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Intensifying homestead
climate-smart agriculture and
the challenges to its wider
adoption in Azuari watershed,
Northwest Ethiopia

Ermias Debie*

Geography and Environmental Studies Department, Bahir Dar University, Bahir Dar, Ethiopia

Introduction: The adoption of climate-smart agriculture practices (CSAPs) at

the plot level is a promising yet underutilized strategy in Ethiopia, where

subsistence farming predominates. This study investigates the factors influencing

the intensity of CSAPs on homesteads and identifies key barriers to their broader

adoption.

Methods: Quantitative data were collected through household surveys. Multiple

Linear Regression (MLR) analysis was employed to examine the relationship

between the independent variables and farmers’ decisions to intensify CSAPs.

Results: The findings reveal that slope gradient, extension contacts, farming

experience, dependency ratio-induced labor, and livestock diversity significantly

impact farmers’ decisions to enhanceCSAPs. Major barriers include insecure land

tenure, poormanagement of open grazing, labor-intensive practices, and limited

access to agricultural inputs.

Discussion: To promote the widespread implementation of CSAPs, it is

imperative that these variables are prioritized in agricultural extension policies.

Addressing these barriers is essential for enhancing the adoption of CSAPs, which

will significantly contribute to sustainable agricultural development in Ethiopia.
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1 Introduction

In sub-Saharan nations like Ethiopia, accelerated land degradation due to

deforestation, overgrazing, soil erosion, and nutrient depletion is a serious issue. Rapid

population growth, limited land resources, and increased food demand since the early 20th

century have exacerbated this problem (FAO, 2018; Li et al., 2021). Weak institutional

arrangements and uncertain land ownership lead to inappropriate land use and farming

on steep slopes (Moges et al., 2020). Intensive farming practices, such as crop residue

removal, in-situ burning, and using animal manure for fuel, contribute significantly to land

degradation (Moges et al., 2020; Hossain et al., 2020). These practices result in soil erosion,

loss of fertility, and decreased water retention. Additionally, using animal dung for fuel,

overstocking on croplands, and grazing on steep slopes can compromise crop productivity

and livestock husbandry (Baiyeri et al., 2019).

Climate change, with rising temperatures and decreasing rainfall, further exacerbates

land degradation (Matteoli et al., 2020; Trisos et al., 2022). This decline in

land quality poses significant challenges for crop-livestock mixed farming systems.

Climate-smart agriculture (CSA) offers a promising strategy to address these issues
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by enhancing productivity, mitigation, and adaptation (Burke

et al., 2022; Trisos et al., 2022). In Ethiopia, CSAPs include land

management techniques, with soil and water conservation being

the most widely adopted (61.5%), followed by agroforestry and

integrated soil fertility management (56.5%) (Abegaz et al., 2024).

Intensified CSAPs at homesteads can include terracing

with agroforestry, legume-cereal intercropping, or rotation with

straw retention, composting, and improved grazing systems

(Jabbar et al., 2020; Kuyah et al., 2021; Trisos et al., 2022).

Terracing alone is insufficient for controlling soil loss, maintaining

moisture, preventing nutrient depletion, or increasing crop output

without agroforestry or fodder strips (Debie, 2024). Combining

terracing with vegetative and agronomic strategies reduces costs.

Agroforestry systems, integrating trees/shrubs with crops and

pasture, are sustainable and provide mitigation and adaptation

benefits. Leguminous grass or shrub intercrops and forage strips on

terracing enhance infiltration, soil nutrients, fodder supply, carbon

sequestration, and nitrogen fixation (Matteoli et al., 2020; Horton

et al., 2021; Mpairwe and Mutetikka, 2022).

In crop-livestock mixed systems, smallholder farmers should

adopt diverse agroforestry-based soil conservation methods (Teklu

et al., 2022). Legume-cereal intercropping or rotation improves

soil fertility, reduces nitrogen inputs, and increases carbon

sequestration and nitrogen fixation (Li et al., 2021; Matteoli et al.,

2020; Zhao et al., 2022). Mulching crop residues promotes soil

biodiversity, reduces dry spells, decreases pests, increases soil

organic carbon (SOC), and boosts yields (Su et al., 2021; Kerr et al.,

2022). Composting is essential for maintaining nitrogen intake and

improving soil fertility, significantly impacting crop yield, and food

security, and reducing greenhouse gas emissions (Demeke et al.,

2017; Feliciano, 2019; Ray et al., 2020; Yang et al., 2022). However,

without crop diversity and fodder strip terracing, composting can

be labor-intensive (Debie, 2024).

The farming context—including topography, climate, soil type,

and resource availability—is crucial in identifying the best CSAPs.

Efficient irrigation systems and rainwater harvesting are vital in

arid and semi-arid climates (Hussein, 2024). Crop diversification is

beneficial in regions with unpredictable weather patterns (Thottadi

and Singh, 2024). Various studies have explored CSAP adoption

in different contexts, such as wheat production (Alemayehu et al.,

2024; Geda et al., 2024), coffee-based farming (Diro et al., 2022),

climate variability adaptation (Ahmed et al., 2023; Alhassan and

Haruna, 2024; Kifle et al., 2022), and irrigated farming systems

(Serote et al., 2021). Topography and climate significantly influence

CSAP choices. Stabilized terracing with agroforestry is beneficial in

hilly areas (Gashure et al., 2022), while conservation agriculture

practices like crop rotation and minimal soil disturbance are

effective in areas prone to soil degradation and water scarcity

(Hussein, 2024). Studies show that different CSAPs are used in

various locations but not often combined on a single plot. For

example, Negera et al. (2022) examined techniques in the Bale-

Eco region of Ethiopia, including enhanced crop variety, small-

scale irrigation, integrated pest and weed control, and soil fertility

management. Musafiri et al. (2022) reported on factors affecting the

use of animal manure, agroforestry, soil and water conservation,

crop diversification, and crop-livestock integration in Western

Kenya. Kassa and Abdi (2022) identified factors influencing

irrigation systems, organic manure, and tree planting in southern

Ethiopia. In the central highlands of Ethiopia, Gudina and Alemu

(2024) highlighted determinants affecting conservation agriculture,

integrated soil fertility management, and crop diversification.

The adoption and effectiveness of CSAPs vary based on

farming system contexts, types of CSAPs, and their integration

on a given plot (Ma and Rahut, 2024). Jointly-used climate-

smart agriculture at specific plots is recognized as a novel

approach for optimizing productivity, adaptation, and carbon

offsets. However, smallholder farmers in Ethiopia, where crop-

livestock mixed farming is predominant, face challenges in

adopting these practices. The main obstacles to expanding

intensified CSAPs from homesteads to other farmlands remain

unspecified. This study aims to identify the factors influencing the

intensification of CSAPs at homesteads and the main obstacles

to their broader adoption within watersheds. The findings are

crucial for policy actions to scale up CSAPs in Ethiopia’s highlands.

Scaling up CSAP synergies across agroecologies is essential for

achieving sustainable development goals, including greenhouse

gas mitigation, climate change adaptation, poverty reduction, and

biodiversity conservation.

2 Materials and methods

2.1 Description of the study watershed

2.1.1 Location
The Azuari watershed, located between 10◦42′26.399′′N to

11◦9′13.462′′N latitude and 37◦52′6.066′′E to 38◦6′43.817′′E

longitude, spans ∼67,523 hectares between Addis Ababa and

Bahir Dar. This watershed exemplifies the agroclimatic diversity

and varied environmental and farming contexts of the Ethiopian

highlands (Hurni et al., 2016). It is representative of policy

frameworks supporting sustainable land management and farmer

livelihoods in Ethiopia’s northwest highlands (Moges et al., 2020).

The elevation ranges from 1,270 to 4,043 meters, dividing the

watershed into four agroecological zones: low-altitude (Kola), mid-

altitude (Woina Dega), high altitude (Dega), and Wirch. These

zones reflect a range of climates from warm and dry sub-humid

(Kola) to cool, humid, and sub-humid (Woina Dega), temperate

and humid (Dega), and humid and cold highlands (Wirch). Thus,

the Azuari watershed represents the diverse agroecologies and

farming systems of Ethiopia’s northwest highlands.

2.1.2 Climate
The study area experiences a single rainy season (“Kiremt”)

from June to September, with the dry season prevailing from

October toMarch. Annual rainfall ranges from 900mm in semiarid

areas to 2,000mm in cold and humid areas.

2.1.3 Soil type distribution and soil loss
The watershed’s major soil types include Eutric

Nitosols, Cambisols, Lithosols, Luvisols, and Vertisols

(FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012; Fischer et al., 2008).

Vertisols dominate the middle part, while Luvisols are prevalent in

the upper part (Haregeweyn et al., 2017). In the lower part, dry-

subhumid climates feature low-fertility, sandy Regosols (Fischer

et al., 2008). Severe soil erosion in croplands, especially in the lower
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and higher parts, is driven by population pressure, steep slopes,

and deforestation (Mequanient and Kebed, 2023). Water-induced

soil erosion is the primary cause of soil degradation, impacting

crop yields.

2.1.4 Land use/cover and farming system
The watershed’s main land uses include cultivated land,

grasslands, shrublands, forests, plantations, and wetlands. Over

three decades, significant areas of grasslands, forests, and

shrublands have been converted to cultivated and bare land

(Yimam, 2022). This conversion increases surface runoff and

decreases base flow (Mekonnen and Disse, 2018). Monthly

streamflow increased by 2 m3/s in wet months and decreased by 0.7

m3/s in dry months between 1990 and 2004 due to vegetation loss

(Yimam, 2022). Forest degradation and agricultural encroachment

have led to a 5.81% increase in wet-period streamflow and a 3.34%

decline in dry-period flow (Bitew and Kebede, 2024).

Smallholder mixed farming, combining crop cultivation and

livestock husbandry, is the predominant agricultural system. This

system helps mitigate crop failure risks amid climate variability.

Climate extremes, land degradation, and population pressure on

limited resources contribute to food insecurity, increasing the

sensitivity of crop-livestock mixed production to climate change,

especially in lower elevations (Abeje et al., 2019).

2.2 Methods

2.2.1 Household survey sampling
This study used a cross-sectional survey, where data were

gathered at a particular moment in time. Four kebeles (small

administration units), one from the high-altitude (Selam-Abebe),

two from the mid-altitude (Laytachimichael and Shegekeraniyo),

and one from the low-altitude (YequaraArasema) agroecologies,

were randomly selected after taking into account the elevation,

farming system, climate condition, and crop pattern over the

three agroecological zones (Figure 1). The smallest administrative

division in Ethiopia is called a kebele, and inside a kebele is

a sub-kebele. Sub-kebeles that implemented terracing practices

through project initiatives or local community-based campaigns

were given preference for determining the representative sample’s

target population. Household units can decide on composting,

fodder strips for terrace stabilization, and other CSAPs. Since

household heads usually make the ultimate decisions on farming

techniques and resource utilization, the study looked at issues

associated with using households as the unit of analysis over

the sub-kebeles. The sample size is computed using Cochran

(1977) formula:

n =
z2p

(

1− p
)

m2
(1)

Where n is the required sample size, z is the confidence level,

p estimated prevalence of farm household attributes in the area,

and m- is the margin of error. With a standard value of 1.96 (z)

and a 95% confidence level, the study’s margin of error (m) is

5% or 0.05. Assume there is a large population but difficult to

know the variability in the proportion that could adopt climate-

smart intensifications in the crop-livestock mixed farming system,

therefore, assume p = 0.2 (maximum variability), n = (1.96)2

(0.2(0.8)/(0.05))2 = 246 household head. A systematic random

sampling technique was used to identify 246 of the 1,230 household

heads in the sub-kebeles proportionately to the corresponding

agroecology. A household head survey was conducted with 130

respondents from mid-altitude, 59 from low-altitude, and 57 from

high-altitude agroecologies.

2.2.2 Household survey data
Data were generated after the respondents had been informed

of the objectives of the research. A structured survey questionnaire

was used to conduct face-to-face interviews to gather data from

the participants. Well-trained four enumerators who are familiar

with the local farming system delivered the questionnaire under

the direct supervision of the researcher. The procedure of gathering

data was conducted through two phases. In the first phase, a pre-test

survey was held outside the sample areas to tailor the data collection

method and issues to the research area setting. Data were collected

on socioeconomic, ecological, and institutional variables, as well

as the intensity of CSAPs. Plot level data included the soil fertility

status and slope class. From the socioeconomic perspective, factors

such as gender, farming experience, dependency ratio-induced

labor, literacy level, farmland size, livestock diversity, income,

and off-farm activities were taken into account. The institutional

variables taken into account were access to credit associations,

extension contacts, selected seed availability, distance to the nearest

market, and farmland ownership status. Key informant interviews

and firsthand observations provided qualitative data that was used

to supplement the narrative with a variety of themes to complement

the quantitative data.

2.2.3 Operational definitions and measurements
of variables

The main six climate-smart agriculture practices (CSAPs)—

crop rotation, crop residue retention, improved grazing,

composting with inorganic fertilizers, stabilized terracing

through agroforestry, and improved seed varieties—must be put

into practice to increase agricultural productivity and sustainability

in the Ethiopian highlands (Jirata et al., 2016; Teklu et al., 2022).

The combination of these CSAPs with climate information systems

is anticipated to reduce yield loss due to climate variability and

farm expenses, and increase household income, food security,

and resilience (Tesfaye et al., 2021). Direct observations made

during the transect walks of the preliminary and main surveys

provided evidence to support the primary CSAPs outlined at the

national level, indicating that these practices are most common

in the research watershed. Therefore, farmers were asked to rate

how well their homestead adhered to the identified CSAPs with 0

representing “no” and 1 representing “yes.” The implementation

of four to six major CSAPs on a particular homestead is considered

intensified. For example, many farmers frequently cultivate

improved maize and wheat seeds, compost/manure plus inorganic

fertilizers, rotate between cereal and legume crops while retaining
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FIGURE 1

Map showing the location of the study watershed (A) in Ethiopia’s Northwest Highlands (B) between the country’s capital city, Addis Ababa (AA), and

regional city, Bahir Dar (BDR).

residue, and use agroforestry stabilized soil bunds and Fanya juu

(Table 1). Summer and autumn are the best times for farmers to

implement enhanced grazing systems. The average values (range

from 0.17 to 1) of the number of practices implemented at the

homestead were used to determine the intensity of CSAPs. The

multiple linear regression (MLR) model can incorporate the values

of the intensity level of CSAPs (e.g., 0.17, 0.33,. . . , 1) as long as

these values reflect a continuous variable. The intensity values

are continuous and provide measured levels of intensity. MLR

can be used to model the association between these values of

intensity level and other predictor variables, including covariates

and categorical. Covariates (continuous) and factors (categorical)

were the independent variables. For example, farmers’ assessments

of soil fertility status and slope steepness class were taken into

account based on plot-level parameters. Socioeconomic variables

were taken into consideration, such as gender, farming experience,

dependency ratio-induced labor, education level, size of farmland

holding, animal diversity index, income, and off-farm activities.

Institutional variables such as distance to the nearest market,

availability of agricultural inputs, insecurity of land tenure, training

and advising possibilities through extension contacts, and access to

credit associations were included.

HIL = 1−

n
∑

1

si2 (2)

Where n = the total number of livestock, Si = proportion

of the ith animal in total livestock number. Hence, Si is the

individual livestock proportion relative to the total livestock herd

in a household. The Herfindahl index (HI) is calculated for LDI as

= 1-HIL, where LDI is the livestock diversity index and HIL is the

Herfindahl index livestock. The range of HIL values was 0.03–0.98.

A value of zero denotes specialization, whereas a number greater

than zero implies some degree of diversification.

The number of dependents—individuals who are normally not

in the labor force, such as children under 15 and adults over 65—

compared to the working-age population—those who are typically

between the ages of 15 and 64—implies how the dependency ratio

affects the availability of labor. The dependency ratio calculates
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TABLE 1 Definition, measurement, and hypotheses of dependent and independent variables.

Dependent variables Measurement Hypotheses

The intensity of six CSAPs The mean values of CSAPs employed on

a homestead

The intensity of CSAPs is influenced by numerous socioeconomic, institutional,

and plot-level factors.

Explanatory factors Measurement The anticipated direction (±) of the correlation
between the dependent variable and the predictors

Perceived status of homestead soil

fertility

0= fertile and 1= infertile +

Perceived status of homestead

slope class

0= flate to gentle slope and 1=

moderately to steep slope

+

Gender Male= 1 and 0= female +

Farming experience In the number of years +

Dependency ratio-induced labor In ratio –

Literacy level Able to write and read= 1 and 0=

unable to read and write

+

Total farmland size In hectare +

Livestock diversity index (LDI) Values of Herfindahl-Hirschman

diversity index∗

+

Income In birr +

Off-farm activities Engaged in one or more off-farm

activities (yes= 1 and 0= no)

–

Credit associations Have access to credit association (yes=

1 and 0= no)

–

Training and advising from

extension agents

If there are opportunities (yes= 1 and 0

= no)

+

Selected seed availability If there are opportunities (yes= 1 and 0

= no)

+

Distance to the nearest market Homestead close to the market (yes= 1

and 0= no)

+

∗The livestock diversity index (LDI) was calculated using the Herfindahl-Hirschman diversity index (HIL), which takes both richness and evenness into account (Chegere and Stage, 2020). It is

calculated using Equation 2.

the proportion of working-age household members (those between

the ages of 15 and 64) to dependent household members (those

between the ages of 0 and 14 and over 65) to determine the

prospective labor supply for the labor cost of CSAPs.

Dependency ratio =
Dependent sizes of a household

working − age size of a household
(3)

2.2.4 Assumptions of multiple linear regression
Multiple Linear Regression (MLR) analysis was used to examine

the relationship between the independent variables and farmers’

decisions to intensify CSAPs. It can manage continuous dependent

variables, regardless of the frequency at which a value occurs (Mohr

et al., 2021). Verifying that the model assumptions can support

the appropriateness of MLR is important in situations where the

frequency of each intensity level may have an impact. The linear

relationship, the lack of multicollinearity, the independence of

errors, the homoscedasticity of the data, and the normality of the

residuals were all confirmed before the analysis was conducted

(Mohr et al., 2021; Dawson et al., 2021). MLR assumes that

each predictor variable and the response variable have a linear

relationship. The points in the scatter plots generally formed a

straight line, suggesting a linear relationship. MLR assumes that

predictor variables don’t strongly correlate with one another. For

this study, there was no noticeable multicollinearity because all

of the VIF values were <2 and tolerance scores were above 0.6.

Furthermore, a correlation matrix revealed that all correlation

coefficients were <0.3, indicating that none of the predictor

variables were substantially associated. The residuals (errors) must

be independent for the MLR results to prove valid and robust. The

value of the Durbin-Watson test in the model summary indicates

2.12, which lies between 1 and 3 implying that the residuals were

independent or uncorrelated. The residuals should have constant

variance at every level of the predictor variables, according to the

homoscedasticity assumption of the MLR model. The assumption

test result shows that homoscedasticity was indicated by the

residuals’ random distribution around zero. The model’s predicted

standardized values are plotted against the obtained standardized

residuals using a random array of dots on the graph. Results

demonstrate that the homoscedasticity assumption has been met

since the residual variation is similar as the expected values increase

along the X-axis. The model assumes that the residuals have a

normal distribution. Plot values (P-P) show that the residuals
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were normally distributed since the points nearly followed a

straight line.

2.2.5 Model specification of multiple linear
regression

The cause-effect relationship between the intensity of CSAPs

with socioeconomic, institutional, and plot level variables was

analyzed by a multiple linear regression (MLR) model. The model

is a good choice for controlling other covariates, such as household

socioeconomic, demographic, and institutional variables (Mohr

et al., 2021). The equation of the regression model: yi = β0+ β1x1+

β2x2+. . . .+ βkxk+ £, with the mean value of y given as:

µy = β0 + β1x1 + β2x2 + . . . .+ βkxk (4)

where, y is the random response variable and µy is the mean value

of y, β0, β1, β2, and βk are the parameters to be estimated based

on the sample data, x1, x2,. . . ,xk are the predictor variables that

are assumed to be non-random or fixed and measured without

error, and k is the number of predictor variables, and ε is the

random error, which allows each response to deviate from the

average value of y. The errors are assumed to be independent,

have a mean of zero and a common variance (σ2), and are

normally distributed.

3 Results

3.1 Socio-economic characteristics

The percentage distribution of the categorical variables is

shown in Table 2. Farmers are thought to classify the homestead’s

slope and describe the fertility status of the soil. Of the total, about

70.1 and 69.1% of farmers said their homesteads had a steep slope

and were fertile, respectively. Farmers stated that because of the

good drainage and decreased risk of waterlogged and flooding, they

often established residential villages on agricultural land with a

moderate slope. Since the settlement’s establishment, farmers have

been able to increase the fertility of the soil on their homesteads

by using sustainable land management practices. Factors such

as male-headedness, literacy (at least reading and writing), lack

of access to off-farm activities and credits, and interaction with

extensions were shared by most respondents (Table 2). Farmers

noted that training on the technical aspects and advantages of

climate-smart agriculture practices (CSAPs) was often given by

agricultural development agents to develop farmers’ understanding

and skill sets.

Table 3 shows the distribution of the continuous variables,

including the total amount of farmland held, the number of

years of farming experience, the dependency ratio, the diversity

values of the livestock, and the annual income. For this study,

the main components of developing CSAPs are agroforestry

stabilized terracing, legume-cereal crop rotation with residue

retention, combined use of compost and inorganic fertilizers, and

an enhanced grazing system in the summer and autumn. The

average value of CSAPs at the farmers’ homestead spans from 0.17

to 1, with an overall average value of 0.6. Based on data, farmers

TABLE 2 The percentage distribution of categorical variable responses.

Variables Responses N %

Perceived status of

homestead fertility

Fertile 170 69.1

Infertile 76 30.9

Perceived slope

class of homestead

Moderate to steep 174 70.1

Flat to gentle 72 29.3

Gender Male 187 76

Female 59 24

Literacy level Able to write

and read

144 58.5

Unable to read

and write

102 41.5

Off-farm activities Yes 23 9.4

No 223 90.6

Credit access Yes 69 28

No 177 72

Extension contacts Yes 168 68.3

No 78 31.7

Selected seed

availability

Yes 130 52.8

No 116 47.2

Distance to the

nearest market

Yes 134 54.5

No 112 45.5

TABLE 3 The mean and distribution values of continuous dependent and

independent variables (covariates).

Variables Minimum Maximum Mean Std. dev.

Intensity of CSA

practices

0.17 1 0.6 0.25

Farming

experience

12 53 29 8.8

Dependency

ratio-induced

labor

0.2 0.7 0.4 0.14

Total farmland

holding size

1 3.25 2 0.65

Livestock

diversity

0.03 0.98 0.49 0.25

Estimated annual

income (in ETB)

10,000 100,000 36,573.2 18,366.4

engage in at least one and up to five CSAPs. The mean values

of farming experience, dependency ratio, total farmland holding

size, and livestock diversity were 29, 0.4, 2, and 0.49, respectively.

An estimated 36,573.2 ETB was the average annual income of the

respondents.
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TABLE 4 Factors influencing farmers’ decision to intensify CSAPs at homesteads, and goodness of fit.

Model Unstandardized
coe�cients

Standardized
coe�cients

t Collinearity statistics

B(SE) Beta Tolerance VIF

(Constant) 0.107 (0.06) 1.75

Perceived soil fertility status −0.020 (0.02) −0.037 −0.9 0.920 1.087

Perceived slope categories 0.167 (0.03) 0.331 6.7a 0.646 1.548

Gender −0.042 (0.02) −0.078 −1.89 0.922 1.085

Literacy level −0.028 (0.02) −0.055 −1.3 0.890 1.123

Off–farm activities −0.028 (0.02) −0.055 −1.34 0.701 1.426

Credit access 0.326 (0.08) 0.180 4.31a 0.881 1.135

Extension contact for capacity

development training

0.022 (0.02) 0.056 1.19 0.619 1.615

Selected seed availability 0.18 (0.05) 0.178 3.59a 0.730 1.369

Distance to the nearest market 0.004 (0.02) 0.008 0.17 0.954 1.048

Farming experience 0.005 (0.001) 0.173 3.6a 0.686 1.459

Dependency ratio-induced labor −0.030 (0.01) −0.127 −2.81b 0.774 1.292

Total farmland holding size 0.009 (0.02) 0.022 0.47 0.703 1.423

Livestock husbandry diversity 0.199 (0.05) 0.197 3.91a 0.624 1.603

Estimated annual income (ETB) 2.602E-007 (0.0) 0.019 0.46 0.937 1.067

Model Summary

R R square Adjusted R square Std. error of the estimate Durbin-
Watson

0.80∗ 0.64 0.61 0.157 2.121

ANOVA∗

Sum of squares df Mean
square

F Sig.

Regression 9.91 14 0.71 28.72 0.000

Residual 5.7 231 0.025

Total 15.6 245

∗Dependent Variable: CSAP.
a,bRefer to significant levels at P ≤ 0.001, P ≤ 0.01, and P ≤ 0.1, respectively.

3.2 Determinants of farmers’ decision to
intensify CSAPs

The multiple linear regression models’ goodness of fit was

verified using the adjusted R-square statistic and the F-test

significant value (Table 4). The highly significant p-value of 0.000

for the F-test in the regressionmodel indicates that the independent

factors together predict farmers’ decisions to intensify CSAPs. The

model’s goodness of fit is demonstrated by the adjusted R-square

statistic in the model summary, which indicates that significant

factors account for 61% of the variation in the intensity of CSAPs.

Table 4 shows that the main significant variables influencing

farmers’ decisions to intensify CSAPs at homestead were slope

gradient, extension contacts, farming experience, dependency

ratio-induce labor, and diversity in livestock husbandry. For

this study, the decision of farmers to intensify CSAPs was not

significantly influenced by factors, such as soil fertility status,

gender, literacy level, off-farm activities, credit availability, selected

seed availability, distance to the nearest market, size of farm

holdings, or expected annual revenue.

Farmers’ decision to intensify CSAPs was significantly (at

P < 0.001) impacted by their homesteads’ moderate to steep

slope characteristics. It was observed that Sesbania sesban,

elephant grass, Acacia decurrens, Ficus thonningii, and Rahmnu

sprinoides were used to stabilize the built terraces, such as soil

bunds and Fanya juu, on the homestead with moderate to

steep slope character. The steepness of the farmed land’s slope

had a substantial impact on the adoption of CSAPs (Ahmed

et al., 2023). The findings presented in Table 4 demonstrate

that farmers’ decisions to enhance CSAPs on homesteads were

significantly (at P < 0.001) influenced by frequent interactions

with agricultural extension personnel. The acceptance of newly

introduced CSAPs, like the use of improved seeds, composting,

terracing, and planting of multifunctional exotic shrubs, has been
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FIGURE 2

Significant obstacles to growing the intensity of CSAPs by the rank of the importance. Multiple responses were considered. Each barrier was ranked

as “First” and “Second” responses, with the response percentages summing to 100% for each barrier.

greatly affected by the agriculture extension service (Kifle et al.,

2022).

The intensification of CSA techniques was significantly (at

P < 0.001) influenced by the husbandry of varied livestock

(Table 4). Cattle, sheep, goats, chickens, horses, and donkeys are

all herded inside the research area as part of the varied animal

husbandry. Having a variety of cattle significantly influences a

farmer’s decision to use CSAPs (Bwalya et al., 2023; Debie and

Ayele, 2023). The decision to strengthen CSAPs on the homestead

was greatly impacted by the farmers’ farming experience from

the time of their productive age (Table 4). Farmers can be taught

essential expertise and abilities about the integrated use of beehives,

livestock herding, horticulture, and cropping patterns harmonized

with favorable agroforestry through farming experience that has

grown over time. Farming experience had a big impact on the

degree to which farmers adopted CSAPs (Atsiaya et al., 2023;

Sanogo et al., 2023). The decision of farmers to intensify CSAPs

was negatively and significantly influenced (P < 0.01) by the

dependency ratio, as shown in Table 4. This indicates the adoption

of labor-intensive CSAPs is significantly impacted by households

with a lower dependency ratio (larger productive labor size). For

example, maintaining a terrace involves digging out silted soil from

the channels and melding the composting materials, which may

be very labor-intensive. Because of this, households with lower

dependency ratios can devote more time to the ongoing upkeep

of terracing and compost preparation than households with higher

labor dependency composition. Farmers’ decisions to use organic

soil amendments are largely influenced by the low dependency ratio

(Zheng et al., 2020).

3.3 Barriers to scaling up CSAPs

The five main obstacles to the wider adoption of homestead

CSAPs are the labor-intensive nature of the practices, weak

management of open grazing practices, the uncertainty of land

tenure, a shortage of agricultural inputs, and the lack of

collaboration from stakeholders (Figure 2).

The study shows that a primary obstacle (86%) to the

watershed-level scale-up of the intensified CSAPs was the labor-

intensive nature of regularly maintaining terraces, agroforestry

management, composting, and improved grazing management.

The weak monitoring scheme of the open grazing system was

ranked as the second that prevented the successful establishment of

agroforestry on the terrace segment, the strip, and distant cultivated

land. Open grazing is prevalent on croplands during the winter

and spring seasons. The open grazing practices of cattle, sheep, and

goats destroyed the planted Sesbania sesban, elephant grass, Acacia

decurrens, and Ficus thonningii on the terrace portion. At the third

rank level, 67% of farmers stated that the main barrier impeding

the growth of CSAPs at the watershed level was the uncertainty

of agricultural land tenure. Furthermore, in the fourth and fifth

rank levels, the restricted supply of agricultural inputs, such as

equipment, seedlings, and better seeds (identified as the primary

barrier by 55%) and weak stakeholder cooperation (indicated as the

first barrier by 54%).

4 Discussion

4.1 Determinants of intensified CSAPs

The use of compost and inorganic fertilizers in combination,

legume-cereal crop rotation, crop residue retention, agroforestry

stabilized terracing, and an improved autumn and spring grazing

system are the most important identified CSAPs in the study

watershed. In association with this, the three most widely applied

CSAPs are conservation agriculture, crop diversification, and soil

fertility management (Ali et al., 2022; Kifle et al., 2022). Crop

rotations, low tillage methods, mixed cropping, planting trees, and

applying manure were the most popular CSAPs among farmers

(Bwalya et al., 2023; Ma and Rahut, 2024; Thottadi and Singh,

2024). Major CSAPs highlighted by Kassa and Abdi (2022) included

agroforestry, organic manure, and small-scale irrigation systems.

Based on the findings, farmers’ decisions to intensify identified

CSAPs at the homestead were significantly influenced by many
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factors, including the steepness of the homestead slope, regular

guidance and training through extension contacts, developing

awareness and skills over longer farming experiences, a low

dependency ratio, and a high diversity in livestock husbandry.

4.1.1 Slope gradients
The farmer’s decision to use intensive CSAPs, such as forage

strips or other agroforestry stabilized terracing is influenced by the

homestead’s steepness. The decision of farmers to use vegetative

strips and terracing is significantly influenced by the steepness of

the farmland (Alemayehu et al., 2024; Zeleke et al., 2024). Farmers

in hilly regions could find vegetative stabilized terracing more

appealing since the advantages of the terrace for changing the steep

slope gradient often outweigh its expensive and labor-intensive

constraints (Hilger et al., 2013).

Campaigns to construct terraces on farmlands with moderate

to severe slopes were frequently started by the local community

during the dry season, which lasted from January to March.

However, the improperly designed campaign-based terrace,

which was constructed without considering the plot owner’s

practical experience, did not meet the requirements and was

not implemented sustainably in the cultivated field (Debie et al.,

2019; Mersa et al., 2023). It was observed that terrace structures

were frequently modified with plot tillers by incorporating native

drainage channels and modifying slope gradients.

The result indicated that the homestead with moderate to

severe slopes has maintained vegetative stabilized Fanya Juu

and soil bunds because farmers are accustomed to their many

advantages, which include controlling soil, water, nutrient, and

crop losses; producing fodder for sheep and goats; and improving

soil nutrients and crop output. Farmers were able to determine the

impact of terracing on the reduction of slope gradient by observing

the accumulation of deposits in the lower portion of croplands

located between terraces. Natural and planted vegetative strips are

effective in reducing the length of moderate and steep slopes and

act as barriers to slow down runoff, thereby reducing soil erosion

(Haddaway et al., 2018). The authors further noted that vegetative

strips make them a popular choice among farmers due to the

request being easier and less costly to implement compared to

terracing. To optimize the potential for reducing soil erosion and

increasing productivity, terraces should be utilized in conjunction

with perennial vegetation, moisture retention, and a continuous

presence of soil cover during the rainy season (Debie et al., 2019;

Desta et al., 2021). Numerous ecological services are provided by

stabilized terraces, such as higher soil moisture content, reduced

runoff, and silt, pH, availability P, available K, and organic carbon,

and enhanced grain yields (Debie et al., 2019; Tolesa et al., 2021;

Deng et al., 2021). Terrace stabilizers including shrubs, annual

herbaceous plants (like legumes), and trees like Faidherbia albida

are examples of nitrogen-fixing plants that are essential to most

CSAPs.

On the moderate to steep homestead, legume shrubs that are

planted along the homestead’s boundary and terrace segment are

primarily pruned when they reach a productive age to provide

fodder. Farmers stated that elephant grass is preferable to feeding

cattle and that the best plants to feed sheep and goats are Rahmnu

sprinoides, Sesbania sesban, and Acacia decurrens. One of the

most widely used shrubs for fodder in Ethiopia; sesbania sesban

improves the intake and digestibility of the basic diet for sheep

and goats (Oosting et al., 2011; Debie, 2022). Productive natural

grass developed on strips, terrace segments, homestead boundaries,

and streams is commonly utilized for feeding cattle, especially oxen

and cows, through the cut-and-carry grazing technique. Shrubs and

trees must provide shade to shield animals from midday sunlight.

Beekeeping productivity also benefits from the growth of flowering

bushes along the homestead boundary and terrace segment. Shrub

plants on the terrace segment may need to have deeply ingrained

roots to stabilize the terrace and supply nutrients to the soil via root

nodules. Farmers have observed that lowering the slope gradient

significantly lowers crop damage during the early stages of growth.

Consequently, farmers have developed an understanding of the

detrimental effects of slope steepness on agricultural productivity,

enabling them to sustain stabilized terraces over an extended

period. Farmers choose to spend a significant amount of labor in

upholding the practices and guarding them against free grazing

because of the numerous advantages of doing so. Compost and

livestock dung are applied by farmers to farmland areas situated

in between terraces stabilized by grass or shrubs.

4.1.2 Diversity of livestock husbandry
The results indicate that the husbandry of various livestock

kinds at farm households leads to an increase in the amount of

manure applied, which is made up of the dung of various livestock

types, including horses, chickens, sheep, goats, cattle, and donkeys,

to improve the fertility of their farm soil. In association with this,

total livestock holding size was one of the major determinants of

the adoption of CSAPs (Alemayehu et al., 2024; Zeleke et al., 2024).

Cattle dung is regularly utilized to make dung cake, which is used

as fuel for energy during the autumn, winter, and spring seasons.

The dung of chickens, horses, donkeys, sheep, and goats is not used

as fuel energy. To maximize the use of manure to improve soil

fertility and be able to replace cattle dung used for fuel energy, it

is essential to herd chickens, horses, donkeys, sheep, and goats. The

best-integrated degree of decomposition and productivity benefits

of crop grain and biomass yield were seen in co-composting or

mixed use of cow, pig, and wheat straw (Fan et al., 2023). Various

farming methods employ a blend of manure from pigs, cattle, and

poultry (Rayne and Aula, 2020). Thompson et al. (2023) state that

well-kept livestock is vital for agricultural systems and can yield

significant benefits. More carbon sequestration is encouraged by

manure soils (Washaya and Washaya, 2023).

4.1.3 Dependency ratio-induced labor
According to the findings, a lower dependency ratio denotes

fewer dependents per person of working age, which increases

labor availability and may motivate the household to intensify

CSAPs on homesteads and other farmlands to enhance livestock

and crop yields. A low dependency ratio boosts labor availability,

which can help with enhanced cattle husbandry practices and

terrace stabilization through agroforestry and composting on a

particular homestead (Debie, 2024). Having more people in the

working age range in the household can help manage different
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CSAPs in an efficient and long-lasting way (Sharma et al., 2024).

Household labor is required at large levels for CSAPs, such

as manure application, composting, distribution of crop straw

across the entire homestead, improved grazing management, and

agroforestry management. Farmers stated that the labor cost of

spreading the collected manure of various livestock on the land

requires less labor cost than that of composting. During the

dry season, women and young people were mostly responsible

for distributing the collected manure at the homestead. Famers

reported that carrying manure to scatter on a homestead needs less

work compared to transportingmanure to distant agricultural areas

using manpower and donkeys. As per the training provided by the

local administration unit’s development agents, farm households

with a low labor dependency ratio can devote more time to making

compost from green manure, ash, and livestock manure. During

the end of winter and throughout the spring, farmers can distribute

manure or compost and mix it in the soil by plowing. Despite

the increased labor costs associated with its production, farmers

stated that compost overtakes manure in terms of improving soil

fertility and crop yields for the forthcoming year. The application

of compost generally had a significant and positive impact on plant

nutrients, such as soil pH, EC, SOM, total N, and accessible P

(Kavvadias et al., 2023). For many reasons, including low quality,

inconsistent supply, and difficulties with manure collection caused

by inadequate facilities and great distances between farms, manure

must be properly dealt with before it can be used (Washaya and

Washaya, 2023). Activators can be added to the basic constituents

of compost to increase its nutritional value. Adding fungicides,

viricides, nematode inhibitors, and antibacterial treatments for

plants or organic materials can also improve the quality of compost

(Ayilara et al., 2020). Generally, manure or compost is used to

cultivate cereal crops (primarily sorghum and maize), followed

by legume crops. Rotating crops between legumes and grains is a

fundamental practice for managing soil.

4.1.4 Agriculture extension advisory services and
farming experiences

The finding revealed that agricultural extension advice and

training services had a significant impact on farmer awareness

development of many advantages and integrated use of CSAPs on

homesteads and other farmland. Increasing public awareness of

the advantages, practical procedures, and technical know-how of

CSAPs can be essential to increasing the rate of adoption. The

more intensive CSAPs, including terracing, composting, improved

grazing systems, and others were influenced by frequent extension

contacts. The most important aspect influencing the adoption

of CSAPs was having access to extension contacts (Diro et al.,

2022; Xu et al., 2022; Bwalya et al., 2023 Debie and Ayele, 2023;

Ferrer et al., 2023; Tadesse and Ahmed, 2023; Hussein, 2024;

Ma and Rahut, 2024). Due to a lack of training and access to

agricultural knowledge, farmers were found to be ill-prepared to

adopt newly introduced CSAPs (Nyairo et al., 2022). Farmers stated

that agricultural extension workers helped themwith the functional

and technical components of several CSAPs. Agricultural extension

workers can also be knowledgeable on the use of improved

seed, careful terracing management, making good use of terrace

stabilizers for livestock fodder, beehive and livestock husbandry,

and compost preparation. Farmers are familiar with the indigenous

technique of legume-cereal crop rotation or intercropping. Thus,

there will bemore dedicated farmers who can fill their technical and

knowledge gaps about the need to apply CSAPs to fulfill multiple

objectives by having access to possibilities for training and advice.

Farmers who have received relevant training and skills in CSAPs

should be the focus of the extension program (Kifle et al., 2022).

The findings of the study showed that farmer experience

across time also considerably influences the diversity, intensity,

and effective management of CSAPs. Geda et al. (2024) found

that the adoption of CSAPs in wheat production was influenced

by farming experience. By implementing crucial technologies

early on in the context of their cultivated area, farmers can

develop competence in managing projected production hazards

(Ainembabazi and Mugisha, 2014). Based on their local knowledge

and experience, farmers commonly intercrop modified maize on

their homestead with sunflowers, faba beans, peas, and common

beans. The purposes of rotation or legume-cereal intercropping

are widely known to farmers. The primary perceived goals of the

technique are to boost crop productivity and soil fertility. Legumes

and maize intercropped improved soil fertility, total nitrogen

content, and grain and biomass yield of cereal crops (Gidey et al.,

2024). Cereals (maize, wheat, sorghum, and teff) interplanted with

oil seeds Guizotia abyssinica (named Noug locally), Ethiopian

mustard, also known as gomenzer (Brassica carinata A. Braun),

and linseed (flaxseed) on homestead boundary strips that touch

on pathways used by people and livestock or trees (Eucalyptus

globulus). Legumes and oil seed straws or wastes are utilized on

the farm to mulch the soil’s surface and young plants, such as

Eucalyptus globulus. Straws from maize and sorghum are mostly

utilized as cattle feed and fuel. The soils can be combined with a

small amount of residual maize and sorghum. For the first plowing

in the dry season, the collected cereals, legumes, and oil seed straws

can be incorporated into the soil. Frequent plowing during the

dry and spring seasons allows the organic biomass of the residue

to break down and provide the soil with nutrients for the next

crop’s productivity. For cattle hay fed in the spring and summer, teff

straw is primarily utilized. Based on their experience, the majority

of farmers employ a cut-and-carry technique in the autumn and

summer to improve cow grazing strategy since these seasons may

require less labor than other seasons to harvest valuable feed for

cattle, such as grass and shrub leaves. Weeds that grow beneath

the biomass of maize crops can be harvested for cattle fodder.

Post-harvest practices frequently involve establishing agroforestry

and limiting unrestricted grazing on terraced homesteads. During

the post-harvest time, pruning of Acacia decurrens, Sesbania

sesban, and elephant grass is done on the farm to provide feed

for cattle, sheep, and goats. Therefore, a combination of farmer

knowledge, experience, and abilities, as well as expert scientific

observation are required to properly manage multifunctional

CSAPs and sustainable production of mixed agricultural systems

(Debie, 2024).

4.2 Barriers to the scale-up of CSAPs

The labor-intensive nature of routinely maintaining terraces

and producing compost, the mishandling of open grazing practices,
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the uncertainty of land tenure, the scarcity of agricultural inputs

and supplies, and the lack of collaboration amongst stakeholders

at the lowest administrative unit were the major barriers to wider

adoption of CSAPs in the watershed. Similar research conducted by

Hussein (2024) demonstrates that inadequate resources, inadequate

technical know-how, and poor infrastructure impede the uptake

and expansion of CSAPs.

Lack of labor prohibited farmers from regularly maintaining

terraces and producing large volumes of compost. The extensive

and sustainable adoption of terraces is primarily driven by their

technical suitability for labor requirements and farming system

conditions (Debie, 2021; Sanogo et al., 2023). The preparation

of large quantities of compost for a thorough treatment of

their entire agricultural area has proven to be a labor-intensive

operation for smallholder farmers. Farm households with a low

labor dependency ratio that can maintain terraces and make

compost for their homestead may not be able to extend to

other cultivated fields due to their labor-intensive nature. Farmers

said that carrying compost by hand is not feasible. Transporting

compost or manure from houses to remote locations is one of

the largest barriers to the broad application of sustainable manure

management. There are additional costs of labor, financial, and time

involved in transporting compost/manure/from the produced site

(residential area) to distant cultivated land. Produced compost is

occasionally transported from residential sites to distant croplands

by donkeys.

In addition to compos, maintaining the terrace in the spring

and summer seasons is labor-intensive work. Using ox drive

plowing, farmers frequently tilled siltation on terrace channels. The

difficulty arises when farmers throw the excavated silted soil uphill.

Regular maintenance is recommended for a long-term reduction

in runoff and soil loss (Belayneh et al., 2020). The technical

viability of terracing needs to be evaluated concerning farmed

areas that require less labor for upkeep (Debie, 2021). The amount

of labor required for maintenance can be greatly decreased by

stabilizing terraces with agro-forestry, grass strips, and percolation

ditches (Debie et al., 2019; Belayneh et al., 2020). The problem

is the absence of suitable tools and equipment to facilitate the

manufacture of compost and the excavation of silted soil. The main

barrier to CSAPs scaling up is limited access to appropriate farm

equipment and tools to ease labor-intensive work (Barnard et al.,

2015). Farmers should be given access to innovative mechanical

tools and equipment to minimize the amount of labor needed

for compost production and terrace maintenance. The kinds of

techniques and instruments used in the manufacture and delivery

of compost must minimize the labor requirements. The equipment

must reduce the labor needed when siltation removal from terrace

channels and tossing to upslope areas.

One of the main obstacles to the continuous use and expansion

of vegetative stabilized terraces in the micro-watershed has been

unrestricted open grazing throughout the post-harvest periods

(winter and spring). Farmers manage their crop fields during the

planting season but these fields revert to communal spaces available

for livestock grazing during the dry season (Barnard et al., 2015).

Livestock can be allowed to graze on the agricultural residue that

remains on the cropland in substantial amounts. The owners of

agricultural land under conservation are unable to monitor free

grazing on their land during the post-harvesting period due to the

perceived labor cost and fear of hostility from livestock owners.

Under the local administration unit, farmers, administrators, and

extension agents have not worked together well to restrict free

grazing. The absence of implementation of local legislation that

controls open cattle grazing hinders the effectiveness of the adopted

land management practices (Nebere et al., 2021). Farmers were

included in the terracing and vegetation plantation implementation

phase, but their participation in the planning, monitoring, and

evaluation phases is limited, thus constraining the institutional

structure (Adego et al., 2018; Nebere et al., 2021). This issue

causes established terrace stabilizers to be injured by grazers

and free browsers, destabilizing and destroying the terrace in

the process. Hence, to prevent many issues associated with free

grazing in preserved areas, strong regulations, enforcement, and

sanctions must be put in place. To achieve real and observable

improvements in land management techniques, farmers are urged

to participate actively in all phases of conservation initiatives

(Adego et al., 2018; Nebere et al., 2021). Stall-feeding procedures,

the development of fast-growing fodder grass species, and a

reduction in the number of cattle all improve both the productivity

of cattle and the sustainability of land management techniques

(Nebere et al., 2021).

The findings showed that land tenure issues and inadequate

policy strategies are the main reasons why smallholder farmers

usually have limited success implementing CSAPs. Tenure-related

constraints and limitations prevent the expansion of CSAPs (Autio

et al., 2021; Zerssa et al., 2021; Sanogo et al., 2023). Farmers may

be reluctant to invest in sustainable land management because

they think that land redistribution may result from unresolved

land tenure conflicts (Ege, 2017). Insufficient enforcement of local-

level land use planning and unstable land tenure security result

in adverse environmental consequences and a failure to manage

the use of land resources in a balanced manner (Abab et al.,

2023). To remedy this measures such as bylaw approval and

enforcement, specific land use planning, and land tenure security

must be implemented. The safety and long-term sustainability of

landmanagement practices require a bylaw establishing contractual

agreements between landowners and renters. The primary driver

of the broader implementation of CSAPs is the security of land

tenure and land use rights (Ege, 2017; Debie, 2021; Abab et al.,

2023).

The lack of collaboration among the community, local

administration, and extension personnel was identified as another

obstacle to the watershed-level scaling up of intensified CSAPs. It is

common to see weak cooperation between farmers and agricultural

extension workers when it comes to planning, monitoring, and

evaluating practices. Extension agents and administrative units

encourage farmers to take part in constructing terraces in the

dry (winter) season and plant shrub seedlings on the terrace

segments and watercourse in the summer. This suggests that

farmers were forced to engage in practice time even if they

were not involved in its preparation. The agricultural extension

cannot successfully collaborate with farmers by making available

agricultural inputs such as better seeds, fertilizers, and agricultural

instruments for reducing labor costs. Sanogo et al. (2023)

state that a major barrier to adopting and expanding CSAPs
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was the lack of agricultural inputs, such as better seeds and

agroforestry seedlings.

To avert themajor barriers, it is crucial to provide opportunities

to hasten the CSAPs’ broader implementation to enhance the food

security of smallholder households (Ali et al., 2022; Kirina et al.,

2022; Teklu et al., 2022). In the context of the subsistence farming

system in Ethiopia’s highlands, a framework for the sustainable

implementation of intensified CSAPs should be developed to feed

the fast-expanding population.

5 Conclusion and policy implications

In Ethiopia, where subsistence farming is the main driver

of the economy, the intensity of climate-smart agriculture

practices (CSAPs) among smallholder farmers is still extremely

low. Furthermore, it is not clear what the main obstacles are

to the expansion of more intensive CSAPs. With the use of

descriptive statistics and multiple linear regression models, the

study aimed to identify factors that influence the intensity of

CSAPs on a homestead and the main obstacles to the spread

of enhanced CSAPs. The results reveal that slope gradient,

extension interactions, agricultural experience, dependency ratio,

and diversity in livestock husbandry were the main significant

variables impacting farmers’ decisions to intensify CSAPs at

the homestead. The main obstacles to scaling up intensified

CSAPs are labor-intensive terracing and composting, poorly

managed open grazing practices, unclear land tenure, a lack

of agricultural supplies and inputs, and a lack of cooperation

from stakeholders at the lowest administrative unit, or “kebele.”

Therefore, the agricultural extension policy must emphasize the

main variables that influence farmers’ decisions to intensify

CSAPs as well as the primary barriers that are impeding the

wider use of these practices. To achieve sustainable development

goals including lowering poverty, adjusting to climate change,

reducing greenhouse gas emissions, and ensuring sustainable

biodiversity, it may be essential to scale up the synergies of CSAPs

across agroecologies.
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