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This review explores the significance of consuming edible insects, as well as 
their use in the food industry, agro-industry for animal husbandry, agricultural 
fertilizers and bio-pesticides, and pharmaceuticals. It emphasizes the increasing 
interest and relevance of this practice. The study starts by investigating the 
earliest evidence of anthropoentomophagy, which is the consumption of insects 
by humans, in the region. The review offers an overview of the consumption 
and utilization of insects in specific regions of the world, emphasizing their 
significance in various cultures and geographic areas. It also identifies the types 
of edible insects commonly consumed in Latin American countries, such as 
Mexico, and explains their preparation and consumption. Furthermore, the review 
assesses the nutritional value of edible insects, emphasizing their potential as a 
valuable source of protein, vitamins, and minerals. It also explores the various 
promising applications of insects, including their role in the food industry, animal 
husbandry, production of agricultural fertilizers and bioprotectants, and even 
their potential in the pharmaceutical sector. Finally, the article highlights the 
significance of entomophagy in Latin America by exploring its historical origins, 
nutritional benefits, and potential applications in various industries.
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1 Introduction

The demand for animal-based food and feed products is expected 
to increase significantly due to the projected global population growth, 
estimated to reach 9–11 billion by 2050. This will result in a significant 
increase of up to 70% in the demand for animal-based food protein to 
meet the dietary needs of the growing population (Varelas, 2019; 
Thornton et al., 2023). As the population continues to grow, there is 
an increasing need to explore sustainable and nutritious food sources 
(Hazarika and Kalita, 2023; Papastavropoulou et al., 2023). Insects 
play a critical role in meeting this demand as a sustainable and efficient 
food source. Compared to traditional protein sources, insects require 
fewer natural resources, such as water and land, for production. They 
also have a high feed conversion rate, efficiently converting consumed 
food into body mass, making them ideal for large-scale food 
production (Oonincx et al., 2015; Lange and Nakamura, 2023). Insects 
have long been a common part of the diet in many Asian, African, and 
Latin American cultures due to their nutritional content, providing a 
rich source of high-quality protein, essential amino acids, fiber, 
monounsaturated and polyunsaturated fats, as well as such as vitamins 
and minerals. Surprisingly, they offer a nutritional profile comparable 
to traditional animal protein sources such as beef or chicken 
(Dobermann et al., 2017; Orkusz, 2021; Khalifah et al., 2023). Insect 
consumption can also help address issues of malnutrition and 
nutritional deficiencies, especially in regions with limited food 
availability (Imathiu, 2020). There are several reasons why many 
people do not include insects in their usual diet, such as cultural 
factors, aversion to their appearance, association with pests (Sogari 
et al., 2022, 2023), unfamiliarity, stigmas and superstitions, and mainly 
ignorance about the advantages of its consumption (Yen, 2009; Tan 
et al., 2015; Hlongwane et al., 2020; Alhujaili et al., 2023). Nevertheless, 
there is a growing interest in consuming insects due to their potential 
as a sustainable food source. As awareness of their nutritional value 
and environmental benefits spreads, attitudes towards insects as a 
viable food option are gradually changing (Grabowski et al., 2022). 
Latin American countries have a rich cultural tradition of 
incorporating insects into their diet. This arises from their culinary 
heritage, where traditional techniques have been developed to prepare 
insects, considered a delicacy. The availability of a wide variety of 
insect species in both rural and urban areas contributes to their 
consumption, often including them in festivals and celebrations 
(Bermúdez-Serrano, 2020; Guiné et  al., 2023; Tzompa-Sosa et  al., 
2023). The objective of this work is to highlight the usefulness and 
potential that insects represent, given their environmental, social, and 
health benefits.

2 Materials and methods

Academic publications are increasing at an accelerating rate. As a 
result, it is becoming increasingly challenging to keep pace with and 
comprehend the current state of specific fields. Several scholars argue 
that literature reviews are essential for synthesizing the current state 
of specific fields. A structured bibliographic review is a traditional 
approach to analyzing and assessing the published scientific literature. 
This type of review provides an in-depth analysis of the literature 
content, as demonstrated by Rousseau (2012), Wang et al. (2019), and 
Ghadimi et al. (2019). A review of pertinent research articles was 

conducted by searching prominent academic databases, including 
SCOPUS, Web of Science (WOS), MDPI, and PubMed, among others. 
To ensure an unbiased search, synonyms for the consumption of the 
specified insects were included. These synonyms included “edible 
insects,” “entomophagy,” and “anthropo-entomophagy,” as well as the 
terms “protein sources” and “Latin America.” In SCOPUS, the search 
query was “edible insect” AND (“consumption” OR “meal”). In Web 
of Science (WOS), the search queries included all fields, titles, 
abstracts, and author keywords using the phrase “insect consumption.” 
The same search strategy was applied to all the databases utilized. 
Tables have been created to present information about the primary 
categories of edible insects in Mexico, the proximate nutrient 
composition, a comparison of proximate nutrient content within 
species of the same category, the fatty acid composition of specific 
edible insects, mineral content, a comparison of proximate nutrient 
content at different stages of development, and the antinutrient 
content of insect-based foods. Each table includes data on the 
distribution of species in the Americas and the Caribbean, supported 
by the Global Biodiversity Information System (GBIF, https://www.
gbif.org/es/). Database searches were last conducted and reviewed for 
relevant literature on December 22, 2023.

3 Entomophagy and Latin American 
consumption

Entomophagy, defined as the consumption of insects by humans, 
falls under the term anthropoentomophagy when insects are 
consumed as food or in products like honey and propolis (Costa-Neto 
and Ramos-Elorduy, 2006; Ramos-Elorduy, 2009; Dagevos and Taufik, 
2023). Although early human entomophagy has received limited 
research attention due to preservation challenges, various studies 
employing tools, residues, DNA, coprolites, dental wear, stable 
isotopes, osteology, and cave paintings contribute valuable insights 
(McGrew, 2014). Evidence suggests that early hominids engaged in the 
search for and consumption of termites for nearly a million years 
during the Plio-Pleistocene period. Wear patterns on bone tools used 
by Paranthropus robustus to extract termites from mounds support 
this hypothesis (Backwell and d’Errico, 2001). Coprolite analysis in the 
United States indicates that 4,500 years ago, humans collected and 
consumed Melanoplus sanguinipes grasshoppers (Madsen and 
Kirkman, 1988). Chitinous insect exoskeletons have been found in 
coprolites of prehistoric humans in the United States, Mexico, and 
Peru (Reinhard and Bryant, 1992; Brothwell and Brothwell, 1998). 
Dental plaque studies on a 1.2 million-year-old hominid in northern 
Spain revealed microfossils of insect fragments (Hardy et al., 2016). 
Fossil studies in South  Africa propose insect consumption as a 
potential explanation for high strontium/calcium levels in the dental 
enamel of the Australopithecus genus, existing 2 to 4 million years ago 
(Sponheimer et al., 2005). Insect consumption during periods of fruit 
scarcity may have influenced hominid intelligence evolution, 
providing minerals like iron and omega-3 fatty acids (Kyriacou, 2014; 
Melin et al., 2014).

Human insect consumption dates back to prehistoric times, 
evident in archaeological and anthropological findings across diverse 
cultures worldwide. In Latin America, countries like Mexico, Peru, 
Colombia, Venezuela, and Ecuador have a notable history of insect 
consumption, contributing to food security for local communities. 
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Depending on the species and development stage, these insects are 
rich sources of proteins, fats, carbohydrates, and minerals (Costa-
Neto, 2015). Insects, with their substantial biomass, have a historical 
association with human consumption, even being mentioned in 
sacred texts like the Bible and the Quran (Ramos-Elorduy and Viejo-
Montesinos, 2007). Certain insect species, including cochineal insects, 
ants, and wasps, were cultivated long before the arrival of the Spanish 
to the American continent (Costa-Neto, 2015). In Aztec culture, 
insects were used as a tribute to emperors, and pre-Hispanic delicacies 
like escamoles (ant larvae) continue to be consumed as exotic dishes 
in Mexico. The maguey worm holds a prestigious place in Mexican 
gastronomy, featuring various dishes incorporating roasted, fried, or 
stewed insects with aromatic herbs (Ramos-Elorduy, 2004). Onore 
(1997) documented 83 edible species in Ecuador, and Costa-Neto and 
Ramos-Elorduy et al. (2006) noted 95 species used by 39 ethnic groups 
in Brazil (Costa-Neto, 2015). In Colombia and Venezuela, palm 
worms are prominently consumed, while in Peru, there is a tradition 
of consuming large black crickets in the Ayacucho region (Ramos-
Elorduy and Viejo-Montesinos, 2007). Entomophagy in Brazil dates 
back to the 16th century, with indigenous peoples already consuming 
various insects during early European colonization. This practice has 
become ingrained in Brazilian culinary traditions (Costa-Neto and 
Ramos-Elorduy, 2006).

Insects can be consumed directly at different developmental stages 
or indirectly through insect-derived products like propolis, honey, 
pollen, wax, and royal jelly. Throughout history, non-stinging bee 
products, such as those used by the Mayan and Aztec civilizations, 
played a significant role in socioeconomic and religious activities. The 
Aztecs even used honey for trade with Spanish colonizers in the 16th 
century. Similarly, native communities in Brazil, Paraguay, Uganda, 
Madagascar, the Himalayas, and Australia have incorporated bee 
products into their traditions and cultures over time (Gupta et al., 
2014; Cumo, 2015; Grüter, 2023). Grüter (2023) highlights the 
medicinal use of Lepidotrigona arcifera honey by Nepalese individuals 
in India and the therapeutic applications among Ugandan pygmies, 
who utilize it as a remedy for constipation. Calderón-Fallas et  al. 
(2021) emphasize the sacred significance of bees, particularly the 
Mayan bee (Melipona beecheii), in spiritual, cosmological, and 
mythological contexts. Costa-Neto (2015) and Medeiros (2014) 
present an overview of edible insects in Latin America, with Mexico 
leading at 415 species (56.46% of the total) and Brazil following closely 
with 122 species (16.6% of the total). The diverse culinary traditions 
and entomophagy practices across Latin American countries 
contribute to a rich tapestry of cuisine, totaling 735 edible insects.

The modernization of bee-derived product marketing has led to 
meliponiculture, involving the breeding and care of bees from the 
Meliponini tribe (Álvarez, 2016; Cortes-Martínez et al., 2021). This 
practice, primarily carried out by indigenous cultures and producers 
in the Neotropics, focuses on species such as M. beecheii, M. eburnea, 
M. quadrifasciata, M. scutellaris, and Tetragonisca angustula (Jaffé 
et al., 2015; Quezada-Euán et al., 2018; Quezada-Euán and Alves, 
2020). Meliponiculture, a valuable biocultural heritage, has been 
consistently practiced for approximately 2000 years, particularly with 
M. beecheii in Mesoamerica (Nates-Parra and Rosso-Londoño, 2013; 
Grüter, 2023). In traditional medicine, products derived from stingless 
bees, particularly T. angustula, are employed for treating skin and eye 
diseases. These products have also shown effectiveness in addressing 
respiratory and digestive ailments, attributed to the antibiotic 

properties of hydrogen peroxide and gluconic acid present in honey. 
Additionally, honey is recognized as a natural food source that may 
help prevent certain types of cancer associated with oxidative stress on 
physiological cells in humans (Kumul et al., 2015). Stingless bee honey, 
along with honey from Apis mellifera, plays a role in the preparation 
of alcoholic beverages. Pollen derived from these bees is occasionally 
used as a protein supplement in food. Moreover, in Mexico, Brazil, 
Ecuador, and Paraguay, bee larvae and pupae are consumed as sources 
of protein and vitamins (Grüter, 2023). Apicultural products and 
alcoholic beverages made from honey have gained popularity in Latin 
American markets, valued as artisanal products that offer natural and 
healthy nourishment.

Latin America holds the second-highest market value for edible 
insects globally, reaching $92.2 million, with expectations of nearly 
tripling to $250.6 million by 2030. This projection, close to the 
estimated European market value of $261.5 million, highlights the 
region’s attractiveness to both local and international traders, with 
Mexico particularly standing out. Mexico’s market value was reported 
at $26 million in 2018, with an 18% annual growth rate, projected to 
reach $59 million by 2023. North America, especially the United States, 
is also experiencing growth, making it an intriguing market for 
Hispanic entrepreneurs (Research and Markets, 2018; Bermúdez-
Serrano, 2020; Guiné et al., 2021). Insects offer a wide range of benefits 
in various areas, including food, medicine, spiritual and religious 
rituals, cosmology, mythology, art, economics, and culture. These 
diverse uses have contributed to the continued use and consumption 
of insects by indigenous and local communities over the years (Costa-
Neto, 2015; Van Huis et al., 2022). In addition, certain insects used as 
aphrodisiacs have influenced people from various cultures (Costa-
Neto and Ramos-Elorduy, 2006). Omuse et  al. (2024) compiled a 
comprehensive list of 2,205 identified species of edible insects. Beetles 
are the largest category of edible insects, comprising 468 species. 
Hymenoptera ranks second with 351 species, followed by Orthoptera 
with 267 species and Lepidoptera with 253 species (Costa-Neto and 
Ramos-Elorduy, 2006). According to Jongema (2017), the majority of 
these edible insect species are concentrated in tropical countries. 
These edible insects can be  categorized as follows: beetles (31%), 
caterpillars (17%), ants, bees, and wasps (15%), grasshoppers (13%), 
bugs (11%), dragonflies (3%), termites (3%), cockroaches (2%), 
spiders (1%), and other unspecified species (2%).

In Latin American countries, the consumption of insects is 
influenced by both the accessibility of these food sources and their 
cultural significance. Insects are commonly prepared using various 
methods such as frying, roasting, or as ingredients in traditional 
dishes. Beyond their nutritional benefits, entomophagy may hold 
cultural and symbolic importance within specific communities 
(Ong’Or et al., 2024). For example, when considering experiences in 
other parts of the world, such as Africa, a wide variety of insects are 
consumed, including termites, caterpillars, grasshoppers, and crickets. 
These insects are collected from the wild or reared on a small scale for 
consumption (Womeni et al., 2009; Pal and Roy, 2014; Kipkoech et al., 
2023). In Asia, especially in countries like Thailand, Cambodia, and 
Laos, edible insects are considered a culinary delicacy. Some popular 
insect species include silkworms, beetles, bees, and ants. In addition 
to being part of the local diet, insects have also become tourist 
attractions, as visitors can sample various dishes prepared with insects 
(Hanboonsong et al., 2013; Durst and Hanboonsong, 2015; Krongdang 
et al., 2023). In Europe and North America, although the consumption 
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of insects is not yet widespread, it has gained popularity in recent 
years. Insect-based products can be found in specialty stores, such as 
cricket flour for making bread or energy bars containing beetle larvae 
(Reverberi, 2021; Skotnicka et  al., 2021). Currently, edible insects 
serve as a nutrient-rich food source in many parts of the world, and 
their consumption is gaining acceptance and popularity due to their 
sustainability and nutritional value.

In Mexico, 415 species of insects have been documented as being 
consumed by various ethnic groups throughout the country (Ramos-
Elorduy et al., 2003; Ramos-Elorduy and Pino, 2005). Of the total, 83% 
of these insects are terrestrial, while 17% come from continental 
aquatic ecosystems. Furthermore, it has been observed that 55.8% of 
these species are consumed in their immature stages, such as eggs, 
larvae, pupae, and nymphs, while 44.2% are consumed in their adult 
state. It is important to note that certain species are consumed at any 
stage of their development (Costa-Neto and Ramos-Elorduy, 2006). 
There are species with esteemed reputations and flavors that are highly 
valued in national and international markets. However, their 
exploitation is unregulated, which can have environmental 
consequences (Ramos-Elorduy et al., 2003 and Table 1). Currently, the 
consumption of insects has evolved from a local or regional practice 
to a significant commercial and agro-industrial phenomenon 
(Montalbán et al., 2022). For example, Black soldier fly (BSF) and 
mealworm larvae are commercially available for feeding ornamental 
fish in the market (Thrastardottir et al., 2021).

In Latin America, the potential uses of edible insects represent a 
unique opportunity to address several pressing issues, such as poverty 
eradication, food sovereignty, and sustainable development (Dossey 
et al., 2016). By embracing this innovative and culturally relevant food 
source, the region can create a competitive chain that not only 
improves livelihoods but also contributes to a more resilient and 
equitable food system. Establishing a competitive edible insect supply 
chain can create income opportunities, particularly in rural areas 
where poverty rates are high (Bermúdez-Serrano, 2020). Small-scale 
insect farming can be relatively inexpensive to start and maintain, 
offering a source of income for marginalized communities. However, 
this requires the support of local governments, which have a crucial 
role to play in promoting sustainable production and consumption of 
edible insects through supportive policies and regulations. This 
includes incentivizing insect farmers, investing in research and 
infrastructure, and raising awareness of the nutritional and 
environmental benefits of insect-based diets (Stull and Patz, 2020). 
Investing in research and innovation related to edible insects can lead 
to the development of new products and technologies, thereby 
enhancing the competitiveness of the insect value chain. This includes 
exploring alternative uses such as animal feed, pharmaceuticals, and 
sustainable packaging materials (Melgar-Lalanne et  al., 2019). As 
global interest in sustainable and alternative protein sources grows, 
Latin America has the opportunity to position itself as a leader in the 
edible insects market. By capitalizing on its biodiversity and rich 
culinary traditions, the region can attract both domestic and 
international consumers.

4 Nutritional values of edible insects

From a nutritional standpoint, edible insects are a significant 
source of protein, fat, minerals, and fiber. However, the nutritional 

value of insects can vary depending on their habitat, the insect’s diet, 
the edible stage of development (egg, larva, nymph, or adult), sex, and 
the type of processing they undergo, such as being consumed whole 
(dehydrated, boiled, roasted, fried, etc.). In addition, the storage of 
edible insects directly affects the content and availability of nutrients 
due to potential changes in the physicochemical properties of proteins 
and lipids (Cruz, 2017; Kulma et al., 2019; Cerisuelo, 2021). Not only 
is the quantity of proteins present in edible insects important, but also 
the quality of these proteins, depends on the amount of amino acids 
they contain. Edible insects can offer a range of essential amino acids, 
serving as a crucial supplement to address amino acid deficiencies 
in local staple foods. The orders Lepidoptera, Orthoptera, Coleoptera, 
and Diptera are characterized by high levels of glutamic and aspartic 
acid, phenylalanine, and alanine (Avendaño et al., 2020). On the other 
hand, the suborder Heteroptera (Hemiptera) is characterized by its 
high levels of proline, leucine, tyrosine, alanine, valine, and 
methionine. The percentage of protein in insects is expressed on a dry 
weight basis. Accordingly, the percentage of Coleoptera ranges from 
20 to 71%, Diptera from 35 to 70%, Ephemeroptera from 37 to 68%, 
Hymenoptera from 10 to 81%, Lepidoptera from 13 to 78%, the 
suborders Sternorrhyncha and Archaeorrhyncha (Hemiptera) from 
33 to 72%, Heteroptera from 36 to 71%, and Orthoptera from 27 to 
77% (Ramos-Elorduy, 2004; Avendaño et al., 2020). Conventional 
foods have a lower protein content compared to insects. For example, 
eggs from birds, chicken, and pork typically contain protein amounts 
ranging from 68.9 to 75% of dry weight, with beef and fish being 
exceptions with a higher range (Ramos-Elorduy, 2004; Lizhang et al., 
2008). On the other hand, insects also contain significant amounts of 
healthy unsaturated fats and essential fatty acids, which provide the 
necessary energy for protein assimilation (Ramos-Elorduy, 2004; 
Glover and Sexton, 2015).

In general, the fat content of insects ranges from 10 to 40% of dry 
weight, reaching 50% in Coleoptera and 77% in Lepidoptera (Lizhang 
et al., 2008; Van-Huis et al., 2021). According to Lizhang et al. (2008), 
in certain insect orders, the protein content tends to be higher than the 
fat content, being approximately twice as high. Insects with high 
protein content include Coleoptera, Lepidoptera, and Heteroptera 
(Hemiptera), followed by Sternorrhyncha and Archaeorrhyncha 
(Hemiptera), Hymenoptera, Diptera, and Orthoptera. Notably, there is 
a negative correlation between protein and fat content (Lizhang et al., 
2008). Insects typically contain significant amounts of essential 
micronutrients, including copper, iron, magnesium, manganese, 
phosphorus, selenium, and zinc. They also provide smaller amounts of 
potassium and calcium. Some insects are a valuable source of specific 
vitamins, including A, C, D, E, K, and the B-complex (B1, B2, B3, B5, 
B6, B12, H) (DeFoliart, 1989; Ramos-Elorduy, 2004; Lizhang et al., 
2008; Van-Huis, 2013; Van-Huis et al., 2021). However, despite the 
enormous potential of insects as a nutritious food (Kowalski et al., 
2022), some people may experience allergic reactions to insect proteins. 
Allergic sensitivity can develop from prolonged exposure to insects and 
has been documented by entomologists. It is believed that individuals 
with pre-existing shellfish allergies may also experience cross-reactivity 
with insects, as crickets and shrimp are relatively close relatives. 
However, it is important to note that cross-reactivity is not inevitable 
(Glover and Sexton, 2015). On the other hand, it has been suggested 
that childhood exposure to chitin, the primary substance that forms 
the exoskeleton of insects, may enhance the immune system’s response 
to intestinal parasitic infections and reduce certain allergic conditions 
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TABLE 1 Main groups of edible insects in Mexico and their distribution in Latin America and the Caribbean.

Order/Family Insect Local name Consumption Distribution in America Reference

Hymenoptera

Vespidae Brachygastra azteca “Vinitos” or 

“repletas”

Adult Cooked with 

chili and onion

Mexico Ramos-Elorduy et al. (2006), 

Baigts-Allende et al. (2021), and 

Rumpold et al. (2014)
B. mellifica South USA, Mexico, Central America

Mischocyttarus basimacula Mexico, Central America, South America

M. cubensis mexicanus Southeastern USA, Mexico, Central 

America, South America, Caribbean

M. pallidipectus Mexico, Central America, South America

Parachartergus apicalis Mexico, Central America, South America

Polistes (Apanilopterus) 

canadensis

South USA, Mexico, Central America, 

South America

P. (Apanilopterus) instabilis Mexico, Central America, South America, 

Caribbean

P. major South and Southeastern USA, Mexico, 

Central America, South America, 

Caribbean

Polybia occidentalis nigratella Mexico, Central America, South America

Formicidae Liometopum apiculatum Escamoles 

(reproductive ant 

larvae)

Eggs USA, Mexico Ramos-Elorduy et al. (2003, 2006) 

and Lara-Juárez et al. (2015)L. occidentale var. Luctuosum West and Southwestern USA, Mexico

Atta Mexicana Chicatanas Adult South and Southwestern USA, Mexico, 

Central America and South America

Ramos-Elorduy et al. (2006)

A. cephalotes Mexico, Central America, South America 

and Caribbean

A. texana Northeastern and South USA, Mexico 

and Caribbean

Apidae Apis mellifera adansonii Honey bee, 

Stingless bee

Egg, Larvae, Pupa, 

Adult, Honey

Caribbean Ramos-Elorduy et al. (2006)

Lestrimelitta chamelensis Mexico

Melipona beecheii Mexico, Central America to Costa Rica 

and Caribbean

M. fasciata Mexico, Guatemala, Costa Rica, 

Colombia

Scaptotrigona Mexicana Mexico, Central America

S. hellwegeri Mexico

Plebeia sp. Southwestern USA, Mexico, Central 

America and South America

Nannotrigona testaceicornis Mexico, Central America and South 

America

Trigona (Tetragona) jaty South America

T. (Tetragonisca) angustula Mexico, Central America and South 

America

Driopinidae Neodiprion guilletei Saw fly Eggs, Larvae, Pupa South Canada, USA, Mexico Pino and Ramos-Elorduy (2021)

Zadiprion falsus (=vallicola) Mexico

Coleoptera

Bostrichidae Prostephanus truncates Larger grain borer Larvae Southwestern USA, Mexico and Central 

America

Pino and Ramos-Elorduy (2021)

Buprestidae Chalcophora sp. Pine log worm Larvae USA, Mexico and Caribbean Pino and Ramos-Elorduy (2021)

(Continued)
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TABLE 1 (Continued)

Order/Family Insect Local name Consumption Distribution in America Reference

Cerambycidae Arhopalus sp. Pine worm Larvae, Pupa North America and Caribbean Pino and Ramos-Elorduy (2021)

Cicindlidae Habroscelimorpha curvata 

(=Cicindela curvata)

Larvae Mexico Pino and Ramos-Elorduy (2021)

Cicindela (Cincidelidia) 

roseiventris

Mexico, Central America

Curculionidae Rhyncophorus palmarum Coconut palm 

weevil, Red agave 

worm “Botija” or 

“chatita” worms, 

Corn weevil

Larvae South America Ramos-Elorduy et al. (2006) and 

Pino and Ramos-Elorduy (2021)Scyphophorus acupunctatus USA, Mexico, Central America and South 

America

Sitophilus sp. North America (West and East Canada, 

USA and Mexico), Central America, 

South America and Caribbean

Dytiscidae Cybister sp. Larvae, Adult USA, Mexico, Central America and South 

America

Pino and Ramos-Elorduy (2021)

Gyrinidae Gyrinus parcus Whirlwind beetle Larvae USA, Mexico and Central America Pino and Ramos-Elorduy (2021)

Melolonthidae Dynastes hylus Avocado trunk 

worms

Larvae Mexico Pino and Ramos-Elorduy (2021)

Noteridae Suphisellus sp. Larvae, Adult South and Northeastern USA, Mexico, 

Cental America, South America and 

Caribbean

Pino and Ramos-Elorduy (2021)

Passalidae Passalus (Passalus) af. 

punctiger

Rotten log worm Larvae North USA, Mexico, Cental America, 

South America and Caribbean

Pino and Ramos-Elorduy (2021)

Scarabaeidae Phyllophaga sp. Gallina ciega Larvae North America, Central America, South 

America and Caribbean

Pino and Ramos-Elorduy (2021)

Tenebrionidae Tenebrio molitor Yellow flour 

worm, meal worm

Larvae North America, Central America (El 

Salvador), and South America

Pino and Ramos-Elorduy (2021)

Diptera

Stratiomydae Hermetia aurata Soldier fly Larvae Mexico Pino and Ramos-Elorduy (2021)

Lepidoptera

Hesperiidae Aegiale hesperiaris White agave 

worm

Roasted insect larvae 

seasoned with chili 

and salt

Mexico Ramos-Elorduy et al. (2006)

Noctuidae Helicoverpa zea Corn worm Larvae North America, Central America, South 

America and Caribbean

Ramos-Elorduy et al. (2006)

Bombycidae Bombyx mori Silkworm Larvae USA and South America Pino and Ramos-Elorduy (2021)

Crambidae Laniifera cyclades Mexico Ramos-Elorduy et al. (2006)

Cossidae Comadia redtenbacheri Salted mezcal 

worms, Mezcal 

worms, 

Chinicuiles, Red 

maguey worm

Larvae South USA and Mexico Ramos-Elorduy et al. (2006)

Danaidae Danaus plexippus Monarch butterfly Larvae North America, Cental America, South 

America and Caribbean

Pino and Ramos-Elorduy (2021)

Megathymidae Aegiale hesperiaris White maguey 

worm

Larvae Mexico Pino and Ramos-Elorduy (2021)

Nymphalidae Charaxes jasius “Cupiches,” 

“Huenches,” 

“Conduchas,” 

“Chamas”

Pupa Canada Pino and Ramos-Elorduy (2021)

Pieridae Eucheira socialis Arbutus tree 

worm “cupiche”

Larvae Mexico Pino and Ramos-Elorduy (2021)
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TABLE 1 (Continued)

Order/Family Insect Local name Consumption Distribution in America Reference

Sessidae Synanthedon cardinalis Resin moth Larvae Mexico Pino and Ramos-Elorduy (2021)

Orthoptera

Pyrgomorphidae Sphenarium histrio “Chapoli,” 

Chapulines

Mexico Ramos-Elorduy et al. (2006)

S. purpurascens Mexico

S. magnum Not Found in GBIF

Acrididae Melanoplus femurrubrum North America Ramos-Elorduy et al. (2006) and 

Pino and Ramos-Elorduy (2021)M. mexicanus Canada, USA, Mexico

M. differentialis USA, Mexico

Spharagemon equale North America

Orphulella orizabae Mexico

O. tolteca Mexico

O. quiroga Mexico

Orphulella sp. North America, Cental America, South 

America and Caribbean

Hemiptera

Pentatomidae Brochymena (Arcana) 

tenebrosa

Jumil sagrado 

“Xomitl,” Jumil de 

Morelos, 

“Chumil”

North America, Cental America, South 

America and Caribbean

Ramos-Elorduy et al. (2006) and 

Pino and Ramos-Elorduy (2021)

Chlorocoris sp. South USA, Mexico, Cental America, 

South America and Caribbean

Edessa cordifera (syn. Ascra 

cordifera)

East USA, Mexico, Cental America, South 

America and Caribbean

Euschistus sulcacitus Mexico and Costa Rica

Notonectidae Buenoa margaritacea Ahuahutle, 

Axayacatl

Adults USA and Mexico Ramos-Elorduy et al. (2006)

Corixidae Corisella edulis Ahuahutle, 

Axayacatl

Adults prepared in 

tuna patties or as 

finger food

USA and Mexico Ramos-Elorduy et al. (2006)

C. mercenaria (Corixa 

mercenaria)

Not Found in GBIF

C. tarsalis Canada and USA

C. texcocana Not Found in GBIF

Graptocorixa abdominalis South USA and Mexico

G. bimaculata Mexico

Hesperocorixa laevigata Canada and USA

Krisousacorixa azteca Not Found in GBIF

K. femorata Not Found in GBIF

Trichocorixa sp. North America, Cental america, South 

America and Caribbean

Notonectidae Notonecta unifasciata Ahuahutle, 

Axayacatl

Adults North America Ramos-Elorduy et al. (2006)

Coreidae Thasus gigas “Xamues,” 

“Cocopaches”

South USA, Mexico, Cental America Pino and Ramos-Elorduy (2021)

Membracidae Hoplophorion (Metcalfiella) 

monograma

“Periquito del 

aguacate”

Mexico Pino and Ramos-Elorduy (2021)

Stictocephala bisonia Canada and USA

Aetalionidae Aetalion quadratum (= 

Aethalion quadripunctatus)

Avocado greenfly Mexico Pino and Ramos-Elorduy (2021)

A. nervosopunctatum Mexico

A. quadratum Mexico
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(Van-Huis, 2013). It is important to note that there is considerable 
variation in the nutritional composition of insect species depending on 
factors such as harvest location, processing methods, insect life stage, 
rearing techniques, and insect feed. Based on the available data (on a 
dry weight basis), it is suggested that specific treatments can enhance 
the nutritional content, aroma, appearance, and taste of edible insects. 
However, it is important to consider additional factors that may affect 
the content and composition of insects. The factors responsible for the 
nutritional content and quality of edible insects are not well understood. 
These factors include the chemical composition of insects, their 
handling and storage practices, microbial contamination, insect diet, 
feeding time, host plants, and phytonutrient content (Imathiu, 2020; 
Stull and Weir, 2023).

The following tables present comprehensive information on the 
nutrient composition of various insect orders, as documented in a 
study by Meyer-Rochow et al. (2021). Table 2 from Meyer-Rochow 
et al. illustrates the proximate nutrient composition of edible insects 
per 100 grams of dry matter. In Table 3, you will find a comparative 
analysis of the nutrient content among different species within the 
same genus, also presented per 100 grams of dry matter. Table  4 
presents the amino acid composition of various species within the 
same genus. The fatty acid composition of various edible insects is 
presented in Table 5, while Table 6 displays the mineral content of 
selected edible insects, measured in milligrams per 100 grams. Table 7 
presents a comparative overview of the nutrient content at various 
developmental stages of edible insects, per 100 grams of dry matter. 
Finally, Table 8 presents information about the anti-nutrient content 
of insect-based foods, expressed in milligrams per 100 grams. Table 9 
shows the elemental composition of insect excrements and organic 
fertilizers. The distribution in Latin America, the Americas, and the 
Caribbean are given in all tables.

5 Potential uses of insects: tips for 
applications in Latin American

5.1 Food industry

Traditionally consumed in various Latin American countries, 
edible insects face potential barriers in Western countries, where they 
may be perceived as unsafe and unappetizing (Baiano, 2020; Kim 
et al., 2021; Van-Huis et al., 2021). Overcoming such biases is crucial 
for promoting insect-based economies in Latin America, emphasizing 
the significance of insect processing technologies (de Castro et al., 
2018; Kim et al., 2021; Van-Huis et al., 2021). Given the rising global 
demand for protein, which is projected to grow by 9.1% from 2020 to 
2027, and the necessity for sustainable protein sources in contrast to 
traditional livestock-based supply chains, insect processing 
technologies are anticipated to have a dominant role in the future (da 
Costa-Rocha et al., 2021; Van-Huis et al., 2021; Munialo et al., 2022). 
The global market for insect-based products is expected to grow 
significantly, from $406 million in 2018 to an estimated $1.18 billion 
in 2023 (Gkinali et  al., 2022; Munialo et  al., 2022). This trend 
represents a significant opportunity for Latin American countries to 
participate in the growing global market (Kouřimská and Adámková, 
2016). In particular, several commercial brands such as Gricha®, 
Griyum®, In Insect Nutri-tion®, and CrickEx® offer a variety of 
insect-based food products produced in Mexican insect farms. These 

products are currently available online to Latin American consumers 
(Cordoba-Aguilar et al., 2023).

Recent research in the field of edible insects has embraced a 
biorefinery approach, aiming to maximize the value of the three 
main fractions obtained from insects: proteins, lipids, and chitin, 
as well as other valuable products derived from insect biomass 
within the same processing chain (Caligliani et al., 2018; da Costa-
Rocha et  al., 2021). New methodologies and techniques are 
essential for achieving optimal yields, quality, and functional 
properties of chemical compounds from insect biomass. The 
selection of techniques and processing steps directly impacts the 
quality, content, functional properties, palatability, and biosafety 
of insect extracts (de Castro et al., 2018; Ojha et al., 2021; Queiroz 
et  al., 2023; Rahman et  al., 2023). Various methods have been 
explored to achieve these goals, including nitrogen freeze-drying, 
vacuum drying, supercritical CO2 extraction, ultrasound, electric 
pulse field, high hydrostatic pressure, and ohmic heating (Queiroz 
et  al., 2023; Rahman et  al., 2023). The development of new 
technologies for processing insect biomass is crucial for enhancing 
the technological and functional properties of insect proteins. 
These technologies aim to optimize solubility, water and oil 
retention capacity, emulsifying and foaming ability, and gelling 
capacity, while ensuring the safety and nutritional value of the 
products (Van-Huis et al., 2021). While the initial investment in 
new technologies is substantial, they have demonstrated their value 
in addressing the challenges of processing industrial insect 
biomass. These technologies have demonstrated the ability to 
preserve the essential bioactive properties of insect-derived 
molecules, reduce the allergenicity of insect proteins, and increase 
the stability of reaction products (Mintah et  al., 2019; Ojha 
et al., 2021).

5.2 Agroindustries for animal husbandry

In agro-industrial applications, the black soldier fly (BSF) 
Hermetia illucens and other insect species, such as the house fly and 
Tenebrio molitor (TM), are widely used as valuable sources of meal 
for animal feed due to their high protein content (Hall et al., 2018; 
Sánchez et al., 2021). Tenebrio molitor larvae have also been utilized 
as animal feed because of their high protein and essential amino acid 
content. These larvae are rich in saturated, polyunsaturated, and 
monounsaturated fatty acids, as well as minerals, iron, and zinc 
making them a viable option for poultry feed. They have high 
nutrient availability for chickens and exhibit angiotensin-converting 
enzyme inhibitory activity, effectively stabilizing blood pressure 
(Dalmoro et  al., 2021; Nascimento-Filho et  al., 2021). Dietary 
treatments with BSF larvae and TM were found to beneficially 
reduce total blood cholesterol levels while increasing phosphorus 
levels in turkeys fed this protein source (Kozłowski et al., 2021). The 
meal derived from house fly larvae, with a protein content of 54% 
and a lipid content of 22%, is suitable for human consumption due 
to its favorable microbiological activity. It is rich in essential amino 
acids and unsaturated fatty acids, making it a promising source of 
protein for the diet of broiler chickens (Hall et al., 2018; Sánchez 
et al., 2021). Another case is the larval biomass of BSF contains 40% 
protein and 30% fat, making it suitable as a highly nutritious fish 
feed and a potential substitute for soy and maize in poultry diets 
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TABLE 2 Proximate nutrient composition of edible insects (g/100  g dry matter basis) and their distribution in Latin America and the Caribbean.

Insect Distribution DS Protein Fat Fibre NFE* Ash Reference

Blattodea (including infra-order Isoptera)

Edible cockroaches 

and termites

46.3 31.3 5.2 13.7 4.4 Rumpold and 

Schlüter (2013)

Microtermes 

bellicosus

Not Found in America A 40.7 44.8 5.3 2.2 5.0 Akullo et al. (2018)

Microtermes 

nigeriensis

Not Found in America A 37.5 48.0 5.0 2.1 3.2 Omotoso (2015)

Odototermes sp. Not Found in GBIF A 33.7 50.9 6.3 6.1 3.0 Chakravorty et al. 

(2016)

Syntermes sp. 

soldier

Central America and 

South America

A 64.7 3.1 23.0 2.5 4.2 Akullo et al. (2018)

Coleoptera

Edible beetles 40.7 33.4 10.7 13.2 5.1 Rumpold and 

Schlüter (2013)

Allomyrina 

dichotoma

Not Found in America L 54.2 20.2 4.0 17.7 3.9 Ghosh et al. (2017)

Oryctes rhinoceros USA Center and 

Mexico

L 52.0 10.8 17.9 2.0 11.8 Akullo et al. (2018)

Protaetia brevitarsis Not Found in America L 44.2 15.4 11.1 22.5 6.9 Ghosh et al. (2017)

Tenebrio molitor North America (West 

Center and East 

Canada, USA, Mexico) 

Central America and 

South America

L 53.2 34.5 6.3 1.9 4.0 Ghosh et al. (2017)

T. molitor North America (West 

Center and East 

Canada, USA, Mexico) 

Center America and 

South America

P 51.0 32.0 12.0 Adámková et al. 

(2017)

T. molitor North America (West 

Center and East 

Canada, USA, Mexico) 

Central America and 

South America

L 52.0 31.0 13.0 Adámková et al. 

(2017)

Zophobas morio South East USA and 

Caribbean

L 46.0 35.0 6.0 Adámková et al. 

(2017)

Diptera

Edible flies 49.5 22.8 13.6 6.0 10.3 Rumpold and 

Schlüter (2013)

Caliphora vomitoria Canada and USA A 64.9 0.7 16.6 12.2 5.6 Bbosa et al. (2019)

Hermetia illucens North America, Central 

America, South 

America and Caribbean

Pre P 44.3 31.9 5.1 3.4 8.7 Bbosa et al. (2019)

Hermetia illuscens South America L 39.0 32.6 12.4 14.6 Nyakeri et al. (2017)

Hemiptera

Edible bugs 48.3 30.3 12.4 6.1 5.0 Rumpold and 

Schlüter (2013)

Aspongopus 

nepalensis

Not Found in GBIF A 10.6 38.4 33.5 15.3 2.2 Chakravorty et al. 

(2011)

(Continued)
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(Park, 2016). Studies have shown that quail and broiler chickens fed 
BSF larvae have increased concentrations of amino acids and fatty 
acids in their meat composition (Cullere et al., 2016, 2018). BSF 
larvae are globally recognized as high-quality animal feed and have 
been deemed safe for human and animal consumption by the Food 
and Agriculture Organization of the United Nations (FAO) [Wang 
and Shelomi, 2017; Association of American Feed Control Officials 
(AAFCO), 2023].

In the global marketplace, BSF larvae have become a popular 
choice for various animals in the agricultural industry. They are 
available in a variety of forms and packaging options. Dehydrated BSF 
larvae are tightly sealed in high-density polyethylene packaging 
specifically designed for poultry and ornamental fish. In addition, 
fat-free cakes made from BSF larvae, packaged in the same sealed 
polyethylene, are designed for smaller animals such as pigs and 
rabbits. Live or dehydrated black soldier fly pupae are also available 
(Wanjiku, 2018; Cullere et al., 2019).

BSF larval cakes have a protein profile similar to soy, with elevated 
levels of essential amino acids, making them an excellent source of 

protein for high-protein food markets (Patterson et  al., 2021). 
Furthermore, black soldier fly (BSF) larvae can be processed into a 
high-quality, protein-rich meal that can serve as a substitute for 
concentrated feed in poultry and ornamental fish. The flour is also 
used to make treats for exotic pets, wildlife rehabilitators, and urban 
farmers (Bußler et  al., 2016; Queiroz et  al., 2021). Due to the 
nutritional value of the larval protein, it is possible to replace up to 
25% of fish meal and 38% of fish oil in balanced animal diets with BSF 
larvae, providing a sustainable alternative (Xiao et  al., 2018). In 
addition to being globally accessible, these BSF larvae products are 
specifically designed for urban and rural communities involved in 
poultry and ornamental fish farming. Insect farming and promoting 
environmental education contribute to converting organic materials 
into valuable resources. During this process, larval or pre-pupal insect 
biomass is generated on a small to medium scale for direct 
consumption or processing into feed for poultry, fish, and pig farming. 
This approach promotes the adoption of sustainable agro-industrial 
production methods and encourages ecological innovation and the 
use of technological tools (Wu et al., 2022).

TABLE 2 (Continued)

Insect Distribution DS Protein Fat Fibre NFE* Ash Reference

Hymenoptera

Edible ants, bees, 

wasps

46.5 25.1 5.7 20.3 3.5 Chakravorty et al. 

(2016)

Oecophylla 

smaragdina

Not Found in America A 55.3 15 19.8 7.3 2.6 Rumpold and 

Schlüter (2013)

Lepidoptera

Edible moth 45.4 27.7 6.6 18.8 4.5 Rumpold and 

Schlüter (2013)

Cirina butyrospermi Not Found in America L 62.7 14.5 5.0 12.6 5.1 Bbosa et al. (2019)

Odonata

Edible dragonfly, 

damselfly

55.2 19.8 11.8 4.6 8.5 Chakravorty et al. 

(2014) and Akullo 

et al. (2018)

Orthoptera

Edible 

grasshoppers, 

crickets, locusts

61.3 13.4 9.6 13.0 3.9 Rumpold and 

Schlüter (2013)

Acheta domesticus North America A 62.6 12.2 8.0 12.3 5.0 Bbosa et al. (2019)

Brachytrupes sp. Not Found in America A 65.4 11.8 13.3 2.5 4.9 Akullo et al. (2018)

Brachytrupes 

orientalis

Not Found in GBIF A 65.7 6.3 8.8 15.2 4.3 Chakravorty et al. 

(2014)

Chondacris rosea Not Found in GBIF A 68.9 7.9 12.4 6.7 4.2 Chakravorty et al. 

(2014)

Gryllus assimilis North America, South 

America and Caribbean

A 56 32 7.0 Adámková et al. 

(2017)

Gryllus bimaculatus Not Found in America A 58.3 11.9 9.5 10.6 9.7 Ghosh et al. (2017)

Ruspolia nitidula Not Found in America A 40.8 46.3 5.9 3.7 3.3 Bbosa et al. (2019)

Schistocerca 

piceifrons piceifrons

Mexico A 80.3 6.2 12.6 3.4 Pérez-Ramírez et al. 

(2019)

Teleogryllus emma Not Found in America A 55.7 25.1 10.4 0.7 8.2 Ghosh et al. (2017)

*DS, developmental stage; L, larva; P, pupa; N, nymph; A, adult; B, brood; NFE, nitrogen-free extract (indicative of soluble carbohydrates).

https://doi.org/10.3389/fsufs.2024.1385081
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Granados-Echegoyen et al. 10.3389/fsufs.2024.1385081

Frontiers in Sustainable Food Systems 11 frontiersin.org

TABLE 3 A comparative account of the proximate nutrient content of different species belonging to the same genus (g/100  g dry matter basis) and their 
distribution in Latin America and the Caribbean.

Genus Species Distribution DS* Protein Fat Fibre NFE 
*

Ash Reference

Blattodea

Microtermes bellicosus Not Found in America A 20.4 28.2 2.7 43.3 2.9 Banjo et al. (2006)

notalensis Not Found in GBIF A 22.1 22.5 2.2 42.8 1.9 Banjo et al. (2006)

subhylanus Not Found in America A 39.3 44.8 6.4 1.9 7.6 Kinyuru et al. (2013)

bellicosus Not Found in America A 39.7 47.0 6.2 2.4 4.7 Kinyuru et al. (2013)

Periplaneta americana North America, Central 

America, South America and 

Caribbean

L, A 65.6 28.2 3.0 0.8 2.5 Ramos-Elorduy et al. (2012)

australasiae North America (Canada, 

Southwestern USA North and 

Southeastern USA, Mexico, 

Central America, South 

America and Caribbean)

L, A 62.4 27.3 4.5 2.7 3.0 Ramos-Elorduy et al. (2012)

Pseudacanthotermes militaris Not Found in America A 33.5 46.6 6.6 8.7 4.6 Kinyuru et al. (2013)

spiniger Not Found in America A 37.5 47.3 7.2 0.7 7.2 Kinyuru et al. (2013)

Coleoptera

Oryctes boas Not Found in America L 26.0 1.5 3.4 38.5 1.5 Banjo et al. (2006)

rhinoceros Central USA and Mexico L 42.3 0.6 27.7 12.7 Onyeike et al. (2005)

Hemiptera

Edessa conspersa Not Found in GBIF N, A 36.8 45.8 10.0 4.2 3.2 Ramos-Elorduy et al. (1998) 

and Rumpold and Schlüter 

(2013)

montezumae Not Found in GBIF N, A 37.5 45.9 10.9 2.1 3.7 Ramos-Elorduy et al. (1998) 

and Rumpold and Schlüter 

(2013)

petersii Not Found in GBIF N, A 37.0 42.0 18.0 1.0 2.0 Ramos-Elorduy et al. (1997)

sp. Center and Southeastern USA, 

Mexico, Central America, 

South America and Caribbean

N, A 33.0 54.0 11.0 1.0 Ramos-Elorduy et al. (1997)

Hymenoptera

Atta mexicana Southwestern and South USA, 

Mexico, Central America and 

South America

A 46.0 39.0 11.0 0.0 4.0 Ramos-Elorduy et al. (1997)

cephalotes Mexico, Central America, 

South America and Caribbean

A 43.0 31.0 10.0 14.0 2.0 Ramos-Elorduy et al. (1997)

Brachygastra azteca Mexico B 63.0 22.0 3.0 9.0 3.0 Ramos-Elorduy et al. (1997)

mellifica South USA and Mexico B 53.0 30.0 3.0 11.0 3.0 Ramos-Elorduy et al. (1997)

Polybia parvulina South America B 61.0 21.0 6.0 8.0 4.0 Ramos-Elorduy et al. (1997)

occidentalis 

nigritella

Mexico, Central America and 

South America

B 61.0 28.0 2.0 11.0 3.0 Ramos-Elorduy et al. (1997)

occidentalis 

bohemani

Mexico, Central America and 

South America

B 62.0 19.0 4.0 13.0 3.0 Ramos-Elorduy et al. (1997)

Lepidoptera

Anaphe infracta Not Found in America L 20.0 15.2 2.4 66.1 1.6 Banjo et al. (2006)

recticulata Not Found in America L 23.0 10.2 3.1 64.6 2.5 Banjo et al. (2006)

venata Not found in America L 25.7 23.2 2.3 55.6 3.2 Banjo et al. (2006)

sp. Not Found in America L 18.9 18.6 1.7 46.8 4.1 Banjo et al. (2006)

(Continued)
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5.3 Agricultural fertilizers and 
bioprotectans

Insect farming residues, such as frass (a mixture of insect 
excreta, exuvia, and undigested residues) and cadavers, can play a 
crucial role in developing a circular economy management strategy 
for both the food industry and agro-industrial applications. By 
utilizing these residues in sustainable agriculture, particularly as 
alternatives to chemical fertilizers and pesticides, additional 
income can be  generated (Fielding et  al., 2013; Chavez and 
Uchanski, 2021; Poveda, 2021). This approach holds particular 
significance for Latin American countries where agricultural 
practices often align with subsistence agriculture because the use 
of residual biomass from insect farming can reduce economic costs 
associated with acquiring chemical fertilizers. The research on 
using insect farming byproducts as organic fertilizers are still 
limited (Khan et al., 2016; Poveda et al., 2019; Beesigamukama 
et al., 2022; Wantulla et al., 2023), existing evidence indicates the 
potential impact of insect frass and cadaver deposition on soil 
nutrient cycling processes. Ecological studies have demonstrated 
that frass from certain herbivorous insects, rich in nitrogen and 
labile carbon, promotes microbial growth, accelerates organic 
matter decomposition, and affects carbon and nitrogen 
mineralization and immobilization. The nitrogen content in insect 
frass may vary among different species, emphasizing the need to 
evaluate frass quality across different insect species (Kagata and 
Ohgushi, 2012b).

Recent research has focused on assessing the elemental 
composition of insect-produced frass, including nitrogen (N), 
phosphorus (P), potassium (K), sulfur (S), calcium (Ca), 
magnesium (Mg), manganese (Mn), zinc (Zn), and other elements. 
Comparative analyses reveal that frass from various insect species 
contains concentrations of essential macronutrients (N, P, K), 
secondary macronutrients (Mg, Ca, S), and micronutrients (Mn, 
Fe, Cu, Zn, B) comparable or even higher than those found in 
commonly used organic fertilizers in agriculture, such as manures, 
composts, and agricultural by-products. However, the elemental 
composition of frass from various insect species needs further 
exploration due to the wide range of variations in nutritional 
quality (Frost and Hunter, 2008; Hillstrom et al., 2010; Kagata and 
Ohgushi, 2011, 2012a,b; Fielding et  al., 2013). The elemental 
composition of frass from various edible insects shows a balanced 
ratio of primary macronutrients (N:P:K) at 2:1:2. Different groups 
of insects, such as coleopterans and termites, exhibit 

nitrogen-enriched ratios (5,1:2), while orthopterans and dipterans 
display potassium-enriched ratios (6,1,15 and 1:1:3, respectively). 
Coleopterans and Lepidopterans exhibit nitrogen-to-potassium 
enriched ratios of 14:7 and 10:8, respectively. This variation in 
elemental composition is closely related to the diet of insects 
(Fielding et al., 2013; Zhang et al., 2014; Poveda et al., 2019). By 
managing the nutritional quality of the food given to insects in 
agricultural practices, it is possible to adjust the proportions of 
macronutrients in insect waste (frass) to meet specific 
requirements for fertilizer production (Poveda et al., 2019). While 
altering insect diets to enhance the quality of their excrement 
(frass) is a viable strategy, additional research is necessary to 
evaluate its feasibility. In addition, given that the nitrogen and 
phosphorus content of insect bodies is nearly ten times higher 
than that of insect frass, utilizing carcasses produced during insect 
farming offers another opportunity to achieve the desired 
adjustments in frass composition (Elser et al., 2000).

Insects like the black soldier fly larvae are commonly utilized for 
organic waste decomposition, as they serve as efficient decomposers 
and biological controllers of other fly species during their larval stage. 
Black soldier fly larvae can reduce organic waste by approximately 65 
to 78%, producing a valuable material for composting and agricultural 
fertilization. This approach is proving to be  more efficient than 
traditional composting and vermiculture, which require longer 
processing times. The resulting humus is of exceptional quality and 
serves as an environmentally friendly fertilizer for a variety of indoor 
and outdoor crops, such as those found in gardens, parks, golf courses, 
and sports fields (Erickson et al., 2004). Controlled trials on crops 
such as lettuce, Swiss chard, basil, tomato, onion, barley, and corn 
using black soldier fly (BSF) and mealworm wastes as fertilizers have 
shown positive effects on plant characteristics, including increased 
fresh and dry weight, height, basal stem width, and leaf number 
(Buenrostro et  al., 2000; Singh and Kumari, 2019; Chavez and 
Uchanski, 2021).

In addition to serving as an organic fertilizer, insect frass also 
demonstrates bioprotective and biostimulant properties in agriculture. 
These properties are likely due to the microorganisms present in the 
frass, which stimulate beneficial soil microorganisms that enhance 
various plant responses. These responses include enhanced growth, 
increased tolerance to abiotic stresses, and activation of systemic 
defense mechanisms against natural pests. The microorganisms, 
referred to as plant growth-promoting microorganisms, play a crucial 
role in improving plant growth and productivity through various 
activities such as synthesizing hormones, solubilizing phosphate and 

TABLE 3 (Continued)

Genus Species Distribution DS* Protein Fat Fibre NFE 
*

Ash Reference

Orthoptera

Sphenarium purpurascens Mexico A 65.2 10.8 9.4 11.6 3.0 Ramos-Elorduy et al. (2012)

mexrcanum Mexico A 62.1 10.8 4.1 22.6 0.3 Ramos-Elorduy et al. (2012)

purpurascens Mexico 56.0 11.0 9.0 21 3.0 Ramos-Elorduy et al. (1997)

histrio Mexico 77.0 4.0 12.0 4.0 2.0 Ramos-Elorduy et al. (1997)

sp. Mexico 68.0 12.0 11.0 5.0 5.0 Ramos-Elorduy et al. (1997)

DS, developmental stage.
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TABLE 4 Amino acid composition of different species belonging to the same genus and their distribution in Latin America and the Caribbean.

Genus Species Distribution Amino Acid Composition (% of Total Amino Acids or Protein) TAAP Reference

Val Ile Leu Lys Tyr Thr Phe Trp His Met  +  Cys Total 
EAA**

Arg Asp Ser Glu Gly Ala Pro

Apis *(P) mellifera All America 5.9 5.6 8.0 7.0 5.0 5.0 1.0 ND 2.7 1.0 40.0 5.6 9.0 4.9 21.0 6.0 7.1 ND 41.0 Ghosh et al. (2016)

ceranu West and East USA 6.1 4.7 9.0 6.0 4.0 4.0 4.0 ND 2.5 4.7 45.0 4.9 12.0 4.7 10.0 7.0 9.6 6.6 51.0 Ghosh et al. (2020)

dorsata Not Found in America 5.7 4.4 9.0 6.0 3.0 4.0 4.0 ND 2.6 4.9 43.0 4.9 13.0 4.9 11.0 8.0 8.5 6.9 39.0 Ghosh et al. (2020)

floren Not Found in America 5.9 4.8 9.0 7.0 5.0 5.0 5.0 ND 2.8 4.8 48.0 5.3 10.0 5.1 14.0 6.0 8.1 7.6 36.0 Ghosh et al. (2020)

Bombus 

*(A)

ignitus Not Found in America 7.0 5.7 9.0 6.0 3.0 2.0 3.0 ND 3.0 6.1 45.0 4.0 0.0 4.9 11.0 9.0 11.0 10.0 47.0 Ghosh et al. (2017)

terrestris Canada, USA and 

South America

6.3 5.0 8.0 8.0 3.0 2.0 3.0 ND 2.6 6.3 45.0 5.0 4.0 6.3 1.0 8.0 10.0 9.9 38.0 Ghosh et al. (2017)

Brachygastra 

(B)

azteca Mexico 6.4 5.1 9.0 6.0 7.0 4.0 4.0 0.7 2.8 3.0 48.0 4.4 8.0 4.5 16.0 7.0 5.8 6.4 63.0 Ramos-Elorduy et al. 

(1997)

mellifica South USA and Mexico 5.4 4.4 8.0 4.0 8.0 4.0 4.0 0.7 3.6 3.8 45.0 5.7 9.0 4.2 16.0 7.0 6.1 7.1 53.0 Ramos-Elorduy et al. 

(1997)

Polybia (B) occidentalis 

nigratella

Mexico, Central 

America and South 

America

5.9 4.5 8.0 7.0 6.0 4.0 3.0 0.7 3.0 5.0 47.0 5.7 8.0 4.5 13.0 7.0 6.5 6.3 61.0 Ramos-Elorduy et al. 

(1997)

parvulina South America 6.1 4.7 8.0 7.0 6.0 4.0 3.0 0.7 3.4 5.3 49.0 5.7 8.0 4.4 1.0 72.0 6.4 6.5 61.0 Ramos-Elorduy et al. 

(1997)

Polistes * sagittarius Not Found in America 6.6 5.5 8.0 4.0 5.0 4.0 5.0 ND 3.0 1.4 43.0 4.4 8.0 4.4 17.0 69.0 7.2 8.9 36.0 Ying et al. (2010)

sulcatus Not Found in America 67.0 6.2 8.0 4.0 5.0 4.0 4.0 ND 2.4 2.0 43.0 4.0 7.0 4.4 15.0 9.0 8.9 8.0 45.0 Ying et al. (2010)

Vespa * (B) velutina Not Found in America 6.1 5.5 9.0 6.0 7.0 4.0 4.0 ND 3.2 2.4 47.0 4.5 6.0 4.5 20.0 6.0 5.5 6.1 38.0 Ghosh et al. (2021)

mandarinia Canada 6.3 5.7 9.0 6.0 7.0 4.0 4.0 ND 3.3 27.0 49.0 2.2 7.0 4.3 21.0 6.0 5.4 5.7 37.0 Ghosh et al. (2021)

basalis Not Found in America 5.7 5.3 9.0 7.0 7.0 4.0 4.0 ND 3.2 1.4 47.0 4.3 6.0 4.3 22.0 6.0 5.0 5.7 28.0 Ghosh et al. (2021)

Vespa *(L) basalis Not Found in America 5.9 5.9 8.0 4.0 6.0 4.0 4.0 ND 2.5 2.1 43.0 3.9 8.0 4.3 17.0 8.0 7.7 8.4 44.0 Ying et al. (2010)

mandarinia 

mandarinia

Not Found in America 5.0 4.6 6.0 17.0 4.0 3.0 11.0 ND 2.1 0.8 53.0 3.3 6.0 3.4 1.0 6.0 6.5 7.9 52.0 Ying et al. (2010)

velutina 

auraria

Not Found in America 6.9 5.9 8.0 3.0 8.0 4.0 4.0 ND 3.1 2.9 45.0 6.3 9.0 6.5 12.0 8.0 7.1 5.9 49.0 Ying et al. (2010)

tropica duenlis Not Found in America 7.5 5.4 8.0 3.0 5.0 5.0 4.0 ND 1.4 1.2 41.0 7.1 10.0 5.0 13.0 9.0 7.8 6.6 42.0 Ying et al. (2010)

Sphenarium histrio Mexico 5.1 5.3 9.0 6.0 7.0 4.0 12.0 0.6 1.9 3.3 54.0 6.6 9.0 5.1 5.0 5.0 7.6 7.2 77.0 Ramos-Elorduy et al. 

(1997)

purpurascens Mexico 5.7 4.2 9.0 6.0 6.0 3.0 10.0 0.7 2.2 4.3 51.0 6.0 9.0 4.8 11.0 7.0 6.4 6.2 56.0 Ramos-Elorduy et al. 

(1997)

TAAP, Total Amino Acids or Protein (g/100 g Dry Matter); L, Larva; P, Pupa; A, Adult; B, Brood; ND, Not determined or not estimated; *Amino acid content was obtained from the respective paper and recalculated as g/100 g of total amino acids or protein (g/100 g dry 
matter) egg reference protein; **EAA, Essential amino acids, including (Val, Ile, Leu, Lys, Thr, Trp, Phe, His, Met) and two conditional essential amino acids (Tyr, Cys).
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TABLE 5 Fatty acid composition of selected edible insects and their distribution in Latin America and the Caribbean.

Genus Species Distribution DS Fatty Acid Composition (% of Total Fatty Acids) TFA Reference

C14:0 C16:0 C18:0 SFA C18:1 MUFA C18:2 PUFA

Apis + cerana West and East USA L 3.9 38.2 8.1 50.7 46.9 48.7 0.5 0.7 6.1 Ghosh et al. (2020)

P 3 31.4 10.6 46.2 49.8 52.7 0.9 1.1 6.3 Ghosh et al. (2020)

A 1.9 18.2 12.1 33.8 57.7 63.4 2.6 2.8 4.2 Ghosh et al. (2020)

dorsata Not Found in America P 3.2 33.3 11.8 49.4 47.7 49.8 0.8 0.8 6.2 Ghosh et al. (2020)

A 1 14.4 14.4 31.3 61 66.5 2.2 2.2 3.1 Ghosh et al. (2020)

mellifera All America L 2.4 37.3 11.8 51.8 47.5 48.2 0 0 4.9 Ying et al. (2010)

P 2.9 35.1 12.6 51.1 47.6 48.9 0 0 5.5 Ying et al. (2010)

A 0.6 14.4 9.3 25.2 45.2 67 7.8 7.8 1.7 Ying et al. (2010)

florea Not Found in America P 1.8 35.3 8.8 46.6 47.6 52.3 1 1.1 7.2 Ghosh et al. (2020)

A 1.5 30.7 9.7 43.2 49.7 55.7 1.1 1.1 5.4 Ghosh et al. (2020)

Aspongopus viduatus Not Found in GBIF A 0.3 31.3 3.5 37.9 45.5 56.8 4.9 5.4 54.2 Mariod et al. (2011)

nepalensis Not Found in GBIF A 0.4 32.3 4.8 37.5 46.4 56.1 6.1 6.1 35.9 Chakravorty et al. (2011)

Bombus *, + ignitus Not Found in America A 2.6 16.1 1.7 22.1 49.1 75.4 2.5 2.5 9.5 Ghosh et al. (2017)

terrestres Canada, USA and South 

America

A 3.8 15.2 1.7 21.5 51.1 76.2 2.2 2.2 8.4 Ghosh et al. (2017)

Imbrasia belina Not Found in GBIF L 1.2 31.9 4.7 37.9 34.2 36 6 26.1 23.4 Ekop et al. (2009)

epimethea Not Found in America L 0.6 23.2 22.1 46.1 8.4 9 7 42.5 13.3 Rumpold and Schlüter (2013)

truncata Not Found in America L 0.2 24.6 21.7 46.5 7.6 7.6 7.6 44.4 16.4 Rumpold and Schlüter (2013)

ertli Not Found in America L 1 22 0.4 61.4 2 24 20 31 11.1 Santos et al. (1976) and Bukkens (1997)

oyemensis Not Found in GBIF L 0.5 46 7.2 54.2 34.6 34.6 11.2 11.2 25.4 Rumpold and Schlüter (2013)

Macrotermes bellicosus ** Not Found in America A 2.2 42.5 2.9 490 15.8 17.9 24.2 33.1 36.1 Ekop et al. (2009)

bellicosus Not Found in America A 0.2 46.5 46.7 12.8 14.9 34.4 38.3 46.1 Rumpold and Schlüter (2013) and Ukhun and Osasona (1985)

nigeriensis Not Found in GBIF A 0.6 31.4 7.1 39.4 52.5 53.1 7.6 7.6 34.2 Igwe et al. (2011)

subhylinus Not Found in America A 1.1 27.7 6.3 35.1 48.6 52.8 10.8 12.2 44.8 Kinyuru et al. (2013)

bellicosus Not Found in America A 1.2 38.4 9.5 49.5 41.7 44.6 5 5.9 47 Kinyuru et al. (2013)

Pseudacanthotermes militaris Not Found in America A 26 5.9 32.2 50.3 56.1 11.5 11.7 46.6 Kinyuru et al. (2013)

spiniger Not Found in America A 0.8 28 6.1 35.8 49.3 52.9 10.5 11.3 47.3 Kinyuru et al. (2013)

Oryctes owariensis Not Found in America L 2.5 0.2 0.2 3.1 5.2 43.6 45.5 50.9 53.8 Womeni et al. (2009)

rhinoceros USA and Mexico L 3.5 28.7 2.1 34.4 41.5 45.9 14.1 19.7 38.1 Ekop et al. (2009)

Vespa + velutina Not Found in America B 6 31.9 7.8 48.3 35.3 39.7 5.2 12.1 11.6 Ghosh et al. (2021)

mandarinia Canada B 2.5 21.3 5 30.7 27.7 29.2 33.7 40.1 20.2 Ghosh et al. (2021)

basalis Not Found in America B 1.4 15.8 5.4 24.3 23.9 25.2 42.8 50.5 22.2 Ghosh et al. (2021)

DS, Developmental Stage; L, Larva; P, Pupa; A, Adult; +Fatty acid content (mg/100 g dry matter) was obtained from the respective paper and recalculated as % of total fatty acids; *Mated queen; **Oil. SFA, Saturated fatty acids; MUFA, Monounsaturated fatty acids; 
PUFA, Polyunsaturated fatty acids; TFA, Total Fatty Acids or Fat (g/100 g Dry Matter).
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potassium, fixing nitrogen, and producing enzymes like glucanases, 
chitinases, and ACC (1-aminocyclopropane-1-carboxylate) 
deaminases, among others (Poveda et al., 2019; Barragán-Fonseca 
et al., 2022).

Tenebrio molitor frass was found to contain a diverse microbial 
community, including over 4,700 bacterial and 1,200 fungal strains, 
many of which were identified as plant growth-promoting microbes. 
The removal of these microbial strains from TM frass resulted in 
reduced plant growth and yield in fertilization experiments (Poveda 
et al., 2019). Studies have shown that using insect frass in fertilization 
experiments can activate plant defenses against pathogens and pests, 

leading to improved overall plant health. Root-colonizing microbes, 
such as beneficial rhizobacteria like Bacillus, Pseudomonas, and 
Serratia, can trigger systemic resistance in plants and bolster defense 
mechanisms against potential pathogen or insect attacks (Pineda et al., 
2013; Ray et al., 2015, 2016; Chavez and Uchanski, 2021).

The bioprotective effect of insect frass on plants is attributed to 
specific chemical compounds, known as effectors or elicitors, present 
in the frass. Chitin and chitosan, derived from the exoskeletons of 
insects, are considered potent elicitors that mimic compounds to 
which plants respond when attacked by pathogens containing chitin. 
These compounds elicit various plant responses, including the 

TABLE 6 Minerals content of selected edible insects (mg/100  g) and their distribution in Latin America and the Caribbean.

Genus Species Distribution DS Ca Mg Na K P Fe Zn Cu Mn Reference

Anaphe infracta Not Found in 

America

L 8.6 1.0 111.3 1.8 Banjo et al. 

(2006)

reticulate Not Found in 

America

L 10.5 2.6 102.4 2.2 Banjo et al. 

(2006)

venata Not Found in 

America

L 8.6 1.6 100.5 2.0 Banjo et al. 

(2006)

sp. Not Found in 

America

L 7.6 1.0 122.2 1.6 Banjo et al. 

(2006)

venata Not Found in 

America

L 40.0 50.0 30.0 1150.0 730.0 10.0 10.0 1.0 40.0 Ashiru (1989)

Apis cerana West and East 

USA

L 63.1 86.6 37.2 823.1 715.6 5.9 7.3 1.0 1.1 Ghosh et al. 

(2020)

P 62.9 104.3 44.4 1153.2 931.5 7.1 7.7 1.2 0.2 Ghosh et al. 

(2020)

A 91.1 148.8 77.1 1538.8 1283.9 11.1 12.9 1.9 0.2 Ghosh et al. 

(2020)

dorsata Not Found in 

America

P 68.9 103.4 48.6 1136.6 905.0 5.8 6.4 1.1 0.1 Ghosh et al. 

(2020)

A 78.5 113.3 53.9 1254.3 972.3 7.6 7.4 1.2 0.1 Ghosh et al. 

(2020)

Brachytrupes orientalis Not Found in 

GBIF

A 76.3 87.2 112.0 412.3 18.7 8.5 1.5 5.0 Chakravorty 

et al. (2014)

sp. Not Found in 

America

A 9.2 0.1 126.9 0.7 Rumpold and 

Schlüter (2013)

Imbrasia epimetheus Not Found in 

America

L 224.7 402.2 75.3 1258.1 666.7 13.0 11.1 1.2 5.8 Rumpold and 

Schlüter (2013)

ertli Not Found in 

America

L 55.0 254.0 2418.0 1204.0 600.0 2.1 1.5 3.4 Rumpold and 

Schlüter (2013)

oyemensis Not Found in 

America

L 73.0 730.0 680.0 Rumpold and 

Schlüter (2013)

Macrotermes subhylanus Not Found in 

America

A 58.7 53.3 8.1 Kinyuru et al. 

(2013)

bellicosus Not Found in 

America

A 63.6 116.0 10.8 Kinyuru et al. 

(2013)

Pseudacanthotermes militaris Not Found in 

America

A 48.3 60.3 12.9 Kinyuru et al. 

(2013)

spiniger Not Found in 

America

A 42.9 64.8 7.1 Kinyuru et al. 

(2013)

DS, Developmental Stage; L, Larva; P, Pupa; A, Adult.
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expression of defense-related genes, activation of jasmonate hormones, 
production of phytoalexins, phenolics, terpenes, and reactive oxygen 
species, and cellular changes such as cytoplasmic acidification, 
deposition of callose and lignin, and cell death (Sharp, 2013; Barragán-
Fonseca et al., 2022). The positive effects of using frass on plant health 
emphasize its potential for controlling plant pathogens and pests. 
However, further studies are needed to determine the minimum 
effective dose of insect frass to stimulate plant defense responses and 
whether these responses vary among frass from different insect species 
(Poveda, 2021; Barragán-Fonseca et  al., 2022; Lopes et  al., 2022; 
Wantulla et al., 2023).

5.4 Pharmaceuticals

Insects are valuable sources of chemical compounds with 
significant pharmaceutical applications. Alloferons, which are 
peptides extracted from bacteria-infected Calliphora vicina fly 
maggots, such as alloferon-1, have been found to stimulate natural 
killer cell activity and interferon synthesis. They also exhibit antitumor 
and antiviral properties. Alloferon-1 has been implicated in regulating 
acute and chronic inflammatory responses in various diseases, such 
as skin and corneal epithelial cells, rheumatoid arthritis, and asthma 
(Ryu et al., 2008; Zhang et al., 2014; Jo et al., 2022; Lee et al., 2023).

TABLE 7 A comparative account of the proximate nutrient content of different developmental stages of edible insects (g/100  g dry matter basis).

Insect Distribution DS* Protein Fat Fibre NFE + Ash Reference

Coleoptera

Tenebrio molitor North America and South 

America

L 47.7 37.7 5.0 7.1 3.0 Ramos-Elorduy et al. (2002)

P 53.1 36.7 5.1 1.9 3.2 Ramos-Elorduy et al. (2002)

A 60.2 20.8 16.3 0.0 2.7 Ramos-Elorduy et al. (2002)

Rhynchophorus 

phoenicis

Not Found in America Early L 9.1 61.5 22.1 4.9 2.4 Omotoso and Adedire (2007)

Late L 10.5 62.1 17.2 7.8 2.3 Omotoso and Adedire (2007)

A 8.4 52.4 21.8 16.0 1.4 Omotoso and Adedire (2007)

Rhynchophorus 

phoenicis

Not Found in America L 23.4 54.2 3.4 5.0 5.2 Opara et al. (2012)

Immature P 33.1 42.7 3.1 6.7 7.4 Opara et al. (2012)

Mature P 34.9 47.1 2.4 5.6 3.0 Opara et al. (2012)

A 34.1 44.7 7.2 4.0 5.8 Opara et al. (2012)

Rhynchophorus 

phoenicis

Not Found in America Early L 9.1 24.2 5.8 13.0 2.4 Chinweuba et al. (2011)

Late L 10.5 25.4 6.0 12.0 2.3 Chinweuba et al. (2011)

Oryctes rhinoceros USA and Mexico L 70.8 7.5 5.4 7.0 8.3 Omotoso (2018)

P 65.3 20.2 2.2 4.3 3.2 Omotoso (2018)

A 74.2 9.6 3.7 2.8 5.3 Omotoso (2018)

Hymenoptera

Apis mellifera All America L 42.0 19.0 1.0 35.0 3.0 Ramos-Elorduy et al. (1997)

P 49.0 20.0 3.0 24.0 4.0 Ramos-Elorduy et al. (1997)

Apis mellifera 

ligustica

Not Found in America L 35.3 14.5 45.1 4.1 Ghosh et al. (2016)

P 45.9 16.0 34.3 3.8 Ghosh et al. (2016)

A 51.0 6.9 30.5 11.5 Ghosh et al. (2016)

Orthoptera

Acheta domesticus 

(as is basis)

North America (Canada, 

USA and Mexico)

N 15.4 3.3 5.8 0.9 1.1 Finke (2002)

A 20.5 6.8 10.0 1.1 Finke (2002)

Zonocerus variegatus Not Found in America N1 18.3 4.3 0.9 0.4 1.9 Ademolu et al. (2010)

N2 14.4 4.8 0.9 0.4 1.0 Ademolu et al. (2010)

N3 16.8 2.9 1.5 0.9 0.9 Ademolu et al. (2010)

N4 15.5 0.7 0.9 9.7 1.6 Ademolu et al. (2010)

N5 14.6 1.1 0.9 9.8 1.6 Ademolu et al. (2010)

N6 16.1 0.9 1.0 8.8 1.5 Ademolu et al. (2010)

A 21.4 0.9 1.2 10.0 1.4 Ademolu et al. (2010)

*DS, Developmental Stage; L, Larva; P, Pupa; N, Nymph; A, Adult stage.
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TABLE 8 Antinutrient content in Insect-based Foods (mg/100  g) and their distribution in Latin America and the Caribbean.

Insect Distribution Phytate Tannin Oxalate Trypsin 
Inhibitor

Lectin Hydrocyanide Reference

Ant + 2030.8 400.0 Adeduntan (2005)

Termite + 242.21 948.3 Adeduntan (2005)

Winged termite+ 1128.2 250.0 Adeduntan (2005)

Cricket + 3159.0 900.0 Adeduntan (2005)

Meal bug 225.44 1150.0 Adeduntan (2005)

Grasshopper+ 1100.1 1050.0 Adeduntan (2005)

Anaphe venata+ Not Found in 

America

1918.0 753.3 Adeduntan (2005)

Tree Hopper 1000.0 Adeduntan (2005)

Rhynchophorus 

phoenicis*L

Not Found in 

America

1.4 1.0 0.1 0.9 0.6 Ekop et al. (2010)

Gymnogryllus 

lucens+ A

Not Found in GBIF 0.03 0.03 1.3 0.2 Ekop et al. (2010)

Heteroligus meles + Not Found in 

America

0.03 0.04 0.3 0.3 Ekop et al. (2010)

Rhynchophorus + L South Western and 

Eastern USA, 

Mexico, Central 

America, South 

America and 

Caribbean

0.03 0.04 1.8 0.2 Ekop et al. (2010)

Zonocerus 

variegatus+ A

Not Found in 

America

0.03 0.04 2.6 0.3 Ekop et al. (2010)

Oedaleus abruptus+ A Not Found in 

America

2450.0 600.0 Ganguly et al. (2013)

Lethocerus indicus* 

N, A

West USA 372.3 Shantibala et al. 

(2014)

Laccotrephes 

maculatus* N, A

Not Found in 

America

350.4 Shantibala et al. 

(2014)

Hydrophilus 

olivaceous* A

Not Found in 

America

52.9 Shantibala et al. 

(2014)

Cybister 

fripunclactus* A

Not Found in GBIF 301.7 Shantibala et al. 

(2014)

Crocolhemes servillia 

* N

Not Found in GBIF 465.3 Shantibala et al. 

(2014)

Macrotermes 

nigeriensis+ A

Not Found in GBIF 15.2 0.6 103.0 Omotoso (2015)

Oryctes rhinoceros+ L USA and Mexico 16.1 0.6 109.0 Omotoso (2015)

Oecophylla 

smaragdina + A

Not Found in GBIF 171.0 496.7 Chakravorty et al. 

(2016)

Odontotermes sp. + A Central America 141.2 615.0 Chakravorty et al. 

(2016)

Oxya hyla hyla + A Not Found in GBIF 2316.0 474.0 Ghosh et al. (2016)

Oryctes rhinoceros+ L USA and Mexico 37.0 5.6 1.3 Finke (2002)

Oryctes rhinoceros + P USA and Mexico 39.4 6.8 1.3 Finke (2002)

Oryctes rhinoceros + A USA and Mexico 41,1 4.2 1.2 Finke (2002)

L, Larva; P, Pupa; N, Nymph; A, Adult; *Anti-nutrient content was estimated based on wet weight; +Anti-nutrient content was estimated based on dry weight.
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Cantharidin, a toxic compound extracted from blister beetles 
such as Mylabris phalerata and M. cichorii, has demonstrated 
promising antitumor effects by inhibiting the proteins phosphatase 1 
(PP1) and phosphatase 2A (PP2A). It has the potential to treat 
various cancers, including bladder, colon, pancreatic, liver, breast, 
oral, and leukemia (Naz et al., 2020). Melittin, a peptide extracted 
from bee venom, has been shown to possess antitumor properties. 
Comprising 26 amino acids, melittin induces the creation of pores in 
lipid membranes, resulting in cell disruption and potential antitumor 
effects. However, its clinical application is limited due to significant 
hemolytic activity (Wang et al., 2022). Sericin, produced by silkworm 
larvae, offers several health benefits due to its composition of 18 
amino acids, including eight that are essential for human metabolic 
processes. It has therapeutic properties such as accelerating wound 
healing, reducing blood pressure, protecting the nervous system, 
exhibiting anti-tumor activity, controlling blood sugar, reducing 
wrinkles, providing anti-aging effects, and possessing antioxidant 
capacity (Kunz et al., 2016; Suryawanshi et al., 2020).

Insects significantly contribute to our understanding of bioactive 
compounds. Philanthotoxins from digger wasps are helping 
researchers understand ligand-gated ion channels. Solenopsin from 
fire ants inspires the synthesis of insecticidal compounds. Bee venom 
components, such as apamin and melittin, have specific effects on 
potassium channels and act as membrane-active peptides. The saliva 
toxins of assassin bugs interact with the voltage-gated calcium 
channels in their prey. Some beetles produce diamphotoxin and 
leptinotarsin, which are hemolytic peptide toxins traditionally used as 
arrow venom. Wasp venom contains mastoparan, a potent peptide 
toxin (Kachel et al., 2018; Biondi et al., 2022; Ye et al., 2023). The 
investigation of insects as sources of bioactive compounds is a 
continuing area of research.

6 Future directions and conclusions

Latin America’s adoption of insect consumption not only 
surpasses that of the European market but also demonstrates a 
promising growth trajectory. Insects are deeply rooted in the region’s 
culinary heritage, holding a unique position as a traditional and 
significant food source. Their popularity stems not only from their 
culinary appeal but also from their substantial nutritional content, 
making them a valuable asset in addressing food security challenges 
prevalent in many Latin American communities (Halloran et  al., 
2018). Despite the acknowledged benefits, widespread hesitancy 
persists, driven by aesthetic concerns regarding insect appearance. 
However, as global challenges such as population growth, limited 
agricultural space, and environmental degradation intensify, the need 
to explore alternative food sources becomes urgent (Klaus and 
Nakamura, 2021). Insects offer a sustainable solution, providing an 
opportunity to address these challenges while also supporting cultural 
preservation and economic development. Insects provide a rich source 
of essential nutrients, offering a promising avenue to combat 
malnutrition, especially in regions with limited access to diverse and 
nutrient-dense foods. To ensure the safety and quality of insect-
derived products, it is imperative to prioritize the development of 
regulated insect farming practices over consuming wild-caught 
specimens, which may pose health risks (Van Huis, 2016; Imathiu, 
2020; Aguilar-Toalá et al., 2022). The establishment of legislation is T
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crucial to standardize production methods and uphold consumer 
confidence in insect-based foods.

The growing acceptance of consuming edible insects in Latin 
America presents a multifaceted opportunity that includes economic 
prosperity, cultural preservation, and geopolitical influence. 
Economically, the cultivation and utilization of insects offer the potential 
to create new industries and job opportunities, contributing to the 
region’s socio-economic development. The low production costs and 
high nutritional value of insects position them as a lucrative commodity 
in both domestic and international markets, fostering economic growth 
and trade expansion. Integrating insects into Latin American culinary 
traditions not only preserves cultural heritage but also fosters a sense of 
identity and pride within communities. By embracing insect 
consumption, Latin America reaffirms its cultural richness and diversity 
while addressing pressing global challenges sustainably. From a 
geopolitical standpoint, the region’s leadership in insect production and 
consumption grants it a strategic advantage, elevating its prominence in 
the global food trade arena. Effective utilization of this valuable resource 
has the potential to propel Latin America to the forefront of the 
emerging insect-based food industry, solidifying its position as a key 
player in shaping the future of sustainable food systems worldwide. 
Through strategic investment, innovation, and collaboration, Latin 
America can harness the full potential of edible insects, paving the way 
for a more resilient, fair, and sustainable food future.

For these reasons, it is necessary to carry out activities aimed at 
the proper conservation and use of this privileged resource, such as

 • Implementing educational programs to dispel myths and 
misconceptions about insect consumption, working with 
communities at the local level to raise awareness of the nutritional 
benefits and cultural importance of edible insects. This could 
include workshops, cooking demonstrations, and information 
campaigns tailored to different demographic groups.

 • We can also encourage culinary professionals to incorporate 
edible insects into traditional and contemporary dishes by 
supporting initiatives that showcase the versatility and 
deliciousness of insect-based cuisine through food festivals, 
cooking competitions, and culinary events. This can help increase 
consumer acceptance and demand.

 • In addition, there is a need to collaborate with government 
authorities to establish clear rules and regulations for the 
production, processing, and sale of edible insects. This should 
focus on food safety regulations to ensure the quality and 
integrity of insect products.

 • Provide resources for research projects aimed at improving the 
nutritional profile, taste, and texture of edible insects. Encourage 
collaboration between academia, industry, and agricultural 
stakeholders to drive innovation in insect-rearing techniques and 
product development.

 • In addition, there is a need to facilitate access to resources, 
training, and infrastructure required to establish community 
insect farms. Emphasizing the socio-economic benefits of insect 
farming, such as income generation and food security, can 
encourage community participation.

 • Facilitate access to insect-derived products by expanding 
distribution networks and increasing market visibility. Explore 
innovative packaging methods and marketing strategies that 
cater to various consumer preferences and food trends.

 • Direct efforts should be  made to foster collaboration with 
international partners, agencies, research institutions, and 
industry stakeholders to leverage expertise and resources. It is 
important to learn from success stories and adapt proven 
strategies to the unique context of Latin America.
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