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Pulsed Electric Fields (PEF) technology is an emerging non-thermal food 
processing technology that is widely used because of its low damage to food 
quality and its ability to kill harmful microorganisms in food. The oxidative stress 
caused by PEF results in the synthesis and accumulation of nutrients, and plant 
foods stimulated by PEF produce large amounts of Reactive Oxygen Species 
(ROS), which activate the metabolite synthesis pathway and eventually synthesize 
proteins, polyphenols, thioglucosides and carotenoids; ROS accumulate in 
the cell membrane of microorganisms and cause protein expression. The 
accumulation of ROS in the cell membrane of microorganisms can cause 
abnormal protein expression, damage the lipid layer and Deoxyribonucleic 
Acid (DNA), and eventually lead to microbial inactivation. PEF technology in 
food processing are multifaceted, enhancing both the nutritional value of food 
through the augmented presence of health-beneficial compounds and ensuring 
food safety by effectively inactivating harmful microorganisms. This innovative 
technology stands at the forefront of food processing solutions, promising to 
fulfill the growing consumer demand for foods that are not only safe and of high 
quality but also rich in nutritional value. PEF’s role as a cornerstone technology 
in the food industry heralds a new era of food processing, where nutrition and 
safety converge to meet the sophisticated needs of today’s consumers.
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1 Introduction

Traditional food processing techniques, while essential for nutrient extraction, food 
storage, and drying, often negatively impact the nutritional value and safety of food. These 
techniques, including large-scale industrial processes like heat treatment, can lead to nutrient 
loss and the formation of hazardous substances, ultimately posing risks to human health 
(Vorobiev and Lebovka, 2006; Aghamirzaei et  al., 2015; Pan et  al., 2017). The primary 
drawback of these traditional methods is their tendency to compromise the nutritional quality 
and flavor of food in pursuit of processing efficiency (Golshan Tafti et al., 2013; Tafti et al., 
2013). Specifically, thermal processing methods can irreversibly damage thermally unstable 
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nutrients or those present in trace amounts, thereby hindering 
nutrient accumulation in foods (Lee et al., 2011).

Furthermore, the reduction in nutrient levels is exacerbated by the 
excessive use of chemical additives in some traditional processing 
techniques, raising concerns about their long-term implications for 
food quality and safety (Sanchez-Moreno et al., 2009). This context 
highlights the urgent need for innovative food processing technologies. 
Such technologies aim to not only minimize nutrient loss but also 
enhance the biosynthesis of vital compounds like phenols, carotenoids, 
and proteins through the stimulation of metabolic pathways 
(Cisneros-Zevallos, 2003; Jacobo-Velazquez and Cisneros-Zevallos, 
2012; Jacobo-Velazquez and Cisneros-Zevallos, 2013). Emerging 
techniques, including high static pressure, pulsed electric fields (PEF), 
ultrasound, and ultraviolet light, represent promising alternatives to 
traditional methods by offering the potential to improve both the 
nutritional quality and safety of food products (Chen et al., 2010; 
Kumar and Han, 2012; Xu et al., 2017; Asaithambi et al., 2021; Chen 
et al., 2022; Liu et al., 2023).

With advantages such as requiring low temperatures, rapid 
processing time, and being environmentally friendly, PEF is rapidly 
gaining attention as a promising food processing technology 
(Manzoor et al., 2019a,b; Rahaman et al., 2020; Lal et al., 2021). PEF 
causes negligible damage to food nutrients compared to traditional 
food processing techniques and can eliminate some hazardous 
microorganisms to extend the preservation time of food (Soliva-
Fortuny et  al., 2009; Napotnik et  al., 2016; Peng et  al., 2016; Liu 
C. Y. et  al., 2021; Nabilah et  al., 2022; Preetha et  al., 2023). Most 
research in PEF has focused on active substance extraction, 
pasteurization, and the drying and thawing of food products, and 
there is relatively little research on the influence of PEF on 
biometabolic pathways that induce the synthesis of nutrients in food 
products (Boussetta et al., 2011, 2012; Rahaman et al., 2019; Ahmed 
et al., 2020; Preetha et al., 2021).

PEF causes serious stimulation and damage to plants, resulting in 
the production of reactive oxygen species (ROS), which can further 
damage plant cells. Plants secrete many metabolites to protect 
themselves by reducing this damage, and some of these metabolites 
are also essential nutrients for the human body (Kris-Etherton et al., 
2002; Liu J. H. et  al., 2021). These nutrients include primary and 
secondary metabolites, such as polyphenolic compounds and proteins, 
which have a strong protective effect on human cells and reduce the 
damage caused by oxidative stress in the human body (Kris-Etherton 
et al., 2002; Alegret, 2007). In response to external stimuli, plant cells 
undergo an immediate response, releasing stress signaling factors to 
activate signaling networks, which then participate in the synthesis of 
transcription factors and eventually generate metabolites. In the stress 
physiology of plant foods after treatment with PEF (Pereira et al., 
2009; Vallverdu-Queralt et al., 2012; Banks et al., 2015; Kasprzycka 
et al., 2021), this process causes an increase in nutrients (Vallverdu-
Queralt et al., 2013). PEF increases cell membrane permeability and 
even causes cell membrane rupture, which triggers a stress response 
in cells, similar to injury stress (Bussler et al., 2015). The cells then 
secrete several substances to protect themselves from damage. When 
PEFs are applied to microorganisms, they also produce large amounts 
of ROS, which will eventually cause structural damage to DNA and 
proteins, lipid peroxidation, and even cell membrane rupture, leading 
to the death of microorganisms and achieving sterilization (Sierra and 
McComb, 2008; Takatsuji et al., 2017; Wang et al., 2022).

This paper reviews the synthesis of plant nutrients through the 
oxidative stress pathway in PEF to enhance the extraction rate of 
active ingredients. The mechanism of microbial killing by PEF 
through the oxidative stress pathway is also summarized to provide 
future research directions for the effects of PEF technology on food 
quality via the oxidative stress pathway.

2 PEF induces nutrient synthesis in 
plant foods

Previous studies have shown that PEF stimulates cells and thus, 
greatly increases intracellular ROS generation (Gabriel and Teissie, 
1994; Pereira et al., 2009). It has also been shown that the level of ROS 
is closely related to the health status of cells and is usually a common 
indicator of plant cell response to stress owing to damage caused by 
external stimuli. Specifically, when plant cell membrane is damaged 
or ruptured, ATP released from the damaged cell binds to its cell 
membrane receptor resulting in ROS production (Vallverdu-Queralt 
et al., 2012, 2013). Thus, when plants are exposed to external stimuli, 
their stress response is triggered. It has also been shown that ethylene 
production involves the conversion of methionine, generation of 
aminoethoxyvinylglycine, and release of ethylene. Further, the 
synthesis of jasmonic acid primarily involves the lipid metabolism 
pathway, wherein lipid molecules, such as phospholipids undergo 
oxidation and degradation to produce precursors of jasmonic acid 
after which enzymes, such as lipoxygenases, play a pivotal role in the 
synthesis of jasmonic acid from these precursors by catalyzing lipid 
oxidation reactions (Vallverdu-Queralt et al., 2012). These secondary 
stress signaling molecules diffuse through the cell membrane and 
initiate signal transduction networks leading to the activation of 
transcription factors that promote nutrient synthesis in plants 
(Jacobo-Velazquez et al., 2017). The ROS signaling pathway typically 
involves the activation of specific transcription factors, such as those 
belonging to the MYB (Myeloblastosis) and bHLH (basic Helix–
Loop–Helix) families. These factors play crucial regulatory roles in 
controlling the synthesis of phenolic compounds. Further, activated 
transcription factors stimulate the expression of relevant genes that 
encode the key enzymes involved in the biosynthesis pathways of 
phenolic compounds, such as phenoloxidases, peroxidases, and 
polyphenoloxidases. Under induction by ROS and ethylene, plants 
initiate the synthesis and accumulation of various phenolic 
compounds, including flavonoids, anthocyanins, phenolic acids, and 
polyphenols. These compounds then exhibit diverse biological 
activities, such as antioxidant activity, resist pathogen infection, and 
act as a defense against oxidative stress (Jacobo-Velazquez et al., 2015). 
Conversely however, ethylene and jasmonic acid induce the synthesis 
of thioglucosidic substances (Villarreal-Garcia et al., 2016). ROS also 
induce the synthesis of compounds, such as carotenoids (Bouvier 
et al., 1998; Figure 1).

PEF technology is lauded for its ability to enhance the synthesis 
of secondary metabolites in plant cells through significant stimulation, 
yet it also poses potential collateral damage to plant cells, potentially 
impacting plant metabolism and overall quality (Attri et al., 2022). To 
mitigate these adverse effects, optimizing PEF parameters—such as 
intensity, duration, and frequency—is crucial to minimize cellular 
damage while maximizing the production of desired metabolites. By 
fine-tuning the PEF process parameters, we  can ensure that they 

https://doi.org/10.3389/fsufs.2024.1385533
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Su et al. 10.3389/fsufs.2024.1385533

Frontiers in Sustainable Food Systems 03 frontiersin.org

contribute positively to food quality and safety, aligning with the 
overarching goal of improving the healthfulness and sustainability of 
our food systems (Pipliya et al., 2023; Trusinska et al., 2023; Negi 
et al., 2024).

2.1 Phenols and carotenoids

Galindo et al. (2009) treated potatoes with PEF (100–400 kv/cm, 
1 ms) to produce tissue trauma and then observed a series of metabolic 
reactions. First, a significant amount of ROS was generated, peaking 
at 30–60 min (Bolwell, 1996). Second, crosslinking of hydroxyproline-
rich glycoproteins in the cell wall of potatoes occurred within 1 min 
after treatment. Over time, biosynthesis of suberin occurred at the cut 
surface (Bernards et al., 1999). This was accompanied by a significant 
increase in chlorogenic acid, which improves the protection of plant 
tissues against oxidative stress (Matsuda et al., 2003). Levels of cell 
membrane-associated metabolites, such as sterols and 
galactosylceramide, were also significantly increased after injury 
(Piironen et al., 2000). After 24 h, the potatoes synthesized peptides to 
increase protein content in response to oxidative stress damage (von 
Wiren et al., 1999).

Leong et  al. investigated the effect of PEF treatment on the 
protective responses in different carrot species to resist H2O2-induced 
oxidative damage (Table 1). Purple Haze and Nutri Red under 303 kJ/
kg treatment improved the resistance of Caco-2 cells to oxidative 
damage by restoring cell viability and inhibiting NO production 
(Leong et al., 2016a). The total carotenoid content in purée was higher 
than that of the untreated variety under treatment conditions of 
0.8 kV/cm. Total carotenoids increased significantly when the electric 
field intensity was increased from 0.3 kV/cm to 0.8 kV/cm. The total 
phenolic content increased significantly when the energy input was 
increased from 35 to 303 kJ/kg compared to the untreated control. The 
greatest increase in total phenolic content was observed after the PEF 
treatment at 303 kJ/kg compared to that after PEF treatment under 

different conditions. These findings suggest that greater recovery of 
total phenols from carrots may require more intense treatment, either 
by increasing the electric field intensity to induce higher cell damage 
or by supplying more energy to the cells to make cell damage last 
longer and to damage more cells. The Yellow Solar purée extract 
obtained at 0.8 kV/cm significantly increased Caco-2 cell viability and 
inhibited lactate dehydrogenase leakage and NO production. 
PEF-treated carrot extracts exhibited a good protective effect on cell 
viability and were able to restore the number of viable cells and the 
percentage of NO production in oxidatively stressed (H2O2-
containing) cells to levels similar to those in non-stressed (H2O2-free) 
cells. Furthermore, the cytoprotective capacity of PEF extracts was 
linearly related to total carotenoid content and total anthocyanin 
content. For Yellow Solar carrots, which had a low total carotenoid 
content, PEF significantly increased the carotenoid content (Leong 
et al., 2016a; Rezaeinezhad et al., 2022). Leong et al. (2016b) also 
found that PEF treatment shortened the immersion time and 
improved the protection against H2O2 oxidative stress in Vitis Vinifera. 
Leong et  al. also evaluated the effect of PEFs on the release of 
anthocyanins and the health effects of Pinot noir grape juice; Pinot 
noir grapes treated with PEF were able to produce substances with 
stronger antioxidant activity and exhibited greater protection against 
oxidative stress (Leong et al., 2016c; Chen et al., 2023).

PEF-processed tomatoes contained much higher concentrations 
of lutein, carotene, trans-lycopene, and cis-lycopene than heat-
processed tomatoes. This was not only because the low-temperature 
treatment reduced nutrient decomposition but also because tomato 
cells damaged by PEF released ATP. This ATP diffused between 
cellular spaces as a trauma signal, thereby stimulating a stress 
response, enhancing the metabolic activity of tomatoes, and 
synthesizing a large number of nutrients (Basu et al., 2001; Perveen 
et al., 2015; Desmarchelier et al., 2018; Ali et al., 2021). Application of 
PEF treatment leads to the production of more nutrients with high 
levels of cis-isomers and higher bioavailability of cis-isomeric 
nutrients in the human body. Vallverdú-Queralt et al. applied medium 

FIGURE 1

PEF induces nutrient accumulation through the oxidative stress pathway.
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intensity (1 kV/cm, 16 monopolar pulses of 4 μs, 0.1 Hz) PEF to raw 
tomatoes, which increased the content of 15-cis lycopene in tomato 
juice by 63%–65% (Vallverdu-Queralt et al., 2013). Martinez et al. 
(2020) used PEF (15 kV/cm, 6.8 μs pulse width) to aid the extraction 
of carotenoids from dried Rhodotorula glutinis yeast and improved the 
extraction rate of carotenoids through PEF by optimizing the 
experimental conditions. The extraction rate was 20% without PEF 
treatment but increased to 80% after PEF treatment. Kokkali et al. 
(2020) found that the antioxidant capacity of PEF-treated microalgae 
bio extracts was significantly enhanced. PEF can increase the number 
of nutrients synthesized in plant-based foods, which can be utilized to 
customize extraction parameters for low levels of active substances 
and synthesize more of the nutrients required by humans (Leong et al., 
2016a; Rezaeinezhad et al., 2022).

2.2 Thioglucosides

Thioglucoside is widely used in the pharmaceutical and food 
industries for its antibacterial, neuroprotective, and anticancer effects 
(Watson et al., 2013; Choudhury et al., 2022; Hoffmann et al., 2022; 
Marcinkowska and Jelen, 2022; Youseif et al., 2022; Zhou et al., 2022). 
Thioglucoside is water-soluble and heat-sensitive; therefore, heating 
causes a large loss of thioglucosides, and heat treatment should 
be avoided when extracting these components (Hoffmann et al., 2022; 
Marcinkowska and Jelen, 2022). Thioglucoside maintains stable 
chemical properties and biological activity in the subcellular space of 
plant tissues. When cells rupture, black mustard enzymes come into 
contact with and hydrolyze thioglucoside, and the main product, 
isothiocyanate, is responsible for the strong taste of mustard, radish, 
and broccoli sprouts. The loss of thioglucoside is also closely related 
to the inactivation of black mustard enzymes (Hanschen and 
Schreiner, 2017). Whether PEF can inactivate black mustard enzymes 
for the purpose of retaining thioglucosides has been a focus of 
research (Yen and Wei, 1993; Ghawi et al., 2012; Cebeci et al., 2022).

PEF injury triggers the production of ROS, which activates 
plant primary and secondary metabolism (Jacobo-Velazquez et al., 

2015). In addition, other signaling molecules, such as ethylene and 
jasmonic acid, are produced after injury and play a key role as 
regulators of ROS levels and the expression of secondary metabolic 
genes, triggering the accumulation of specific secondary 
metabolites (Torres-Contreras et  al., 2014a,b). In the case of 
broccoli, wounding triggers the biosynthesis and accumulation of 
indolic glucosinolates (Torres-Contreras et al., 2014b). The black 
mustard enzyme in broccoli catalyzes the enzymatic reaction of 
thioglucosinolates to produce other bioactive products, the content 
of which is the main factor affecting the quality of broccoli 
products. Frandsen et al. found that PEF treatment at 35 kv/cm 
inactivated the black mustard enzyme and that most thioglucosins 
were degraded prior to PEF treatment. If PEF can successfully 
extract thioglucoside, then the inactivation of the black mustard 
enzyme by high pressure treatment is required (Frandsen 
et al., 2014).

Extraction of thioglucosides from broccoli flower stems using PEF 
technology was performed by Aguilo-Aguayo et  al. (2015). The 
samples were subjected to an electric field intensity of 1–4 kV/cm at 
5 Hz and a treatment time of 50 to 1,000 μs. The results of the 
experiments revealed that glucosinolates, thioglucosinolates, 
mustardolates, and neo mustardolates increased by approximately 
two-fold in broccoli florets after PEF pretreatment, while black 
mustard enzymes were found to remain active. This experiment found 
that PEF can increase the extraction efficiency of thioglucosides 
without enzyme inactivation, which may become a new 
research direction.

3 PEF induces bacterial apoptosis

PEF technologies are potentially the most important cold 
pasteurization and sterilization food preservation technique to replace 
or partially substitute thermal processes. During the PEF process, lysis 
of microorganisms is caused by irreversible structural changes in the 
membranes, leading to pore formation and destruction of the 
semipermeable barrier of the membrane (Qin et al., 1996; Lasekan 

TABLE 1 Effect of PEF on the synthesis of bioactive substances and bacterial apoptosis through the oxidative stress pathway.

Category Materials Induction pathway Results References

Phenols and 

carotenoids

Potato Oxidative stress Large amounts of chlorogenic acid and proteins are produced Matsuda et al. (2003)

Carrot Oxidative stress
Total carotenoid content and total anthocyanin content 

increased significantly

Leong et al. (2016a) and 

Rezaeinezhad et al. (2022)

Pinot noir grape Oxidative stress
Exhibits better phytochemicals and can protect cells from 

oxidative stress
Leong et al. (2016a)

Tomato Oxidative stress
Production of more nutrients with high levels of cis-isomers and 

higher bioavailability of cis-isomers in humans

Vallverdu-Queralt et al. 

(2013)

Saponin Ginseng Oxidative stress
PEF-derived ginsenosides maintain a more intact surface 

morphology of the cells
Liu et al. (2017)

Thioglucosides Broccoli Oxidative stress
Significant enhancement in glucosin, thioglucomannan, 

mustard, and neomustard levels in broccoli florets and stems
Aguilo-Aguayo et al. (2015)

Bacteria

Staphylococcus 

aureus
Oxidative stress

Excess ROS induce severe oxidative stress, ultimately leading to 

ROS-mediated apoptosis in bacterial cells
Qi et al. (2022)

E. coli Oxidative stress
Excess ROS cause abnormal protein expression and bacterial 

apoptosis
Liu Z. Y. et al. (2019)
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et al., 2017; Pimentel et al., 2023; Wei et al., 2023; Wu et al., 2023; Zhu 
et al., 2023; Wang et al., 2024; Figure 2).

Qi et  al. (2022) analyzed the mechanism of PEF action on 
Staphylococcus aureus from the perspective of ROS-mediated oxidative 
stress. After PEF treatment, the level of ROS in S. aureus increased, 
and the excess ROS induced severe oxidative stress, leading to lipid 
peroxidation, DNA oxidation, cytosolic fatty acid damage, structural 
damage to proteins and DNA, and significant abnormalities in the 
expression of oxidative stress-related genes, ultimately leading to 
ROS-mediated apoptosis in bacterial cells (Qi et al., 2022), as shown 
in Figure 2. Liu Z. Y. et al. (2019) compared the changes in the protein 
expression of E. coli before and after PEF treatment using mass 
spectrometry. Excessive accumulation of ROS has been shown to 
significantly reduce AcnB protein levels in superoxide dismutase-
deficient Salmonella enterica (Thorgersen and Downs, 2009). Another 
upregulated enzyme was the bifunctional proline utilization enzyme 
A (PutA; A0A0G3K113), the deletion of which in E. coli has been 
shown to increase cellular susceptibility to oxidative damage (Zhang 
et al., 2015). Membrane permeability increases after applying PEF to 
E. coli, which not only increases the entry of harmful substances into 
E. coli cells but also causes osmotic imbalance (Aronsson et al., 2005). 
Particularly strong electric fields can cause irreparable perforations in 
the cell membrane, leading to irreversible cell damage, destruction, 
and eventual death (Locke et al., 2006). To ensure the inactivation of 
microorganisms, an electric field with a field strength of 25 kV/cm or 
more is required in food processing (Toepfl et al., 2007).

4 Conclusions future research

As an emerging non-thermal processing technology for food, PEF 
has become a hot new research topic due to its ability to increase 
nutrient content and kill microorganisms through oxidative stress 
pathways (Zulueta et al., 2013; Jacobo-Velazquez et al., 2017; Andreou 

et al., 2022). PEF stimulates plants to secrete metabolites by causing 
damage to plant cells, thereby increasing the accumulation of nutrients 
(Ye et al., 2004; Liu Z. B. et al., 2019). To elucidate the conditions for 
the optimal accumulation of nutrients in food caused by PEF, future 
research should be  based on “omics” approaches (genomics, 
proteomics, and metabolomics) to elucidate the mechanisms in terms 
of genetic material and proteins, allowing the design of optimized 
biological processes to obtain the highest accumulation of bioactive 
molecules in plant foods.

PEF technology has a high extraction efficiency compared to 
traditional extraction techniques and can extract nutrients more 
efficiently (Minamitani et al., 2015; Qi et al., 2022). The nutrients 
extracted from PEF have a more pronounced health effect on the 
human body (Wang et al., 2013; Zandalinas and Mittler, 2018; Jin 
et  al., 2021). The cis-isomeric metabolites produced by PEF 
stimulation are better absorbed by the body, and PEF extracts 
significantly increase cell viability (During and Harrison, 2004; Unlu 
et al., 2007). We can use this theory to customize extraction methods 
for nutrients that have strong health effects but are low in content.

In addition to increasing nutrient accumulation, oxidative stress 
damage after PEF stimulation can also kill microorganisms. In 
addition to membrane damage, which is the main cause of microbial 
inactivation, PEF affects the metabolism of microorganisms through 
the oxidative stress pathway and kills microorganisms by affecting 
their protein expression and damaging their genetic material. The 
process of killing microorganisms does not cause a thermal effect, 
does not affect the taste of food, and even increases the accumulation 
of nutrients (Morales-de la Pena et al., 2011; Khan et al., 2017). Thus, 
PEF treatment results in foods with increased nutrient content and 
low microbial content, with no adverse effects on food quality 
parameters such as taste and color, meaning the produced foods can 
be marketed as commodities or raw materials for further processing 
(Ortega-Rivas and Salmeron-Ochoa, 2014; Misra et al., 2017; Skowron 
and Wantuch, 2020).

FIGURE 2

PEF induces bacterial apoptosis via oxidative damage pathway.
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5 Future research

In the field of food processing, the PEF extraction technique only 
allows the treatment of a limited volume of food owing to the dual 
limitations of field strength and electrode spacing, which are 
particularly prominent in industrial-scale applications. Under such 
conditions, a small flux makes industrial scale-up challenging. Further, 
even though PEF shows potential for highly efficient, safe, and 
environmental friendly food processing, the small volume of its 
treatment chamber and the lack of flexibility limit its industrial scale 
application. Therefore, strategies for obtaining a sufficiently large 
treatment chamber volume for large-scale industrialized food 
processing are necessary.

Finally, owing to its high maintenance cost, the PEF extraction 
technique is more intensive than other extraction technologies. 
Therefore, the design of a food processing unit that is suitable for 
large-scale industrialized applications is key for advancing this field. 
Until these technical and cost-related challenges are overcome, 
maximizing the potential of this extraction technology in the food 
processing field will remain challenging.
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