, filtration produces a 
series of image sequences. This process compares each CC’s attributes 
and threshold value, and then estimates whether this region satisfies 
the set standard. If not, the value is set to the nearest radiation value 
in the adjacent domain, merging that region into the adjacent CC. This 
domain can be merged into an adjacent domain with a lower or higher 
grayness level, resulting in thinning and thickening, respectively. The 
function underlying this process is given by Equation (4).

Attribute profiles (APs) are derived from the morphological 
profile (Dalla Mura et  al., 2010) and rely on attribute filters that 
operate based on connected components (CC) within an image. 
Utilizing two fundamental operators, thinning and thickening, 
filtration generates a sequence of image profiles. This procedure 
involves assessing the attributes and threshold valueβof each CC, 
determining whether the region meets the predefined standard. If not, 
the value is adjusted to the nearest radiation value in the neighboring 
domain, incorporating that region into the adjacent CC. This merging 
can occur with a lower or higher grayness level in the adjacent domain, 
leading to thinning and thickening, respectively. The function 
governing this process is expressed by Equation (4).

 
AP f f f f f f fn n n( ) = ( ) ( ) … ( ) ( ) ( ) … ( ){ }−φ φ φ γ γ γ, , , , , , ,1 1 1 2  (4)

Where γ i and φi i n= …( )1 2, ,  represent thinning and thickening, 
respectively.

2.2.3 Proposed algorithm
The workflow of the FLRaMF method is illustrated (Figure 5), 

comprising three steps: firstly, the rapid extraction of low-rank 
information based on “greedy bilateral smoothing”; secondly, spatial 
information extraction based on Attribute Profiles (AP); and finally, 
the integration of spectral-spatial domain change features to obtain 
the ultimate detection results.

According to the LRaSMD method described in section 2.2.1, 
the model reconstructs HSI data into X B A N X n b= + + ∈( )× .  
To address the time cost of single-value decomposition at each 
iteration in the traditional LRaSMD model, a greedy bilateral 
smoothing method proposed by Zhou and Tao (2011) is applied to 
the additive noise matrix N. Here, we  substitute the low-rank 
matrix B with the bilateral factor B = MN and apply regularization 
to the1 norm of sparse matrix A. This process is expressed by 
Equation (5).

 ( ) ( )

2
1, ,

min

s.t.

FM N A
X MN A A

rank M rank N r

λ+− −

= ≤  
(5)

Where λ is a regularization parameter. To solve Equation (5), this 
method introduces a soft threshold S X X Xλ λ= ( ) ⋅ −( )sgn max ,0  
during regularization of 1 and updating of A. Sλ is the soft threshold 
operator for λ. Alternate optimization of M, N, and A in Equation (5) 
leads to Equation (6).

 

( ) ( )
( ) ( )

( )

†
1 11 1

†
1

T T
k k kk k

T T
k k kk k

k k k

M X A N N N

N M M M X A

A S X M Nλ

− −− −

−

= −

= −

= −
 

(6)

Where k denotes the number of iterations. ( )†⋅ is the Moore-
Penrose pseudo-inverse operation. Because MN and Acodetermine 
the value of Equation (5) rather than M  or N  individually, a pair of 
M N,( ) can be  found with the same product as M Nk k,( ) in 

Equation (6), leading to faster computation. Thus, Equation (6) can 
be rewritten as Equation (7).

 ( ) ( ) ( )
†

1 1
T T

k k k k k kk kM N M M N M X A X A− −= − = −
 
(7)

FIGURE 5

Flowchart of the method.
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Where   is an orthogonal projection operator. According to 
Equation (6), the column space of Mk can be represented on a random 
orthonormal basis using X A Nk k

T−( )− −1 1  columns. Based on 
X A N QRk k

T−( ) =− −1 1 , the fast QR  decomposition method,Mkis 
transformed into Q,and M Nk k  can be  computed as 
M N X A QQ X Ak k Q k

T
k= −( ) = −( )− − 1 1 . Then, a fast upgrading 

process was applied, as described in Equation (8).

 

M Q

N Q X A
A S X M N

k

k
T

k

k k k

=

= −( )
= −( )

−1

λ  

(8)

In the GreBsmo method, Equation (8) iterates k times or until the 
object converges. Then, it adds ∅r  rows to matrix N , reducing the 
object’s value. To determine the fastest decreasing trend, it greedily 
uses the added ∅r  rows as the singular vector of the top ∅r  of the 
partial derivative. Then, the rank of matrix N is added to r r r1 0= + ∆ .  
This function is shown as Equation (9).

 

∂ − −
∂

= − −X MN A
N

X MN AF
2

 
(9)

Once reaching the set fault tolerance, the rank r stops increasing.
Division into background and anomaly components can weaken 

the interference effect of anomalies on background statistics, so the 
decomposed low-rank component should be  treated as an initial 
spectral anomaly feature.

Whether based on spectral or spatial features, change detection tends 
to identify similar change targets. However, due to different attribute 
information, different false alarms may occur. Spectral-based change 
detection methods may result in larger initial detection values for some 
background pixels, similar to anomalies, because they represent a small 
number of pixels. However, these pixels are often dissimilar in other 
attributes, such as area. To address this issue, the algorithm identifies 
similar changing targets and implements a strategy involving mutual 
inhibition of the two backgrounds. This approach effectively reduces the 
false alarm rate.

The initial spatial anomaly feature detection is conducted based 
on Mahalanobis distance, as shown in Equation (10).

 ( ) ( ) ( )1
spa i i iX x x xµ µΤ −= − Γ −  (10)

Where [ ]1 2, , ,i bx x x x Τ= …  denotes the spatial feature vector of 
each pixel, ( )1 2, , bµ µ µ µ Τ= …  and Γ  showed, respectively, in 
Equations (11, 12), are the mean value and covariance matrix, 
respectively, of the input background data.

 
µb

i

n
in
x=

=
∑1

1  
(11)

 
( )( )

1

1 n
b i b i b

i
x x

n
µ µ Τ

=
Γ = − −∑

 
(12)

The model implementation process can be concluded in Algorithm 1.

2.2.4 Detection performance
In hyperspectral remote sensing image change detection, after 

extracting change information from the difference map, a change 
result map is typically utilized to represent the differential information. 
The change result map encompasses the change status of each pixel 
position. For a pixel xs defined by Equation (13) in the change result 
map, if it corresponds to a changed pixel Xc,it indicates a change; if it 
corresponds to an unchanged pixel Xu, it signifies no change:

 
x

x X
x Xs
s c

s u
=

∈
∈





1

0

,

,  
(13)

After obtaining the change result map, a crucial step involves 
performing a quantitative analysis of its accuracy. Commonly 
used metrics for this analysis include Overall Errors (OE), 
Percentage Correct Classification (PCC), and Kappa Coefficient. 
These metrics are calculated based on the counts of true positive 
samples (TP), true negative samples (TN), false positive samples 
(FP), and false negative samples (FN). The formula for calculating 
Overall Errors (OE) calculated through Equation (14) is 
as follows:

 OE FN FP= +  (14)

Overall Errors (OE) represent the total number of pixels that were 
not successfully detected. A smaller OE indicates fewer erroneously 
detected pixels, reflecting better algorithm performance.

The formula for calculating Percentage Correct Classification 
(PCC) is showed as Equation (15):

 
PCC TP TN

TP TN FP FN
=

+
+ + +  

(15)

The accuracy value falls within the range of [0,1], where a higher 
accuracy indicates a greater number of correctly detected pixels, 
reflecting higher algorithm precision.

The Kappa Coefficient can be calculated based on PCC, and its 
formula is given by Equation (16):

ALGORITHM 1 : FLRaMF framework for hyperspectral change 
detection

Input: Hyperspectral image; rank r; rank step Δr; power K; soft thresholding 

λ; tolerance τ ;

Output: A two-dimensional detection result.

1: Initialize N r n∈ × 0 and A

2: while residual error ≤τ do

3: for k =1 to K  do

4: sequentially compute Eq. (8)

5: end for

6: Calculate the top Δr right singular vectors v of ∂ ∂f M/  in Eq. (9)

7: Set V V: ;=[ ]u
8: end

9: Extract the first three principal components of the original HSI

10: Calculate and obtain a set of EMAP features and extract the first four 

principal components;

11: Calculate preliminary detection values via Eq. (10)
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Kappa PCC PRE

PRE
=

−
−1  

(16)

The calculation formula as Equation (17) shows for PRE is:

 
PRE

N TP FP N TN FN
TP FP TN FN

c u=
× +( ) + × +( )

+ + +( )  
(17)

The formula above is where Nc represents the total number of 
actual changed pixels, andNu represents the total number of actual 
unchanged pixels. The Kappa coefficient ranges from [0,1], and a 
higher Kappa value indicates higher accuracy in change detection.

3 Results and discussion

3.1 Experimental results and analysis

In this section, we  validate the effectiveness of the proposed 
FLRaMF algorithm using the four datasets related to agricultural 
crops. A performance comparison is then conducted between the 
proposed algorithm and five state-of-the-art algorithms. Subsequently, 
the influence of different parameter values on the detection results for 
each dataset is discussed.

In this study, we utilize three evaluation metrics—Overall Errors 
(OE), Percentage Correct Classification (PCC), and Kappa 
Coefficient—to analyze and assess the change result map. These 
metrics provide a comprehensive evaluation of the accuracy of 
hyperspectral change detection from different perspectives.

To validate the effectiveness of the proposed algorithm in this 
chapter, we utilized the four sets of hyperspectral remote sensing 
image change detection datasets: the Bay Area dataset, Santa 
Barbara dataset, Hermiston dataset and Farmland dataset. For 
algorithm validation, we compared the performance of the proposed 
algorithm with five contrastive algorithms, including the Otsu’s 
method based on threshold segmentation (OSTU), the Fuzzy 
C-Means clustering algorithm (FCM), the Iterative Reweighted 
Multivariate Alteration Detection method (IR-MAD), the Fuzzy 
C-Means clustering algorithm considering neighborhood 
information (FLICM), and the Markov Random Field-based change 
detection algorithm (MRF).

Comparative analyzing the change result maps on the Bay 
Area dataset, it can be observed that the distribution of detected 

changed pixels in the MRF and FLICM methods exhibits 
regionalization, with few isolated changed pixels. In contrast to 
these two methods, other approaches show varying degrees of 
isolated changed pixels (Figure  6). The reason for this 
phenomenon lies in the consideration of neighborhood 
information during the change information extraction process in 
FLICM and MRF methods. These methods extract change 
information by considering the dependency relationship between 
the target pixel and its neighboring pixels, resulting in fewer 
isolated changed pixels in the generated change result maps. The 
algorithm proposed in this paper treats urban changes as weak 
signals, and the extracted results manifest as isolated pixels in 
urban areas. However, these isolated changed pixels are not 
included in the evaluation metrics during precision analysis due 
to the lack of statistical processing in this region. In the 
agricultural areas, under the constraints of the spectral attribute 
profile, crop plots maintain a well-defined morphology.

Therefore, from the aforementioned change result maps, it is 
evident that the proposed method in this paper exhibits more 
pronounced structural features compared to other methods. The 
change areas in the result maps of other methods appear relatively 
fragmented, leading to missed detections in larger change 
regions. Specifically, larger change regions are segmented into 
several smaller regions in the obtained change result maps.

To quantitatively analyze the proposed algorithm in this chapter, 
overall error (OE), accuracy (PCC), and Kappa coefficient for the 
proposed algorithm and comparative algorithms on the Bay Area 
dataset are presented (Table 2).

Analysis of the data reveals a positive correlation between 
accuracy and Kappa coefficient in the Bay Area dataset, indicating 
that higher accuracy corresponds to larger Kappa coefficients. 
The algorithms’ accuracy rankings, from highest to lowest, are as 
follows: the proposed algorithm, FCM method, OSTU threshold 

FIGURE 6

Change maps detected by the algorithms on the Bay Area dataset. (A) OSTU, (B) FCM, (C) IR-MAD, (D) FLICM, (E) MRF, (F) FLRaMF.

TABLE 2 Accuracy evaluation of Bay Area dataset change detection.

Algorithms OE PCC Kappa

OSTU 8,639 0.8795 0.7586

FCM 8,286 0.8848 0.7629

IR-MAD 11,273 0.8385 0.6732

MRF 10,286 0.8418 0.699

FLICM 9,631 0.8686 0.7241

Proposed Method 1,617 0.9524 0.9184
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method, FLICM method, MRF method, and IR-MAD method. 
The proposed algorithm has an overall error of 2,117, indicating 
the smallest number of incorrectly detected pixels among all 
algorithms. The accuracy is 0.9524, and the Kappa coefficient is 
0.9084, both being the highest among all algorithms. This 
confirms the superior precision of the proposed algorithm on the 
Bay Area dataset compared to other comparative algorithms, 
validating the effectiveness of the proposed algorithm in 
this paper.

Analyzing the change result maps obtained from various 
hyperspectral remote sensing image change detection algorithms 
on the Santa Barbara dataset, it is evident that the structural 
features of the change areas in the result maps of the proposed 
algorithm, FLICM method, and MRF method are more 
pronounced (Figure 7). These algorithms demonstrate effective 
detection of larger change areas, while other methods exhibit 
varying degrees of isolated noise points in the detection results 
of larger change areas. The occurrence of this phenomenon is 
attributed to the consideration of neighborhood information in 
both the proposed algorithm and the comparative FLICM and 
MRF methods, making it less likely to encounter isolated noise 
points in the detection of larger change areas.

Additionally, upon analyzing the change result maps, it is evident 
that the proposed algorithm performs well in the detection of 
mountainous areas, exhibiting no false detections in this region and 
demonstrating excellent background suppression. This is attributed to 
the selection of the low-rank component of hyperspectral data for 
spectral feature extraction, effectively filtering out noise and providing 
support for change area determination, resulting in fewer false 
detections or isolated noise.

To quantitatively analyze the algorithm proposed in this chapter, 
the overall error (OE), precision (PCC), and Kappa coefficient of the 
proposed algorithm and the comparative algorithms on the Santa 
Barbara dataset are presented (Table 3).

From the data in the table, it is evident that the proposed FLRaMF 
algorithm has the lowest overall error and the highest accuracy. This 
aligns with the observations made from the change result maps. FLICM 
method and MRF method follow closely in accuracy, confirming that 
effective utilization of spatial neighborhood information enhances the 
accuracy of final change information extraction when performing 
hyperspectral remote sensing change detection.

The high accuracy of the proposed algorithm is mainly attributed 
to its ability to extract change information from complex terrains in 
mountainous areas without false detections, a situation encountered 
by other algorithms to varying degrees. The proposed algorithm’s 
resilience to isolated noise points in complex terrains is achieved 
through the spatial constraints imposed by the attribute profile and 
the enhancement of dataset background quality through low-rank 
information extraction, mitigating the occurrence of noise points. 
Thus, the proposed algorithm achieves high accuracy on the Santa 
Barbara dataset, further confirming its effectiveness and 
demonstrating its interference resistance in complex terrain conditions.

Analyzing the change result maps obtained from various 
hyperspectral remote sensing image change detection algorithms on the 
Hermiston dataset are shown (Figure 8), it is evident that the structure 
of the extracted change information is pronounced in all algorithms. 
The main reason for this phenomenon is the limited variety of land 
cover types in the Hermiston dataset, with the primary focus of change 
information extraction being the agricultural areas. Consequently, the 
structure features in the change result maps are more apparent.

Upon observation, it can be noted that the OSTU threshold 
method, FCM method, and IR-MAD method exhibit a higher 
occurrence of isolated noise points in the change result maps. In 
contrast, other algorithms, including the proposed algorithm in 
this chapter, do not exhibit this phenomenon. The primary reason 
is that, in certain change areas, although they are categorized as 
change regions, the difference values in those areas may not 
be  completely uniform. Therefore, using a single-threshold 
approach in the process of change information extraction may 
misclassify some pixels with difference values near the 
segmentation threshold as unchanged pixels, leading to the 
observed phenomenon.

FIGURE 7

Change maps detected by the algorithms on the Santa Barbara dataset. (A) OSTU, (B) FCM, (C) IR-MAD, (D) FLICM, (E) MRF, (F) FLRaMF.

TABLE 3 Accuracy evaluation of Santa Barbara dataset change detection.

Algorithms OE PCC Kappa

OSTU 17,961 0.8641 0.7234

FCM 18,086 0.8628 0.7119

IR-MAD 21,935 0.832 0.6486

MRF 14,945 0.8805 0.7496

FLICM 14,854 0.8836 0.7473

Proposed method 4,260 0.9603 0.9215
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Comparing the change result maps of the proposed algorithm 
with those of other algorithms, it is observed that other 
algorithms have more false detection areas, particularly marking 
some unchanged agricultural regions as change areas. This 
significantly impacts the accuracy of change detection.

To quantitatively analyze the algorithm proposed in this chapter, 
the overall error (OE), precision (PCC), and Kappa coefficient of the 
proposed algorithm and the comparative algorithms on the Hermiston 
dataset are presented (Table 4).

Analyzing the data in the table reveals that the proposed 
algorithm in this paper has the smallest overall error and the 
highest accuracy. The accuracy of other comparative algorithms is 
generally around 70%, while the accuracy of the proposed 
algorithm in this chapter is 93.56%, significantly higher than 
other algorithms.

Analyzing the change result maps obtained from various 
hyperspectral remote sensing image change detection algorithms 
on the Farmland dataset, it can be observed that the embankments 
between fields contribute significantly to errors. This 
phenomenon is particularly evident in the results of the OSTU, 
IR-MAD, and FLICM algorithms, while it is not observed in the 
detection results of the proposed FLRaMF algorithm (Figure 9). 
This is mainly due to the morphological constraints  
imposed by the attribute profile on the change targets. 
Additionally, the isolated noise phenomenon is more pronounced 
in the comparative algorithms selected in this study, while the 
proposed algorithm exhibits relatively minimal isolated noise. 

This is attributed to the optimization of the low-rank matrix for 
the background of the change dataset, eliminating noise 
interference and better distinguishing changed and 
unchanged pixels.

Analyzing the data reveals that the proposed algorithm in this 
paper has the smallest overall error and the highest accuracy.  
The accuracy of other comparative algorithms is generally around 
70%, while the accuracy of the proposed algorithm in this  
chapter is 88.56%, significantly higher than other algorithms 
(Table 5).

3.2 Algorithm runtime performance

To comprehensively analyze the algorithms from the perspective 
of efficiency, this section conducted a comparative study of the 
runtime of each algorithm. The runtime of each algorithm on four 
datasets is presented (Table 6).

It can be observed that the runtime of the proposed FLRaMF 
algorithm in this paper is second only to OSTU on the four 
datasets, but shorter compared to FCM, IR-MAD, MRF, and 
FLICM methods. This is mainly attributed to the adoption of a 
greedy bilateral smoothing approach, aimed at reducing the time 
cost of singular value decomposition in each iteration during the 
conventional low-rank matrix extraction process. Furthermore, 
the method proposed in this paper provides higher accuracy 
compared to the comparative algorithms.

FIGURE 8

Change maps detected by the algorithms on the Hermiston dataset. (A) OSTU, (B) FCM, (C) IR-MAD, (D) FLICM, (E) MRF, (F) FLRaMF.

TABLE 4 Accuracy evaluation of Hermiston dataset change detection.

Algorithms OE PCC Kappa

OSTU 8,137 0.7197 0.3872

FCM 8,139 0.7196 0.393

IR-MAD 8,443 0.7091 0.3182

MRF 8,522 0.7064 0.2871

FLICM 5,387 0.8214 0.4035

Proposed method 991 0.9356 0.9203
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3.3 Parameter setting considerations

The FLRaMF algorithm has two crucial parameters: the rank used 
in the spectral domain features and the area used in the spatial domain 
features. For other adjustable parameters, the same default settings 
were used in all experiments in this paper.

Rank is one of the most critical parameters. In this section, 
an experiment was designed to investigate the variation of 
precision value AUC with the rank value (r) and the soft threshold 
(λ), as shown Clearly (Figure 10), with the increase of the rank 
value, the overall accuracy of the detection task decreases. It is 
generally believed that the rank value (r) is positively correlated 
with the complexity of the scene to be detected, and the changes 

in crops exhibit clear patterns influenced by human habits. 
Therefore, the default parameter setting (rank = 1) is typically 
sufficient to achieve the highest accuracy in completing the 
detection task.

The attribute profile’s area attribute is another key parameter. 
We consider 350 as the default value and observe minimal changes in 
accuracy within its longer intervals (Figure  10). Therefore, when 
performing crop change detection tasks, using the default parameter 
(a = 350) typically achieves the highest accuracy.

In summary, the FLRaMF algorithm proposed in this paper has 
relatively simple and easily understandable parameters. Particularly 
for crop detection, the task can often be  accomplished with high 
accuracy using the original default parameters.

FIGURE 9

Change maps detected by the algorithms on the Farmland dataset. (A) OSTU, (B) FCM, (C) IR-MAD, (D) FLICM, (E) MRF, (F) FLRaMF.

TABLE 5 Accuracy evaluation of Farmland dataset change detection.

Algorithms OE PCC Kappa

OSTU 8,137 0.7197 0.3872

FCM 8,139 0.7196 0.393

IR-MAD 8,443 0.7091 0.3182

MRF 8,522 0.7064 0.2871

FLICM 8,087 0.7214 0.4035

Proposed Method 991 0.8856 0.9003

TABLE 6 Running times of each algorithm for five datasets.

OSTU FCM IR-MAD MRF FLICM Proposed method

Bay Area 3.019 3.722 51.098 4.510 24.280 3.21

Santa Barbara 6.866 8.1105 109.466 19.0735 52.7605 7.05

Hermiston 0.79 1.03 16.45 2.211 4.23 0.93

Farmland 0.35 0.53 12.75 1.65 3.16 0.66
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4 Conclusion

This paper introduces a fast hyperspectral change detection 
method for crops based on low-rank matrix and morphological 
feature extraction, named FLRaMF. The aim is to enhance the 
accuracy of crop change detection tasks, simplify usage 
conditions, and improve operational efficiency in unsupervised 
scenarios. Through greedy bilateral smoothing, noise is efficiently 
removed in the spectral domain to separate changing and 
non-changing pixels with high efficiency. Simultaneously, 
attribute profiles are employed to extract hyperspectral 
morphological features, suppressing spectral anomalies. 
Experimental verification on the Bay Area dataset, Santa Barbara 
dataset, Hermiston dataset, and Farmland dataset demonstrates 
the effectiveness and efficiency of this change detection method. 
Optimization and analysis of parameters yield default values for 
two crucial parameters in crop change detection. In conclusion, 
the FLRaMF algorithm provides a non-supervised, simple-
parameter, high-accuracy, and fast-working mode for crop 
change detection.

In the future, we  will concentrate on addressing agricultural 
change detection tasks covering larger areas or featuring a higher 

proportion of changing pixels. We are dedicated to enhancing their 
accuracy, applicability, and user-friendliness.
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