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Analysis of grain production performance can provide reference information to 
explore multiple cropping options and further improve the resource use efficiency 
of farming methods. This study investigated the spatiotemporal dynamics of grain 
production performance and efficiency of major crop production systems (CPS) 
in the Ethiopia’s Blue Nile Basin. The results show that only 39% of the basin is 
currently cultivated, although a significant cropland expansion (10%) was recorded 
between 1985 and 2020. The study identified 11 major CPS, mostly practiced 
in the basin. Of these, single cropping based on the main rainy season (Meher-
Only) covers the largest area (26%), followed by Meher-Residual-Intermittent 
(12%) and Meher-Belg-Dependable (11%). Extended-Meher, Meher-Residual-
Dependable, Meher-Residual-Intermittent, and Meher-Belg-Dependable are the 
four more powerful CPS with higher efficiency. Comparatively, CPS practiced 
in Wet-Woyna-Dega and Wet-Dega have better overall performance. Findings 
confirm that agricultural space management (land) and green-water (rainfall) 
utilization are the most influential factors, followed by land use planning and 
land use systems (CPS) invention. As landscape suitability for grain production 
governs future performance, in the low elevation and flood plains parts of the 
basin, the possibility of creating additional space into the food system is very high. 
In mountainous and high-altitude regions, the efficiency of grain production will 
decrease because incorporating additional arable land into the food system is 
trivial. In the last three decades, in BNB, only 10% of arable land (equivalent to 30 
million quintals of food) has been added to the good system, which can support 
approximately 6 million people. Compared to the population growth of the basin 
(12 million 1985–2020), its contribution to the food system was less than 50%. 
This confirms that multiple cropping systems, such as Residual moisture-based 
CPS, have played a significant role in boosting the food system in the basin. 
Therefore, improving grain production performance/efficiency requires targeted 
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investments, including the invention of more adaptable crop varieties, efficient 
cropping practices, and the introduction of advanced agricultural space and water 
management technologies. The results of the study will help identify important 
policy gaps and suggest possible options to enhance residual farming and other 
multiple cropping systems.

KEYWORDS

residual farming, grain production, Blue Nile, water security, food security, soil 
moisture, Ethiopia, land use efficiency

1 Introduction

As a developing agricultural country, Ethiopia relies heavily on 
rainfed agriculture for almost 95% of its food production, making its 
development strategies a global topic of discussion (Ahadu, 2019). 
With the population expected to double in 20 years (CSA, 2020), 
Ethiopia must develop a strategy to double food production 
accordingly (Endalew et al., 2015). In 1990, the food requirement for 
45 million people was 350 million quintals per year (Taddese, 2001; 
CSA, 2014). By 2020, this need increased to almost 1 billion quintals 
for over 120 million people (CSA, 2020; Tekeste, 2021). Increasing 
food shortages have resulted in increasing food insecurity (Wani et al., 
2009; Rahmato, 2003; Zerssa et al., 2021; CSA, 2020). Opinions differ 
on the reasons for Ethiopia’s increased grain production: some 
attribute this to land management and inputs, while others point to 
the expansion of cultivated areas. The literature shows that total grain 
produced from the area under cereal crops has increased significantly, 
from 60 to 80 million quintals in 1980/85 to 316–350 million quintals 
in 2020/23—an overall increase of 300% (CSA, 2020). The CSA 
attributes this growth primarily to productivity improvements. 
Non-spatial data show that the cultivated area of the country increased 
from 5 to 6 million hectares in 1980–85 to 14–17 million hectares in 
2020–23, with productivity increasing from 10 to 12 quintals per 
hectare to 26 to 28 quintals per hectare (CSA, 2020; Teshome, 2014). 
Overall, existing data on grain production are inconsistent and do not 
provide a clear picture of spatiotemporal trends, potentially leading to 
misjudgment of the development trajectories of the country.

The main data source for agricultural production in Ethiopia is 
the Central Statistical Agency (CSA) (Teshome, 2014). Although CSA 
national census data are detailed and spatially comprehensive, they 
have limitations in temporal coverage and accessibility. Annual 
agricultural surveys provide more consistent temporal data but lack 
detail and representativeness. Regional and seasonal variations in crop 
production systems (CPS) create inconsistencies in the literature and 
make it difficult to understand trends in cropland and grain 
production at larger scales (Teshome, 2014). Although case study data 
can provide greater accuracy, its inconsistencies and terminological 
differences hinder scalability to the national level. Therefore, 
conducting spatially explicit analyses of spatiotemporal trends in grain 
production and productivity is challenging. In addition, outdated and 
poorly managed information makes it difficult to integrate and update, 
further hindering effective planning and evidence-based decision-
making. In summary, there exist about four main limitations that lead 
to data inconsistencies in grain production: (i) methodological issues, 
(ii) different definitions and meanings, (iii) lack of thematic detail and 

scope, and (iv) spatial and temporal limitations with (v) data 
management issues. To address these root causes, the authors have 
identified four key research gaps: (1) the need for spatially explicit and 
multi-temporal data, (2) limited local knowledge about the potential 
and challenges of crop production systems (CPS), (3) financial and 
methodological challenges in regularly assessing land use or 
cultivation practices, and (4) technical limitations.

Data inconsistencies are mainly caused by differences in 
definition, meaning, and approach and lead to incorrect assumptions 
(Kassawmar, et al., 2018b). Many studies typically attribute changes 
in grain volume to (a) changes in arable land (Teshome, 2014) and 
(b) changes in inputs (Silva, et al., 2021). However, other particularly 
overlooked factors include land allocation strategies and land use 
shifts as well as changes in crop production systems (CPS) (Korbu, et 
al., 2020). The former deals with land use and land cover changes 
(LULC), while the latter refers to changes in land use systems (LUS). 
The spatiotemporal dynamics of grain production reflect the diverse 
types and forms of land use systems (LUS) and crop production 
systems (CPS) across the globe, influenced by local variations in 
climate, soil, economic factors, social structures, and historical 
contexts (Yu et al., 2021; Lesur-Dumoulin et al., 2018; Panigrahy 
et  al., 2011; Wu et  al., 2015). The nature of CPS in Ethiopia is 
extremely complex as they are conditioned by unpredictable 
spatiotemporal dynamics of the two governing factors: agricultural 
space/land and water coupled with farmers’ knowledge (Lairez et al., 
2023; Abera, 2017). Spatiotemporal changes in grain production are 
primarily driven by two key farmers’ decisions: (i) shifts in land use 
or reallocation and (ii) the introduction of new CPS. As water and 
land are limited resources, increasing grain production should focus 
on efficiency, rather than unlimited expansion of inputs such as space 
and water (Nasrallah et al., 2020; Biswas et al., 2006; Zhao et al., 
2021). Instead, land use decisions and CPS should focus on 
continuously improving grain production levels through effective 
land allocation and reallocation as well as enhancing the land 
utilization performance of farming systems (Liu J. et  al., 2020; 
Berhanu et  al., 2021). This can be  achieved by co-designing 
appropriate land use plans and co-inventing efficient CPS, and 
making evidence-based land use decisions (Panigrahy et al., 2011). 
To realize a food-secure society in the basin, developing effective land 
use plans and high-performance CPS, effectively managing 
agricultural spaces and green water is crucial. These strategies require 
spatially explicit evidence of natural capital and proper understanding 
of the various CPS. Integration of such data can improve planning 
and decision-making through detailed assessments of land use 
performance (LUP) and land use efficiency (LUE). However, there is 
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a lack of comprehensive studies assessing cultivated land dynamics 
and CPS at the required scale and level of detail. The first important 
move is generating multi-temporal cropland data, map and 
characterize existing CPS, and conduct in-depth assessments of 
rainfed grain production performance and its impacts on economic 
development, food security, and water security at the catchment scale.

Previous LUE studies have been performed from input–output 
perspective (Nasrallah et al., 2020; Silva et al., 2021). However, as grain 
production efficiency is largely governed by the inherent potential of 
the natural capital (space, water, climate, etc.) and the performance of 
the land use practice or efficacy of a particular CPS in response to 
inputs, studying the performance of CPS and cropping practices has 
paramount importance (Lairez et al., 2023; Sun et al., 2021; Biswas 
et al., 2006). Very recently, grain production research tended to focus 
on large-scale and multidimensional approaches to spatial 
econometric analysis, which allows analysis of the level of grain 
production, spatial distribution, and contribution of each production 
factor at the regional scale from an economic standpoint (Liu J. et al., 
2020) or analysis of regional food security by measuring food 
production capacity and potential (Nkwasa et al., 2023). However, a 
common research gap is overlooking the incorporation of the space 
and time dimensions in the assessment, which, in turn, hinders a 
synoptic perspective of grain production dynamics.

Existing studies on LUE have two focuses: (i) single-use and (ii) 
combined-use system-oriented assessments. While the former ignores the 
synergy and trade-off that exist between several possible LUS, it 
emphasizes only on single and specific land use systems, for example, the 
cultivated land use system (Liu J. et al., 2020). Indeed, from a specific 
category of LUSs, various sub-categories can exist; for example, within a 
cultivated landscape, varying crop Production/cropping systems (CPS/
CRS) exist. In that case, the performance assessment may require to single 
out specific practices, as residual soil moisture farming can be selected and 
assessed. However, still the former category of LUS performance and 
efficiency assessment approach disregards the interplay between CPS in 
a given landscape. The second category of performance assessment gives 
an equal focus for all existing land use systems, such as grain production, 
timber production, pasture production, and urban and settlement, which 
fulfills multidimensionality. It helps evaluate the performances of different 
LUS from the perspectives of resource utilization and strives to explore 
the relationship between the LUE of varying LUS and its link with 
socioeconomic development (Wang et al., 2022). According to Liu J. et al. 
(2020), such an approach allows to evaluation of the synergy and trade-off, 
while evaluating the performance and efficiency of LUS and/or CPSs. 
Nonetheless, previous studies mainly focused on the comparison of 
regional grain production differences but ignored the spatial interaction 
and impacts among land use sub-category performances/efficiencies and 
the vast variances in crop production within the same area. This 
necessitates the need to undertake a synoptic assessment of cropland 
change and CPS applying a multidimensional land use performance/
efficiency assessment framework (Liu J. et al., 2020).

Recognizing the need to better understand the spatiotemporal 
trends in grain production, this study was conducted with the 
following specific objectives: (1) to map and assess the spatiotemporal 
dynamics of grain-producing landscapes of the UBNB; (2) to map and 
characterize major CPS targeting the spatiotemporal variation in grain 
production; and (3) to assess the performance and efficiency of 
rainfed-based CPS with special focus on Residual soil moisture Crop 
production System (RCS).

2 Materials and methods

2.1 Description of the study area

The study area is the Upper Blue Nile Basin (UBNB) commonly 
known as the Abbay River basin (Nkwasa et al., 2023; Roth et al., 
2018). UBNB is part of the greater Nile River, covering only the 
Ethiopian part. It is located in the Northwestern part of Ethiopia’s 
highlands covering approximately 200,000 km2. The geographical 
location, extent, and basic spatial data about UBNB are presented in 
Figure 1. UBNB hosts approximately 79.6 million people (Teshome, 
2014). It is the frontier area of Ethiopia’s water and agricultural 
development basin, with a national land area of 1.12% carrying a 
population of 5.78% and a total economic output of 10.22% due to its 
superior geographical location and mild climate. Nevertheless, the 
area also suffers from severe resource shortage, with a per capita arable 
land area of only 0.75 ha/hh, which is below the national (0.78 ha/HH). 
With rapid economic and social development, regional water 
development has a significant crowding effect on agriculture and 
ecological space (Wani et al., 2009). As with other basins in Ethiopia, 
UBNB has also faced development constraints such as intensified 
conflicts in water utilization and space utilization for competing land 
uses, degradation and reduction in cultivated land resources, 
environmental damage, loss of biodiversity, and widening 
development gaps between regions. More importantly, as a typical 
economically less developed area in Ethiopia, the UBNB basin serves 
as an excellent example of regional development for other areas in 
Eastern and Horn of Africa developing countries (Hurni et al., 2013). 
Particularly, it presents a typical case study for assessing land use 
sub-category efficiencies and coordinating conflicts based on food 
production, economic development, and ecological protection.

2.2 Data types and sources

Several socioeconomic and biophysical data, with spatial and 
non-spatial nature, were collected from multi-sources and applying 
different data collection methods, such as (I) field visit/ground survey, 
(II) socioeconomic survey, (III) remote sensing, and (IV) other 
secondary sources.

2.2.1 Socioeconomic survey
Applying FGD and KII tools, basic socioeconomic data, such as 

total cropped land, productivity, production systems, cropping 
systems, and cropping calendar, were collected at the village/Kebele 
level. However, for some specific assessments, data collected at the 
village level remain scarce to obtain representative facts. Thus, for 
detailed assessments such as yield gap and food demand, 
comprehensive data were collected from systematically selected zones 
and districts found in the UBNB (CSA, 2020).

2.2.2 Remote sensing data
Fifteen-day composite NDVI (Normalized Difference Vegetation 

Index) products of two sensors, Sentinel 2A and MODIS satellite 
sensors, were important inputs for the analysis. Using Google Earth 
Engine (GEE), the bimonthly NDVI data, for the year 2015–2022, were 
systematically collected from October to May (Lebrini et al., 2021). The 
reasons to use only these periods are (i) due to cloud cover problems 
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in the rest of the months of the year and (ii) the targeted CRSs, i.e., 
RSM and BRF cropping systems, are practiced only during these 
months of the year. Multitemporal NDVI data-based spectral profile 
was generated for each CPS taking representative sites in terms of AEZ, 
crop types, cropping practices, etc. (Liu L. et al., 2020; Peng, 2012). 
Using a fifth-order polynomial fitted model, the beginning and end 
dates of cropping cycles were computed, which were used to identify 
the spectral emergence and spectral maturity date (Cheng et al., 2023; 
Panigrahy et al., 2005). In order to compute the total duration (di) of 
a cropping system, 10 days was added at the beginning (15 days for rice 
crop) and 10 days at the end of each crop-growing period (Qiu et al., 
2023). These days account for the duration of field preparation, the gap 
between sowing and spectral emergence, and the gap between spectral 
maturity and the harvest of the crop (Panigrahy et al., 2005).

2.2.3 Other secondary data
Three categories of secondary-sourced geospatial data were used: (1) 

bio-climate; (2) edaphic, and (3) detailed LULC maps (Kassawmar et al., 
2018a). In the former case, World Bio-Climatic data, containing 
approximately 19 determinant factors/variables, were used to identify CPS 
and cropping systems and further explore the link between RSM-based 
CPS and determinant factors and further predict the spatial distribution 

of the practice. Bioclimatic variables are sourced from the freely available 
WorldClim 1.4 database for scientific research purposes, as indicated in 
Supplementary Figure 1. Historical climate data, essential for assessing the 
impact of climate change, will be acquired from the Intergovernmental 
Panel on Climate Change Fifth Assessment Report (IPCC5 or CMIP5) at 
a spatial resolution of 30 s (1 km)1 from 1900 to 1990.

In the later case, detailed LULC data, produced by the lead-
author was used and available at ethiogis-mapserver.org, https://
www.ethiogis-mapserver.org. Detailed inforamtion is available at 
Kassawmar et al, 2018a and 2018b.

These datasets are presented as Supplementary Figure 2.

2.2.4 Field survey
Various spatial and non-spatial first-hand data were collected through 

recursive field visits and extensive ground surveys on systematically 
selected villages. Data were collected from the ground, and secondary 
data were obtained from pertinent governmental offices at different levels. 
Eventually, a holistic database comprising various information about the 

1 https://www.worldclim.org/

FIGURE 1

Geographic location of the study area (UBNB) with basic topographic and climatic information.
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biophysical and socioeconomic aspects of the different CPS and cropping 
practices was developed.

2.3 Data analysis

2.3.1 Processing data
Mapping cropped pixels and clustering of CPS/CRS zones over 

large and complex landscapes characteristically depict smallholder 
farming, which is not trivial (Reckling et al., 2016; Liu J. et al., 2020; 
Yu et  al., 2021; Kassawmar et  al., 2018b). From clustering and a 
classification point of view, two categories of datasets were used: 
non-spectral and spectral datasets (Reckling et al., 2016). The present 
study used both multi-source and multi-scale spatial datasets to 
produce crop production systems zones (CPSZ), thereby mapping and 
characterizing cropping practices.

2.3.2 Non-spectral approach
Specialists in the field suggest that applying non-spectral 

solutions out of image analysis techniques (Kassawmar et al., 2018a; 
Reckling et  al., 2016) can help a lot to minimize the challenges. 
Non-spectral cluster analysis can be  strategized based on several 
premises (Kassawmar et al., 2018a), one of which is stratifying the 
landscapes based on major characterizing features such as cropping 
system similarities (Kassawmar et  al., 2018a). Given the 
characteristics of different CPS can be explained and described using 
non-spectral information that exists in various determinate factors, 
the world bioclimatic datasets, containing 19 layers, were used as an 
important dataset for stratification. Before using the World 
Bioclimatic datasets for clustering, spatial dependency and 
redundancy were tested by applying PCA. From the PCA result, five 
datasets, with a varying number of principal component images, were 
generated. From these generated PC images, it is evident that most 
of the information has been concentrated in the first three PC images 
as shown in Supplementary Figure 1.

2.3.3 Spectral approaches
This study used multi-temporal raw satellite imageries, 

transformed indices, and produced CPSZ and cropping practices 
(Kassawmar et al., 2018a). Unlike images containing raw reflectance 
values, multi-temporal but transformed images are effective in 
identifying and map complex CPS (Aziz et al., 2023; Cheng et al., 
2023). Thus, to gain a couple of benefits, composite multi-temporal 
indices were produced: (1) simplification of the classification process, 
(2) enhancing the inherent potential of multi-temporal and multi-
spectral imageries (Cheng et al., 2023). Therefore, appropriate MODIS 
image data collection was done in Google Earth engine and required 
MODIS data were composite NDVI images as an important input to 
create HCPZ and further identify and map cropping systems. The 
creation of multi-temporal and multi-spectral NDVI datasets was 
designed to accomplish three major objectives of the study: (1) 
producing HCPZ and (2) identifying, mapping, and assessing major 
cropping systems and practices (3) undertaking reliable land use and 
cropping system performance assessment. In the former case, 
important factors that govern CPS such as growing seasons, LGP and 
AEZ were considered while creating a composite NDVI map. In the 
latter case, the phenology of major crop types and cropping calendar 
for major cropping systems were considered. While downloading and 

producing composite NDVI data, phenology of crops was assumed to 
be the same in 10–15 time (Peng, 2012). From the available multi-
temporal images within the defined 15 15-day phenology period, first, 
a maximum NDVI value was selected and one NDVI raster dataset 
was created. Each NDVI raster dataset represents one phonological 
stage of the dominant crop, for instance, planting or seeding. Then, a 
series of NDVI maps representing the full range of the crop phenology 
over a defined growing period (Crop calendar) were created. Later, the 
intra-annual multi-temporal NDVI raster dataset was staked and a 
composite NDVI raster dataset with two bands in a month and six 
bands in 3 months was created (Lebourgeois et al., 2017). This allowed 
us to capture the intra and inter-annual phenology dynamics, which 
can be used to classify farm fields managed under different CPSs 
(Rose and Adiku, 2001; Griffiths et al., 2019).

2.3.4 Clustering and classification
Mapping and delineating of CPS demand the identification of 

major crops and accordingly delineation of their growing regions/
boundary through an iterative clustering process by which the 
Homogeneous Crop Production zones (HCPZ) can be created (Nath 
et al., 2022).

2.3.5 Identification and scoping of CPS types
Proper delineation of CPS requires explicitly defining a specific 

type of CPS and practices targeted to map and characterize. The 
present study targeted to map and characterize only rainfed-based 
CPS and CEP.

2.3.6 Creating a database
A hybridized and multi-stage clustering approach was implemented. 

For this purpose, at the pre-processing stage, two categories of 
geodatabases containing non-spectral and spectral layers were separately 
created. Some of the datasets, included under the non-spectral category 
are World Bio-Climatic data, AEZ maps, administrative boundary-based 
crop production data, and other auxiliary spatial layers. On the other 
hand, LULC maps, cropped pixels, crop phenology, and vegetation indices 
are some of the datasets included under the spectral category. Eventually, 
one raster layer, containing about 25-factor maps or layers, was produced. 
Depending on the level of dependency, redundancy, and importance of 
the non-spectral factors, about five composite datasets, with varying 
bands (19, 17, 15, 10, and 5), were created using layers included under the 
non-spectral geodatabase.

2.3.7 Creating of homogeneous spatial units
Using the five composite datasets, random homogeneous spatial 

units (HSU) were separately generated by applying the ISODATA 
clustering algorithm. The generated HSUs were iteratively checked 
with our primary data collected to identify and describe the different 
types of CPS. Using this reference information and HSU generated by 
a specific composite dataset, the effect of inclusion or exclusion of a 
particular factor/layer in delineating CPS was evaluated. The generated 
smaller HSU polygons helped us know the appropriateness of a 
particular factor/layer. By cross-checking the boundary of the HSU 
with multi-temporal spectral behaviors of surface vegetation cover 
(such information available from the spectral datasets), generalization 
and grouping of smaller HSU maps helped us to cluster areas with 
similar growing seasons. A major growing season zone map was 
eventually produced by integrating several secondary geospatial data, 
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such as AEZ, farming systems, livelihood zones, and land use systems 
zone maps (Vintrou et al., 2012; Grytnes and Vetaas, 2002).

2.3.8 Creating training samples
Integrating various socioeconomic primary data, such as Village/

Kebele level crop production data (polygonal level training sample 
dataset), FGD, KII, as well as ground-based physical observation data 
(point level training sample datasets), training datasets were 
developed. Accordingly, a sufficient, representative, and accurate 
training sample dataset was produced. Approximately 459 sample 
points, on average 30 samples from each growing season zone map, 
were systematically developed. Using the training sample dataset, 
spectral signatures for each GS and CPS were iteratively generated and 
checked. Approximately 30% of them were used for validation and the 
remaining 70% were used to train the clustering algorithms.

2.3.9 Creating of homogeneous crop production 
zones and crop production systems

Through iterative execution of the above steps, the actual clustering 
of HCPZ was performed by producing a refined composite dataset 
developed by selectively taking important layers from both categories 
of the geodatabase (spectral and non-spectral). Two clustering 
approaches were tested; unsupervised and supervised. For the former 
case, we chose Random Forest and Support Vector Machine algorithms, 
and for the latter case, we took ISODATA and K-Means algorithms. 
Recursive evaluation of these clustering algorithms was performed at 
different scales; local, meso, and basin scales. The evaluation results 
confirmed that the ISODATA algorithm gave a better accuracy and 
good quality boundary of growing seasons and varying CPS zones. 
Thus, a final HCPS zone map was produced by applying an iterative 
unsupervised clustering approach on the multi-source composite 
dataset (spectral and non-spectral) by applying the ISODATA clustering 
algorithm. Finally, approximately 45 HCPS clusters were generated that 
could represent the complex rainfed CPS of the UBNB. Involving eight 
experts in the field, expert knowledge, coupled with the comprehensive 
ground survey, GPS, quantitative and qualitative socioeconomic survey 
as well as other secondary data, the ground reality representation of 
each cluster was systematically checked and verified. The HCPSZ map 
is provided as Supplementary Figure 3.

2.3.10 Creating indicator layers and producing 
indices

Using multi-source data, pertinent indicators useful for the 
identification, mapping, and performance assessment of cropping 
practices in each CPS were produced (Supplementary Table S1 and 
Figures  2,3). For simplification and generalization purposes, 
continuous quantitative values in each index were further classified 
and reclassified into qualitative values as such; very high, high, 
medium, low, and very low. Detailed information and maps of the 
input layers used for the assessment are presented in Figure 2.

2.4 Land use performance/efficiency 
assessment framework

As far as rainfed-based multiple (CPS/CRS) potential and 
performance assessment is concerned, available pertinent studies 
on land use systems efficiency have two main focuses: (i) single-use 

and (ii) combined use system-oriented assessments. While the 
former ignores the synergy and trade-offs exist between several 
possible LUS, it emphasizes only on single and specific land use 
systems, for example, the cultivated land use system (Lin and 
Hülsbergen, 2017; Yerseitova et al., 2018) and industrial land (Xie 
et  al., 2018). Indeed, from a specific category of LUSs, various 
sub-categories can exist, for example, within a cultivated landscape, 
varying (CPS/CRS) exist. In that case, the performance assessment 
may require to single out specific practices, like RSM and/or BRF 
can be selected and assessed. However, still the former category of 
LUS performance and efficiency assessment approach disregards 
the interplay between CPS in a given landscape. The second 
category of performance assessment gives equal focus to all existing 
land use systems such as grain production, timber production, 
pasture production, and urban and settlement from a 
multidimensional perspective such as sustainability. The second 
category helps evaluate the performances of different LUS from the 
perspectives of resource utilization and strives to explore the 
relationship between the LUE of varying LUS and its link with 
socioeconomic development (Masini et al., 2018), urban growth 
(Halleux et al., 2012; John et al., 2019), environmental constraints 
(Saikku et  al., 2017; Searchinger et  al., 2020), and economic 
transformation (Guastella et al., 2017; Lu et al., 2018).

To evaluate the performances and efficiency of different CPSs, 
we  applied multidimensional land use performance and efficiency 
evaluation frameworks widely used for similar purposes (Liu J. et al., 
2020). According to Liu J. et al. (2020), a multidimensional land use and 
crop production performance/efficiency analysis has three major 
dimensions, namely: (1) food production, (2) economic development, 
and (3) ecological maintenance. After thoroughly assessing the assessment 
framework, we customized the framework because (i) Liu J. et al. (2020) 
demonstrated the framework by taking all types of land use systems and 
taking three important sustainability dimensions. Although they 
demonstrated the framework for general LUS evaluations, authors 
considered only crop production as important in the evaluation of the 
land use system element. Moreover, contextually adapting the framework, 
the present assessment was performed after systematically identifying 
seven evaluation categories/dimensions: (1) natural land capacity and 
Technical feasibility measures (it compares the natural capacity of the 
landscape and environmental/ecological suitability of the landscape for a 
particular LUS/CPS); (2) land utilization performance measures (it 
evaluates the performance of CPS/CRS in terms of utilizing the land 
resources or the natural capital/land quality to produce grain); (3) 
production performance measures (it evaluates the performance of a 
particular CPS/CRS in terms of the production of grain per unit of inputs 
mainly land, water and time against the inherent the inherent capacity); 
(4) economic development measures (it evaluates the economic 
development contribution of a particular LUS/CPS in a particular 
landscape in terms of economic value of the produced grain over a given 
period of time); and (5) ecological maintenance measures (it measures the 
balance between production service against the regulatory and supportive 
functions); and (6) implication measures (it measures the overall grain 
production performance of a particular LUS/CPS in reference to food 
security. (ii) Given the framework is very young, as it stands, obtaining 
the required data for all indicators used in all three dimensions is difficult, 
specifically, regional expectation, overhead room, land use efficiency, and 
unused potential evaluation, we focused only on the performance and 
efficiency evaluation parts of the framework. (iii) As presented in Liu 
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J. et  al. (2020), the framework is demonstrated using dimension by 
dimension and composite or overall performance and efficiency 
indicators. While testing the framework, authors found that the 
dimension-by-dimension approach of the framework could hide some 
important facts that could unveil the reasons for some land use trade-offs. 
Thus, in addition to dimension-by-dimension (combined/composite) 
evaluation, authors needed to implement the framework applying 
discrete/individual and categorical indicators level assessment. 
Contextually adapting the implementation procedure of the framework, 
the performance assessment was performed at three stages/levels: 
individual, categorical, and composite levels. The third stage/level 
performance assessment requires combination of all individual indices or 
categorical indices and create one new composite index. However, in 
order to avoid double counting, the evaluation process was 
performed categorically.

Before the evaluation process, the present study identified 15 
pertinent indices widely used to evaluate the performance and 
effectiveness of 13 CPSs. Continuous pixel values of each indicator 
were produced using data generated from multi-sources. The 
continuous quantitative values in each index were further classified and 
reclassified into qualitative values, such as very high, high, medium, 
low, and very low. While creating the nominal indices, rescaling and 

reclassification were done by applying natural and geometric breaks 
algorithms, available in ESRI ArcGIS software. Depending on the 
context, manual breaks techniques were also applied. The assessment 
was performed in two modalities: categorical modality, i.e., dimension-
by-dimension evaluation and overall modality, where the evaluation is 
performed by aggregating all the indicators in all dimensions. The 
former modality is useful as it allows us to easily link the evaluation or 
assessment indicator values with possible factors that determine the 
performance/efficiency of CPS. The assessment was performed in two 
phases: (I) actual grain production evaluation and (II) attainable or 
possible grain production.

2.4.1 Spatiotemporal variation in grain production 
performance

2.4.1.1 Dimension-by-dimension evaluation of grain 
production performance

 1
_ Iidi WIdi

n

d
E LUPdi

=
= ∗∑

 
(1)

where E_LUPdi denotes the existing grain production performance 
of a particular landscape managed under a specific CPS in the dith 

FIGURE 2

Actual values of variables/indices used to assess the land utilization and production performance/efficiency of different CPS: CDI (A), AGDI (B), Natural 
capital for crop production (C); CLUI (D), MCI (E), AGDI (F), CII (G), RYI (H) and GGSI (I).
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dimension; Iidi denotes specific indices used to measure the 
performance of the landscape in the dith dimension; WIidi denotes 
the weight given to the Iith indicator in the dith dimension; and n 
represents the number of dimensions considered in the evaluation.

2.4.1.2 Overall performance

 1
_ E _ LUPdi Wdi

n

d
OE LUPdi

=
= ∗∑

 
(2)

where OE_LUPdi denotes the overall existing/actual grain 
production performance of a landscape managed under a specific CPS 
estimated considering all indicators in all dimensions, E_LUPdi 
denotes the existing land use performance of the landscape in the dith 
dimension (Equation 1), and Wdi is the weight given to the 
dith dimension.

2.4.2 Spatiotemporal grain production efficiency

2.4.2.1 Dimension-by-dimension evaluation of efficiency

 1

__ 100
E _ LUPdin

di

E LUPdiA LUEdi X
=

=
∑

 

(3)

where A_LUEdi denotes attainable grain production efficiency of 
a particular landscape managed under a specific CPS estimated 
considering a particular dith dimension. It reflects the degree to which 
an attainable cultivated land (space) and other natural capitals (soil 
and climate) are efficiently utilized to produce grain in the 
corresponding dith dimension; Iidi denotes specific indices used to 
measure the performance of the landscape; n represents the number 
of dimensions considered in the evaluation.

2.4.2.2 Overall evaluation of efficiency

 1
_ A _ LUEdi Wdi

n

d
OA LUE

=
= ∗∑

 
(4)

where OA_LUE denotes the overall attainable grain production 
efficiency of a particular landscape managed under a specific CPS 
estimated considering all dimensions. It reflects the overall degree to 
which an attainable cultivated land (space) and other natural capitals 
(soil, water, and climate) are efficiently utilized to produce grain; WIdi 
denotes the weight given to dith dimension.

Given several factors determine the performance of different CPS 
(Cano et  al., 2023); applying a multidimensional performance 
assessment framework was critically important (Liu J. et al., 2020). To 

FIGURE 3

Actual values of variables/indices used to assess the implications of land utilization and production performance/efficiency of different CPS on food 
systems: food supply index (A), food demand (B), food gap (C), and food needy population (D).
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clearly identify the major bottleneck of cropping intensifications, 
individual measures/indices-based CPS performance assessment has 
paramount importance. However, discrete-level performance 
evaluation has shortfalls as some indices overestimate and others 
underestimate performances. To overcome these limitations and 
obtain the benefits of individual indicators-based performance 
assessment, contextually modifying the multidimensional assessment 
framework was needed. Keeping the concept of a multidimensional 
assessment framework, the performance assessment was performed 
at three stages with three levels: individual, categorical, and 
composite. The third stage/level performance assessment requires us 
to combine all individual indices or categorical indices and create one 
new composite index. This was done by applying spatial overlay 
techniques. The multidimensional performance approach was 
adopted from Liu J. et al. (2020). To create workable indices, usable 
at all stages, the original indices values were converted into common 
nominal values (1–5). While creating the nominal indices, rescaling 
and reclassification were done by applying natural and geometric 
breaks algorithms, available in ESRI ArcGIS software, were used. 
Depending on the context, manual breaks techniques were 
also applied.

To generalize the performance/efficiency level of the different 
CPS, a composite index approach was implemented 
(Abdollahzadeh et  al., 2023), two generalization assumptions 
and/or options do exist (De Montis et al., 2021): (i) each of the 
selected factors has the same level of influence and (ii) each of 
the considered evaluation factors has different levels of influence. 
In the former case, linear arithmetic mean rule can be applied 
whereas a weighted average rule can be applied for the latter case. 

For the latter case, involving eight experts in the field, an 
assignment of weight to each factor was given applying AHP.

2.4.3 Grain production implications
The performance of CPS has a profound linkage with ecosystem 

services (Bommarco et al., 2013). Studying CPS and assessing their 
performance has a vital role in understanding the implication on food 
systems (Amin et  al., 2022). This study made a brief implication 
assessment of water and food ecosystem services although CPS 
implications go beyond these two ecosystem services. The overall 
research methodology and workflow is presented in (see the maps and 
descriptions presented in section 3.5) Figure 4.

3 Results

3.1 Major crop production systems and 
cropping systems

The entire UBN basin (100%) is served by rainfed farming 
systems, but currently, only 39% is used for grain production, 
meaning the remaining 69% does not produce grain. Grains/food are 
produced using different systems practiced in the basin however, the 
present study identified and mapped about 12 major CPS. Of the 
major CPS identified and mapped, Meher-Only (3) accounts for 
approximately 26%, Meher-Residual-Dependable (7) represents 
(12%), Meher-Residual-Dependable (8) covers 12%, and Meher-
Residual-Dependable (8) covers approximately 26%. Belg Synergy (6) 
covers approximately 10% of the basin area.

FIGURE 4

Overall methodological framework of the study.

https://doi.org/10.3389/fsufs.2024.1420700
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Kassawmar et al. 10.3389/fsufs.2024.1420700

Frontiers in Sustainable Food Systems 10 frontiersin.org

Figure 5A shows the distribution of the main CRSs that are mostly 
practiced in the UBNB. Details about the types of major crops grown 
in each CPS and their proportional coverage is presented in Figure 6 
and more information also provided as supplementary figure 
(Supplementary Figure 2). According to the statistical summary of the 
coverage of major crops in each CPS, important cropping systems, 
such as.... Maize, Teff and Sorghum(20%), Finger Millet, Teff, and 
Wheat(11%) and Potato, Beans and Barely(10%), cover the majority 
of the landmass of the catchment area.

3.2 Cultivated landscapes and cropping 
systems

As shown in Figure 6 and Table 1, the cultivated landscape of the 
UBNB covers only 39% of the catchment area and the remaining 61% 
of the catchment area provides various ecosystem services managed 
under different LUSs. As shown in Table 1 and Figure 6, the cultural 
landscape of the UBNB is managed by various rainfed CPS, of which 
Meher-Only (3) represents the larger part of the basin (Table 1. Multi-
temporal area coverage of cropped pixels in each CPSZ).

As shown in Figure 6 and Table 1, the basin experienced an 
average increase in grain area of 10% over the past four decades. 
However, the dynamics of cultural landscapes vary considerably 
over time and space. Between 1985 and 2005 the increase was 
modest at only 2%, while the period from 2005 to 2020 observed 
a significant increase in acreage (Supplementary Figure 2 and 
Supplementary Table 2). Figure 6 shows that there have been both 
gains and losses across grain production landscapes. Long-
cultivated areas experienced slight losses, while recently plowed 
landscapes, particularly in flood plains and lower elevations, 
experienced significant increases in grain production area. 
Detailed multi-temporal information about various information 
on various LULC types is provided as supplementary figure 
(Supplementary Figure 3).

3.3 Spatiotemporal variation on the 
performance of CPS

The analysis results show that accurate mapping of crop 
areas, cropping systems, (Figure 5, Supplementary Figure 2, crop 
types Supplementary Figure 2 and Supplementary Table 3) and 
relevant spatial factors related to grain production improves the 
understanding and characterization of the spatio-temporal 
variations in the performance of rainfed crop production systems 
(CPS) at the local scale. Although approximately 10 indices were 
used, for simplicity reason, outputs from individual indicators are 
not presented. Figures 7A–D show the results of this dimensional 
and overall performance evaluations outputs, respectively.

3.3.1 Land utilization performance of the different 
CPS

As shown in Figure  7A (top left), about half of the cultural 
landscape of UBNB has moderate land use performance, while almost 
a third has low performance. Currently, approximately 25% of the 
catchment area has very good cultivated land use performance. When 
ranking crop production systems (CPS) by land use performance, T
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Meher-Belg-Dependable (1) and Meher-Residual-Dependable (7) are 
at the top, with approximately 58 and 45% of their cultivated areas 
showing high and very high performance, respectively. Extended-
Meher (3), Meher-Residual-Belg Synergy, and Meher-Belg 
Intermittent also perform well in the use of their cultural landscapes.

3.3.2 Productivity and grain yield performance
According to Figure 7B and Table 2, approximately 50% of the 

UBNB cultural landscape has moderate productivity and medium 
grain yield, while approximately 37% has high performance 
(above the national average). However, over 10% of the landscape 
is below the national average. When ranking crop production 
systems (CPS) by productivity and yield, Meher-Residual-
Dependable (7) and Extended-Meher (3) perform excellently, 
with approximately 90 and 80% of their areas having high and 
very high performance, respectively. Other systems such as 
Meher-Belg-Dependable (1), Meher-Residual-Belg Synergy, and 
Meher-Only also show good productivity. As shown in Figure 7B, 
areas of high productivity are concentrated in the central, 
southern, and southwestern parts of the basin, particularly in the 
Lake Tana floodplain, central mid-elevation highlands (East and 
West Gojam), and the south upper Dedessa and lower  
Dhabus subbasins. In contrast, despite the possibility of double 
cropping, the eastern region struggles with low productivity 
during the Meher-Residual-Belg season, mainly due to soil 
acidity problems.

3.3.3 Economic development performance
The economic performance of various crop production systems 

(CPS) is shown in Figure 2I and Supplementary Figure 4 with the average 
annual gross grain supply index (GGSI) for the basin estimated at 
approximately 10 billion quintals on 55,000–75,000 km2 of arable land. 
Based on average grain prices, this equates to approximately 1.2 trillion 
Birr in annual sales. The top performing CPS by grain volume are Meher-
Only (23%), Meher-Residual-Dependable (21%), and Extended-Meher 
(16%). However, Meher-Residual-Dependable (27%), Meher-Only (19%), 
and Extended-Meher (15%) generate the highest revenue. This 
discrepancy arises from factors such as greater plant diversity (AADI) and 
the cultivation of more valuable crops in systems such as Meher-Residual 
(Figure 2, Supplementary Table 4, and Supplementary Figure 4). 
Economically, the central, southern, and southeastern parts of the basin 
perform better, while the northwestern, western, and eastern regions 
lag behind.

3.3.4 Overall performance
Single or category-based performance assessments do not 

capture the full picture of the reality on the ground and require 
an overall assessment that combines all indicators. Figure 7 shows 
the results of this comprehensive performance evaluation. The 
composite score, reflecting existing performances, highlights, 
highlights Meher-Residual-Dependable (7), Extended-Meher (3), 
and Meher-Residual-Belg-Synergy (6) as the best-performing 
CPS at 50, 33% and 31% respectively of their landscapes each 
have higher overall performance values. In contrast, the Short-
Meher (4) CPS has poor overall performance. In areas with 
multiple CPS, such as Residual and Meher-Residual, overall 
performance values are above average due to higher values of the 

Cropping Land Utilization Index (CLUI) and the Cropping 
Intensity Index (CII).

3.4 Grain production efficiency assessment

3.4.1 Dimension-by-dimension assessment
CPS performance assessments often do not demonstrate the 

gap between existing and potential production levels for each 
system. Land use system efficiency (LUS) reflects this gap by 
comparing achievable versus actual performance. Figure 9 shows 
both categorical and overall efficiency for large CPS and shows 
that none exceeds 60% efficiency. This suggests that most of the 
CPS are not utilizing even half of its rainfed grain production 
potential. Although the individual performance metrics for RCS 
are higher than other CPSs, the efficiency metrics show minimal 
differences compared to them, indicating significant room for 
improvement across systems.

The low individual and categorical efficiency scores in areas 
practicing RCS or MCS indicate a significant gap between 
potential and actual performance. This suggests that current 
management practices are inadequate and are preventing farmers 
from achieving their maximum production potential. In addition, 
crucial indicators such as regulatory services and ecological 
maintenance are missing from the overall efficiency assessment. 
The lower efficiency scores for RCS may be attributed to this 
weak evaluation approach as important factors such as soil health 
and the regulatory roles of each CPS were overlooked, impacting 
the perceived efficiency of RCS compared to others.

The production performance and efficiency indicators better 
reflect the impact of RSM and other MCS on grain production. 
As shown in Figures  9A–C, the land use efficiency indicators 
revealed little difference between different CPS, while the 
economic development indicators show different efficiency 
values. This discrepancy arises from two main factors: (1) 
economic indicators were generated by combining government 
data with our primary data and (2) the market values of  
crops grown under different CPS vary significantly (e.g., Grasspea 
vs. Teff ). Furthermore, the weighting used in the assessment  
did not adequately take these important differences into  
account.

3.4.2 Overall efficiency assessment
The overall efficiency of grain production was assessed using 

both the linear arithmetic mean and weighted average approaches, 
as shown in Figure 9D. The results show that the most efficient CPS 
are Meher-Belg-Dependable (1), Meher-Residual-Dependable (7), 
and Extended-Meher (3), with 45, 43, and 41% of their respective 
landscapes achieving overall efficiency scores above 40. In contrast, 
Short-Meher (4) showed poor efficiency across all time periods. The 
moderate overall efficiency of all CPS indicates significant untapped 
potential, suggesting that grain production could be  increased  
by 40%.

3.4.3 Temporal variation in overall efficiency
The differences in efficiency between different CPS are obvious. 

To illustrate the spatiotemporal changes in overall effectiveness, 
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TABLE 2 Summary of the grain production performance of major CPS exist in UBNB.

Performance Major rainfed crop production systems exist in UBNB UBNB

Dimension Ranks
(1) Meher-

Belg-
Dependable

(2) Meher-
Belg-

Intermittent

(3) 
Extended-

Meher

(4) Short 
Meher-

Only

(5) 
Meher-

Only

(6) Meher-
Residual-

Belg 
Synergy

(7) Meher-
Residual-

Dependable

(8) Meher-
Residual-

Intermittent

(9) Meher-
Shifting-

Cultivation

Average 
rank

Cultivable 

landscape 

utilization

1 0.0 0.0 0.4 0.1 2.5 0.0 0.0 0.0 17.1 2.2

2 2.3 15.9 13.1 76.0 38.2 14.6 11.2 30.4 57.5 28.8

3 37.7 48.7 43.1 23.3 45.3 49.6 44.4 55.9 24.2 41.4

4 58.6 35.4 22.7 0.6 13.3 35.7 44.1 13.5 1.2 25.0

5 1.3 0.0 20.8 0.0 0.7 0.1 0.3 0.1 0.0 2.6

Production and 

productivity

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 6.1 6.0 0.2 53.7 12.8 0.5 0.4 1.2 8.8 9.9

3 34.4 75.4 17.6 46.2 63.9 47.1 9.7 59.9 78.7 48.1

4 59.5 18.3 55.9 0.1 20.5 48.2 55.9 37.0 12.5 34.2

5 0.0 0.3 26.4 0.0 2.8 4.1 34.0 1.9 0.0 7.7

Economic 

development

1 0.7 1.1 12.5 62.3 13.8 1.4 2.6 10.5 58.5 18.2

2 52.1 35.5 30.7 12.0 31.3 32.3 30.4 34.8 11.4 30.1

3 43.2 30.7 8.4 25.3 34.9 48.3 19.2 18.8 25.5 28.3

4 3.5 31.1 40.3 0.5 18.8 16.3 40.5 33.2 4.5 21.0

5 0.4 1.6 8.2 0.0 1.2 1.6 7.3 2.7 0.0 2.6
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overall efficiency maps for two points in time (1985 and 2020) were 
compared, as shown in Figure  10. The results show that no CPS 
achieved overall efficiency scores above 60.

In several areas of the basin where multiple CPS, such as Residual, 
Meher-Residual, and Meher-Residual-Belg, are practiced, overall 
efficiency values were below 30 in 1985 but rose above 50 by 2020. 
This indicates that the introduction and widespread implementation 
of RCS significantly improved the overall grain performance in 
the basin.

3.4.4 Temporal variation in overall performance
The spatiotemporal dynamics of CPS performance are 

evaluated using the overall gain and loss of cropped areas in each 
CPS zone. Figure 8 illustrates this variation, showing significant 
negative changes (green pixels) in the eastern and central high 
mountain regions, while positive changes (red pixels) are 
concentrated in the central and western flatlands and floodplains. 
There was a notable shift in grain production from the eastern 
and central parts of the basin to the southern and southwestern 
regions, with a trend of shifting production from higher to lower 
elevations. Among the CPS, the Meher-Residual-Dependable, 

Meher-Residual-Intermittent, Meher-Residual-Belg, and Meher-
Belg systems have shown the greatest improvements.

3.5 Implications

Analyzing the food gap serves as a key indicator for evaluating the 
grain production performance and efficiency of CPS. Figure 11 and 
Table 3 show the relevant indicators used for this analysis at the grid 
level. According to the GGI, surplus grain production is rare. Given 
that the eastern, central, and southern parts of the UBNB are highly 
populated, directly comparing CPS with food supply and demand can 
be misleading (Figure 11).

The assessment findings indicate that approximately 10% of 
the non-agrarian and 45% of the agrarian population in the 
UBNB meet their food demand through the current rainfed-
based CPS. This means that approximately 60% of the total 
population—90% of non-agrarian and 55% of agrarian 
households—fulfill their subsistence food needs from other 
sources, such as livestock production and various agricultural 
and non-agricultural activities (Table 3).

FIGURE 5

Major Crop Production Systems (CPS, A) and Cropping Systems (CRS, B) widely practiced in the basin and the respective statistical facts.
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In regions where smallholder farmers primarily practice 
double cropping, such as Meher-Residual, the percentage of food-
insecure individuals is relatively lower. However, interpreting the 
data requires a deeper analysis due to the complex factors at play. 
For instance, long-term crop cultivation on hilly terrain in the 
eastern basin has led to significant unproductivity, with many 
areas abandoned for grain production. Additionally, this region 
is home to a large population that exceeds its natural capacity. 
Conversely, frequent crop failures in areas reliant on Belg and 
Residual-Only CPS lead farmers to abandon the main production 
season due to risks like frost, floods, and pests, prompting them 
to pursue alternative livelihoods. Overall, linking grain 
production directly to food insecurity necessitates detailed data 
and thorough investigation. In areas where Belg-only, Meher-
Only, Residual-Belg, and Residual-only CPS are prevalent, there 
is a high level of food deficit and a significant number of food-
insecure individuals. In contrast, Meher-Residual and Meher-
Residual-Belg CPS demonstrate relatively low food deficits due 
to their superior production performance, resulting in surplus 
grain in areas practicing Meher-Residual. CPS that synergize with 
RSM show enhanced food production and security. The 
performance of these CPS improves with greater synergy between 
Meher and RSM, highlighting the substantial contribution of 

RSM-based CPS to the food system, in both gross grain supply 
and crop diversity.

4 Discussion

Rainfed agriculture system of Ethiopia faces numerous challenges 
despite its significant potential (Oweis et al., 2007). Smallholder grain 
production is constrained by various biophysical and socioeconomic 
factors, including poorly designed policies (Wani et al., 2009; Ahadu, 
2019). Rainfed farming often serves as a testing ground for unproven 
strategies (Ahadu, 2019; Pretty, 1999).

Official data in Ethiopia are limited to zone-level information, 
making it difficult to assess smallholder grain production 
systems. While agricultural areas have generally increased, 
including in UBNB, the trend is irregular (Muluneh, 2010). The 
annual increase in cropped area is minimal compared to the 
rapidly growing population (Hurni et al., 2005; Wondie et al., 
2016; CSA, 2019). Available data, including government sources, 
have poor spatial and temporal coverage and problems with 
accuracy. This highlights the need for in-depth research to better 
understand rainfed farming systems (Asfaw et al., 2021; Pretty, 
1999). This study achieved three key milestones: (1) producing 

FIGURE 6

Multi-temporal cropped pixels map overlaid with major crop production systems (CPS) at different years: 1986 (A), 2000 (B), 2020 (C), and major 
cropland changes (D).
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accurate cropland data at the 30-m pixel level for the years 1985, 
2005, and 2020; (2) identified and mapped complex, dynamic 
cropping systems; and (3) evaluates the performance and 
efficiency of these (Equations 1–4). The assessment found that the 
entire UBNB is theoretically suitable for rainfed farming systems, 
with an average annual minimum rainfall of over 800 mm (Samy 
et  al., 2019), sufficient for various crop production systems 
(Hurni, 1998). However, only 39% of the UBNB is currently used 
for grain production, while 61% is used for other purposes. 
Several studies show that Ethiopia’s cereal crop productivity has 
grown significantly (Quddus et al., 2022; CSA, 2020; Belachew 
et al., 2022), although yields have varied over time and space. 
While some attribute this increase to expanded farmland 
(Belachew et al., 2022), others cite improved varieties, enhanced 
extension services, and increased fertilizer (Berhanu, et al., 2021). 
However, none of the previous studies provide spatial evidence 
to validate their findings. Inconsistencies in available data on 
grain production are mainly due to incorrect assumptions about 
arable land and yield (Berhanu, et al., 2021 and Silva et al., 2021). 
The authors emphasize the need to examine the causes of these 
inconsistencies—such as definitions, approaches, scope, and 
methods—in order to address the problems. A major argument 

against previous analysis is the misattribution of changes in food 
production area to grain volume mainly emanated from the lack 
of spatially related evidence. The undeniable fact is that changes 
in grain volume, apart from changes in arable land or production 
input, are due to two main causes: (i) land allocation strategies 
and land use shifts and (ii) changes in crop production system 
(CPS) or cropping systems. The former explains land use and 
land cover change (LULC) and the latter explains land use system 
(LUS) and land management changes (Korbu et al., 2020 and 
Reckling et al., 2016).

The study found that in some areas, despite a trivial change in 
net-cropped area (1985–2020, Tables 1 and 3), grain volume increased 
significantly (Figure 12 and Supplementary Table 2). This shows that 
grain production can rise due to farmers’ intensification strategies or 
changes in land allocation and use, even without expanding cropped 
areas (CSA, 2014, 2020). For instance, as land becomes depleted, 
farmers may shift grain production from less productive areas such as 
hillsides to more fertile areas such as floodplains (Table 3). In some 
regions, the amount of grain increased due to changes in land use 
systems (LUS). Even with the same farmland size, LUS or management 
changes increased production. As population pressure and land 
scarcity become more critical, more efficient farming systems are 

FIGURE 7

Categorical spatial variation in CPS performance: land utilization performance (A); production performance (B), economic development performance 
(C), and overall performance (D).
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emerging (Table 3). The authors have investigated that two prominent 
transformations on LUS are responsible for such processes: (i) the 
flourishing of multiple cropping systems and (ii) the shift in farming 
systems from livestock to grain production (conversion of pasture to 
cropland, Figure 6 and Supplementary Table 2). A key example of both 
transformations is the residual soil moisture-based crop production 
system (RCS). It converts waterlogged areas into arable land and 
enables farmers to grow grain two times a year on black cotton soils, 
which was uncommon a few decades ago (Supplementary Table 2). 
While RCS currently plays a major role in grain production, its socio-
economic and ecological impact has not been fully studied.

Such crop production systems (CPS) are not included in the Annual 
Agricultural Sample Survey (CSA, 2019), which only considers crops 
grown in the main rainy season (Meher). Without detailed data on (i) 
land use shifts and allocations and (ii) the types of CPS used by 
smallholder farmers, it is impossible to understand trends in grain 
production and link its impact on food security. To make evidence-based 
decisions to address food shortages, the authors suggest three categories 
of spatiotemporal information on grain production; (i) natural capital, 
population distribution; (ii) cropped area and productivity; and (iii) 
description of crop production systems (CPS) including the land use and 
crop types. LUS changes, such as some aspects, like crop selection and 

multiple cropping, have contributed more to grain production than to the 
expansion of arable land. However, the impact of land allocation and CPS 
changes varies over time and by region.

This study identified 11 major crop production systems 
(CPS), with Meher-Only single cropping covering the largest 
share (26%) of the UBNB, followed by Meher-Residual-
Dependable (12%), Meher-Residual-Intermittent (12%), and 
Extended-Meher (10%). Short-Meher-Only accounts for a smaller 
portion (3%). Between 1985 and 2020, the spatiotemporal LULC 
change assessment revealed a 10% increase in cropland added to 
the food system. Attributing the 10% increase in cropland directly 
to grain volume in the UBNB is misleading. While a 10% cropped 
area increase over four decades (1985–2023) is minor compared 
to the doubling population every 20 years, it still has a significant 
overall impact on grain volume. Between 2005 and 2020, the 
cultivated area in the UBNB increased from 58,506 km2 (30%) to 
75,679 km2 (38%). Recent years (after 2005) show larger temporal 
and spatial fluctuations in grain production than earlier periods 
(1985-2005) (CSA, 2020). Changes in the total cropped area vary 
by crop production system (CPS), with the Meher-Shifting 
cropping zone showing the largest increase, followed by the 
Meher-Residual-Intermittent and Meher-Residual-Dependable 

FIGURE 8

Temporal aspect of the overall grain production performance of CPS: overall grain production performance in 1985 (A); overall grain production 
performance in 2020 (C); overall change in grain production performance between 1985 and 2020 (top B); statistical summary for overall grain 
production performance (D).
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zones. The conversion of extensive black cotton soils in flood 
plains, such as those around Lake Tana, contributed significantly 
to this increase (Abera, 2017; Korbu et  al., 2020; Debele and 
Deressa, 2016; Elias et al., 2022). Specifically, landscapes managed 
under Meher-Residual-Dependable CPS increased from 5% in 
1985 to 8% in 2020 (Figure 10 and Table 3). In contrast, MCS 
showed a declining trend in high-elevation regions with minimal 
net change in Meher-Belg. The performance of different crop 
production systems (CPS) varies significantly in time and space 
Figure  10–Figure 13. An increase in the area under grain 
cultivation directly increases the efficiency of specific CPS. There 
have been significant improvements in the use of cultivated land, 
particularly in low-lying areas such as the Lake Tana floodplain. 
Conversely, some high-elevation regions, particularly in the 
eastern and central areas, experienced a decline in grain 
production landscapes, as seen in CPS in the Wet and Dry-Dega 
ecoregions such as Meher-Belg. The analysis results suggest that 
overall CPS in these high-altitude areas have revealed a poor 
performance (Figure 10).

Several factors influence the spatiotemporal dynamics of 
grain production, including location, altitude, population 

distribution, technology, and land management (Zerssa et  al., 
2021; Abdollahzadeh et al., 2023). Geographically, there has been 
a significant shift in grain production from the eastern and 

FIGURE 9

Individual and Categorical spatial variation in CPS efficiency: Land Utilization Efficiency (A); Production Efficiency (B), Economic development 
efficiency (C) and Overall efficiency (D).

FIGURE 10

Statistical summary of the overall efficiency of major CPS practiced 
in the UBNB.
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central parts of the basin to the southern and southwestern 
regions. Altitudinally, production has moved from high and 
mid-altitudes to lower ones. Unproductive landscapes, like the 
Lake Tana floodplain, have been transformed into surplus grain 
producers, while other areas, such as the Awi Zone, have become 
less productive (Desta et  al., 2021). In contrast, high-altitude 
landscapes, which have significant potential for double cropping 
and improvement, are deteriorating over time (Zerssa et  al., 
2021). Furthermore, poorly designed strategies, such as providing 
food aid to rehabilitate land, have undermined the development 
of adaptive solutions to these challenges (Figure 10).

In the eastern and central high mountain areas, particularly 
in the Meher-Belg and Belg CPS, significant losses in grain 
production efficiency were observed (indicated by deep green 
pixels in Figure 9). Elevation comparisons show that although 
high and mid-elevation landscapes lost overall grain efficiency, 
lower-elevation and mid-elevation floodplain landscapes showed 
an improvement in production efficiency. Significant 
improvements in grain production efficiency occurred in the 
central and western parts of the basin, particularly in flat areas 
and floodplains (represented by deep red pixels in Figure 9). This 

transformation is largely due to the shift from no-cropping and 
Meher-Only systems to Meher-Residual and Meher-Belg 
CPS. Among the CPS, the most notable improvements were 
observed in the Meher-Residual-Dependable, Meher-Residual-
Intermittent, Meher-Residual-Belg, and Meher-Belg systems 
(Figures 9–11).

The findings from the spatiotemporal dynamics assessment 
can inform planners and decision makers about the existing CPS 
and its both direct and indirect implications for water and food 
security (Zhao et  al., 2018). Assuming a direct relationship 
between the expansion of cultivated area and the amount of food, 
the 10% increase in cultivated area contributed significantly to 
grain production. Since 1985, the total gross grain volume of the 
basin has increased by an average of 153 million quintals per year 
(Figure  13 and Table  3). While agricultural area increased by 
approximately 10% over the last four decades, the total amount 
of grains added to the food system is estimated at 17% (30 million 
quintals) (Supplementary Figure 4).

This estimate aligns closely with the National Agricultural 
Sample Survey (CSA, 2019), which reported an annual grain 
production of approximately 173 million quintals for all zones 

FIGURE 11

Temporal aspect of the overall grain production efficiency of CPS: Overall grain production efficiency in 1985 (A); Overall grain production 
Efficiency in 2020 (C); Overall change in grain production efficiency between 1985 and2020 (top B); Statistical summary for overall grain 
production efficiency (D).
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within the basin (CSA, 2019). However, such assessments can 
be misleading because they focus solely on yield differences over 
time and not on sustainable grain supplies, which directly reflect 
levels of food security. A better indicator is the maximum number 
of people supported by the additional acreage. Between 1985 and 
2015, the population of the basin grew by approximately 12 
million (from 6 to 19 million) (Teshome, 2014), suggesting that 
the new farmland could support approximately 6 million people. 
This raises the question of how to meet the food needs of the 
remaining population. One can speculate that other food sources 
such as multiple cropping, intensive agriculture, improved 
productivity, and food aid probably helped meet the food needs 
of the rest of the population.

The potential of the catchment for multiple cropping has steadily 
increased, but productivity faces challenges due to various biophysical 
and socioeconomic constraints, including climate change, pests and 
diseases, and lack of government support (e.g., credit, improved 
seeds, and pesticides) (Tekeste, 2021; Mekonen and Berlie, 2021). 
Efforts to realize the potential of double cropping in areas where RCS 
is used have been limited in addressing existing constraints. Given 
continued population growth and inadequate land management, 
opportunities for multiple cropping will continue to remain untapped 
(Nkwasa et al., 2023). Researchers emphasize that improving grain 
production requires targeted investments, including developing 
adaptive crop varieties, adopting advanced agricultural technologies, 
and implementing effective land management practices (Liu J. et al., 
2020). In addition, the government should introduce various 
incentive mechanisms, such as improving road network, market 
infrastructure, value chains, input subsidies, and capacity building to 
encourage smallholder farmers to focus on double cropping systems 
(such as RCS), particularly Meher-Residual, Meher-Belg, and Meher-
Residual-Belg CPS. In summary, the CPS assessment approach 
demonstrated in this study can be extended to national assessments. 
The results can help identify the challenges in grain production and 
enable planners and decision-makers to find effective and high-
performing CPS at different levels. This will strengthen efforts to 
address food security challenges as strategies to improve the grain 
production system are based on accurate evidence (Korbu 
et al., 2020).

5 Conclusion and recommendations

Agricultural growth strategy of Ethiopia faces significant 
challenges, with food security a major concern due to its large 
population. Despite the potential for efficiency of agricultural area 
of the UBNB, grain production performance is average or below 
average. Rapid population growth and competing land uses 
necessitate careful assessment of land use systems (LUS) and crop 
production systems (CPS). Evaluating spatiotemporal variations 
in grain production across different CPS is crucial for a country 
reliant on rainfed agriculture. To improve the performance and 
efficiency of crop production systems (CPS), four input-oriented 
strategies are commonly recommended: Space, natural capital, 
chemicals, and institutional and technology. Space Input: While 
adding more land for grain production is an option, the study 
found that suitable slopping and high-altitude areas are largely 
exhausted forintensive grain production. Natural Capital Inputs: T
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FIGURE 13

Multi-temporal cropped area dynamics in each CPS.

Despite rich natural resources of Ethiopia, existing CPS 
performance is poor. Enhancing how grain is produced on current 
landscapes is crucial, along with maintaining and improving land 
quality to boost efficiency. Chemical Input: The limited use of 

agricultural inputs due to lack of finance, such fertilizers and pest 
control, hampers smallholder farmers’ productivity. However, 
without detailed data on land quality and crop needs, applying 
these inputs may not yield positive results. Further research is 

FIGURE 12

Implications of grain production performance/efficiency of CPS: existing food gap (A); existing food gap (B); existing food needy population at grid 
level (C) and long year food needy population at district level (D).
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needed in this area. Institutional and Technological Inputs: 
Traditional CPS suffer from inadequate agricultural infrastructure 
and low technological adoption. Lack of attention on multiple 
cropping, absence of required institutional or fragile setup 
hindered to enhance grain production. To foster innovative CPS, 
the sector requires better financing and advanced facilities.

In an effort to realize the above strategies, four categories of 
contributions from the present study can be identified, namely:

 1) Methodological contributions (context-assessment approach): 
Proper and comprehensive grain production assessment 
demands not only detailed and accurate spatial data but also a 
holistic and multidimensional assessment approach. The 
present study has demonstrated a multidimensional and 
holistic assessment approach to evaluate the grain production 
performance/efficiency of rainfed CPS practiced in UBNB 
(Equations 1–4). The assessment approach presented in this 
study could help to boost existing research dimensions and 
further promote the efficient utilization of agricultural space, 
green water, and land resources, in addition to providing a 
basis for improving food production efficiency.

 2) Spatial and multi-temporal data contributions: The success of 
such comprehensive assessments depends on the generation of 
detailed input data at the required spatial, temporal, and 
thematic scales, including cropland area, crop types, cropping 
systems, and production determinants. This study successfully 
created several spatial datasets, creating a database for future 
research. However, due to limited resources, the authors failed 
to include some important indicators from the analysis such as 
yield of each crop at different years.

 3) Scientific evidence and knowledge generation: Previous 
studies often lacked comprehensive national or basin-level 
performance assessments due to data limitations, limiting 
insight into crop production systems (CPS). Many attempts 
focused on single-factor analyses such as sown area or 
yield rather than comprehensive assessments. The analysis 
presented here not only uncovers current CPS 
characteristics and spatial variations in grain production 
but also improves understanding of CPS and their 
performance and efficiency. Furthermore, this framework 
provides a foundation for future research, with the data 
generated serving as valuable input for future studies.

 4) Policy: The results of this study will benefit policymakers in 
four ways: (i) refining the basin-level agriculture-oriented 
economic development strategies, (ii) assisting planners 
and decision-makers in understanding rain-based crop 
production systems (CPS), (iii) identifying effective 
solutions to improve grain production efficiency for 
smallholder farmers who still practice traditional rainfed 
CPS, and (iv) informing food security policies and 
optimizing resource allocation in the agricultural sector.
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