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The present research explored the impact of varying concentrations of arbuscular 
mycorrhizal (AM) fungus inoculum and vermicompost on the growth, nutrient 
absorption, photosynthetic gas exchange, and quality parameters of ginger 
over a 2-year period in field conditions. In this study, the combination of 50  g 
each of AM and vermicompost increased plant height, number of tillers, and 
rhizome yield compared to the control. However, higher dry biomass (61  g) was 
observed with the combination of 75  g of each amendment. As expected, the 
application of arbuscular mycorrhizae (AM) positively affects spore count and 
mycorrhizal dependency percentage ranging from 58 to 70.5 spores per 50  g 
substrate and 19–36%, respectively. The combined use of vermicompost and 
AM led to a lower disease incidence of 10.5% in treatments with 25  g of each 
amendment and 10.1% in treatments with 50  g of each. Nutrient accumulations, 
particularly phosphorus (P), iron (Fe), and zinc (Zn), exhibited greater levels 
in ginger plants treated with vermicompost and arbuscular mycorrhizal (AM) 
inoculation, compared to uninoculated ginger rhizomes. The plants treated with 
AM and vermicompost increased the biomass accumulation by increasing the 
stomatal conductance and photosynthetic rate of leaves. AM and vermicompost 
improved ginger rhizome quality, increasing phenols by 37.8%, flavonoids by 
35.7%, and essential oil by 29% compared to the control. The analysis revealed 
that the total flavonoid content was significantly higher in AM-treated samples 
compared to the control. However, the phenol content did not exhibit statistical 
significance across the treatments. Regarding essential oil (EO) content, our 
experiment highlighted that treatments with AM  and vermicompost have 
consistently yielded higher EO content compared to other treatments. In 
contrast, there was no discernible trend in the fiber content with the application 
of AM and vermicompost amendments. PCA and correlation analyses revealed a 
positive influence on plant growth, nutrient absorption, and quality parameters, 
except for the incidence of diseases in ginger. Overall, our study finds that the 
concurrent use of vermicompost and arbuscular mycorrhizae (AM) makes a 
substantial contribution to the growth, nutrient uptake, photosynthetic, and 
quality parameters of ginger.
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1 Introduction

Ginger (Zingiber officinale Rosc.) is a medicinal herb belonging 
to the family of Zingiberaceae. It is mainly found in tropical 
regions, including India, China, Indonesia, and Nigeria. The 
rhizome is rich in phytochemicals such as zingiberene, α-curcumin, 
gingerols, and shogaols, which are the primary bioactive 
compounds in ginger supplements. These bioactive compounds 
exhibit a broad spectrum of biological activities, including anti-
inflammatory, antioxidant, anticancer, antimicrobial, 
gastroprotective, and cardioprotective effects. These properties 
make ginger a valuable component in traditional and modern 
medicine for the prevention and treatment of various diseases 
(Ravindran et  al., 1994). Ginger cultivation is fraught with 
challenges that significantly impact its production and yield. Insect 
pests such as shoot borers, rhizome scales, and aphids pose a direct 
threat to plant health. Pathogenic diseases, particularly bacterial 
wilt, soft rot, Fusarium yellows, and Pythium rhizome rot, can cause 
severe crop losses. In addition, non-pathogenic factors such as 
nutrient deficiencies, water stress, and soil pH imbalances further 
complicate ginger cultivation. Effective management strategies, 
including integrated pest management, proper disease control, and 
optimal cultivation practices, are essential to mitigate these 
challenges and ensure successful ginger production (Prasath et al., 
2014; Bhai et al., 2019).

The increasing demand for organic products underscores the 
necessity of transitioning ginger production toward organic farming 
methods (Marsh et al., 2021). Conventional agricultural practices, 
while effective in boosting short-term yields, lead to soil degradation, 
nutrient imbalance, and environmental pollution (Igiehon and 
Babalola, 2018). In contrast, organic farming promotes sustainable 
practices that enhance soil health, conserve natural resources, and 
produce healthier products. By adopting organic methods, ginger 
farmers can contribute to a more sustainable and environmentally 
friendly agricultural system, meeting consumer demand while 
ensuring the long-term viability of their farming operations.

Various methods have been explored to decrease reliance on 
synthetic fertilizers in agroecosystems, with biostimulants emerging 
as a promising solution for promoting sustainability (Zhang et al., 
2023; Xu et al., 2024). Biostimulants play a crucial role in assisting 
agroecosystems in managing environmental stress by enhancing the 
absorption of vital nutrients and plant-water balance, improving 
photosynthesis, and consequently contributing to the production of 
high-quality agricultural products (Hu et al., 2022; Li et al., 2022). As 
research and development in this field continue, biostimulants are 
likely to play an increasingly vital role in sustainable agriculture, 
helping to meet the growing demand for food while preserving natural 
resources and protecting the environment. Arbuscular mycorrhizae 
are a widely recognized biostimulant that can provide numerous 
benefits to plants and function not only as biofertilizers but also as 
bioprotectors and bioregulators, enhancing overall plant health and 
productivity through symbiosis.

In addition, this fungus can penetrate the root cortical cells and 
form specific haustoria-like structures termed arbuscules. These 
structures act as mediators for exchanging metabolites among the 
fungi and the host cytoplasm (Begum et  al., 2019). Arbuscular 
mycorrhizae contribute not only to the breakdown of soil organic 
matter but also play a pivotal role in the plant’s ability to sequester 
atmospheric carbon dioxide (Qiu et al., 2023; Wang et al., 2024). This 
is achieved through the sink effect and facilitation of the transfer of 
photosynthates from aboveground organs to the roots. This function 
is crucial in enhancing the physical characteristics of soil like 
aggregation and assisting the plant in acquiring nutrients and water 
from the soil (Sharda and Koide, 2010; Wu et al., 2011; Khan et al., 
2020). AM  fungi have the capacity to influence the rhizosphere 
environment, potentially enhancing the production of plant 
metabolites (Falcao et al., 2024).

The use of bio-organic compounds provides a viable option for 
enhancing soil physicochemical properties, plant growth, and yield. 
Applying compost can improve the stability and physical 
characteristics of soil by augmenting organic matter, overall 
porosity, hydraulic conductivity, formation of aggregates, and the 
capacity to retain water. These modifications can result in shifts in 
the soil microbiome, ultimately enhancing plants’ ability to 
withstand abiotic stresses (Benaffari et  al., 2022). Employing 
beneficial microbes along with compost is recognized as a vital and 
efficient strategy for enhancing nutrient utilization efficiency in 
less-than-ideal conditions. Co-amending soils with compost and 
microbial inocula can often result in a synergistic effect on plant 
growth. Vermicompost contains humic acid, which can promote 
spore production and hyphal growth in mycorrhizal fungi. The 
application of a small amount of compost together with 
AM  inoculation can have a symbiotic effect, enhancing plant 
growth and phosphorus and zinc uptake. The substantial microbial 
diversity and nutrient richness present in compost and 
vermicompost can collaboratively contribute to the growth of 
AM  fungi (Cavagnaro, 2014). Numerous horticultural crops, 
including bananas, potatoes, grapevine, apples, strawberries, 
artichokes, melons, and chilies, have stated the positive growth 
parameters as a result of AM inoculation (Schellenbaum et al., 1991; 
Vosátka and Gryndler, 2000; Borkowska, 2002; Declerck et al., 2002; 
Locatelli and Lovato, 2002; Fortunato et al., 2005; Benkebboura 
et al., 2024; Pereira et al., 2024). While Taber and Trappe (1982) 
were the first to investigate the presence of AM  in rhizomes of 
ginger (Z. officinale) grown in Fiji and Hawaii, the impact and 
underlying mechanism of AM fungi, in conjunction with compost, 
on improving the growth of ginger, are still not fully understood. 
Arbuscular mycorrhizal fungi elevate photosynthetic gas exchange 
and augment water absorption by orchestrating intricate 
communication processes between the host and the fungus (Birhane 
et  al., 2012). The addition of organic manure with AM  fungi 
improved the soil respiration and other photosynthetic parameters 
in Lettuce (Chatzistathis et al., 2024). In addition, Govindjee (1995) 
reported that AM fungi enhanced photosynthesis through changes 
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in chlorophyll fluorescence (Fv/Fm). Available information on the 
mechanisms of AM  associated with photosynthetic light use 
is limited.

In this study, AM  fungi (Rhizophagus sp.) with or without 
compost were tested on ginger plants under field conditions for 
2 years. Previous research has demonstrated the positive effects of 
both AM  fungi and vermicompost on plant growth and yield 
individually. However, limited studies have investigated the combined 
effects of these biostimulants on ginger plants under field conditions. 
Considering the synergistic potential of AM fungi and compost, it is 
hypothesized that their combined application will lead to 
improvements in ginger growth and yield compared to their 
individual application or absence thereof. With this hypothesis, 
we aimed (a) to evaluate the impact of AM fungi with vermicompost 
application on the plant growth, nutrient uptake, and disease 
incidence of ginger and (b) to assess the influence of AM fungi with 
vermicompost application on physiological measurements and 
quality parameters of ginger.

2 Materials and methods

2.1 Experimental setup

The experiment was conducted at the Experimental farm 
(11.29395°N, 75.82038°E), ICAR-Indian Institute of Spices Research, 
Chelavoor, Kozhikode, Kerala, India, for 2 years (2020–2021 and 
2021–2022). Because ginger depletes nutrients from the soil, the 
experiment was not replicated in the same site but instead conducted 
in a new area within the location. The ginger crop (variety: IISR 
Varada) grown in the raised bed with the size 3 × 1 × 0.30 m (l X b X 
h) prepared and healthy disease-free seed rhizomes (25 g) with 
sprouts were used in the population of 40 plants per bed. The 
standard package of practices was implemented throughout the entire 
process from planting to harvesting (Rajeev and Thomas, 2015). The 
type of soil in the experimental site was a red lateritic clay loam, and 
their initial soil properties were pH 5.96, organic carbon 2.3 (%), 
nitrogen (N) 243.6 kg ha−1, phosphorus (P) 9.7 kg ha−1, potassium (K) 
295 kg ha−1, Ca 2,132 ppm, Mg 114 ppm, Fe 12.4 ppm, Zn 1.34 ppm, 
Mn 35 ppm, and Cu 1.62 ppm. The study comprised of 10 treatments 
with three replications, as follows: T1: Control; T2: AM (25 g); T3: 
AM (50 g); T4: AM (75 g); T5: T2+ 25 g vermicompost; T6: T3+ 50 g 
vermicompost; T7: T4+ 75 g vermicompost; T8: 25 g vermicompost; 
T9:50 g vermicompost; T10:75 g vermicompost. Both amendments 
were applied at the time of planting. Observations on plant growth 
parameters such as plant height, tiller number, dry biomass, 
photosynthesis gas exchange parameters, mycorrhizal parameters, 
and disease incidence were recorded at 90 after planting (DAP) by 
destructive sampling. The rhizome yield was measured post-harvest 
at 240 DAP and expressed in t ha−1.

2.2 AM inoculum and vermicompost 
preparation

The inoculum of Arbuscular Mycorrhizal (AM) fungi, specifically 
Rhizophagus sp. (MN710507), was formulated using vermiculite as 
the carrier. Each gram of the inoculum contains 100 infective 

propagules, which include spores (100–125 μm in size), hyphae, and 
mycorrhizal roots. This formulation is designed to maximize the 
symbiotic association between the AM fungi and the plant roots, 
enhancing nutrient uptake and plant health. Vermicompost was 
produced using the composting worm Perionyx ceylanensis. The 
nutrient composition of the vermicompost is as follows: nitrogen (N) 
at 1%, phosphorus (P) at 1.3%, and potassium (K) at 0.58%. Both 
amendments were applied at the time of planting to enhance the soil 
fertility and plant growth.

2.3 Assessment of mycorrhizal parameters

To extract AM spores, a beaker containing 50 g of soil sample was 
meticulously mixed with half a liter of water to ensure the soil was well 
dispersed in the water, allowing the spores to be released from soil 
aggregates. Following a 1-h period, the beaker’s contents were filtered 
using a sequence of sieves organized in decreasing size order, ranging 
from 600 μm to 37 μm. The sifted materials were gathered in a Petri 
plate, and the spore count was conducted using a stereo zoom 
microscope (Gerdemann and Nicolson, 1963).

Mycorrhizal dependency (MD) denotes the extent of alterations 
in plant growth linked to arbuscular mycorrhizal (AM) fungi 
colonization. This relationship indicates how much a plant relies on 
its symbiotic association with AM fungi to achieve optimal growth 
and development.

MD was determined based on the formula of Plenchette 
et al. (1983):

 
( )

(dry weight of AM inoculated plant
dry weight of AM uninoculated plant)MD % x100

dry weight of AM inoculated plant

−

=

2.4 Nutrient uptake analysis

Well-dried and powdered plants were taken for nutrient uptake 
analysis. Nitrogen (N) uptake was determined through the Kjeldahl 
method (Nelson and Sommers, 1973). Phosphorus (P) estimation 
involved digesting 1 g of powdered sample with a mixture of nitric acid 
(HNO3) and hydrochloric acid (HCl 60%) at 9:4 v:v ratio. The 
assessment was carried out using a spectrophotometer at 660 nm 
(Jackson, 1973). Analysis of exchangeable potassium (K), magnesium 
(Mg), and calcium (Ca) was conducted using an atomic absorption 
spectrophotometer. The zinc (Zn), iron (Fe), copper (Cu), and 
manganese (Mn) were estimated through diethylenetriaminepentaacetic 
acid (DTPA) extraction and subsequently analyzed using an atomic 
absorption spectrophotometer (Thomas, 1982).

2.5 Disease assessment

During the 90th day, percentage disease incidence (PDI) was 
calculated (Praveena et al., 2021) based on infected plants divided by 
the total number of plants assessed as indicated below:
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PDI

Number of infected plants

Total number of plants ass
%( ) =

eessed
x100

2.6 Physiological parameters

2.6.1 Gas exchange measurements
On the 90th day post-planting, measurements of net 

photosynthetic rate (Pn), stomatal conductance (Gs), transpiration 
rate (Tr), and leaf temperature (Tleaf) were conducted on the third 
fully expanded active set of leaves. The parameters were evaluated 
under controlled saturating photosynthetic photon flux 
(900 mmol m−2 s−1). This assessment took place during the daytime, 
specifically between 09:30 and 11:30 am, utilizing a portable 
photosynthesis system. Measurements were taken when both Pn and 
Gs reached a stable state. Three representative plants were randomly 
chosen from each treatment to record these parameters, and the 
average was calculated from five readings spaced evenly over 120 s.

2.6.2 Chlorophyll fluorescence
Following the measurement of gas exchange parameters, the 

identical leaves were employed for chlorophyll fluorescence 
assessment. This evaluation took place during the daytime, specifically 
between 09:30 and 11:30 am, utilizing a portable fluorometer (Os-30 
p). After the leaves underwent a 30-min adaptation to darkness, the 
obtained data were utilized to calculate the maximum efficiency of 
PSII (Fv/Fm), as described by Strasser et al. (1995). The average was 
derived from five readings.

2.7 Quality parameters of ginger rhizomes

2.7.1 Estimation of total phenolic content
For estimation of TPC in ginger, ginger extract was prepared by 

extracting the 1 g ground ginger with 80% methanol and making the 
extract up to the volume of 25 mL. From that, 0.2 mL of extract and 
0.5 mL of Folin–Ciocalteu reagent were added. After mixing, it was 
kept incubated for 3 min at room temperature, and 2 mL of 10% 
sodium carbonate was added and mixed well. The tubes were kept in 
the dark at ambient temperature for 60 min after that the absorbance 
of the solution was measured in the spectrophotometer at 650 nm and 
expressed as a milligram of gallic acid equivalent phenol/g of extract 
(Sadasivam and Manickam, 2008).

2.7.2 Estimation of total flavonoids
To determine flavonoid levels, 0.2 mL of ginger extract was mixed 

with 0.1 mL of 1 M potassium acetate and 0.1 mL of 10% aluminum 
chloride. The blend was meticulously stirred and left to incubate at 
room temperature for a duration of 30 min, and the absorbance was 
measured at 415 nm, using quercetin as the standard (Miguel 
et al., 2010).

2.7.3 Estimation of essential oil
EO was extracted from the dried ginger sample (30 g) using the 

Clevenger-type hydrodistillation method (ASTA, 1997). After the 
extraction process, the remaining moisture was removed with 
anhydrous sodium sulfate (Na2SO4) and stored at 4°C. The percentage 
essential oil content was calculated using the formula:

 
Essential oil

Volume of oil obtained

Weight of sample
%( ) = X1000

2.7.4 Estimation of oleoresin content
The dried and powdered sample of the ginger was weighed 10 

grams packed in cotton wool and placed in a glass column. Then, 
50 mL of acetone was added and kept overnight. To determine the 
percentage of oleoresin, the filtrate was extracted and evaporated to 
dryness and weighed (ASTA, 1997), and the yield of oleoresin was 
calculated using the formula:

 
Oleoresin

Weight of sample

Weight of oleoresin
x%( ) = 100

2.7.5 Estimation of crude fiber
For crude fiber estimation, 1 g of crushed ginger was treated with 

1.25% H2SO4 and boiled at 400°C for 45 min. Afterward, 1.25% NaOH 
was added and boiled, followed by washing and drying to a constant 
weight in an oven. To achieve the constant weight, the crucibles with 
residue were incinerated at 500°C. Total crude fiber content was 
calculated using the formula of ASTA (1997):

 
( )

(Crucible weight before ash
Crucible weight after ash)Crude fiber % x100

Weight of sample

−

=

2.8 Statistical data analysis

Statistical analysis was conducted on all replicates, with three 
replicates per treatment combination within a randomized block 
design. An analysis of variance (ANOVA) was performed using the 
“agricolae” package at a significance level of p < 0.05% in R (Version 
4.3.2) to assess treatment effects. Subsequently, a post-hoc test for 
detailed comparisons among treatments, specifically the least 
significant difference (LSD) test, was conducted. To evaluate the 
interrelationships between various traits under both control 
conditions and the optimal treatment (T6), correlation plots were 
generated using the “corrplot” package. Principal component analysis 
(PCA) was additionally applied, utilizing the “factoextra” package in 
R, to investigate the connections between individual treatments and 
all the variables under study.

3 Results

3.1 Effect of AM inoculation on growth 
parameters, disease incidence, and yield of 
ginger

The colonization of adventitious roots by AM has the potential to 
enhance the growth and tillers of ginger. In the present study, 2 years 
of pooled analysis results showed that the plant height was increased 
in 50 g AM+ 50 g vermicompost dosage with 65.5 cm during the 90th 
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day after planting. However, the impact of the different dosages of 
AM and vermicompost on growth was not statistically significant. The 
mean number of tillers in ginger (14; Figure 1A) was significantly 
higher in the AM (50 g) inoculated beds, and an increase in the dry 
biomass of ginger was also noticed in the 75 g AM+75 g vermicompost 
amended treatment (61 g; Figure 1B). Overall pooled analysis results 
showed that the use of vermicompost as a co-amendment with 
AM resulted in a lower disease incidence. Specifically, the treatments 
with 25 g of AM and 25 g of vermicompost, as well as 50 g of AM and 
50 g of vermicompost, exhibited the lowest disease incidence rates, 
recording 10.5 and 10.1%, respectively (Figure 1C).

Among the treatments, one with AM 50 g + and 50 g vermicompost 
and 75 g AM+75 g vermicompost registered significantly (p < 0.05) 
higher rhizome yield, and the increase was greater by 30.7 and 27.6%, 
respectively, compared to the control (Figure 1D).

3.2 Effect of AM inoculation on mycorrhizal 
parameters

The application of AM primarily affects mycorrhizal parameters 
such as spore count and mycorrhizal dependency percentage. The 
treatments with AM  application showed a significant number of 
spores, ranging from 58 to 70.5 spores 50 g−1 of substrate (Figure 2A). 
The mycorrhizal dependency percentage is an indicator of the extent 

of growth transformation resulting from arbuscular mycorrhizal 
colonization. In ginger plants that were inoculated with various doses 
of AM, the mycorrhizal dependency percentage was recorded to 
be between 19 and 36% (Figure 2B).

3.3 Effect of AM inoculation on nutrient 
uptake

The co-inoculation of arbuscular mycorrhizae and vermicompost 
in ginger plants resulted in a positive correlation with nutrient uptake. 
The macronutrient analysis report showed that all AM-inoculated 
treatments had a notable increase in the uptake of phosphorous, 
calcium, and magnesium in the ginger rhizome. Among the 
treatments, the 50 g AM +50 g vermicompost treatment showed the 
best uptake of phosphorous and calcium 0.45% (Figure 3A) and 0.08% 
(Figure 3B), respectively. In contrast, the uptake of magnesium was 
significantly greater in the treatment with 25 g of AM application 
(Figure 3B).

In terms of the micronutrient content of ginger rhizome, a 
significant amount of Fe (433.5 ppm; Figure 3C) and Zn (44 ppm; 
Figure  3D) was observed in 75 g AM +75 g vermicompost and 
50 g AM+ 50 g vermicompost, respectively, when compared to the 
control. However, the Mn and Cu content of the rhizome did not show 
any significant differences among the treatments.

FIGURE 1

Effect of AM and vermicompost application on (A) number of tillers, (B) dry biomass, (C) disease incidence, and (D) yield of ginger.
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3.4 Effect of AM inoculation on 
physiological parameters

The effects of AM  on all the photosynthesis gas exchange 
parameters were significant in ginger on 90 DAP. A significant 
increase in gas exchange parameters (p < 0.05) in 50 g AM +50 g 

vermicompost (Figure 4A)-treated plants indicated that AM enhanced 
the CO2 assimilation rate of ginger crops. The AM + vermicompost-
treated plants showed significantly higher Pn (p < 0.05), Gs, and Tr 
(p < 0.05; Figure 4B). Furthermore, the photosynthetic rate (Pn) of 
plants treated solely with arbuscular mycorrhizal (AM) at different 
concentrations was significantly higher than that of plants treated 

FIGURE 2

Effect of AM and vermicompost application on (A) rhizosphere soil spore count and (B) percent mycorrhizal dependency of ginger.

FIGURE 3

Effect of AM and vermicompost applications on uptake of (A) phosphorus, (B) calcium, (C) magnesium, (D) iron, and (E) zinc of ginger.

https://doi.org/10.3389/fsufs.2024.1412610
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Sarathambal et al. 10.3389/fsufs.2024.1412610

Frontiers in Sustainable Food Systems 07 frontiersin.org

solely with vermicompost at various concentrations (p < 0.05). Among 
the treatments, the treatment 50 g AM +50 g vermicompost exhibited 
the most positive effect on the efficiency of photosystem II (Fv/Fm; 
Figure 4C).

3.5 Effect of AM inoculation on rhizome 
quality parameters

In the case of total phenolic content, treatment 6 (50 g AM+ 50 g 
vermicompost) was significantly higher followed by T5 (25g AM+ 25 g 
vermicompost) with 24.95 and 19.75 mg GAE g−1, respectively 
(Figure 5A). The total flavonoid content of AM-treated samples showed 
higher values in ginger rhizome as compared to the control. Treatment 
T7 which is treated with 75 g of AM and 50 g of vermicompost has 
shown the highest total flavonoid content of 1.705 mg quercetin 
equivalent g−1 among treatments (Figure  5B). In our experiment, 
we found that Treatment 4, Treatment 6, and Treatment 7 have given 
higher EO content of 40–42% compared to the control (Figure 5C). The 
oleoresin content was significantly higher (4%) with treatment 6 
(50 g AM+ 50 g vermicompost; Figure 5D). No significant trend was 
observed in the fiber content upon the AM  and vermicompost 
amendments. However, the crude fiber content was higher in the 
treatments T3 (50 g AM) and T9 (50 g vermicompost; Figure 5E).

3.6 Correlation analysis and principal 
component analysis

The correlation analysis conducted in this study revealed a 
significant and positive correlation among various variables when the 
combined application of arbuscular mycorrhizal (AM) fungi and 
vermicompost was employed. Specifically, the treatment with T6 
(50 g AM+ 50 g vermicompost) exhibited a particularly strong positive 
correlation among the assessed variables, and their corresponding 
degree of association was given in Supplementary Table  1. These 
variables could include parameters related to plant growth, nutrient 
uptake, and quality of rhizomes. However, disease incidence and 

crude fiber content did not follow the general pattern of positive 
correlation observed in other parameters (Figure 6).

To comprehensively assess the impact of the dual application of 
arbuscular mycorrhizal (AM) fungi and vermicompost on ginger 
plants, we performed a principal component analysis (PCA) with 
morphological, physiological, nutrient, and quality parameters of the 
different treatments. The PCA revealed two principal components, 
collectively explaining a considerable 82.6% of the observed variability 
in the dataset. Of this, PC1 accounted for 72.5%, while PC2 
contributed an additional 10.1% (Figure  7). PC1 had major 
contributions from dry biomass (8.2%), photosynthetic rate (8.0%), 
mycorrhizal dependency (8.0%), and lower disease incidence (7.5%). 
These variables all have positive contributions to PC1, which means 
that they are all positively correlated with each other, whereas PC2 was 
contributed majorly by crude fiber (52.3%). The biplot visualizes the 
interrelationships between variables and PCs. Closer proximity on the 
biplot denotes stronger correlations. For instance, dry biomass and 
yield are juxtaposed on the biplot, signifying a positive correlation. 
Similarly, most other parameters, except for disease incidence (DI) 
and crude fiber content (CF), cluster together, indicating positive 
correlations. Notably, DI’s position on the opposite side highlights its 
negative association with treatments T6 and T7. These treatments 
occupy the upper right quadrant of the PCA plot, revealing their 
advantageous effects relative to others. To sum up, the most favorable 
results in terms of plant growth parameters were observed in 
treatments T6 and T7, where a combination of AM  fungi and 
vermicompost had a positive influence on dry biomass, yield, as well 
as the uptake of phosphorus and zinc and iron, alongside a decrease 
in disease incidence. It is noteworthy that treatments with higher 
levels of AM fungi tend to exhibit lower disease incidence in ginger, 
while those with higher vermicompost levels typically contain greater 
quantities of essential oil and oleoresin.

4 Discussion

AM inoculation and amendment of vermicompost had improved 
their ginger plant growth, tillers, and ultimately biomass. 

FIGURE 4

Influence of AM and vermicompost application on gas exchange measurements of ginger: (A) net photosynthetic rate, (B) stomatal conductance, and 
(C) chlorophyll fluorescence.

https://doi.org/10.3389/fsufs.2024.1412610
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Sarathambal et al. 10.3389/fsufs.2024.1412610

Frontiers in Sustainable Food Systems 08 frontiersin.org

Co-inoculation of AM (75 g) with 75 g vermicompost significantly 
increased the number of tillers (33%) and biomass (36%) over the 
uninoculated control. This is mainly because the mycorrhizal extra-
radical hyphae network in the soil matrix absorbs nutrients from the 
surrounding soil and transports them to the plant roots in exchange 
for carbon (Harrier and Watson, 2004). Using vermicompost and 
AM-inoculated ginger plants dramatically stimulated biomass, 
compared to the effects of AM or vermicompost alone on the growth 
of ginger seedlings. This generally occurs through a substantial impact 
on water retention, hormone-like influences that stimulate root 
development, and the expansion of root hairs. Vermicompost 
significantly aided in the AM  colonization and growth of hyphae 
(Paymaneh et al., 2023). As per Stoffel et al. (2021), there was a positive 
correlation between the effectiveness of mycorrhiza inoculant in 
enhancing the grain yield of soybean and the increase in biomass 
yield. The beneficial effect of AM  inoculation on the growth and 
rhizome production of ginger was reported by many workers (da Silva 
et al., 2008; Uma et al., 2010; Samanhudi et al., 2014; Jabborova, 2022). 
The inoculated ginger plant roots showed evidence of structural 
colonization by AM, as depicted in Figure 8. The AM uninoculated 
samples in the morning displayed minimal spore counts, mainly 
attributed to the existence of an indigenous AM flora group with 
limited effects on growth and nutrient absorption (Pandey et al., 2020; 
Sarathambal et  al., 2023). The level of mycorrhizal dependence 
represents an intrinsic characteristic of a particular crop species and 

FIGURE 5

Effect of AM and vermicompost application on quality parameters of ginger: (A) phenolics, (B) flavonoids, (C) essential oil, (D) oleoresin, and (E) crude 
fiber.

FIGURE 6

Correlation matrix analysis for the changes in plant growth, nutrient 
uptake, and quality parameters of ginger in response to AM and 
vermicompost application. The correlation plots represent Pearson’s 
r values corresponding to the size of the circle (n =  6). The color 
gradient from blue to red indicates the correlation between the 
studied variables ranging from positive to negative.
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significantly influences its reaction to inoculation (Urcoviche et al., 
2014), and in the present study, vermicompost stimulated mycorrhizal 
colonization of approximately 36% in ginger roots. The extent to 
which crop plants depend on arbuscular mycorrhizal fungi for 
nutrient absorption is shaped by various root characteristics, including 
surface area, density and length of root hairs, growth rate, and their 
responses to soil conditions and root exudates. The mycorrhization 

parameters can be influenced by the type of materials that are added 
to the compost. Studies have indicated that integrating organic 
amendments into the soil can increase biomass, encourage 
mycorrhizal colonization, and stimulate the growth of AM fungal 
hyphae in the soil (Soussani et al., 2023).

The findings indicate a significant decrease in disease incidence as 
a result of the mutually beneficial interaction between AM  and 
vermicompost in combatting pathogenic fungi such as Pythium spp. 
This reduction can be attributed to various biochemical processes, 
including the production of peroxidase and polyphenol oxidase 
enzymes, as well as an increase in total phenol content triggered by 
AM  inoculation. These mechanisms ultimately enhance the host 
plant’s defense response against pathogens. In addition, the fungi 
enhanced vegetative growth, aiding plants in tolerating pathogen 
damage by improving nutrient uptake and root function. Bhai et al. 
(2012) mentioned that the co-inoculation of Glomus sp. and PGPR 
isolates promoted root growth in ginger without causing disease 
incidence. Similarly, Meng et al. (2017) revealed that ginger inoculated 
with Glomus versiforme exhibited the lowest disease index and the 
highest disease control effects.

Vermicompost, a nutrient-rich substrate, has the potential to 
enhance the multiplication of arbuscular mycorrhizal (AM) spores. 
The nutrient content of vermicompost likely promoted fungal 
growth, either directly or indirectly, by encouraging host root growth, 
mainly due to the microbiome and biomolecules associated with the 
vermicompost. Application of vermicompost typically increased soil 

FIGURE 7

Distribution of plant growth, nutrition, and quality parameters of ginger on the biplot according to AM and vermicompost applications. DBM: dry 
biomass, DI: disease incidence, MD: mycorrhizal dependency, Yld: yield, P: phosphorus uptake, Fe: Fe uptake, Zn: Zn uptake, Phe: total phenolic 
content, Fav: flavonoids, EO: essential oil, Oleo: oleoresin, CF: crude fiber, fv.fm: chlorophyll fluorescence, Pn: photosynthetic rate, gs: stomatal 
conductance.

FIGURE 8

Colonization of arbuscular mycorrhizal fungi in ginger roots.
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mycorrhizal activity and root colonization in lentil, berseem clover, 
and sunflower (Koskey et  al., 2023). This is attributed to its 
composition of beneficial microorganisms that foster both 
mycorrhizal growth and the development of host plants. 
Consequently, this promotes enhanced disease resistance in plants 
(Sarathambal et al., 2022). Several studies have recorded the impact 
of AM  colonization on the defense mechanisms of host plants, 
including Oryza sativa, Triticum aestivum, Phaseolus vulgaris, Piper 
nigrum, Zingiber officinale, Solanum lycopersicum, and millets 
(Campos-Soriano et al., 2012; Song et al., 2015; El-Sharkawy et al., 
2018; Eke et al., 2020; Bhai et al., 2021; Mythili and Ramalakshmi, 
2022; Sarathambal et al., 2023).

Co inoculation of AM with vermicompost has increased ginger yields 
by up to 30%. The increase in the number of tillers and biomass is a result 
of enhanced plant nutrition and optimized photosynthesis. The increased 
biomass and yield resulting from the application of inoculants appear to 
be associated with the number of tillers per clump. The increase in yield 
can be attributed to the synergistic effect of arbuscular mycorrhizal (AM) 
activity, which enhances water and nutrient absorption (Rezaie et al., 
2020). The associative action of mycorrhizal fungi in ginger has a great 
impact on root development and nutrient uptake, which results in the 
improvement of rhizome formulation. Numerous reports have 
highlighted the notable effect of AM fungi in enhancing the ginger yield, 
along with various other crops (Santos, 2010; Yunus et al., 2014; Espidkar 
et al., 2017; Zhu et al., 2017; Sharma et al., 2019; Wu et al., 2022).

The uptake of nutrients was positively affected by the 
co-inoculation of arbuscular mycorrhizae and vermicompost 
treatments rather than in uninoculated ginger plants. The hyphal 
network extends beyond the depletion zone, expanding the soil area 
accessible for phosphorus (P) uptake. Mycorrhizal symbiosis aids 
in the utilization and absorption of P. Despite being the second 
most vital nutrient element for plant growth and development, the 
uptake of phosphorus is hindered by its low mobility, limited 
solubility, and fixation in the soil (Lalitha et al., 2017). In contrast 
with Javanmardi et  al. (2014), the presence of AM  with 
vermicompost amendment did not exert a significant influence on 
nitrogen and potassium levels. Colonization of AM significantly 
(p < 0.05) increased Fe uptake. Fe uptake also significantly increased 
after colonization with AM and vermicompost application. Among 
the total Zn uptake, 24% of the Zn has been transferred through the 
mycorrhizal pathway (Bhantana et al., 2021). However, Mn and Cu 
uptake was not significantly influenced by the dual application. The 
augmentation of phosphorus nutrition and other mineral nutrients 
through the colonization of root systems by arbuscular mycorrhizal 
(AM) fungi varies depending on the host plant and the specific 
AM fungus involved (Ortas and Akpinar, 2006; Cavagnaro, 2008). 
Arbuscular mycorrhizal (AM) fungi enhance the mobilization of 
micronutrients by influencing the root morphology and physiology 
of the host plant, in addition to producing soil enzymes.

These findings are likely a consequence of the abundant organic 
material present in vermicompost, alongside the pivotal role played by 
arbuscular mycorrhizal (AM) fungi in metabolizing the various 
compounds released by plant roots (Rehman et al., 2023). The existence 
of organic matter in the soil can foster a robust provision of essential 
nutrients through mineralization. Arbuscular mycorrhizal (AM) fungi 
can improve the effectiveness of root surface area, facilitating more 
thorough exploration of the soil and overcoming water and nutrient 
depletion zones surrounding active root surfaces (Benaffari et  al., 
2022). Several studies have demonstrated that the use of AM  can 

enhance plant nutrition in different crops, including Solanum 
lycopersicum L. (Kavatagi and Lakshman, 2014), Eleusine coracana 
L. (Patil et al., 2013), Sulla coronaria (Hidri et al., 2019), Piper nigrum 
(Sarathambal et al., 2023), and Triticum aestivum (Yadav et al., 2021). 
The introduction of arbuscular mycorrhizae (AM) holds the potential 
to notably elevate the concentration of diverse macro- and 
micronutrients, leading to increased production of photosynthates 
(Chen et al., 2017; Mitra et al., 2019). The increased photosynthesis rate 
observed in AM and vermicompost-treated samples in our study was 
corroborated by previous studies where AM-treated plants increased 
the net photosynthetic rate in black pepper (Sarathambal et al., 2022). 
The results of the present study agree with Ibrahim et al. (1990). Plants 
inoculated with arbuscular mycorrhizae (AM) experience an elevation 
in their photosynthetic rate attributed to the mutually beneficial 
carbon–phosphorus relationship established among the host and 
AM fungi (Allen et al., 1981; Kiers et al., 2011; Jiang et al., 2017).

The association with arbuscular mycorrhizae (AM) has been 
documented to boost the phyto-availability of major nutrients (Prasad 
et al., 2017; Li et al., 2022). Mycorrhizal inoculation markedly improved 
photosynthetic parameters under abiotic stress conditions (Elhindi et al., 
2017; Pavithra and Yapa, 2018; Ait-El-Mokhtar et  al., 2019). The 
enhancement in leaf gas exchange might be due to the enhanced uptake 
of essential nutrients and water facilitated by AM fungi (Zhu et al., 2010). 
Improved physiological traits indicate better photosynthetic performance 
and increased CO2 assimilation. Vermicompost is richer in macro- and 
micronutrients than other composts. Using vermicompost with 
arbuscular mycorrhizal fungi enhances water and nutrient uptake (N, Mg, 
K, Ca, and P), which are essential for stomatal opening and photosynthesis 
(Benaffari et al., 2022). Magnesium plays a vital role in the synthesis of 
chlorophyll content in leaves. In the present study, the elevation in the 
photosynthetic rate could be  associated with an improved uptake of 
magnesium (Mg) and phosphorus (P) facilitated by AM (Zhu et al., 2014). 
In addition, the present study reported that the application of AM with 
vermicompost increases the uptake of K nutrients compared to control. 
In the pioneer study, the application of arbuscular mycorrhizae (AM) in 
plants has been found to enhance the uptake of potassium (K), potentially 
playing a crucial role in water transport through the hyphal network. This 
improvement contributes to enhanced hydraulic conductivity in the roots 
of plants treated with AM (el-Mesbahi et al., 2012).

The efficiency of PSII (Fv/Fm) was observed to be always higher in 
AM + vermicompost-treated plants than in untreated plants. This 
could be  because the internal leaf temperature influences the 
photosystem II efficiency of ginger. This was reflected in the biomass 
production of these ginger. AM  inoculation was advantageous to 
tropical crops, which consequently led to improved quantum yield of 
non-cyclic electrons of photosystems (Genty et al., 1989; Flagella et al., 
1995). It was evident from this study that AM fungi conferred an 
effective function of the PSII system on ginger.

AM fungi can trigger various secondary metabolite pathways, 
including those involved in carotenoid, phenylpropanoid, and 
antioxidant production. These pathways yield compounds that serve 
different roles in the plant–AM fungi symbiosis, such as signaling, 
stress resilience, nutrient absorption, and defense against 
environmental challenges (Falcao et  al., 2024). The arbuscular 
mycorrhizae (AM) and vermicompost application influenced the 
quality parameters of ginger rhizomes, resulting in elevated phenol 
(37.8%), flavonoids (35.7%), and essential oil (29%) compared to the 
control. Our results suggest that the increased aboveground biomass 
in colonized plants is likely due to enhanced nutrient absorption, as 
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well as improved photosynthesis in AM plants. This leads to greater 
production of primary metabolites, which are essential precursors for 
the biosynthesis of phenolic compounds via the shikimic acid pathway 
(Duc et al., 2021). In plant–AM fungi interactions, flavonoids are 
crucial for initiating and limiting AM colonization. Specific flavonoids 
such as formononetin and ononin regulate symbiotic association by 
restricting AM colonization after a certain threshold. During later 
fungal colonization stages, flavonoids were upregulated in mycorrhizal 
roots (Schweiger and Müller, 2015). Moreover, inoculating with 
AM likely enhances the productivity of essential oil glands by elevating 
the levels of endogenous hormones, particularly cytokinin, indole-3-
acetic acid, and gibberellin (Hazzoumi et al., 2017).

In addition, research indicates that AM can augment the content 
of secondary metabolites in different plant organs such as Lallemantia 
iberica seeds (Heydari and Pirzad, 2021), Solanum lycopersicum 
L. fruits (Pasković et al., 2021), and Zea mays L. leaves (Begum et al., 
2019). These chemical compounds also function as bioprotectants 
against various plant pathogens (Ismail et al., 2011). However, in other 
instances, plants colonized by AM  show a decrease in phenol 
concentration in wheat. This indicates the response of the functional 
compatibility of AM at the species level (Nahuelcura et al., 2022). 
According to da Silva et al. (2008), the inoculation of the AM fungus 
Gigaspora decipiens resulted in an increased yield of oleoresin in the 
ginger rhizome. In a study on basil, Copetta et  al. (2006) noted 
variations in the concentration of essential oil based on the specific 

mycorrhizal inoculation employed. This observation aligns with 
studies on various host plants, including Mentha arvensis by Freitas 
et  al. (2004), Foeniculum vulgare by Kapoor et  al. (2004), and 
Origanum sp. by Khaosaad et al. (2006), which have also reported 
enhanced production of essential oils in both quantity and quality.

In summary, both PCA and correlation analyses indicated a 
positive impact on plant growth, nutrient absorption, and quality 
parameters, with the exception of disease incidence in ginger, in 
response to the application of arbuscular mycorrhizal (AM) fungi and 
vermicompost. These exceptions could imply that the dual application 
has improved disease resistance through the production of phenolic 
compounds and increased the activity of antioxidant enzymes 
(Sarathambal et al., 2023). The PCA results indicated that dry biomass, 
photosynthetic rate, mycorrhizal dependency, and disease incidence 
contributed more than the crude fiber. This suggests that the growth, 
physiological, and disease resistance characteristics may be closely 
associated with AM  with vermicompost application in ginger 
particularly treatments 6 and 7 (Benaffari et al., 2022; Yilmaz, 2022). 
These findings underscore the synergistic benefits derived from the 
simultaneous use of AM fungi and vermicompost, reinforcing their 
potential to enhance multiple facets of ginger plant performance.

According to our findings, the positive correlation between the 
co-inoculation of arbuscular mycorrhizal (AM) fungi and 
vermicompost was associated with enhanced performance of ginger 
in field conditions (Figure  9). These amendments had symbiotic 

FIGURE 9

Graphical representation of synergistic effects of arbuscular mycorrhizal fungi and vermicompost on improving plant growth, nutrient absorption, and 
secondary metabolite production in ginger.
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effects on the growth and nutrient uptake of the ginger plant when 
compared with the sole application. Plants inoculated with 
mycorrhizae exhibited elevated leaf photosynthetic parameters 
facilitated by enhanced uptake of essential nutrients. The application 
of AM  with vermicompost facilitates a significant increase in the 
photosynthetic rate (Pn) by improving the quantum yield of the PSII 
system (chlorophyll fluorescence) of the ginger crop. Furthermore, 
co-amendment of AM with vermicompost can enhance the content 
of secondary metabolites in the ginger rhizome. In conclusion, the 
most effective and environmentally friendly treatment for enhancing 
the quality and quantity of rhizomes in ginger plants involved the 
inoculation of mycorrhizal fungi with vermicompost. Future research 
focuses on investigating the potential of these amendments as a 
promising candidate for integrated nutrient management in ginger 
cultivation under various agro-ecological regions. By doing so, we can 
gain valuable insights and a deeper understanding of the importance 
of incorporating these amendments into ginger-based cropping 
systems. Hence, the utilization of AM fungi, especially Rhizophagus 
sp., coupled with vermicompost, emerges as a viable strategy for 
promoting the eco-friendly cultivation of ginger, fostering sustainable 
practices while ensuring the yield of premium quality produce.
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