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Introduction: Animal waste proteins have been increasing in the past decade, 
along with consumer demands. Their huge volume and the environmental 
issues caused by improper treatment probably pose a massive threat to human 
health. These animal waste proteins contain many valuable bioactive peptides 
and can be used not only as nutrient substances but also as primary functional 
ingredients in many industries, including agriculture, food, and pharmaceuticals. 
However, the advancement of the value-added application of animal waste 
proteins within the past 10  years has not been elucidated yet. In this regard, this 
paper scrutinized the studies on the applications of hydrolysates and peptides 
from animal waste proteins throughout the last decade, hoping to display a 
whole picture of their value-adding applications.

Methods: The Web of Science and Google Scholar were searched from January 
1, 2013, to December 12, 2023. This review included field trials, in vitro and 
in vivo assays, and in silico analysis based on literature surveys or proteolysis 
simulation. The quality of the included studies was evaluated by Journal Citation 
Reports, and the rationality of the discussion of studies included.

Results: Numerous studies were performed on the application potential of 
hydrolysates and peptides of animal waste proteins in agricultural, food, and 
medicinal industries. Particularly, due to the nutritional value, safety, and 
especially competitive effects, the peptide with antioxidant, antimicrobial, 
antihypertensive, antidiabetic, or antithrombotic activities can be  used as a 
primary functional ingredient in food and pharmaceuticals.

Discussion: These value-added applications of animal waste proteins 
could be  a step towards sustainable animal by-products management, and 
simultaneously, open new avenues in the rapid development of nutraceuticals 
and pharmaceuticals. However, further studies on the bioavailability and 
structure-activity relationship are required to verify their therapeutic effects.
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1 Introduction

Over the past few years, there has been a significant surge in the 
global intake of high-protein foods (Peydayesh et al., 2022). When the 
meat industry and slaughterhouses yield a tremendous amount of 
meat products, a copious supply of protein-rich by-products is also 
produced. These animal by-products are frequently considered to 
be  low-value and therefore discarded (Chakrabarti et  al., 2018; 
Etemadian et al., 2021; Yao et al., 2022; Yang et al., 2023). However, it 
is worth noting that these by-products contain a diverse range of 
highly valuable bioactive compounds. Recently, there has been a 
significant upswing in the research of bioactive peptides derived from 
animal waste proteins. These peptides have been discovered to possess 
distinctive properties and intricate compositions with exceptional 
potential in diverse industries, including but not limited to agriculture, 
nutraceuticals, pharmaceuticals, and cosmetics (Korhonen and 
Pihlanto, 2006; Giordano et al., 2018; Karami and Akbari-Adergani, 
2019; Phadke et al., 2021). As a result, researchers are keenly exploring 
their applications in various fields, intending to meet the continuous 
need for protein and unlock their full potential (Owji et al., 2018; 
Chavez and Uchanski, 2021; Lee S. Y. et al., 2021; Lee S. et al., 2021; 
Madhu et al., 2022).

Animal waste proteins can be one of the best sources of bioactive 
peptides, which are crucial molecules and may exert physiological 
effects in life (Wadhwa and Bakshi, 2016; Peydayesh et  al., 2022; 
Timorshina et al., 2022). Animal waste proteins are mainly obtained 
from by-products or unused parts of animals from slaughterhouses 
after their primary processing for food production, such as skin, 
bones, cartilage, tendons, organs, trimmings, and other components 
that are not used for human consumption (Mora et al., 2014; Zhao 
et al., 2021). Nowadays, engineers and researchers are working hard 
to give value to these waste proteins by converting them into 
functional ingredients and new valuable products with high potential 
human health value and, at the same time, to reduce environmental 
pollution caused by them (dos Santos et  al., 2021; Li et  al., 2021; 
Martinez-Burgos et al., 2021; Norouzi et al., 2022). The hydrolysates 
and potential benefits of these animal proteins are immense and 
far-reaching for humanity and sustainability (Wadhwa and Bakshi, 
2016; Peydayesh et al., 2022). Therefore, it is crucial to explore and 
implement ways in which animal waste proteins can be utilized to the 
fullest extent to support sustainable development and improve our 
overall quality of life (Cheung et al., 2015).

Several methods were used to generate the desired proteins and 
peptides, including direct extraction, chemical methods, enzymatic 
hydrolysis, and microbial fermentation (Pagán et al., 2021; Wen et al., 
2023b). However, the choice of the method for the hydrolysis of 
proteins usually depends on their sources. The enzymatic hydrolysis 
and microbial fermentation methods were demonstrated to improve 
the solubility, viscosity, emulsification, and gelation propriety of 
peptides generated. These methods improved the peptide’s nutritional 
quality, which may hold significant advantages for human health by 
reducing any associated factors that affect their applications 
(Marciniak et al., 2018; Zhu et al., 2022). The peptides unlocked from 
parent proteins can boost the immune system, improve digestion and 
adsorption of food, reduce inflammation, and promote the 
regeneration of cells and tissues (like skin and hair), remarkably 
improving our quality of life (Ullah et al., 2018; Wang B. et al., 2021). 
Furthermore, these peptides can be used as food additives, like natural 

preservatives and nutrition enhancers (Chi et  al., 2015a; Nielsen 
et al., 2017).

To date, due to the strengthening of environmental protection 
policies, resource scarcity, and food security, livestock and aquaculture 
industries are meeting the harmless treatment and resource 
application problems of animal waste proteins, which attract the most 
interest of scientists to find better ways to solve them. Nowadays, 
much research has improved the enzymatic hydrolysis or microbial 
fermentation methods to produce various protein or peptide-based 
products, including food for both humans and animals, medicine, 
fertilizers, and antibiotics (Korhonen and Pihlanto, 2006; Dai et al., 
2016; Minj and Anand, 2020). To show a whole picture of the 
application potential of animal waste proteins and the bioactive 
peptides derived from them, this study focuses on the production 
method for bioactive peptides derived from protein-rich animal 
wastes and their applications in agriculture, food industry, and 
medicine (Figure 1).

2 Methods

2.1 Literature search

For the purpose of the review, Web of Science and Google Scholar 
were searched for all published studies. During searching, the 
following topics were used for each section: “livestock,” “meat 
by-product,” “aquatic by-product,” “fish waste,” “food processing 
waste,” “animal waste protein” or “waste animal protein” for sources of 
animal waste proteins; “animal waste protein” or “waste animal 
protein,” “burning” or “combustion,” “burying” or “burial,” 
“rendering,” and “compost” or “composting” for the traditional 
treatment of animal waste proteins; “microbial fermentation” or 
“fermentation” and “enzymatic hydrolysis” or “hydrolysis” for 
biotechnological methods for releasing peptides from animal waste 
proteins; “agricultural application,” “plant growth promotion,” “abiotic 
stress tolerance” or “heat stress” or “salinity stress” or “drought stress,” 
“biotic stress tolerance” or “resistance to microorganism” or “resistance 
to fungi/bacteria/virus,” and “animal waste proteins” for agricultural 
application; “food addictive,” “functional food,” “enzyme in 
gastrointestinal system,” and “animal waste proteins” for food 
application; “medicinal application” or “pharmaceuticals,” “bioactivity” 
or “antihypertensive” or “antioxidant” or “antimicrobial” or 
“antidiabetic” or “antithrombotic,” “peptides,” and “animal waste 
protein” for medicinal application. The data range was restricted in the 
past decade (January 1, 2013 to December 12, 2023). Furthermore, a 
backward citation search was performed for the searched articles.

2.2 Study selection

The searched articles were all imported into Endnote 20 (Clarivate 
Analytics, United States). After removing the duplicate records, two 
investigators independently screened the titles and the abstracts of all 
the retained articles, according to the inclusion and exclusion criteria. 
After excluding irrelevant articles in the initial screening, the same 
two investigators carefully read the relevant sections of the retained 
articles and extracted the useful information. Any disagreements were 
resolved by consulting other authors.
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Studies were included if they: (1) involved the source, treatment, 
or application of animal waste proteins; (2) involved the direct use of 
peptides or other components from animal waste proteins in field 
studies, in vitro studies, and in vivo studies, but had no description of 
the treatment of animal waste proteins; (3) were the statistical analysis 
based on database or computer simulation using a software; (4) were 
the latest reviews that can provide a part of data to this review or the 
relevant reports from influential governments and international 
organizations. Studies were excluded if they: (1) were related to this 
review, but the argument of the relevant section is not tenable. (2) 
investigated the application of the hydrolysates and peptides from 
animal waste proteins other than in agriculture, food, and medicinal 
industries; (3) investigated the health-promoting effects of the 
hydrolysates and peptides from animal waste proteins other than 
antihypertension, antioxidant, antimicrobial, hypoglycemic, and 
antithrombosis. The statistical data of the number of articles used for 
this study is shown in Figure 2.

3 Sources of animal waste proteins

Animal waste proteins are mainly from the by-products of meat 
and aquatic products processing industries. According to the National 
Bureau of Statistics of China (National Bureau of Statistics of China, 
2023), in 2020, the raw meat yield (including pork, beef, mutton, and 
poultry meat) was 7.639 million tons. The aquatic product yield in 
2020 was 6.549 million tons (Ministry of Agriculture and Rural Affairs 
of the People’s Republic of China, 2020). The production of raw meat 
and aquatic food was accompanied by large amounts of animal wastes 

and fish wastes, which caused burdensome disposal problems and 
environmental concerns. For instance, the meat yield percentage for 
pork is around 72–80%, while for beef it is 50–60%. Since disposal 
costs and efficiency are previously prioritized, these wastes are directly 
burned or buried. Later, people realized that the lipids in the animal 
and fish products processing wastes could be recovered for animal 
feeds, cosmetics, etc., and thus used as a raw material for the rendering 
system. Besides, agriculturists found that the animal and fish products 
processing wastes could be  converted to small-molecular organic 
compounds, like humus, through microbial metabolism under 
favorable conditions. Therefore, agriculturists compost the animal and 
fish products processing wastes.

3.1 Meat source

A huge amount of waste is generated during meat product 
processing due to the rapid growth of meat consumption throughout 
the world. These wastes can be classified into two groups: liquid blood 
and solid bones and trimmings. The blood consists of plasma and 
blood cells and is rich in proteins. After separation and hydrolysis or 
extraction, the protein hydrolysate, bioactive peptides, and especially 
thrombin, fibrinogen, heme iron peptide, and globin, can be obtained 
(Figure  3). These extracted proteins or peptides are beneficial for 
human health as dietary supplements or pharmaceuticals.

The trimmings and bones are rich in fat and proteins. Mature beef 
cattle or pigs have skeletal muscles that contain roughly 70% protein 
on a dry-matter basis (Sun et  al., 2016; Bravo et  al., 2023). The 
trimmings include skin, hair/bristle, feathers, horns, hooves, tails, 

FIGURE 1

Schematic of the valorization of animal waste proteins. Created with BioRender.com.
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viscera/cartilage, and deboning residues (Wadhwa and Bakshi, 2016; 
Marciniak et al., 2018). Through the rendering technique, the lard/
tallow, fat, chemicals, pharmaceuticals, and animal feeds can 
be produced using trimmings. The lard/tallow and fat can be further 
processed into biodiesel through an esterification reaction, which 

helps to alleviate not only the environmental concerns but also the 
energy crisis. Due to being rich in proteins and other nutrients [like 
minerals (Tran et al., 2020)], the trimmings are one of the best raw 
materials to extract collagens and the bones can be  ground into 
powder to produce animal feeds.

FIGURE 2

The number of searched articles.

FIGURE 3

Route for valorizing meat processing by-products.
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3.2 Aquatic source

The fish processing industry has a meat yield percentage of about 
60%. The fish products processing waste includes skin, scale/fin, head, 
viscera (like liver), roes, bones, exoskeletons, shells, and carcasses 
(Ahn et al., 2014; Sila et al., 2014; Silva et al., 2014; Chi et al., 2015c). 
These wastes often contain protein-rich materials, which are typically 
processed into the animals’ dietary supplements and feeds, fish meal, 
and fertilizers (Subhan et al., 2021). However, these products do not 
make full use of the value of the fish products processing wastes 
because some proteins and peptides derived from these wastes 
through enzymatic hydrolysis can play a huge role in treating chronic 
diseases (Lee and Hur, 2017; Phadke et al., 2021; Ucak et al., 2021). For 
example, the protein hydrolysate obtained by hydrolyzing the stomach 
and intestine of smooth hound sharks by Purafect, Esperase, and 
Neutrase, exhibited a good therapeutic effect on hypertension, cancer, 
and infections (Abdelhedi et al., 2016). Compared to the proteins and 
peptides derived from meat processing sources, those derived from 
aquatic sources characterized by short chain length, the presence of 
lysine or arginine at the C-terminal, and possessing more hydrophobic 
amino acids, exhibit a high capability of regulating blood pressure and 
immune system and killing microorganisms (Ngo et al., 2016). For 
instance, the gelatin obtained by using Alcalase to hydrolyze giant 
squid (Dosidicus gigas) exhibited an extremely high angiotensin-
converting enzyme inhibitory (ACE-I) ability (IC50 = 0.34 mg/mL) and 
those obtained by using Esperase exhibited an extremely high 
cytotoxic effect on cancer cells (IC50 = 0.13 mg/mL for human breast 
carcinoma and IC50 = 0.10 mg/mL for glioma cell lines). These two 
gelations were mostly composed of peptides with molecular weights 
of 500–1,400 Da.

4 Traditional treatment methods for 
animal waste proteins

4.1 Burning process

Burning or incineration reduces the volume of animal products 
processing wastes and animal carcasses volume by converting them to 
ash, which is very beneficial concerning limited waste disposal space. 
The volume of solid wastes can be reduced by over 90% by burning 
(Yamamoto et al., 2018; Velusamy et al., 2020). Besides, burning has 
two other great advantages. The one is that high temperatures destroy 
pathogens (e.g., Escherichia coli and Salmonella sp.), mitigating disease 
transmission risks (Franke-Whittle and Insam, 2013; Mozhiarasi and 
Natarajan, 2022). It is because the temperature during burning is 
usually maintained at 850–1,200°C to thermally decompose the 
animal by-products and carcasses completely. The other is that 
burning generates heat energy, which can be  used to supply heat 
directly or generate electricity by steam turbines to satisfy the heating 
and electricity demands of livestock cultivation, aquaculture and even 
surrounding. However, burning has a disadvantage of air pollutants 
release. The pollutants produced during burning animal products 
processing wastes include particulate matter, noxious gases (sulfur 
dioxide and nitrogen oxides), odors, and potentially toxic substances, 
depending on the composition of the wastes. Therefore, incinerators 
should guarantee the purification of exhaust gases to reduce secondary 
environmental pollution and comply with local environmental 

regulations and emission control policies. Considering burning 
animal by-products and carcasses can raise local public concerns 
about air pollution, community engagement, transparency, and 
emission control technologies are essential for its public acceptance. 
Besides, animal by-products and carcasses contain many valuable 
substances with high commercial application potential, like protein 
and fat. Thus, Burning is not a particularly good method of disposal.

4.2 Burying process

Burying animal by-products and carcasses in the soil allows them 
to decompose naturally. This method emits less greenhouse gas and 
particulate matter compared to burning. The process involves digging 
a hole, placing the waste by-products or carcasses inside, and covering 
it with soil. The time it takes for buried objects to decompose varies 
depending on several factors, including the type of buried objects, 
burial depth, and burial site conditions. Burying offers several 
advantages, including quick disposal, reduced costs and logistical 
challenges, and enhanced soil structure and organic matter content 
(Yuan et al., 2013). However, the natural decomposition is slow and 
thus the resultant low release of nutrients will limit the agronomic 
benefits of buried animal by-products and carcasses as a nutrient 
source for crops or soil improvement. It also has potential 
disadvantages of land occupation, groundwater contamination, odor 
issues, disease transmission, and regulatory compliance requirements 
(Kim and Kim, 2017). Burying animal by-products and carcasses is 
banned in the European Union and some states of the United States. 
Although burying is permitted in some countries, strict regulations 
are implemented, like Scotland (Agriculture and Rural Economy 
Directorate of Scotland, 2023). Proper techniques are crucial for 
burying animal by-products and carcasses to avoid environmental 
contamination and disease spread. The proper techniques involve 
selecting appropriate burial sites, ensuring proper ventilation, 
monitoring the site regularly for potential environmental 
contamination, and handling and disposing of protective gear properly 
during the burial process to prevent disease spread.

4.3 Rendering process

Burning and burying are two simple and fast methods for 
disposing of animal by-products and carcasses, but not ideal methods 
because these wastes and mortalities contain various valuable 
components, for instance, proteins and fat (McGauran et al., 2021; 
Pagán et al., 2021). In contrast, the rendering process is favorable for 
recovering these valuable components for value-added applications. 
The basic process of rendering is shown in Figure 4. This process can 
be classified into wet rendering and dry rendering, which both include 
heating (or cooking), pressing, separation, and drying stages (Adewale 
et al., 2015). The difference between the two kinds is that hot water or 
hot steam is used to pressurize feedstocks to separate fats in wet 
rendering, while direct heating is used in dry rendering (Shi and Ge, 
2020). Dry rendering is the most commonly used method to convert 
animal by-products and mortalities to useful industrial, agricultural, 
and pharmaceutical materials. After the heating and pressing stages, 
the proteins and lipids are mostly separated. The obtained lipids 
(including fats and oils) include tallow, grease, poultry fast, and lard, 
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and are good raw materials for the oleochemical industry to produce 
animal feed, soap and cosmetics, pet food, and more recently to 
produce biofuels (Mekonnen et al., 2016). The use of them to produce 
biodiesel can be  realized through microemulsions, pyrolysis (Ben 
Hassen-Trabelsi et  al., 2014), and transesterification reactions 
(Emiroglu et  al., 2018; Keskin, 2018). The obtained proteins can 
be used to produce bio-based plastics, wood adhesives, surfactants, 
firefighting foams, and flocculants (Thakur et al., 2023). Therefore, the 
rendering process can be  considered as a sustainable strategy of 
resource utilization, not only mitigating the environmental 
contamination caused by animal by-products and mortalities but also 
fully utilizing these discards. Due to the high temperature (up to 
100°C), animal-borne pathogenic microbes [like Listeria 
monocytogenes and Salmonella species (Karyotis et  al., 2017)] can 
be  killed during rendering, but prion proteins that can cause 
transmissible spongiform encephalopathies cannot be  destroyed. 
Consequently, certain cattle tissues, like the brain and spinal cord, 
denoted as the specified risk materials (SRM) due to the highest 
possibility of carrying prion proteins, are banned from rendering 
industries to produce protein-and fat-rich materials (Mekonnen 
et al., 2016).

4.4 Composting process

Composting is a sustainable and natural processing method to 
convert organic materials, including animal by-products and 

carcasses, food scraps, yard waste, and biogas residues, into soil 
amendment or fertilizers by passive or active methods (Gooding and 
Meeker, 2016; Lim et al., 2017). The passive methods include static 
piles and turned windrows, while the active ones include aerated static 
pile systems and in-vessel systems. The regular turning of windrows 
is one of the most important management techniques for composting, 
aimed at supplying enough oxygen for aerobic microorganisms (Hong 
et al., 2014). Regular turning can also expedite water evaporation and 
maintain proper temperature ranges for compost piles, promoting the 
maturity of compost piles and making the humus crumblier. Since the 
anaerobic fermentation inside piles is avoided by turning, the odors 
and potential nuisances for nearby communities are minimized. 
However, the regular turning of windrows is laborious and time-
consuming (Wan et al., 2022). The time required ranges from months 
to a year, depending on materials, pile size, and desired decomposition. 
Thus, it requires sufficient space for piles, which may be a challenge 
for facilities with limited land availability.

During composting, animal by-products and carcasses are 
decomposed into simple or dissolved inorganic materials under 
aerobic microorganisms [mainly bacteria like Actinomycetes and 
Bacteroidetes (Huhe et al., 2017)] and finally converted into stabilized 
organic matter (compost or humus), which is a dark, crumbly 
substance rich in organic matter and essential nutrients like nitrogen, 
phosphorus, and potassium (Thomson et al., 2022). Therefore, it is a 
great soil amendment to ameliorate the fertility, structure, and 
moisture-holding capacity of soil and promote crop growth. To meet 
the needs of microorganisms’ metabolism and promote the maturity 

FIGURE 4

Basic process flow of rendering to recover fats, oils, and protein-rich meal products (Mekonnen et al., 2016).
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of compost piles, other organic materials, like sawdust (Michalopoulos 
et  al., 2019), are usually mixed with animal by-products and 
mortalities for the carbon-nitrogen (C/N) ratio adjustment. 
Microorganism agents are also inoculated into compost piles (Gaind, 
2014). With the use of humus, chemical fertilizers can be minimized, 
contributing to maintaining favorable physicochemical properties 
[like pH (Fleming et al., 2013)], nutrition, and structure for soil and 
sustainable agriculture practices. Moreover, by diverting from landfills 
or open-air storage, composting helps reduce the emissions of odors 
and volatile compounds during the breaking of organic matter, 
avoiding waterbody eutrophication and mitigating air pollution. As 
with the rendering, a properly managed composting process can 
effectively inactivate most pathogens, parasites, and weed seeds 
present in the wastes to be processed, for example, Escherichia coli, 
Ascaris eggs, cockspur grass seeds (Khadra et al., 2021; Rai et al., 
2021), due to elevated temperature and pH (Lepesteur, 2022).

5 Biotechnological methods for 
extracting peptides from animal waste 
proteins

Although fat, proteins, minerals, and other organic matter are 
recovered or used based on rendering or composting processes, the 
values of these substances have not been fully reflected in the obtained 
products, especially the proteins. Numerous studies indicated that the 
protein hydrolysates of animal by-products contain various bioactive 
peptides, like antihypertensive peptides and antioxidant peptides, 
which are most beneficial for disease treatment (Vázquez et al., 2020; 
Ramakrishnan et al., 2023). Thus, using animal waste proteins as a 
source of bioactive peptides is a way to further expand their 
application range, transforming them into more valuable and 
profitable products than meat meals. Currently, two biotechniques, 
enzymatic hydrolysis, and microbial fermentation, have been 
considered to be the most valuable for decoding bioactive peptides 
from precursor proteins (Cruz-Casas et al., 2021). Their applications 
in valorizing animal waste proteins are detailed below (see Table 1).

5.1 Microbial fermentation

Microbial fermentation is the other typical biotechnological 
method to release bioactive peptides from animal waste proteins. It 
utilizes the proteolytic enzymes synthesized by indigenous or 
inoculating microorganisms during their metabolism to break down 
proteins into small molecules and release the peptides and amino 
acids (Nasri et al., 2022; Wen et al., 2023b). Therefore, the use and 
control of microorganisms is one of the most important factors for 
realizing complete hydrolysis of proteins and obtaining peptides with 
high bioactivity.

The microorganisms involved in fermentation are bacteria and 
fungi. Among the bacteria, the lactic acid bacteria are the most 
beneficial because of their safety, high proteolytic ability, and high 
adaptability (Cruz-Casas et al., 2021). Lactic acid bacteria are found 
not only in nature but also in people’s digestive systems, for example, 
Lactobacillus acidophilus and Lactobacillus Casei (Krasaekoopt and 
Watcharapoka, 2014). It has been recognized as “generally recognized 
as safe” (GRAS) by the U.S. Food and Drug Administration (FDA) and 

has been used in food industries since the 1940s. The commonly used 
lactic acid bacteria genera include Carnobacterium, Enterococcus, 
Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, 
Streptococcus, Tetragenococcus, and Weissella in food fermentations. 
The protein hydrolysis by lactic acid bacteria is generally divided into 
three steps: first, casein is broken into oligopeptides by cell envelope 
protease. Second, oligopeptides are transported into lactic acid 
bacteria cells by transporters, including permeases, ABC transporters, 
and antiports (Lorca et al., 2015). Finally, oligopeptides are hydrolyzed 
into small peptides or free amino acids by intracellular endopeptidases 
(e.g., calpins and cathespins) and exopeptidases (e.g., aminopeptidases) 
(Zou et al., 2023). Some lactic acid bacteria are widely employed in 
research due to their efficient hydrolysis performance, and they are 
Lactococcus lactis, Lactobacillus helveticus, and Lactobacillus 
delbrueckii ssp. Bulgaricus. For instance, L. lactis RQ1066 had a degree 
of hydrolysis of mung bean milk of 16.62 ± 0.75% after 24 h 
fermentation and 18.45 ± 0.29% after 48 h fermentation at room 
temperature (Liang et al., 2022). Lactic acid bacteria can adapt to 
various environments and change their metabolism accordingly. It was 
reported that a typical lactic acid bacteria is aerotolerant, acid-tolerant, 
organotrophic, and a strictly fermentative rod or coccus (König and 
Fröhlich, 2017). Compared to bacteria, fungi also have been used to 
ferment animal by-products but not so common due to the limited 
source and proteolytic activity (Sadh et  al., 2018; Cruz-Casas 
et al., 2021).

The fermentation conditions and time should be  carefully 
controlled to realize high protein hydrolysis of animal waste proteins 
and obtain peptides with high bioactivities. This is because 
fermentation conditions significantly affect the metabolism of 
microorganisms, and microorganisms will continue to break bioactive 
peptides for growth if fermentation time exceeds the optimal time 
length. The condition generally involves temperature, pH, moisture, 
nutrients, etc. (Melini et  al., 2019). For instance, the prevailing 
anaerobic condition, low initial pH, and higher salt and sugar facilitate 
the growth of lactic acid bacteria. However, in some unsmoked meat 
products that should have a sour taste, the amount of the added lactic 
acid bacteria, sugar level, and water activity are carefully controlled 
(Kumar et al., 2017).

Compared to enzymatic hydrolysis, microbial fermentation is a 
more inexpensive biotechnique to extract bioactive peptides from 
animal waste proteins. This is because the microorganisms used and 
their culture processes are not costly (Akbarian et al., 2022). Besides, 
the microorganisms secrete an entire set of proteases, instead of one 
or several, which makes proteins in substrates adequate and shortens 
the production cycle of peptide-based products (Song et al., 2023). 
Additionally, if lactic acid bacteria are employed, the proteases 
secreted by them will expressed in the cell membrane, simplifying the 
subsequent purification of peptides (Agyei and Danquah, 2011). 
However, microbial fermentation has disadvantages of the generation 
of undesirable substances [like live bacteria, bacteria debris, 
exopolysaccharides, and organic acids (Mora-Villalobos et al., 2020)] 
and the implementation of optimal fermentation conditions. In a 
study, to recover proteins from monkfish by-products (heads and 
viscera), the effect of temperature, pH, and protease concentration was 
first investigated using a mixture of monkfish and water [ratio = 1:1 
(w/v)], based on which the optimal fermentation conditions were 
obtained and were 57.4°C, pH 8.31, alcalase with a concentration of 
0.05% (v/w), and 3 h for hydrolysis.
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TABLE 1 Some application examples in the food industry of bioactive peptides and hydrolysates from animal waste proteins.

Animal 
source

By-
product

Extraction 
method

Reaction 
condition

Effect Method to 
oberve the effect

Application References

Fish Heads, skins, 

and skeletons 

of carp fish

Enzymatic hydrolysis 

with alcalase

pH 8.0, 55°C, 

and 3 h

Antioxidant In vitro study: evaluating 

DPPH radical 

scavenging activity, 

hydroxyl radical 

scavenging activity, and 

ferric reducing power

Functional food 

ingredients and 

pharmaceutical 

products

González-Serrano 

et al. (2022)

Waste meat of 

anchovy 

(Coilia mystus)

Homogenization and 

enzymatic hydrolysis 

with a mixture of 

alcalase, papain, and 

pancreatin

pH 6.8, 55°C, 

and 3 h

Memory 

improvement

In vitro study: conducting 

mouse behavioral trial 

and inhibition of 

acetylcholinesterase

In vivo study: conducting 

H2O2-stressed PC12 cell 

assay and inhibition of 

acetylcholinesterase

Therapeutic 

potential for 

memory deficits

Su et al. (2016)

Muscles of 

Gadidae

Enzymatic hydrolysis 

with pepsin

pH 3.0, 37°C, 

and 8 h

Antioxidant In vitro study: evaluating 

DPPH radical scavenging 

activity

Safe food 

preservatives and 

functional food 

ingredients

Maky and Zendo 

(2021)

Skin of 

unicorn 

leatherjacket

Autolysis and 

enzymatic hydrolysis 

with glycyl 

endopeptidase 

extracted from 

papaya

40°C and 1 h Immunomodulation In vitro study: 

determining the pro-

inflammatory cytokine 

and NO production of 

RAW264.7 cells

Functional food 

ingredients

Karnjanapratum 

et al. (2016)

Pig Liver Enzymatic hydrolysis 

with papain, 

bromelain, alcalase, 

and flavourzyme

Papain: pH 6.0 

and 37°C; 

bromelain: pH 

6.0 and 40°C; 

alcalase: pH 8.0 

and 50°C; 

flavourzyme: pH 

5.5 and 50°C; 7 h

Antioxidant In vitro study: evaluating 

DPPH radical scavenging 

activity, ABTS

Radical scavenging 

activity, ferric reducing 

antioxidant power, and 

oxygen radical absorbance 

capacity

Functional food López-Pedrouso 

et al. (2020)

Cattle Skeletal 

muscles

Enzymatic hydrolysis 

with pepsin

pH 3.0, 37°C, 

8 h

Antimicrobial activity Safe food 

preservatives and 

functional food

Maky and Zendo 

(2021)

Chicken Liver Ultrasonic-assisted 

alkaline extraction

40°C; a pulsed 

on-time of 2 s 

and off-time of 

3 s; 24 kHz and a 

maximum 

power of 300 W

Better surface 

hydrophobicity, 

water/oil holding 

capacity, and 

emulsifying 

properties

Fluorescence 

spectroscopy for 

determining surface 

hydrophobicity

Suspending protein and 

water/oil in a centrifuge 

tube. Then vortexing and 

centrifuging samples for 

calculating water/oil 

holding capacity

Absorbance measurement 

for calculating 

emulsifying activity and 

emulsion stability indexes

Food preservatives Zou et al. (2017)

(Continued)
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5.2 Enzymatic hydrolysis

Enzymatic hydrolysis is a way of using enzymes to cleave peptide 
bonds to liberate the encrypted peptides and has been widely used to 
extract bioactive peptides from animal waste proteins on an industrial 
scale (Figure 5). The often-used enzymes include pepsin, bromelain, 
trypsin, neutrase, chymotrypsin, alcalase, papain, flavourzyme, and 
protamex. The source of the often-used enzyme is usually well-known in 
the bioengineering field. For example, the papain is from papayas, and the 
trypsin is from the pancreas of pigs, cows, or sheep. Each enzyme has two 
crucial functions in catalyzing protein hydrolysis: binding affinity and 
catalytic performance. The protease contains one or several active sites 
with catalysis. The amino acid residue on the catalytic site can recognize 
and bind to a special peptide bond in the substrate, based on which 
protease can easily combine with the substrate and then for the enzyme-
substrate complex. Besides, the amino acid residue on the catalytic site can 
supply the acidic or alkalic environment or functional groups required by 
catalytic reaction, based on which proteases promote the break of peptide 
bonds. After protease finishes hydrolyzing substrates, it will release 
products, return to the active state, and come into the next protein 
hydrolysis (Jovanović et al., 2016).

The protease used for hydrolyzing animal waste proteins had a wide 
source, including animal, plant, and microorganisms. The most used 
proteases are pepsin, trypsin, chymotrypsin, papain, bromelain, neutrase, 
alcalase (e.g., As1398 and protease K), flavourzyme, and protamex (Dey 
and Dora, 2014; Gajanan et al., 2016; Teshnizi et al., 2020; Tacias-Pascacio 
et al., 2021). For instance, the pepsin was usually obtained from porcine 
gastric mucosa and was used to hydrolyze the by-products of marine 
fishes, like the skin and bone of Spanish mackerel (Li et al., 2013) and the 
spines and skulls of skipjack tuna (Yu et al., 2014), to obtain collagen and 
peptides. Like microbial fermentation, appropriate conditions, including 
time, pH, temperature, enzyme specificity, and substrate/enzyme ratio, 
should be guaranteed to maximize the catalytic activity of proteases and 
the efficiency of enzymatic hydrolysis. A study found that the alcalase had 
the highest degree of hydrolysis (DH) for shrimp waste proteins (mainly 
consisting of head and shell of Penaeus monodon) and DH increased with 
temperature (50–60°C) during alcalase hydrolysis. The response surface 
graphs revealed that the optimal hydrolysis conditions were 59.37°C, pH 
8.25, 1.84%, and 84.42 min (Dey and Dora, 2014). Another study 
observed that the porcine gastric mucin could not be hydrolyzed by 
pepsin at neutral pH because of the inactivity of stomach-derived pepsin 
at pH 7 (Schömig et al., 2016).

The enzymatic hydrolysis for animal waste proteins is characterized 
by mild reaction conditions and selectivity. The rational temperature 
range for most proteases is 50–60°C, and the higher one for some 
proteases does not exceed 70°C. The pH used for hydrolysis using 
microorganism-derived protease, which is more often used in 
hydrolyzing animal waste proteins on the industrial scale, is located at 
5.5–8.0 (Dey and Dora, 2014; Razzaq et  al., 2019). Therefore, this 
biotechnology has no high requirement of energy, facilities, and 
control, saving cost and simplifying management. In addition, due to 
the substrate specificity of protease, the enzymatic hydrolysis has 
remarkable regioselectivity, for instance, the preferential cleaving 
hydrophobic amino acid residues, especially the aromatic residues, of 
pepsin (Tavano, 2013). This substrate specificity offers an excellent 
suggestion to determine the protease for the given substrate, resulting 
in a high DH and hydrolysates with desirable compositions and 
properties. Moreover, no secondary products are generally generated 
during the enzymatic hydrolysis. The production of desirable amino 
acid sequences with secondary products renders the enzymatic 
hydrolysis ecologically sound.

However, enzymatic hydrolysis is plagued with low yield and high 
cost at an industrial scale. To improve DH, pretreatment is carried out, 
like thermal and acid treatment, but it has the risk of destroying peptides 
(Fauzi et al., 2016; Feng et al., 2017). The higher cost compared with 
microbial fermentation is attributed to the high price of protease (Aspevik 
et  al., 2016). To solve the two problems, some technologies are 
incorporated into enzymatic hydrolysis, including microwave heating, 
ultrasound, high voltage electrical treatments (including pulsed electric 
field and electrical arc), and high hydrostatic pressure (Mikhaylin et al., 
2017; Thoresen et al., 2020; López-Pedrouso et al., 2023b).

6 Applications of bioactive peptides 
and hydrolysates from animal waste 
proteins

6.1 Agricultural application of bioactive 
peptides and hydrolysates from animal 
waste proteins

Peptides derived from animal waste proteins have potential 
applications in agriculture. They can be used as natural fertilizers, 
biostimulants, and biopesticides, improving soil health, promoting 

TABLE 1 (Continued)

Animal 
source

By-
product

Extraction 
method

Reaction 
condition

Effect Method to 
oberve the effect

Application References

Goat Deboning 

meat of 

Kacang goat 

(Capra 

aegagrus 

hircus)

Homogenization and 

enzymatic hydrolysis 

with flavourzyme and 

protamex

Step 1: 

protamex: pH 

7.0, 50°C, and 

1 h

Step 2: 

Flavourzyme: 

pH 7.0, 50°C, 

and 1, 3, and 5 h

ACE inhibition and 

antihypertensive 

activity

In vitro study: measuring 

absorbances of sample, 

blank, and control 

solutions to calculating 

ACE inhibitory activity

In vivo study: using 

spontaneous hypertensive 

rats (SHR) and 

performing oral 

administration for 

determining 

antihypertensive activity

Primary or 

supplement 

ingredients of 

functional food

Mirdhayati et al. 

(2016)
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plant growth and yield, enhancing plant stress tolerance, and 
providing protection against pests and diseases (Da Silva, 2018).

6.1.1 Plant growth promotion
The ability to promote plant growth of animal waste proteins can 

be  attributed to two aspects: ameliorating soil quality and directly 
enhancing the physiological processes. For one thing, the free amino 
acids, soluble proteins, and peptides that occur in hydrolyzed animal 
waste proteins can directly adjust the C/N ratio (Bhari et al., 2021). These 
nitrogen-containing nutrients also can increase the total count of 
heterotrophic bacteria in soil (e.g., nitrogen fixers and phosphate 
solubilizers), which is an important indicator for soil fertility, and thus 
change the rhizosphere microorganisms indirectly promote plant growth 
(Paul et al., 2013; Bhange et al., 2016). For another, amino acids, peptides, 
and proteins are the essential nutrients of plants and are required by a 
series of metabolic activities, including synthesizing nucleic acids, 
proteins, chlorophyll, vitamins, alkaloids, terpenoids, and forming 
vegetable tissues and organs. Thus, these materials from animal waste 

proteins can effectively promote plant growth in each stage, from seed 
germination to early root and shoot growth, and finally to blossom and 
fruition (Figures 6A,B) (Nurdiawati et al., 2019; Jagadeesan et al., 2023).

6.1.2 Abiotic stress tolerance enhancement of 
plants

Research demonstrates that the peptides and amino acids in 
animal waste protein hydrolysates can induce plant defense responses 
to some unfavorable conditions, including heat/cold, salinity, drought, 
and acidity, and thus enhance their tolerance to these abiotic stresses 
(Figure 6C) (Colla et al., 2015). A study used commercial animal-
originated protein hydrolysates, neutralized with calcium salts, to treat 
Diospyros kaki L. cv. “Rojo Brillante” grafted on Diospyros lotus L. to 
explore their effects on the tolerance to soil affinity of Diospyros lotus 
L. Diospyros lotus L. is highly sensitive to salinity, especially chloride. 
The tree treated with protein hydrolysates had a lower leaf chloride 
uptake, stem water potential, and leaf necrosis than the untreated 
trees, indicating the used animal-originated protein hydrolysates 

FIGURE 5

Schematic of the typical industrial production of bioactive peptides from animal waste proteins [modified from Mora et al. (2014)].
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enabled an improved tolerance to salinity for persimmon trees. The 
improvement of tolerance to salinity was due to two complementary 
mechanisms of salts: first, Ca2+ enhanced the tree’s ability to exclude 
chloride; second, the Ca2+, proline, glycine, glutamate, and glycine 
betaine in the protein hydrolysates stimulated the tree’s mechanism to 
increase compatible solutes proline and glycine betaine, which was 
indirectly demonstrated by the lower stem water potential (Visconti 
et  al., 2015). The beneficial effect of proline on enhancing plant 
tolerances to abiotic stresses has also been observed in another study 
(Lucini et al., 2015), where a remarkable increase of proline occurred 
in lettuce under saline conditions. The enhanced tolerance to heat 
stress of the plant treated by animal-originated protein hydrolysates 
was observed in research. In a study, the lettuce (Lactuca sativa L. var. 
capitata) treated by Terra-Sorb Foliar, an animal-derived protein 
hydrolysate obtained by enzymatic hydrolysis, had a higher total fresh 
weight (root and aerial part) and stomatal conductance in three 
controlled cold environments, i.e., diurnal cold (4°C/20°C), nocturnal 
cold (22°C/2°C), and radicular cold (6°C at root zone and 4°C/20°C 
in air), than controlled environment (22°C/20°C). Besides, the heat 
stress tolerance of perennial ryegrass (Lolium perenne L.) under three 
temperatures (20°C, 28°C, and 36°C) was evaluated. The results 
showed that the ryegrass treated with Terra-Sorb falior had a higher 
photosynthetic efficiency and higher levels of photosynthetic pigments 
(chlorophylls and carotenoids). The comparison between Terra-Sorb 
falior treatment and the other three treatments (Terra-Sorb falior + 

nutrient solution, nutrient solution, and nutrient solution matching 
to Terra-Sorb falior) revealed that it was the biostimulant effect 
exerted by the amino acids in Terra-Sorb falior, instead of its nitrogen 
fertility effect, that enhanced the plant’s tolerance to heat stress.

6.1.3 Biotic stress tolerance enhancement of 
livestock and fish

The huge demand for meat and fish brings about the continual 
development of an intensive culture of livestock and fish. In intensive 
livestock and fish farms, the animals have a high risk of infectious 
diseases caused by pathogens. The use of antibiotics is a quick and 
powerful method to control these diseases. However, it suffers from 
several adverse effects, including the development of drug resistance 
in animals and antibiotic residues in both animals and the 
environment, which pose a threat to food quality, environmental 
protection, and human health. The search for alternative strategies is 
important. In this sense, research found that some protein hydrolysates 
of animals could improve the disease resistance of farmed livestock 
and fish, and thus higher yield and healthier food was obtained.

The mechanisms that animal-originated protein hydrolysates 
improve animals’ disease resistance involve immune stimulation, 
pathogen destruction, oxidative radical clearance, or stress and satiety 
adjustment. A study found that juvenile red seabream (Pagrus major) 
fed with the diet prepared by using about 5% protein hydrolysates 
(krill hydrolysates, shrimp hydrolysates, or tilapia hydrolysate) to 

FIGURE 6

Agricultural application of animal waste proteins. (A) Nutrition uptake. (B) Seed germination and plant growth. (C) Abiotic stress tolerance 
enhancement.
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replace 10% fish meal had increased antiprotease and superoxide 
dismutase activities and enhanced total immunoglobulin level than 
the fish fed with basal fish meal. Moreover, the juvenile red seabream 
fed with the prepared diet exhibited a higher resistance against 
Edwardsiella tarda (Bui et al., 2014). Another study also showed that 
the abalone (Haliotis midae) fed with a commercial protein hydrolysate 
at a low inclusion level (ACTIPAL HP  1, 6%) showed increased 
cellular immunity because the phagocytic activities of their hemocytes 
were improved by 18% compared to the control diet (Goosen et al., 
2014). Some protein hydrolysates from animal by-products have 
exhibited antimicrobial effects against pathogenic species, like bovine 
hemoglobin hydrolysates (the main component of bovine cruor 
by-products), seafood skin hydrolysates, beef sarcoplasmic protein 
hydrolysates, and fish collagen (Anal et al., 2013; Zamorano-Apodaca 
et al., 2020; Beaubier et al., 2021). Compared with the antibiotics on 
the market, the peptides from animal waste proteins have a broader 
spectrum and faster action, despite they are not as powerful as 
antibiotics. Specifically, a study showed a peptide faction from collagen 
hydrolysates obtained by mixed by-products (skins, heads, and 
skeletons) of various fish species (pompano dolphinfish, seabass, 
squid, ray, snapper, weakfish, guitarfish, mullet, and different sharks) 
exhibited antimicrobial and antioxidant activities, which could be as 
a potential ingredient in both agricultural and pharmaceutical 
industries (Zamorano-Apodaca et al., 2020). In addition, the opioid-
like peptides have been extracted from fish and bovine hemoglobin 
and can affect the nervous system, adjusting pain, sleep, and behavior, 
showing interesting applications as anti-stress agents (Lafarga and 
Hayes, 2014; Mora et al., 2014). They can also regulate the digestion 
and ingestion of food and can be used as satiety agents for animal 
obesity control (Iwaniak et al., 2018; Tyagi et al., 2020).

6.1.4 Post-harvest preservation
Postharvest storage is an equally important stage as seedling and 

growth for agriculture because the harvested products are perishable, 
especially the fresh vegetables and fruits. For instance, strawberries 
are susceptible to postharvest decay mainly due to gray mold and 
rhizopus rot caused by Botrytis cinerea (Pers.) and Rhizopus stolonifer 
(Ehrenb.) (Romanazzi et al., 2013). Traditionally, chemosynthetic 
fungicides are applied to retain the freshness of vegetables and fruits 
during the periods of storage and transportation. However, they are 
not permitted in the context of sustainable and organic agriculture 
because of environmental and health issues. In this regard, alternatives 
are required. Among these, resistant inducers can increase plant 
disease defenses and also can exert their antimicrobial activities, with 
the potential for large-scale application. Among the natural materials, 
protein hydrolysates produced with animal or plant extracts have 
gained scientific interest. A study found that six hydrolysates of 
casein, soybean, pea, lupin, malt, and yeast, with a concentration of 
1.6 mg/mL, could significantly reduce the disease incidence and 
severity of wounded citrus fruit caused by Penicillium digitatum, the 
main postharvest pathogen of citrus fruit. Among the six hydrolysates, 
casein, lupin, and soybean exhibited the most powerful introduction 
of resistance. This indicated that these protein hydrolysates could 
be used as resistant inducers to extend the storage duration (Lachhab 
et al., 2015). Similarly, another study showed that when used in the 
field during grape growth, casein hydrolysates enable a gray mold 
incidence reduction of 94%. When used in vivo trials, the protein 

hydrolysates of casein could reduce gray mold by 54% at a 
concentration of 0.8 g/L. When simultaneously used before and after 
harvest, they enabled a storage rot reduction of 40% (Lachhab et al., 
2016). These studies indicate protein hydrolysates enable an extension 
of the postharvest storage period, with a low risk of pesticide-resistant 
strains and a better satisfaction of increasingly high requirements of 
food safety (Albert, 2013). In addition, considering that the microbial 
infection of fruits may happen at the flowering phase (Romanazzi 
et al., 2016), a combination of preharvest and postharvest can further 
extend the storage periods of vegetables and fruits because the latent 
infection and pathogen inoculum in the field are decreased more 
compared the only use of postharvest (Lachhab et al., 2016).

6.2 Food application of bioactive peptides 
and hydrolysates from animal waste 
proteins

Protein hydrolysates are the best use form of protein concerning 
nutritional value with variety and balance of amino acids and high 
solubility. Through enzymatic hydrolysis (Figure  5), animal waste 
proteins can be  decomposed into free amino acids and peptides, 
which are high-value substances used to develop new healthy foods as 
additives and functional ingredients and produce food-grade enzymes 
(Figure 7) (Sila and Bougatef, 2016; Zou et al., 2019).

6.2.1 Food additives
Plentiful studies have reported that the protein and its hydrolysates 

derived from animal by-products possess various favorable 
characteristics for food processing, such as antioxidant and 
antimicrobial activities and good abilities of foaming, emulsion, and fat 
adsorption, and have the potential use as additives (Lafarga et al., 2015; 
Lorenzo et  al., 2018; Fang et  al., 2020; Zhang et  al., 2023b). The 
antioxidant peptides, used as food additives, can delay the irreversible 
decay of the food matrix from a few hours to several months and even 
years when proper strategies are implemented. For instance, a study 
extracted the α137–141 fragment (Thr-Ser-Lys-Tyr-Arg), a small 
(653 Da) and hydrophilic peptide, from bovine cruor, which contained 
mainly hemoglobin. The study found that the α137–141 (0.5%, w/w) 
reduced the lipid oxidation of ground beef by 60%, delaying its rancidity. 
Moreover, the α137–141 inhibited the growths of microbes, including 
coliform, mold, yeast, and lactic acid bacteria. These results indicated 
that the α137–141 possessed antioxidant and antimicrobial activities 
and could be  used as functional ingredients for food preservatives 
(Przybylski et al., 2016). Interestingly, another study showed that four 
peptide fractions of collagen hydrolysates of common carp by-products 
(skeletons, skins, and heads) exhibited antioxidant activity and 
emulsifying and foaming properties. Among these peptide fractions, 
the fraction (<3 kDa) exhibited the strongest hydroxyl radical (95.4%, 
10 mg/mL) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) (87%, 1 mg/mL) 
scavenging activities and reducing power (0.34, 10 mg/mL), while the 
faction (>30 kDa) exhibited the greatest emulsifying activity index, 
foaming activity, and foaming stability, but the lowest emulsion stability 
(González-Serrano et al., 2022). The good foaming and emulsifying 
properties of proteins hydrolysates derived from fish by-products 
(skeletons, heads, and skins) (Zamorano-Apodaca et al., 2020) and 
porcine livers (Verma et al., 2019) have also been demonstrated.
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6.2.2 Functional foods
Meat and fish contain not only the complete set of essential amino 

acids but also based on these amino acids, contain plentiful bioactive 
peptides. Thus, the peptides or hydrolysates of animal waste proteins 
show potential use as functional ingredients for foods besides as basic 
nutritive sources. These functions involve antioxidants, iron 
supplements, fatigue resistance, and anti-inflammation (Zou et al., 
2021). In a study, the porcine liver was hydrolyzed with different 
enzymes, time lengths, and membrane pore sizes. The hydrolysates 
obtained using alcalase at 8 h exhibited the strongest antioxidant 
activity: the fraction (>30 kDa) obtained using alcalase exhibited the 
best DPPH (562 μg/Trolox/g), ferric reducing antioxidant power 
(FRAP) (82.9 μmol Fe2+/100 g), and oxygen radical absorbance capacity 
(ORAC) (53.2 mg Trolox/g) activities. The fraction (>30 kDa) obtained 
using bromelain at 4 h exhibited the strongest antimicrobial activity 
with a Brochothrix inhibition of 91.7% (Borrajo et al., 2020). More 
surprisingly, a study first extracted a peptide, AJHbα, with strong 
antimicrobial activities from the hemoglobin alpha chain in the liver 
of a Japanese eel (Anguilla japonica), finding that the AJHbα, with a 
molecular weight of 2,388.05 Da, could kill 8.64% ± 3.91% of E. tarda 
(Zhang et al., 2013). Similarly, a study observed the peptides and amino 
acids with antioxidant and anti-fatigue effects in monkfish hydrolysates 
using both in vitro and in vivo assays. The in vivo assay showed mice 

administrated with monkfish liver hydrolysates had a longer climbing 
period than the control group, and in their hepatic and kidney 
homogenate, a higher level of superoxide dismutase was detected (Xu 
et al., 2017). Another study extracted a tripeptide (Pro-Ala-Tyr) from 
salmon pectoral fin hydrolysates and found it could significantly inhibit 
the NO (63.80%), prostaglandin E2 (45.33%), and three 
pro-inflammatory cytokines syntheses in RAW264.7 cells because of 
its inhibitory effect on inducible NO synthesis protein and 
cyclooxygenase-2 (Ahn et al., 2015).

However, studies on peptides or protein hydrolysates of animal 
by-products used as ingredients of functional foods are limited, especially 
in clinical studies. Therefore, further studies are warranted to develop 
their uses in the food industry and bioavailability. Besides, some animal 
wastes, like the brain and spinal cord of cattle denoted as the specified 
risk materials (SRM), cannot be used to produce food ingredients due to 
the highest possibility of carrying prion proteins (Mekonnen et al., 2016). 
Moreover, different guidelines and safety assessments have been 
established by regulatory agencies, such as FDA [U.S. Food and Drug 
Administration (FDA), 2022] and the European Food Safety Authority 
(EFSA) [Madende and Hayes, 2020; European Food Safety Authority 
(EFSA), 2023], for the food use of extracts from animal by-products. 
Thus, thorough testing and evaluation are required before approval, 
though it has certain economic, environmental, and social benefits.

FIGURE 7

Food application of proteins and peptides derived from animal products processing wastes. Created with BioRender.com.
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6.2.3 Food-grade enzymes
Multiple enzymes have been extracted from animal by-products 

and become one of the important ingredients in food processing. These 
enzymes generally are gastrointestinal proteases and include pepsin, 
trypsin, and chymotrypsin (Udenigwe and Howard, 2013). The pepsin 
can be  extracted from the stomachs of pigs, cattle, and sheep. An 
excellent review found that pepsin was more often used to hydrolyze 
eggs to release ACE inhibitory peptides compared to the enzymes 
extracted from microorganisms (Lee and Hur, 2017). The trypsin and 
chymotrypsin are found in the small intestine and secreted by the 
duodenum (Sauer and Merchant, 2018). The three food-grade enzymes 
have been excessively used in hydrolyzing animal waste proteins, for 
instance, using pepsin to explore novel bioactive peptides in fish and 
beef skeletal muscles (Maky and Zendo, 2021) and to release 
antihypertensive peptides from bovine lactoferrin (Fernández-Musoles 
et  al., 2014) and using trypsin to hydrolyze rice bran to obtain 
antioxidant and ACE inhibitory peptides (Wang X. et al., 2017). These 
food-grade enzymes can also be used together to enhance the release 
of encrypted peptides from parental proteins. For instance, the deer 
skin hydrolysates prepared by the combination of pepsin and trypsin 
to exhibited a much more potent DPP-IV inhibitory activity than that 
prepared by pepsin (Jin et al., 2015). Similarly, pepsin and pancreatin, 
an agent containing trypsin, were used together to treat trout frame 
proteins (Ketnawa et al., 2018). The discovery of these food-grade 
enzymes in animal waste proteins and the commercial versions based 
on them have played a huge role in the extraction of bioactive peptides 
from natural sources (Lee and Hur, 2017).

6.3 Medicinal application of bioactive 
peptides and hydrolysates from animal 
waste proteins

The peptides extracted from animal waste proteins exhibit various 
bioactivities. Besides, due to the cost-efficiency and the smaller 
possibilities of drug resistance and side effects, these peptides show a 
promising application prospect in the medicinal industry, on which 
much research has been done (Mahgoub et  al., 2021; Wen et  al., 
2023b). Among these investigations, the antihypertensive, antioxidant, 
antimicrobial, antidiabetic, and antithrombotic activities of peptides 
extracted from animal waste protein have occupied much attention, 
and are summarized in the study.

6.3.1 Antihypertensive drugs
These years have witnessed a growth of hypertension due to the 

changes in diet and work styles, leading to an increasing demand for 
cost-effective and safe hypertensive therapy (Zaky et  al., 2022). 
Numerous studies have found that naturally occurring peptides 
showed antihypertensive activity through different action mechanisms 
and could be an effective ingredient for hypotension (Khiari et al., 
2014; Meinert et al., 2016; Mahdi and Ojagh, 2017; Pujiastuti et al., 
2019; Bravo et al., 2023).

These action mechanisms can be classified into two types: renin-
angiotensin system and kinin-arginine-nitric oxide system (Figure 8). 
In the renin-angiotensin system, some peptides can inhibit the release 
renin, an enzyme catalyzing the conversion of angiotensinogen to 
angiotensin I (Harnedy and FitzGerald, 2013), while some peptides 
can inactivate ACE, an enzyme that can catalyze the conversion of 

angiotensin I to angiotensin II and also the degradation of bradykinin, 
an enzyme that can relax blood vessels, to inactive peptide fragments 
in kinin-arginine-nitric oxide system (Siltari et  al., 2016; Wang 
X. et al., 2017). Besides, some peptides act as angiotensin II receptor 
blockers, inhibiting angiotensin II-mediated vasoconstriction and 
releases of antidiuretic hormone and aldosterone, all of which can 
induce blood pressure (Fernández-Musoles et al., 2014). In the kinin-
arginine-nitric oxide system, apart from the effect of inactivation 
ACE, the peptides rich in arginine contribute to synthesizing more 
nitric oxide, a substance that enables vasodilation, lowering blood 
pressure (Mas-Capdevila et al., 2019). A study showed found many 
peptides isolated from the fibrinogen hydrolysates of bovine 
slaughterhouse blood had ACE and renin inhibition. Among these 
peptides, a tripeptide SLR had ACE and renin inhibitory IC50 values 
of 0.17 and 7.29 mM and a peptide RR was resistant to gastrointestinal 
digestion (Lafarga et al., 2015). Similarly, the peptide fraction (<1 kDa) 
of the skin gelatin hydrolysate and bone gelatin hydrolysate of 
pangasius catfish (Pangasius sutchi) had ACE inhibitory IC50 values of 
3.2 and 1.3 μg/mL respectively, higher than untreated gelatins and the 
other two fraction (>10 kDa and 3–10 kDa), but all three fractions 
showed resistance to gastrointestinal digestion. Besides, the fraction 
(<1 kDa) was rich in hydrophobic amino acids, like glycine and 
proline (Mahmoodani et al., 2014). A further study of Lafarga et al. 
(2015) identified three peptides (His-Phe, Tyr-Arg, and His-Arg) with 
both ACE and renin-inhibitory activities and one peptide 
(His-Leu-Pro) with ACE inhibitory activity in the bovine hemoglobin 
hydrolyzed by papain. His-Arg had ACE and renin-inhibitory IC50 
values of 0.19 and 7.09 mM, respectively (Lafarga et al., 2016). These 
studies demonstrated that the peptide fractions could have a role in 
improving human health as a functional ingredient of drugs or 
nutraceuticals, but also reflect that there is a relationship between the 
antihypertensive activity and amino acid sequence and molecular 
weight and the bioavailability of peptide after administration should 
be considered, which necessitate the more studies.

6.3.2 Antioxidant drugs
When many more free radicals [like reactive oxygen/nitrogen 

species (ROS and NOS)] are produced in human bodies, causing the 
amount to exceed the scavenging capability of antioxidant enzymes 
and other antioxidants (like glutathione and vitamins), the free 
radicals that are not scavenged will oxidate nucleic acids, proteins, and 
lipids, leading to serious damage of cells and tissues. This phenomenon 
is called oxidative stress. If oxidative stress is not controlled, various 
illnesses might happen, such as tumors, aging, Parkinson’s disease, and 
Alzheimer’s disease (Forman and Zhang, 2021; Zhang et al., 2023a). 
In this sense, the study of antioxidants with high efficiency, safety, and 
low cost is significant for human well-being.

Many antioxidant peptides have been identified in protein 
hydrolysates of animal by-products, most of which consist of 4–16 
amino acids and have a small molecular weight [e.g., a range of 
0.4–2 kDa claimed by two studies (Khiari et al., 2014; Zaky et al., 
2022)] (López-Pedrouso et al., 2020; Akbarian et al., 2022; González-
Serrano et  al., 2022; López-Pedrouso et  al., 2023a). Although the 
mechanisms of antioxidant peptides to mitigate oxidative stress have 
not been clear yet, studies have found that the antioxidant effects of 
peptides are based on donating proton or electron to free radicals, 
chelating metals to prevent the production of free radicals, and 
trapping lipid peroxyl radicals and are related to the size, 
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hydrophobicity, and amino acid composition (Zaky et al., 2022). A 
study extracted three novel peptides with strong antioxidant activities 
from protein hydrolysate of bluefin leatherjacket skin. They are 
Gly-Ser-Gly-Gly-Leu, Phe-Ile-Gly-Pro, and Gly-Pro-Gly-Gly-Phe-Ile, 
with molecular weights of 389.41, 432.52, and 546.63 Da, respectively. 
Their antioxidant activities were evaluated by scavenging capabilities 
of free radicals, including DPPH•, HO•, and O2−•. These strong 
antioxidant activities were supposed to be due to the small size and 
the presence of hydrophobic and aromatic amino acid residues (Chi 
et al., 2015b). Smaller peptides are thought to have easier access to free 
radicals compared to larger ones and a higher possibility of crossing 
the intestinal barrier and exert antioxidant functions. Hydrophobic 
amino acids containing non-polar aliphatic groups, including leucine, 
isoleucine, proline, alanine, tryptophan, tyrosine, and valine, have a 
high reactivity to polyunsaturated fatty acids. Among aromatic amino 
acids, His, can donate protons to inactive free radicals, while tyrosine, 
tryptophan, and phenylalanine can donate electrons to free radicals to 
convert them into stable substances. Apart from free radical 
scavenging capabilities, some studies also demonstrated that the 
antioxidant activity of extracted peptides from animal waste proteins 
based on high FRAP values, for instance, a porcine liver hydrolysate 
(0.09%, w/w) with a FRAP value of 21.50 ± 0.78 (Verma et al., 2019) 
and the peptide LGEHNIDVLEGNEQFINAAK extracted from 
porcine liver hydrolysates with a positive correlation with FRAP 
(0.592) (López-Pedrouso et al., 2020). The ferric ion is a pro-oxidant 
metal, playing an important role in lipid peroxidation. Therefore, the 
conversion of ferric form to ferrous form enables a mitigation of lipid 
peroxidation. Some amino acids with reducibility, like Tyr and Trp, 

can chelate with ferric ions at their functional groups with lone pairs 
of electrons, like-NH2, contributing to the reduction of ferric ions.

6.3.3 Antimicrobial drugs
The antimicrobial effect exhibited by peptides of hydrolysates 

derived from animal waste proteins intrigues scientists, doctors, and 
health workers because it provides a safe alternative to antibiotics, 
which are deeply plagued with its induction of microorganism 
resistance in human bodies, farming animals, and even nature (Wang 
et al., 2016; Maky and Zendo, 2021).

Over 75% of antimicrobial peptides (AMPs) originated from 
animals, according to a statistic (as of September 2017) (Kumar 
et al., 2018). Based on the structure, antimicrobials can be classified 
into three categories: α-helical peptides, β-sheet peptides, and 
extended/flexible peptides. The AMPs originated from common 
animal (like bovines and pigs) waste proteins have all three 
structures, for instance, bovine myeloid AMP (BMAP)-27 and 
porcine myeloid AMP (PMAP)-36 both have α-helical structures 
(Lv et al., 2014; Yang et al., 2019). In terms of subcategory, most of 
these AMPs belong to cathelicidins, one of the most diverse 
vertebrate AMPs with 12–80 amino acids (Valdez-Miramontes 
et  al., 2021). For instance, PMAP-36 has a sequence of 
GRFRRLRKKTRKRLKKIGKVLKWIPPIVGSIPLGCG-NH2. Despite 
that AMPs from different sources have different sequences and 
structures, they share several common points, including a net 
positive charge with a range of +2 to +13 (even to +14), 
hydrophobicity, and amphipathicity (Lv et al., 2014; Kumar et al., 
2018). Many AMPs contain positively charged amino acids, 

FIGURE 8

Mechanisms of the action of antihypotensive peptides. Created with BioRender.com.
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including leucine, arginine, or histidine, for instance, the AMP 
GLSRLFTALK derived from Anchovy (Engraulis japonicus) cooking 
wastewater (Tang et al., 2015). In AMPs, hydrophobic amino acids 
typically occupy 50% of the total. Hydrophobicity is a very 
important property for AMPs because it determines the extent to 
which AMPs partition into the membrane lipid bilayer when AMPs 
interact with microorganisms. Amphipathicity can be considered 
as a result of the balance between the cationic and hydrophobic 
residues at both the primary sequence level and the two-dimensional 
or three-dimensional structure of AMPs. The antimicrobial activity 
of peptides is closely related to their hydrophobicity, net charge, and 
hydrophobicity (Hollmann et al., 2016; Wang C.-K. et al., 2017).

These AMPs originated from animal waste proteins and are 
characterized by a wider spectrum of activity than those derived from 
microorganisms (Bhat et al., 2015). They can be used as the primary 
functional ingredient of antiviral, antibacterial, antifungal, and 
antiparasitic agents and exert their antimicrobial effect by acting on 
microorganisms or hosts (Figure  9) (Schmidt and Wong, 2013; 
Mahdi and Ojagh, 2017; Bechaux et al., 2019; Maestri et al., 2019; 
Yang et al., 2019). They can kill the microorganism by inhibiting the 
synthesis of nucleic acid (DNA and RNA) and proteins, proteins from 
functioning, cell wall formation, intercalating DNA, disrupting cell 
membranes, and activating autolysis. When acting on the host of 
pathogens, they can protect the host by binding or neutralizing 
microbial products, promoting the translation, stability, and 
processing of inflammatory cytokines, inhibiting Nuclear factor κB 
(NF-κB) movement, blocking the signal pathway of protein kinase, 
and activating immunocytes. For example, the leakage of unbroken 
cytoplasm and DNA fiber and the loss of cell integrity were observed 
in the treated E. coli by an AMP faction derived from camel whey 
hydrolysate, indicating the peptide exerted an antimicrobial effect 
through the inhibition of cell wall formation and disruption cell 
membrane (Abdel-Hamid et al., 2016).

6.3.4 Hypoglycemic drugs
Diabetes is a serious chronic disease and mainly includes Type 1 

diabetes and Type 2 diabetes. Compared to Type 1 diabetes, Type 2 
diabetes is much more common, occupying 90–95% of the total 
diabetes cases (Patil et al., 2015). It occurs when the body cannot 
generate or use insulin and thus blood glucose rises to a higher level. 
The generation of insulin is primarily modulated by two important 
peptide incretin hormones, glucagon-like peptide 1 (GLP-1) and 
glucose-dependent insulinotropic polypeptide (GIP). However, these 
two incretin hormones can be rapidly cleaved by a metabolic enzyme, 
dipeptidyl peptidase-IV (DPP-IV) (Figure 10A) (Kęska et al., 2019). 
Therefore, the peptide with DPP-IV inhibitory activity has the 
potential for Type 2 diabetes treatment.

Many antidiabetic peptides have been identified in animal waste 
proteins, such as the peptides Gly-Pro-Phe-Pro-Leu-Pro-Asp and 
Gly-Ala-Thr-Phe-Gly-Phe-Phe-Tyr-Leu identified in porcine skin 
gelatin hydrolysate (Huang et  al., 2014). Most of these peptides 
consist of no more than eight amino acids and have molecular 
weights of 200–2,000 Da. They generally have a sequence of X-Pro 
or X-Ala at the N-terminal, where X is a hydrophobic amino acid 
and probably has a small size. Considering that DPP-IV has 
specificity for cleaving X-Pro or X-Ala fragments from the 
N-terminal of peptides and proteins, antidiabetic peptides with a 
sequence of X-Pro or X-Ala at the N-terminal may act as 

substrate-type inhibitors (FitzGerald et  al., 2014; Nongonierma 
et al., 2014; Jin et al., 2015). Differently, a study acquired 45 peptides 
with antidiabetic activity from the amphibian innated immune 
system through bioinformatic analysis, summarizing their proposed 
action mechanisms and recognizing their consensus amino acids, 
including alanine, glycine, lysine, and leucine (Figure  10B) 
(Soltaninejad et al., 2021). These proposed action mechanisms and 
main amino acids are not the same as those of the antidiabetic 
peptides mentioned above.

The antidiabetic effect of peptides has been thought to pertain 
to their sequence length, charge, and hydrophobicity (Kuo-Chiang 
et al., 2013), but there is no consensus in terms of the antidiabetic 
peptides derived from animal waste proteins. For instance, the 
tripeptide Gly-Pro-Hyp and tetrapeptide Gly-Pro-Ala-Gly, derived 
from a porcine skin hydrolysate fraction, exhibited DPP-IV 
inhibitory activity (IC50 = 49.6 and 41.9 μM, respectively) 
(Kuo-Chiang et al., 2013) similar to the pentapeptide Ile-Pro-Ala-
Val-Phe derived from porcine skin hydrolysate (IC50 = 44.7 μM) 
(Silveira et al., 2013). Besides, the peptides Gly-Pro-Val-Gly-Hyp-
Ala-Gly-Pro-Pro-Gly-Lys and Gly-Pro-Val-Gly-Pro-Ser-Gly-Pro-
Hyp-Gly-Lys, derived from deer skin hydrolysate, exhibited similar 
DPP-IV inhibitory activity (IC50 = 83.3 and 93.7 μM, respectively) 
(Jin et al., 2015). Likely, the peptides Arg-Ala-Ser-Asp-Pro-Leu-
Leu-Ser-val, Arg-Asn-Asp-Asp-Leu-Asn-Tyr-Ile-Gln, and 
Leu-Ala-Pro-Ser-Leu-Pro-Gly-Lys-Pro-Lys-Pro-Asp, derived from 
an egg-yolk protein by-product exhibited a similar DPP-IV 
inhibitory activity (IC50 ranging from 361.50 to 426.25 μM) 
(Zambrowicz et al., 2015).

These comparisons seem to mean that the antidiabetic peptides 
with similar sequence lengths have similar activity. However, the 
peptide Gly-Pro-Val-Gly-Pro-Ser-Gly-Pro-Hyp-Gly-Lys, also derived 
from deer skin hydrolysate, exhibited an antidiabetic activity 
(IC50 = 318.1 μM) much lower than the other two peptides consisting 
of 11 amino acids mentioned above (Jin et al., 2015). Additionally, 
based on the statistical analysis of 45 antidiabetic peptides from the 
amphibian innate immune system, a study supposed that the 
antidiabetic peptides with a higher net positive charge and weaker 
hydrophobicity exhibited a stronger insulinotropic effect (Soltaninejad 
et  al., 2021). However, this relationship has not been observed in 
animal-derived peptides (Rivero-Pino et al., 2020; He et al., 2023; Li 
et al., 2023). Specifically, the study (Nasri et al., 2015) showed that two 
protein hydrolysates derived from goby fish using Bacillus mojavensis 
A21 protease fraction (HFFD + GPH-A) and triggerfish protease 
fraction (HFFD + GPH-TF), respectively, could reduce blood glucose 
level and hepatic glycogen and protect the kidney of high-fat-high-
fructose diet (HFFD)-fed rats by reversing the HFFD-induced uric 
acid reduction and creatinine level increase in serum and preventing 
some HFFD-induced changes in the kidney (including tubular 
dilatation, glomerular space, vacuolization, and epithelial cells 
necrosis of the proximal tubule) (Figure 10C). However, the amino 
acid composition analysis showed higher percentages of hydrophobic 
amino acids (41.33 and 38.42%) in both HFFD + GPH-A and HFFD 
+ GPH-TF.

6.3.5 Antithrombotic drugs
Apart from hypertension, thrombosis (i.e., the blood clotting 

inside the vessels) is another major cause of cardiovascular disease and 
can lead to several serious results, including paralysis, myocardial 
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infarction, and vascular diseases. Due to the safety and comparable 
antithrombotic effect to synthetic drugs [like aspirin and heparin 
(Indumathi and Mehta, 2016; Cheng et al., 2018)], antithrombotic 
peptides derived from animal waste proteins are considered to be a 
good alternative to them and have continuously gained attention in 
the past 10 years, though not as much as the aforementioned four 
kinds of bioactive peptides (Madhu et al., 2022; Wen et al., 2023a). For 
instance, a study found that the mackerel skin gelatine hydrolysate 
exhibited high antithrombotic activity, probably owing to the presence 
of the peptide tripeptide Phe-Gly-Asn with a molecular weight of 
337 Da (Khiari et al., 2014).

Anticoagulants are one of the main therapeutic drugs for 
antithrombic diseases. Fortunately, research has identified 
anticoagulant peptides in animal meat and by-products (Kong et al., 
2014; Cheng et al., 2018; Qiao et al., 2018; Bezerra et al., 2019; Ucak 
et  al., 2021). The anticoagulant effect of these peptides is often 
evaluated by the extension of activated partial thromboplastin time, 
thrombin time, and prothrombin time. The study (Bezerra et al., 2019) 
proved that the peptides extracted from the hydrolysate of a mixture 
of chicken combs and wattles were anticoagulant and very 
ACE-inhibitory. The anticoagulant effect was achieved by activating 
partial thromboplastin time.

FIGURE 9

Mechanisms of the action of antimicrobial peptides (AMPs). (A) Inhibiting the growth of microbes and killing microbes. (B) Activating immune response 
and reducing the impact of microbial products. Created with BioRender.com.
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7 Challenges

Animal waste proteins will continue to grow worldwide, along 
with consumer demands. Their adding-value applications through 
advanced biotechnological methods in agricultural, food 
processing, and medical fields not only mitigate the environmental 
pressure brought by their discard but also bring new opportunities 
for the progress of agriculture, food processing, and medicine. 
However, these adding-value applications also face some 
challenges, including bioavailability or stability during 
gastrointestinal digestion and the relationship between the 
bioactivity and properties of peptides.

7.1 Stability and bioavailability of bioactive 
peptides from animal waste proteins

The stability and bioavailability of bioactive peptides are extremely 
important to exert their activities in functional food and 

pharmaceuticals. After oral administration, peptides may 
be decomposed into smaller molecules during gastrointestinal digestion, 
resulting in the reduction and even loss of their activities (Ketnawa 
et al., 2018; Wang K. et al., 2021; Cai et al., 2022; Zhang et al., 2023b). 
For example, a study identified many peptides with ACE, renin, and 
DPP-IV inhibitory activities in bovine fibrinogen fraction. However, the 
computer simulation of gastrointestinal digestion predicted some 
peptides were cleaved by pepsin, trypsin, and chymotrypsin into amino 
acids (Lafarga et  al., 2015). Therefore, the resistance of peptides to 
gastrointestinal digestion should be considered when assessing their 
effects on human bodies and animals. Recently, the computer simulation 
of proteolysis has been used for predicting the decomposition of 
proteins in the gastrointestinal system, like the ExPASy PeptideCutter 
used in Lafarga et al. (2015) and the BIOPEP-UWM database used in 
Kęska et al. (2019). However, in the gastrointestinal system of humans 
and animals, the digestion and adsorption of proteins is a more 
complicated process than the simulated cleavage of proteins in silico 
analysis, due to the effect of multiple factors, including intestinal 
motility and body temperature fluctuation (Li et al., 2020; Sensoy, 2021). 

FIGURE 10

(A) Proposed mechanisms of action for antidiabetic peptides (Soltaninejad et al., 2021). (B) Scheme of the activity of the dipeptidyl peptidase IV  
(DPP-IV) inhibitor. GLP-1, glucagon-like peptide-1; GIP, glucose-dependent insulinotropic peptide (Kęska et al., 2019). (C) Wistar rat-feeding assay by 
different diets: CD, control diet; HFFD, high-fat-high-fructose diet; HFFD + UGP, HFFD + undigested goby fish muscle proteins; HFFD + GPH-A, HFFD 
+ goby fish muscle protein hydrolysate obtained with the Bacillus mojavensis A21 protease fraction; HFFD + GPH-TF, HFFD + goby fish muscle protein 
hydrolysate obtained with the triggerfish protease fraction. (D) Histopathology of kidney tissues from CD group, high-fat-high-fructose diet (HFFD) 
group [(1) and (2)], HFFD + undigested goby fish muscle proteins (HFFD + UGP) group, HFFD + (HFFD+GPH-A) group, and HFFD + (HFFD + GPH-TF) 
group. Photomicrographs were taken by optic microscopy: ×200. : tubular dilatation; : glomerular space; : vacualization; : 
epithelial cells necrosis of the proximal tubules. Modified from Nasri et al. (2015).
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Therefore, in vivo study and the subsequent clinic trial are essential to 
explore the absolute bioavailability and effect of bioactive peptides after 
being oral administration. The combination of in silico analysis and in 
vivo study may open new avenues in the rapid development of 
functional food and pharmaceuticals with bioactive peptides as primary 
ingredients (Ketnawa et al., 2018).

7.2 Action mechanisms of bioactive 
peptides from animal waste proteins

The comprehension of the action mechanisms of bioactive peptides 
is fundamental for them to be  used as functional ingredients in 
industrial products. The action mechanisms of bioactive peptides are 
associated with their amino acid composition, structure, 
hydrophobicity, and charge. The comprehension of these associations 
will be beneficial to the identification of novel bioactive peptides and 
the synthesis of bioactive peptides. However, the association of some 
bioactivities of peptides with their feathers has not been clear yet. As 
mentioned above, the peptides with X-Pro or X-Ala (X represents a 
hydrophobic amino acid) at the N-terminal derived from livestock or 
aquatic product protein hydrolysates are competitive with GLP-1 GIP 
as the substrate of DPP-IV, based on which these peptides enable the 
reduction of blood glucose level. However, a database analysis of 
amphibian-originated antidiabetic peptides concluded that these 
peptides exert the antidiabetic through eight different mechanisms and 
have four consensus amino acids (alanine, glycine, lysine, and leucine), 
an average sequence length of 22.24, and an average net charge of 3.50 
(Soltaninejad et al., 2021), quite different from features of those derived 
from livestock and aquatic sources, including DPP-IV inhibition, no 
more than eight amino acids, and richness in proline.

8 Conclusion

This paper reviewed the advancement of the value-added application 
of animal waste proteins in the past decade. Microbial fermentation and 
enzymatic hydrolysis are the most favorable biotechnological methods 
to treat animal waste proteins to decode bioactive peptides from parental 
proteins, especially enzymatic hydrolysis, which is more efficient at 
producing the peptide with a specific activity and more used in finding 
novel bioactive peptides in animal waste proteins, than microbial 
fermentation. The bioactive peptides produced enable the promotion of 
whole-life growth of plants, enhancement of both abiotic and biotic stress 
tolerance, and prolongation of post-harvest preservation of agricultural 
products. In the food industry, these peptides have been used as additives 
and primary functional ingredients. Besides, animal waste proteins are 
also good sources of food-grade enzymes. In addition, these bioactive 
peptides show a prospective application in medicine as a functional 
ingredient, including antihypertension, antioxidant, hypotensive, and 
antithrombosis. These value-added applications of animal waste proteins 

may be a step towards sustainable animal by-products management and 
circular bioeconomy and, simultaneously, open new avenues in the rapid 
development of nutraceuticals and pharmaceuticals.
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Glossary

ACE-I Angiotensin-converting enzyme inhibitory

AMP Antimicrobial peptide

BMAP Bovine myeloid antimicrobial peptide

C/N ratio Carbon-nitrogen ratio

DH Degree of hydrolysis

DPPH 2,2-diphenyl-1-picrylhydrazyl

DPP-IV Dipeptidyl peptidase-IV

EFSA European Food Safety Authority

FDA The U.S. Food and Drug Administrating

FRAP Ferric reducing antioxidant power

GIP Glucose-dependent insulinotropic polypeptide

GLP-1 Glucagon-like peptide 1

GPH Goby fish muscle proteins

GRAS Generally recognized as safe

HFFD High-fat-high-fructose diet

HFFD + GPH-A HFFD + goby fish muscle protein hydrolysate obtained with the Bacillus mojavensis A21 protease fraction

HFFD + GPH-TF HFFD + goby fish muscle protein hydrolysate obtained with the triggerfish protease fraction

IC50 Half maximal inhibitory concentration

INF-γ Interferon γ

MAPK Mitogen-activated protein kinase

MyD88 Myeloid differentiation 88

NF-κB Nuclear factor κB

NOS Reactive nitrogen species

ORAC Oxygen radical absorbance capacity

PMAP Porcine myeloid antimicrobial peptide

ROS Reactive oxygen species

SRM Specified risk material

TNF-α Tumor necrosis factor α

UGP Undigested goby fish muscle proteins
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