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Farmed freshwater prawn (Macrobrachium rosenbergii) and black tiger shrimp (Penaeus monodon) comprise a significant portion of Bangladesh’s seafood exports, raising concerns about their environmental impacts. Freshwater prawn farms, which require a relatively high amount of feed supply, release 1.0 MT CO2-equivalents/year, equating to 18.8 kg CO2e/MT prawn, contributing significantly to global warming and climate change risks. Integrated Multi-Trophic Aquaculture (IMTA) offers an alternative farming method to conventional prawn farming systems, as it minimizes greenhouse gas (GHG) emissions and climate change impacts. Systematically reviewing 112 scientific articles on IMTA, this article offers recommendations for adopting IMTA to promote sustainable freshwater prawn farming in Bangladesh. IMTA is undergoing extensive experimentation and practice in many parts of the world, offering economic benefits, social acceptability, and environmental sustainability. In addition to native prawn species, various indigenous organic extractive freshwater mollusks, and inorganic extractive plants are available which can seamlessly be used to tailor the IMTA system. Extractive organisms, including aquatic mollusks and plants within prawn farms, can capture blue carbon effectively lowering GHG emissions and helping mitigate climate change impacts. Aquatic mollusks offer feed for fish and livestock, while aquatic plants serve as a dual food source and contribute to compost manure production for crop fields. Research on IMTA in Bangladesh was primarily experimented on finfish in freshwater ponds, with the absence of studies on IMTA in prawn farms. This necessitates conducting research at the prawn farmer level to understand the production of extractive aquatic mollusk and plants alongside prawn in the prawn-producing regions of southwestern Bangladesh.
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1 Introduction

Globally, aquaculture has steadily boosted the food production sector over the past decades, considered the “blue revolution” (FAO, 2022; Engelhard et al., 2022; Khanjani et al., 2022; Thornber et al., 2022). The aquaculture production reached a record high of 122.6 million metric tons (MT) in 2020, contributing significantly to world’s nutrition and food security (FAO, 2022; Garlock et al., 2022). A total of 622 aquatic species are farmed across a variety of habitats and farming methods (Ahmed and Turchini, 2021). According to Jiang et al. (2022), since the late 1980s, there has been a 5-fold expansion in the global aquaculture production, and it has contributed significantly to the improvement of livelihood conditions, economic growth, job creation, and also the achievement of the United Nations Sustainable Development Goals (SDGs). Aquaculture production is projected to reach 140 million MT in 2050, to help meeting the world’s rapidly growing population and stagnation of capture fisheries (Ahmed and Turchini, 2021). Additionally, aquaculture is considered to have an enormous potential to make the world’s food systems more resilient in the face of climate change, rising demand for animal protein, and international trade (Troell et al., 2014). Despite its significance and rapid expansion, the aquaculture sector has globally raised serious environmental concerns (Haque et al., 2016; Yang H. et al., 2021). The negative impacts of aquaculture production include, among others, excessive water and energy use, habitat destruction (e.g., wetlands, agricultural fields, and mangroves), water pollution, eutrophication, disease and parasite transmission, biotic depletion, and greenhouse gas (GHGs) emissions (MacLeod et al., 2020; Ahmed and Turchini, 2021; Alam et al., 2022). These negative impacts are expected to grow continuously as aquaculture becomes more prevalent and resource-intensive over time, and it will continue to meet difficulties in terms of long-term environmental sustainability (Khanjani et al., 2022). Due to these expected adverse effects, the aquaculture industry has also been criticized in international media and by many non-governmental organizations (Alexander et al., 2016).

As the aquaculture industry intensifies the amounts of dissolved and solid effluents, such as fish feed waste, feces and other debris, increase (Irisarri et al., 2015; Kibria and Haque, 2018; Correia et al., 2020). These are high in nutrients, in particular phosphorus and nitrogen which once released into the environment can lead to the eutrophication of waterbodies (Troell et al., 2003; Zhou et al., 2006; Rosa et al., 2019; Tom et al., 2021). According to Avnimelech and Ritvo (2003), on average, only 13% of the carbon, 29% of the nitrogen, and 16% of the phosphorus in feeds utilized in aquaculture ponds are retained by the farmed animals; the rest ends up in the water, and sediment as waste. For example, Wang et al. (2020) reported that in China, the aquaculture waste discharged 1.6 MT/year of nitrogen and 0.2 MT/year of phosphorus into local freshwater and coastal regions between 2006 and 2017. The high biological density in intensive aquaculture systems leads to increased rates of respiration by crustaceans or fish in the ponds, but bacterial metabolism (respiration and methanogenesis by degradation of organic matter), also causes increased amounts of GHGs, such as CO2 (carbon dioxide), N2O (nitrous oxide) and CH4 (methane) emissions, resulting in adverse effects on climate change (Doney et al., 2012; Yang P. et al., 2021; Zhang et al., 2022; Xu et al., 2022).

Bangladesh is ranked as the fifth largest aquaculture producer worldwide, accounting for approximately 57% of the country’s total fish production, and contributing significantly to food and nutrition security in a national context (Jahan et al., 2015; Alam et al., 2022; AftabUddin et al., 2021; Haque et al., 2021; Bell et al., 2023). In Bangladesh, like other aquaculture producing countries, aquaculture is considered the fastest-growing animal protein generating industry, providing employment for about 18 million people (Alam et al., 2014; Haque et al., 2015; DoF, 2022). In total aquaculture production, finfish are sold domestically and consumed within the country, while shellfish, particularly freshwater prawn and black tiger shrimp, are primarily exported abroad (Ahmed et al., 2018). While the volume and production of freshwater prawn farming are relatively less than that of black tiger shrimp, the practice for farming freshwater prawns is relatively intensive. It involves cultivating freshwater prawn with other species of finfish, providing substantial amounts of feed, requiring significant manpower, and using various other inputs. According to the latest statistics by the Department of Fisheries (DoF), freshwater prawn and black tiger shrimp collectively account for 42 and 74% by volume and foreign currency earnings, respectively, of the total seafood export from Bangladesh (DoF, 2022). According to annual reports from DoF in Bangladesh, freshwater prawn and black tiger shrimp farming expanded sharply over the years due to their high nutritional value, good meat quality, high growth rate, and substantial international market demand. The farming area and yield of freshwater prawn and black tiger shrimp were 141,353 ha and 97,605 MT, respectively, in 2001–2002 (DoF, 2002), which have increased to 257,888 ha and 270,114 MT in 2019–2020 (DoF, 2020), respectively. This indicates farming area and production of these species have increased by 1.82 and 2.77 times, respectively over the last two decades.

In Bangladesh, farmers tend to grow prawn in polyculture systems, to optimize feeding efficiency and total pond biomass (Marques et al., 2016). Prawns consume supplied commercial feed, but they also consume fish faeces and unused fish feed, while filter-feeding fish (i.e., carps, tilapia) can reduce the amount of phytoplankton and zooplankton and hereby help minimizing the risk of low dissolved oxygen levels at night (Santos and Valenti, 2002; Ibrahim et al., 2015). Despite implementation of polyculture, there has been growing concern about the long-term environmental sustainability of prawn farming. It has been estimated that prawn farms release about 1.0 MT CO2-equivalents/year (Islam et al., 2021), corresponding to 18.8 kg CO2e/MT prawn. In similar prawn production systems in Vietnam, only 9.6 kg CO2e/MT prawn is produced (Jonell and Henriksson, 2015) and in China, shrimp farmers only produce 3.1 kg CO2e/MT shrimp (Cao et al., 2011). Prawn farming in Bangladesh has a high GHG footprint due to the traditional farming systems, contributing to increased global warming and climate change risks (Al-Amin and Alam, 2016).

The Integrated Multitrophic Aquaculture (IMTA) could represent an alternative farming approach to common polyculture systems in Bangladesh, since this technique is known to produce lower GHGs emissions. The IMTA concept is based on co-culturing aquaculture species from different trophic levels and with complementary ecosystem functions. In this way, uneaten feed, waste, and by-products of one species are utilized as fertilizers, feed, and energy for the other crops, and can take advantage of synergistic interactions among the species (Chopin et al., 2001; Troell et al., 2003; Neori et al., 2004; Chopin et al., 2008). A growing literature acknowledges that IMTA is an environmentally friendly and climate resilient technology compared to other forms of conventional aquaculture (Buck et al., 2018; Biswas et al., 2020). For example, in South Africa, the integration of seaweed into an abalone farm resulted in a reduction of GHG emissions from 350 to 290 MT CO2e/year (Nobre et al., 2010). This review explores the global evolution and principles of IMTA, its bioremediation capacity, and its role in sustainable aquaculture, focusing on how it reduces GHG emissions, enhances climate resilience, and addresses challenges to promote IMTA with prawn, with the goal of determining its applicability for improving prawn farming sustainability in Bangladesh.



2 Methodology: procedure of systematic review


2.1 Literature search and filtering

A systematic and extensive literature review was undertaken as recommended by Xiao and Watson (2019). The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework protocol was used to assure a transparent and scientific quality, systematic review. Two databases—Web of Science and Scopus—were searched, as recommended by Green et al. (2006) and carried out, e.g., by Gambelli et al. (2019), and Anastasiou et al. (2023).

Only journal articles published in English-language after 2000 meeting the eligibility requirements, were allowed with an emphasis on this review articles. The criteria for eligibility and exclusion in the study selection process are listed in Table 1. We used relevant keywords and Boolean operators to search for IMTA fields, followed by Viana et al. (2022). The term “integrated multitrophic aquaculture” was searched in conjunction with the phrases “prawn farming,” “food safety,” “food security,” “productivity,” “profitability,” “sustainability,” “techniques,” “bioremediation,” “potentials,” “challenges,” “environmental consequences,” “GHG emissions,” and “climate change adaptation” for the literature selection in this review. Table 2 shows the search terms that were entered into each search engine. Accordingly, a total of 1,058 articles were retrieved and identified from the two databases through this process. A total of 883 studies were excluded due to duplication, language problems, and irrelevance to the research objectives. After the meticulous screening, 175 studies were identified and nominated for verification of appropriateness, among which another 61 articles were eliminated due to lack of full document access. Finally, 112 empirical studies were included in the comprehensive analysis for this research.



TABLE 1 The study’s eligibility and exclusion criteria (followed by Gambelli et al., 2019).
[image: Table1]



TABLE 2 Search engines and queries that were used for the scope of this study.
[image: Table2]

In this review, two authors individually conducted the literature selection process based on the result of the search outcomes. To begin with, the outcomes of the search strategies were filtered to produce a list of relevant studies. The final selection of papers was made after careful reading and analysis of the titles and abstracts. Each article was categorized at every stage based on its applicability and eligibility for the study. Two other authors have looked at further ambiguous classifications of the studies to reach a consensus. The framework applied for study selection is illustrated in Figure 1.

[image: Figure 1]

FIGURE 1
 Use of the PRISMA workflow diagram throughout the study selection process.




2.2 Data synthesis and analysis

After filtering, a descriptive synthesis was carried out by reading the titles, abstracts, and full texts to condense information from the included reviews. The data on the number of studies were entered into a Microsoft Excel spreadsheet, analyzed using descriptive statistics, and presented in graphical form. The study’s findings were recorded, synthesized, and scrutinized to ensure correct interpretation. The analyzed outcomes are presented using tables and line diagrams. The first author extracted the data; the other authors then verified all of the data. Any discrepancies identified in this study were clarified by discussion among the entire research team.




3 Results and discussion


3.1 Brief history of IMTA development

IMTA is not a novel idea; its roots are originated in Asia (Chopin, 2013; Alexander and Hughes, 2017) which can be traced back to ancient civilizations thousands of years ago in China (Park et al., 2018; Nederlof et al., 2022). The integration of fish with aquatic plants and vegetable production is detailed in several Chinese and Egyptian documents from 2200 to 1070 BC (Chopin, 2013). Moreover, Park et al. (2018) noted that Fan Li probably carried out IMTA-like approaches in China as earlier as 470 BC (Table 3). Several published papers documented that IMTA has long been practiced in Asia, especially in China, Japan, and South Korea, with the integrated cultivation of fish from various trophic levels and shellfish and seaweed1 (Kleitou et al., 2018). Lately, IMTA has been successfully practiced in Shangou Bay, China, since 1980 (Fang et al., 2016). Over time, it has become the world’s most extensive aquaculture practice (Zhou et al., 2006), and has gained widespread acceptance. The number of publications focusing on IMTA has risen consistently since 2006 (Figure 2).



TABLE 3 The historical development of IMTA in the world.
[image: Table3]

[image: Figure 2]

FIGURE 2
 The number of publications within the scientific literature per year of IMTA publication since 2006.


Outside, Asia, the IMTA concept has also later been experimented in western countries, including Europe (Chopin et al., 2012; Kleitou et al., 2018). In the 1970s, John Ryther and his team at the Woods Hole Oceanographic Institution in the USA started research on land-based polyculture systems (Park et al., 2018; Strand et al., 2019), initially calling it “Integrated Waste-Recycling Marine Polyculture Systems”; hence, he is regarded as the grandfather of modern IMTA (Chopin, 2013). Since then, interest in IMTA has grown in the Western world and has slowly being implemented from pilot studies to commercial scale systems (Nederlof et al., 2022). In 2006, IMTA was acknowledged as a study priority for the advancement of aquaculture practices at the joint European Aquaculture Society and World Aquaculture Society Conference in Florence, Italy (Barrington et al., 2009).

Globally, IMTA practice has experienced several modifications from 1970s in the last century to open water systems on a broader scale in the 21st century (Fang et al., 2016; Strand et al., 2019). Ahmed and Glaser (2016) noted that IMTA is operated in over 40 countries on an experimental and commercial basis, including China, Japan, Canada, the USA, Chile, and many European nations.

In Israel, the IMTA approach is being adapted to intensive multi-species aquaculture in desert climates, focusing on water conservation and nutrient regulation (Strand et al., 2019). In Chile, land-based IMTA began in the late 1980s, integrating rainbow trout (Oncorhynchus mykiss), oyster (Crassostrea gigas), and seaweed (Gracilaria chilensis) (Buschmann et al., 2014). In Canada, an IMTA pilot experiment was carried out in the Bay of Fundy in 2001 using Atlantic salmon (Salmo salar), blue mussels (Mytilus edulis), and kelp (Saccharina latissima), and has since transitioned from research and development scale to a commercial scale of production (McVey et al., 2002; Buschmann et al., 2008; MacDonald et al., 2011; Liutkus et al., 2012). In South Korea, open-water IMTA practice started in 2012 and was conducted in small land-based systems (Park et al., 2018).

According to published literature, only two shrimp species, such as P. monodon and Litopenaeus vannamei, have been grown in IMTA with various extractive plant species at a pilot scale in India, Philippines, Taiwan, and Mexico (Yeh et al., 2017; Xiao and Watson, 2019; Strand et al., 2019; Biswas et al., 2019; Arriesgado et al., 2022). The outcomes of these investigations have been proven productive and economically viable, and also have shown a positive environmental bio-remediation effect. In Bangladesh, IMTA has only recently been taken into consideration for research and development to diversify production, using combinations of carps (Catla catla, Hypophthalmichthys molitrix, Labeo rohita, and Cirrhinus cirrhosus), stinging catfish (Heteropneustes fossilis), snails (Viviparus bengalensis), and water spinach (I. aquatica). However, no documented reports of the IMTA systems with freshwater prawn farming exist, though it is becoming an increasingly important targeted species in Bangladesh and elsewhere, and there is in enormous demand for this prawn in the export market.



3.2 Basic principles of IMTA

The principles of IMTA are based on nutrient recycling, whereby various complementary species at different trophic levels are grown in proximity, allowing the waste from one species to become the feed for another (Ellis and Tiller, 2019). Thus, IMTA involves raising organisms to enable one species’ uneaten feed, faeces and metabolic excretions, nutrients, and by-products to be recaptured and transformed into feed, fertilizer, and fertilizer energy for the development of the other species. FAO (2014) defines IMTA as “a practice in which by-products from one species are recycled to become inputs for another.” In a typical IMTA systems, finfish, shrimps or prawns are cultivated by allocation of feed, while extractive inorganic, such as aquatic vegetation or seaweeds, use the inorganic waste, and animals, e.g., mussels and oysters, utilize the organic waste materials (Ridler et al., 2007; Chopin et al., 2012; Sri-uam et al., 2016; Biswas et al., 2020), as illustrated in Figure 3.

[image: Figure 3]

FIGURE 3
 Sketch of integrated multitrophic aquaculture technique with a combination of trophic levels [adapted with permission from Hossain et al. (2017) © The authors of Hossain et al. (2017)].


Globally, various organic and inorganic extractive species are co-cultured with different species of fish in IMTA systems, as shown in Table 4. Organic and inorganic extractive species drastically reduce waste materials emitted by feed material in IMTA. Earlier studies demonstrated that mussels and oysters had filter-feeding capacity to significantly reduce the organic effluents that were released from fish farming (Irisarri et al., 2015). Mussels and oysters are cosmopolitan species and general suspension feeders cultured in dense aggregations. Similar studies have reported that mussels and oysters grew faster when absorbing the organic waste when co-cultured with finfish or shrimps (MacDonald et al., 2011; Sarà et al., 2012). Cranford et al. (2013) noted that the large biofiltration capacity of suspended mussels provided a rationale for their use in IMTA systems. Dissolved nutrients are not taken up by mussels, but can be reduced by absorption in aquatic plants to fuel growth and biomass production in the IMTA system. In addition to the uptake of nutrients, aquatic plants may also provide shelter and shade for other organisms and release allelopathic chemicals to resist toxic algal blooms. Photosynthetic bacteria can concurrently decrease the amount of nitrogen and phosphorus in the system and provide food for suspension feeders (Samocha et al., 2015; Yeh et al., 2017). Consequently, IMTA increases the production of both seaweeds or other vegetation and provides a better environment for cultured aquatic animals (Wu et al., 2015).



TABLE 4 Major fed and extractive species used in IMTA techniques.
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In Bangladesh, freshwater prawn is naturally farmed together with an abundance of various species of mollusks and aquatic weeds. Various mollusks species including apple snails, freshwater snails are available in prawn farms, which are commercially important with good food sources for fish and livestock. Aquatic weeds, being emergent, floating anchored, free-floating or submerged, are also present in most prawn gher (modified rice fields to enable the culture of prawn, finfish together with rice), providing a food source, habitat, carbon dioxide removal and oxygen production through photosynthesis. Many of these organic and inorganic extractive species may be acceptable candidates for IMTA practices in coastal prawn farms in Bangladesh. However, their potential advantageous effects in integrated practices in research fields have remained mostly untouched and unexplored. To adequately ensure additional food production and multiple uses of the same land, extensive research is needed to select suitable candidate species of mollusk and aquatic plants for IMTA practices in coastal prawn farms.



3.3 IMTA for sustainable aquaculture

Sustainable aquaculture is a dynamic concept integrating three key pillars: i.e., economically profitable, environmentally friendly, and socially equitable (FAO, 2010; FAO, 2017). The concept of IMTA could meet most of these criteria including sustainable production as it focuses on a circular economy approach, minimization of energy losses and environmental deterioration (Pereira and Yarish, 2008). Recent literature reported that sustainable aquaculture also contributes to the achievement of the UN SDGs2 (Jiang et al., 2022). In particular, IMTA robustly supports the achievement of SDG 1 (no poverty), SDG 2 (zero hunger) and SDGs14 (life below water) by helping to reduce poverty, provide food for people, and conserve sustainable use of the oceans, but IMTA also indirectly achieves SDG 3 (good health and well-being) and SDG 13 (climate action) by providing rich proteins diets and maintaining a healthy weather (Naylor et al., 2021). IMTA contributes to environmental, economic, and social advantages through product diversification, possible price premiums, increased economic resilience, and nutrient cycling (Kumar et al., 2000; Chopin et al., 2012; Hughes and Black, 2016; Correia et al., 2020; Hossain et al., 2022). Buck et al. (2018) emphasize that extractive species absorb significant amounts of waste nutrients, control eutrophication, improve aquatic ecosystems’ health and stability, and promote an ecologically sound aquaculture practice and resource management through a balanced coastal ecosystem approach.

IMTA appears as an economically viable technique that reduces risks through crop diversification and production in different seasons (Chopin et al., 2012). Literature reveals positive prospects of cost-effectiveness at the farm level and economic viability of IMTA systems through product diversification, faster production cycles, and higher product prices (Hossain et al., 2022). IMTA has been demonstrated to boost individual revenue in favorable market conditions and foster economic resilience in challenging times (Whitmarsh et al., 2006). Barrington et al. (2009) mentioned that Canadian consumers prefer IMTA products and are willing to pay an additional 10% for IMTA-labeled products for better quality and food safety. Carras et al. (2020) observed that the yield of salmon in monoculture and with IMTA techniques with a combination of mussels and kelps was unchanged in Canada in an experimental setting; however, the extra production of the mussel and kelp increased the total biomass in IMTA systems, which aided to boost revenues by selling the mussel and kelp providing a higher net present value than salmon monoculture. Fraga-Corral et al. (2022) noted that the IMTA approach is best adapted to foster a circular economy based on the economic viability of integrated aquaculture species. Knowler et al. (2020) reported that the sale of seaweed generated an additional US$ 34,000 in annual revenue, corresponding to about US$ 0.28 per kg of fish, in salmon IMTA farms. They also demonstrated the economic viability of IMTA, since the NPV (net present value) for the IMTA system was 24% higher than the NPV of the monoculture operation, when assuming a 10-year period and a 5% discount rate. Fonseca et al. (2017) assessed IMTA farming with different combinations of species, including shrimp, oysters, and seahorses, and reported that it is economically feasible. In this system, the internal rate of return was 131.1% and payback period for the investment was <2.0 years.

IMTA techniques have gained social acceptance and satisfied the key aquaculture stakeholders in many countries (MacLeod et al., 2020). Extensive literature has recognized that IMTA is a societally acceptable farming technique due to better management practices, improved regulatory governance, and appreciation of differentiated and safe products (Ridler et al., 2007; Troell et al., 2009; Chopin et al., 2012; Correia et al., 2020). In North America, the IMTA method has achieved social acceptance over conventional fish monoculture as seafood produced using this system was regarded as better for the environment and animal welfare and, to a lesser extent, safer and healthier (Kibria and Haque, 2018).

Prawn farming (monoculture and polyculture) has several impacts on employment generation, food supply, export earnings, strengthened livelihoods and ultimate consequences for the economy of Bangladesh. The prawn cultivation has become a multimillion-dollar business in coastal Bangladesh and is called “white gold” due to its international market export value (Islam, 2008; Alexander et al., 2016; Sukhdhane et al., 2018). However, this growing industry faces various bottlenecks, such as dependency on the imported feeds ingredients, a lack of quality feeds and adulteration-free ingredients, hatchery-produced quality seed, water quality problems and high GHG emissions from the farms. If the IMTA approach is implemented into the prawn farming, this farming system can be a sustainable strategy the existing problems in the coastal aquaculture of Bangladesh.



3.4 Extraction/bioremediation capacity of species used in IMTA systems

This literature review demonstrated that many organisms may serve as extractive species, but some organisms are more efficient than others. In addition to extraction and bioremediation capacity, the most suitable organisms should ideally also serve as producers of valuable food in IMTA systems (Park et al., 2021; Hossain et al., 2022; Hargrave et al., 2022). Efficient extractive species for organic and inorganic compounds are shown in Table 5. The most efficient extractive species for organic material in IMTA are mussels, oysters, and clams (Chopin, 2011; Diana et al., 2013). Sicuro et al. (2020) made a similar statement, describing bivalves to play a pivotal role in aquatic ecosystems due to their high filtration capacity and ability to recycle nutrients and mix sediments. Earlier studies reported that blue mussels (M. edulis) and other filter feeding bivalves (Diplodon chilensis, M. galloprovincialis) can uptake nitrogen, and reduce levels of chlorophyll a, phosphate, and ammonia (Hossain et al., 2022; Hargrave et al., 2022). Bivalves may consume dissolved compounds (branchial and urinary losses), reducing the concentration of nutrients and preventing the overgrowth of phytoplankton (Papageorgiou et al., 2023). Hargrave et al. (2021) observed that bivalves M. edulis, and Magallana gigas significantly reduced kelp3 biofouling by as much as 50% in IMTA systems. The freshwater mussel, Sinanodonta woodiana is highly efficient for bioremediation since it has been shown to reduce seston (suspended particulate organic matter) loads and regulate eutrophication in waterbodies (Douda and Čadková, 2018). Moreover, in IMTA cultures, the two oyster species, C. gigas and C. rhizophorae efficiently utilized organic matter (fish feed waste and fish feces) and eliminated total suspended solids and chlorophyll-a contents from the waterbody (Ramos et al., 2009; Jiang et al., 2013).



TABLE 5 Extractive/bioremediation capacity of organic and inorganic species in IMTA systems.
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Seaweeds are widely used in IMTA systems due to their high affinity for nutrient absorption, reducing eutrophication and contributing to bioremediation (Wu et al., 2015; Kang et al., 2021; Hargrave et al., 2022). Macchiavello and Bulboa (2014) discovered that the seaweeds, G. chilensis and U. lactuca, in an IMTA system absorbed almost 100% of ammonia (NH3), nitrate (NO3), and phosphate (PO43−) that was generated by red abalone (Haliotis rufescens) in the IMTA. Similarly, Marinho-Soriano et al. (2009) showed that the red seaweed G. birdiae had high biofiltration capacity and substantially reduced concentrations of PO43−, NH4+, and NO3− in IMTA cultivation. Mao et al. (2009) demonstrated that the red alga G. lemaneiformis had a high nutrient assimilation and bioremediation efficiency and assimilative capacity and served efficiently in an IMTA techniques by reducing ammonium and phosphorus loading. When the seaweed S. latissima was co-cultivated with the bivalves Chlamys farreri, the concentration of nitrate and ammonium was significantly reduced (Hargrave et al., 2021). A similar effect was observed for the macroalgae, Agardhiella subulata which in different IMTA systems significantly decreased the concentration of dissolved inorganic nutrients in the water, such as NH3, NO3−, NO2−, and PO43− (Lohroff et al., 2021). According to Biswas et al. (2019), water spinach, I. aquatica, may have an important role in bioremediation and removal of inorganic nitrogenous (NO2-N, NO3-N, and TAN) and phosphate-phosphorus (PO4-P) from organically polluted waters. Supporting this, water spinach has also been used to treat aquaculture wastewater successfully. For removal of mainly ammonium from wastewater, the application of Ulva spp. in the IMTA systems is also widely practiced and may be combined by recirculation of valuable elements to save pumping costs (Neveux et al., 2018). Yang et al. (2005) highlighted that G. lemaneiformis had multiple effects on pond IMTA systems; it reduced turbidity and phytoplankton biomass, and it provided a substantial reduction of nutrients by assimilation of NO2−-N, PO4−3-P.

Mollusks may also be important in IMTA in Bangladesh. Potential mollusk species in prawn farms and coastal waterbodies in Bangladesh include various mussels (M. edulis, C. gigas, Perna viridis), clams (Pila globosa, Viviparous bengalensis, Meretrix meretrix), and the oysters C. madrasensis (Shahabuddin et al., 2010; Ahmed and Glaser, 2016). These mollusks are considered ecosystem engineers with the potential to create, modify or maintain habitats and ecosystem processes (Hossain et al., 2013). For extraction of inorganic nutrients, various freshwater and brackish water aquatic weeds grow in prawn ghers. Ahmed and Taparhudee (2005) identified seven potential seaweeds in coastal areas of Bangladesh suitable for IMTA practices (genera: Caulerpa, Enteromorpha, Gelidiella, Gelidium, Halymenia, Hydroclathrus, Hypnea, and Sargassum). The mollusk and aquatic weed industries in Bangladesh are still at the infancy stage. However, these species in IMTA practices are highly promising in coastal Bangladesh due to suitable habitats, their high capacity to remove nutrients, improve water quality, and provide better economic return during co-culture with fish and other aquatic animals.



3.5 Contribution to food safety and security

Global food security is a dynamic concept evolving over decades with its definition and policy implementation (Sultana et al., 2023). IMTA systems contribute significantly to food and nutrition security through a diversified production of fish and crustaceans, and besides they deliver valuable products at different trophic levels, including oysters, mussels, clams, and seaweed. These extractive species, being bivalves and seaweeds, have high food, nutritional and economic value. Among important organic extractive species are mussels due to their high content of proteins and essential polyunsaturated fatty acids, such as eicosapentaenoic acid and docosahexaenoic acid that appear beneficial for healthy human development and prevention of diseases (Orban et al., 2002; Carboni et al., 2019). Mussels also contain other vitamins and minerals than most other meat-based protein sources, such as vitamins B and trace minerals (Venugopal and Gopakumar, 2017). Subasinghe et al. (2019) noted that the oyster C. madrasensis is an ideal source of omega-3 fatty acids and is rich in protein and low in calories and fat. The freshwater mussels Anodonta pseudodopsis and Unio tigridis may also have healthy properties due to their content of mono- and polyunsaturated fatty acids (Şereflişan and Ersoy-Altun, 2018). Moniruzzaman et al. (2021) determined that the apple snail P. globosa contain 50% protein and 3% lipid, which means that it represents a good source of protein for human consumption.

For seaweeds, Barbier et al. (2020) reported that they are viewed as promising, sustainable and healthy food sources and can contribute to achieving future policy goals related to blue growth and food security. Seaweeds contain essential nutrients, including proteins, lipids, vitamins, and minerals for human growth and development (Mahadevan, 2015). Yang H. et al. (2021) reported that humans consume seaweeds worldwide because of their nutritional value and abundance of proteins, vitamins, minerals, and other organic compounds. According to Shannon and Abu-Ghannam (2019), the red seaweed Porphyra tenera contains high-protein contents, accounting for approximately 47% protein in dry weight. The available literature reported numerous essential fatty acids in seaweed; approximately 50% are polyunsaturated fatty acids (Dembitsky et al., 2003). Eicosapentaenoic and arachidonic acids are abundant in Rhodophyta and Phaeophyta, whereas oleic, hexadecatetraenoic, and palmitic acids are prevalent in Chlorophyta, such as Ulva pertusa (Ortiz et al., 2006). Mišurcová et al. (2011) reported that seaweeds contained abundant water-soluble and fat-soluble vitamins, including thiamine, riboflavin, cobalamin, ascorbic acid, folic acid, and its derivatives, tocopherols, and carotenoids. Furthermore, seaweeds have low lipid and carbohydrate content, contain essential amino acids and are rich in carotenes, vitamin C and vitamin B12 (Rajapakse and Kim, 2011; Slegers et al., 2021).

IMTA has arisen as an efficient method for safe production of high-quality food production through biological elimination of waste, improvement of water quality, maintenance of ecological services, diversification of the production, and maximization of resource uses (Kim et al., 2022). Hargrave et al. (2022) demonstrated the advantage of integrating seaweeds alongside blue mussels in IMTA systems rather than in monoculture to benefit both yields and quality (Irisarri et al., 2015; Moniruzzaman et al., 2021). Therefore, in Bangladesh comprehensive research on integration and combination of species and their nutritional value can accelerate the production and economic significance of IMTA systems. In prawn farms, IMTA practices may increase the total pond biomass through a diversified production of prawn, fish, mollusks and aquatic plants. Although some tribal people consume bivalves, most farmers extensively use bivalve meat, mainly snails, for feed in freshwater prawn farming in the southwest of Bangladesh (Baby et al., 2010). Currently, fish feed in Bangladesh mainly depends on imports because most feed ingredients come from international feed markets. If mollusk farming can be practiced sustainably in an IMTA approach, the import pressure of fish feed on prawn farming can be reduced to a greater extent (Mamun-Ur-Rashid et al., 2013).



3.6 Reduction of GHG emissions

While aquaculture contributes to resolving food crises, it does also generate GHGs emissions (Alam et al., 2022; Chen et al., 2023), and this has attracted negative attention from scientists, researchers, organizations and the public worldwide (Ziegler et al., 2013). Carbon dioxide, methane, and nitrous oxide are three major GHGs, which are increasingly generated from the intensified aquaculture (Xu et al., 2022). It is not uncommon that aquaculture farmers apply a large volume of industrial feed during intensive farming, resulting in addition of unutilized feed, semi-digested feed, excretions of metabolites, and mucous into the water. This organic matter stimulates microbial degradation that potentially trigger methane and nitrous oxide production that eventually generate GHGs (Yang et al., 2019; Zhao et al., 2021; Pu et al., 2022). Earlier studies confirm that aquaculture intensification may lead to eutrophication, causing depletion of the oxygen in the water and correlating positively with methane and carbon dioxide emissions (Li et al., 2021; Malyan et al., 2022). Thus, the global and rapid expansion of aquaculture has become a critical driver of global warming and climate change (Ahmed and Turchini, 2021; Xu et al., 2022).

IMTA has been documented as a potential solution to adapt and mitigate GHG emissions through nutrient absorption and blue carbon4 sequestration (Abisha et al., 2022). Combining shellfish, i.e., mussels and oysters, and seaweeds in IMTA techniques significantly enhances aquatic ecosystems functions by sequestering CO2 and removing it by fixing carbon in solid form and hereby minimizing GHG emissions (Ahmed et al., 2017a; Macreadie et al., 2017; Fodrie et al., 2017; Ye et al., 2022). Shellfish serve as an important carbon sink and can help sequester blue carbon (SARF, 2017). Ahmed et al. (2017b) reported that the estimated global mollusk production was 16.1 million MT in 2014, potentially sequestering 0.97–1.93 million MT of blue carbon each year. Seaweed farming is a global mitigation approach to combat carbon emissions and promote blue growth initiatives (Froehlich et al., 2019). In the latest scientific literature, seaweeds are highly regarded elements in a potential blue carbon adaptation strategy, because they aid in controlling ocean acidification and deoxygenation and contributes to carbon sequestration, coastal safety, and serve as a carbon sink (Turan and Neori, 2010; Chung et al., 2013; Jagtap and Meena, 2022; Farghali et al., 2023).

In freshwater prawn farms, farmers typically apply artificial feeds that retain a large quantity of organic matter from residual feed to feces into the pond water, generating a higher GHG footprint than traditional aquaculture systems. This enlarged GHG footprint is not only a challenge to Bangladesh, it also affects export options to global markets that demand not only high animal welfare, ecolabelling and food safety, but also a sustainable production of farmed seafood, including prawns (Ahmed et al., 2018). Therefore, adaptation strategies must be developed to cope with the challenges. The IMTA approach is a potential solution to resolve environmental and climate change problems by inclusion of different extractive species together with prawn. Priorities should focus on a comprehensive research investigation to determine the amount of carbon that can be sequestered by various mollusks, bivalves and aquatic plants in farms to make the farming of prawns sustainable and ensure a reduced emission of GHG.



3.7 IMTA on climate change resilience

Climate change is a global challenge and has substantially impacted aquaculture and mariculture production, including hatchery operations, through temperature fluctuation, erratic rainfall, sea-level rise, salinity intrusion, hypoxia, and ocean acidification (Fraga-Corral et al., 2022; Siddique et al., 2022a; Siddique et al., 2022b; Mahalder et al., 2023). In recent years, the impacts of climate change on sustainable aquaculture have drawn attention since they threaten global food security, nutrition supplement, and livelihood status (Maulu et al., 2021). IMTA provides potential solutions and adaptation options for sustainable aquaculture in the context of climate change (Ahmed et al., 2017a; Tan and Zheng, 2020). Thus, as mentioned above, IMTA can improve the marine environments by diminishing ocean acidification, deoxygenation, and reduction of carbon emissions (Ye et al., 2022). In IMTA, bivalves like oysters can act as “ecosystem engineers,” by reducing negative environmental impacts directly or indirectly. They do this through carbon sequestration, enhancing nutrient removal from eutrophic areas, and contributing to habitat formation for other species (Mcleod et al., 2011; Fuentes-Santos et al., 2021). Oyster shells act as carbon sink, playing vital role in mitigating the effects of climate change, particularly by reducing ocean acidification (Papageorgiou et al., 2023). Oysters are crucial to global ocean ecosystems, providing shelter and habitat for various estuarine species, filtering and purifying water, preventing bank erosion, and serving as buffers against extreme climatic events (Grabowski and Peterson, 2007). Aquatic plants in IMTA reduce carbon dioxide levels and mitigate the effects of global warming and climate change over the long term (Farghali et al., 2023). Sultana et al. (2023) reviewed how seaweed can reduce the concentration of pCO2 (partial pressure of carbon dioxide) in seawater by converting dissolved inorganic carbon through photosynthesis. Carbon sequestration via seaweed culture can potentially contribute significantly to global warming and climate change mitigation (Duarte et al., 2017). Farghali et al. (2023) noted that one MT of dry seaweed biomass can absorb approximately 960 kg of carbon dioxide during culture period. Seaweed can also fix phosphorus, potassium, and nitrogen in IMTA approaches, minimizing ocean acidification and increasing oxygen levels to revitalize and restore water habitats (Yong et al., 2022). Duan et al. (2019) reported that seaweed farming of G. lemaneiformis removed approximately 1,192 MT, 15.89 MT, and 128.10 MT of carbon, phosphorus, and nitrogen, respectively, from Yantian Bay, China.

In conclusion mollusks and aquatic plants are sustainable, climate-friendly elements in aquaculture production and they serve as nutrient-rich protein for human consumption (Jones et al., 2022). In addition, neither mollusks nor plants depend on feeds, like fish or prawn do, meaning that they reduce land-based emissions from agricultural products, such as fish feeds. It should be emphasized that the inclusion of extractive species together with fed species (e.g., prawn or fish) do not exacerbate climate change, including floods, sea level rise, salinity intrusion, and mangrove deforestation, rather they represent proactive climate-friendly practices that will help create sustainable environmental, social and economic solutions. Therefore, available mollusk and aquatic plants in prawn farms used in the IMTA approach can provide strong resilience to climate change in coastal Bangladesh by sequestering blue carbon and reducing CO2 emissions.



3.8 IMTA for prawn farming in Bangladesh

IMTA is an environmentally friendly aquaculture approach as by sequestering blue carbon it tackles climate change mitigation. The main advantage of IMTA is its flexible and versatile nature as it can be practiced in land-based freshwater, coastal and marine water adopting several species combinations (Chopin and Sawhney, 2009). Seaweeds and bivalves comprise about half of all aquaculture production globally, and their production have high market and non-market economic value (van der Schatte Olivier et al., 2020). Open ocean IMTA has also been recently practiced where seaweed was integrated together with fed species. This technique might attract an increased economic interest once high-value seaweed species can be cultivated and serve as novel human food products. The IMTA approach aligns with EU (European Union) directions for blue growth and the blue economy, and it works well within the global ambition of circularity in food production (Papageorgiou et al., 2023). Expansion of the IMTA approach with prawn farming in coastal areas could boost the blue economy, which is the top priority sector of Bangladesh government. Prawn farming with IMTA technique could ensure a safer and more sustainable production accelerating the export potential of freshwater prawns from Bangladesh to the global market. Locally available freshwater mollusks (e.g., P. globosa, V. bengalensis, Bellamya dissimilis, etc.) can be farmed in IMTA system due to their potential role to sustainable diversification of food production and extensive ecosystem benefits, including nutrient remediation, and carbon sequestration (Seitz et al., 2013; van der Schatte Olivier et al., 2020). These mollusk species can inhabit various niches in prawn farms, including the floating water column, substrates, and the bottom of the waterbodies. Similarly, locally available aquatic plants (e.g., I. aquatica, Oxalis corniculate, Azolla pinnata, Lemna minor, etc.) have the potential to be cultured in IMTA alongside freshwater prawn. These plants can then be used as feed for livestock, replacing expensive protein sources and helping to reduce the overall cost of meat and milk production (Froehlich et al., 2019).



3.9 Challenges of IMTA approach within prawn farms in Bangladesh

Despite the more sustainable side compared to monoculture and climate change adaptability, some drawbacks are becoming evident as IMTA is experimented more widely in the world (Troell et al., 2009; Khanjani et al., 2022). Scaling up the IMTA technique in coastal prawn farms is likely to face some technological and environmental challenges. Adopting IMTA in prawn farms in coastal areas could result in various social problems, such as theft, robbery, and vandalism due to valuable produces in a small area (Ahmed and Glaser, 2016). The number of appropriate species used for the IMTA system may be minimal in some coastal waterbodies (Rosa et al., 2020). The selection of the most appropriate species to co-culture with freshwater prawn is a great challenge; therefore, one of the priorities to implement IMTA is the need for extensive research to identify the most appropriate aquatic plant and mollusk species to evaluate the densities and circumstances for optimum revenues (Granada et al., 2016). Achieving consumer acceptance of aquatic weeds and mollusk will be a big challenge because these are entirely new food items for the local people. Another challenge is making aquatic plants and mollusk produced in IMTA affordable and available to the domestic and export markets (Biswas et al., 2020; Sultana et al., 2023). An important limitation to IMTA notably in Bangladesh is the lack of farmer level research, technical knowledge, experience, and training in operational practices to prawn farmers. Facilities, including action research opportunities, extension services, technical aid, credit support, marketing promotion of the produces, are required for the farmers to adopt IMTA practices. The government and non-government organizations, particularly the Bangladesh Fisheries Research Institute (BFRI) and WorldFish, other research local and international research institutes, and the Department of Fisheries and relevant extension agencies together, can assist by implementing action research at the farmers level and providing extension service and technical support to promote IMTA technique in the prawn farming region.




4 Conclusion

Freshwater prawn farming is the export oriented farming in coastal areas of Bangladesh by virtue of extensive polyculture and integration with rice/vegetables. Freshwater prawn has established a strong global trade, particularly in the European Union and the United States of America. Despite having broader economic advantages, traditional prawn farming raises concerns about long-term environmental sustainability due to GHG emissions. Prawn farming with IMTA represents an eco-friendly method under a circular economy approach, minimizing energy losses, environmental degradation, GHG emissions, and can alleviate negative effects of climate change. Mollusks and aquatic plants in IMTA can sequester blue carbon, reduce global warming, and mitigate climate change impacts. Additionally, these extractive organisms grown in prawn farms can decrease emission of waste materials, such as unutilized feed, excretions, and metabolic wastes, by feeding aquaculture material to improve water quality and the aquatic ecosystem functions. Farming extractive species in IMTA increase food and nutritional value; therefore, they can be used instead of other expensive protein sources to optimize the cost of meat, milk, and other animal products. The IMTA approach in prawn farms can fit well with the goal of circular food production and has great potential to contribute to solve the food crisis, blue growth, and the blue economy. Despite the current technological and environmental limitations of IMTA approaches, adapting this technique to prawn farming can enhance export potential and be socially, economically, and ecologically sustainable. To fully optimize the potential of prawn farming in Bangladesh, it is essential to identity and combine the most suitable extractive species (e.g., aquatic mollusks and plants) within the IMTA strategy. This requires comprehensive research and development initiatives, which should be a future priority in the national policy. The National Fisheries Policy, developed by the DoF (1998), requires a significant reformation, as it did not adequately address aquaculture research and development issues (DoF, 1998). Updating this policy with a clear aquaculture policy guideline that seriously considers advanced techniques like IMTA is essential. In line with this, government and non-governmental research and extension organizations (i.e., BFRI, WorldFish, DoF) can collaborate to revise national policy, and implement action research to develop IMTA model in prawn farms, and provide training and technical support to the farmers to foster the adoption of this sustainable technique in coastal regions of Bangladesh.
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Footnotes

1   Seaweeds are autotrophic organisms of simple structure with little or no cellular differentiation and complex tissues, grow in the ocean as well as in rivers, lakes, and other water bodies, and being used in human consumption, hydrocolloids extraction, fertilizers, extracts for cosmetics and pharmaceuticals, biofuels and wastewater treatment (Müssig, 2009; Peñalver et al., 2020).

2   SDGs (Sustainable Development Goals), adopted by all UN Member States in 2015, serve as a blueprint for a sustainable future, targeting poverty eradication, inequality reduction, climate crisis mitigation, peace and justice promotion, and environmental protection, with all 17 interlinked goals to be achieved by 2030 to ensure that no one is left behind.

3   Kelp is referred to as large cold-water brown algae of the family Laminariaceae, used as food, medicines, and various manufacturing processes (Fraser, 2012).

4   Blue carbon is an integral part of the global carbon cycle. It refers to organic carbon absorbed and deposited by the oceans and coastal ecosystems, especially vegetated coastal ecosystems, such as seagrass meadows, tidal marshes, and mangrove forests (Ahmed et al., 2017a; Macreadie et al., 2019).
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Development
IMTA-like approaches presumably first emerged in China.

Marine IMTA systems began at the National Center for Mariculture in Eilat, Israel.

Modern IMTA concept was first introduced by Ryther and his associates at Woods Hole
Oceanographic Institution, USA.

Fully operational IMTA techniques, launches in Shangou Bay, China, are currently acknowledged

as the most widespread in the world.
Initiation of IMTA research began in Chile.

“The experimental and theoretical research of macroalgae under the IMTA concept initiated and

continues in Isral.

‘The integration of seaweeds with marine fish culture was researched and explored in Japan, Chile,
Scotland, New Zealand, Canada, and the USA.

Massive advancement and expansion of IMTA on an experimental and commercial scale in

Australia, Canada, South Aftica, Europe, North America, and other countries.

IMTA approach was started by Atlantic salmon/kelp/blue mussel co-farming in the Bay of Fundy,
Canada.

‘The term integrated multitrophic aquaculture was derived from integrated aquaculture and

multitrophic aquaculture.
An IMTA research project started in New Zealand

IMTA was acknowledged as a serious study priority and a potential direction forward for
aquaculture techniques at the joint conference of the European Aquaculture Society and the World
Aquaculture Society in Florence, Italy.

IMTA research was initiated in earthen ponds at Bangladesh Agricultural University, Mymensingh,
Bangladesh.

First ever small-scale open-water IMTA exercise was conducted of the east coast of Korea.
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