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Accurate instance segmentation of individual crops is crucial for field management 
and crop monitoring in smart agriculture. To address the limitations of traditional 
remote sensing methods in individual crop analysis, this study proposes a novel 
instance segmentation approach combining UAVs with the YOLOv8-Seg model. 
The YOLOv8-Seg model supports independent segmentation masks and detection 
at different scales, utilizing Path Aggregation Feature Pyramid Networks (PAFPN) 
for multi-scale feature integration and optimizing sample matching through the 
Task-Aligned Assigner. We collected multispectral data of Chinese cabbage using 
UAVs and constructed a high-quality dataset via semi-automatic annotation with the 
Segment Anything Model (SAM). Using mAP as the evaluation metric, we compared 
YOLO series algorithms with other mainstream instance segmentation methods 
and analyzed model performance under different spectral band combinations 
and spatial resolutions. The results show that YOLOv8-Seg achieved 86.3% mAP 
under the RGB band and maintained high segmentation accuracy at lower spatial 
resolutions (1.33  ~  1.14  cm/pixel), successfully extracting key metrics such as 
cabbage count and average leaf area. These findings highlight the potential of 
integrating UAV technology with advanced segmentation models for individual 
crop monitoring, supporting precision agriculture applications.
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1 Introduction

With continuous advancements in information and digital technologies, remote 
sensing has become a key tool for data acquisition in precision agriculture (Liu et al., 
2021). Traditional manual crop monitoring methods provide high accuracy and detailed 
information about individual crops. However, these methods are labor-intensive, time-
consuming, and prone to human error, making them unsuitable for monitoring large 
areas efficiently (Kimmelshue et al., 2022). Satellite remote sensing enables periodic 
monitoring of large agricultural areas (Sara Tokhi Arab et al., 2021), offering valuable 
data for calculating planting areas, identifying crop species, and assessing crop growth 
(Liu et  al., 2021). However, its relatively low spatial resolution limits its ability to 
accurately monitor individual crops. In recent years, the development of unmanned 
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aerial vehicle (UAV) technology has facilitated the collection of 
high-resolution and high-frequency spectral data, providing an 
ideal solution for large-scale monitoring of individual crop 
growth. The introduction of multispectral sensors offers 
agricultural professionals a new way to gather vegetation 
information, delivering essential technical support for precision 
agriculture (Schoofs et al., 2020).

UAVs equipped with multispectral imaging devices can 
efficiently capture crop spectral information across different 
wavelengths, providing valuable references for analyzing 
physiological parameters such as crop density and chlorophyll 
content (Sylvain Jay et al., 2017). In recent years, multispectral 
images obtained by UAVs have been used to estimate the biomass 
of corn in the Huailai region of China. The results demonstrate 
that UAV-based multispectral imagery significantly improves the 
accuracy of biomass predictions (Li et al., 2016). Similarly, UAV 
imagery has been employed at the Campus Klein-Altendorf 
agricultural research station (50°37′N, 6°59′E), affiliated with the 
Faculty of Agriculture at the University of Bonn, to accurately 
calculate the plant density of barley and wheat. By establishing a 
linear relationship model with manual field counts, the researchers 
not only confirmed the accuracy of these estimates but also 
provided an efficient approach to crop monitoring (Wilke et al., 
2021). This technological advancement contributes to the 
optimization of planting management and offers essential data 
support for crop breeding research. Wang et al. further utilized 
high-resolution UAV imagery to extract spectral, textural, and 
structural information and developed estimation models using 
algorithms such as Decision Tree Regression (DTR), Random 
Forest Regression (RFR), and Extreme Gradient Boosting 
(XGBoost) (Wang R. et al., 2024). Their results demonstrated that 
combining spectral, textural, and structural information 
effectively improves estimation accuracy, with XGBoost achieving 
the best overall performance. This study highlights that leveraging 
the spatial information from UAV multispectral imagery can 
significantly enhance the accuracy of monitoring crop 
physiological parameters, offering a feasible and reliable method 
for estimating chlorophyll content in walnut leaves. However, the 
processing of UAV multispectral imagery often relies on complex 
algorithms and high-resolution data, which may limit its 
scalability. Nevertheless, with ongoing advancements in computer 
vision algorithms, it has become possible to extract high-precision 
crop morphology from smaller datasets and even from lower-
resolution RGB bands.

Deep learning has become increasingly important in remote 
sensing image processing, particularly for crop yield prediction, 
growth monitoring, and trait analysis (Maimaitijiang et al., 2020; 
Santana et  al., 2021). With its end-to-end feature extraction 
capability, deep learning can automatically integrate relevant data, 
making it a powerful tool for addressing the complexities of 
agricultural monitoring (Liu M. et al., 2024; Xiao et al., 2024). In 
the field of computer vision, deep learning-based instance 
segmentation has achieved significant advancements. It enables 
the identification and segmentation of individual objects within 
an image, providing more detailed and actionable insights 
compared to semantic segmentation (Julien et al., 2020; Lu et al., 
2023). These algorithms play a key role in agricultural applications, 
where precise monitoring of individual plants is essential for 

optimizing crop management and improving decision-making. 
Among these models, Mask R-CNN has been widely adopted for 
object detection and instance segmentation. By incorporating a 
Region Proposal Network (RPN), it enables simultaneous 
detection and segmentation, handling multiple instances even in 
complex scenarios with overlapping objects (Thenmozhi and 
Reddy, 2023; Yangyang et  al., 2023). For example, Gao et  al. 
applied a fine-tuned Mask R-CNN to monitor corn seedlings, 
achieving 97.78% accuracy in emergence rate prediction across 
different varieties and developmental stages (Xiang et al., 2023). 
PointRend further improves segmentation precision by 
introducing finer boundary processing, particularly in high-
resolution edge areas, to avoid the coarse boundary handling 
typical of traditional methods (Fen et  al., 2023; Jidong et  al., 
2023). Zhang et al. integrated PointRend into the Mask R-CNN 
framework, using PAFPN as the backbone, to extract canopy 
features of apple trees, achieving 8.96 and 8.37% improvements in 
AP_seg and AP_box scores, respectively (Zhang et al., 2022). The 
YOLO series models have also gained prominence in agricultural 
applications due to their speed and efficiency in processing large 
numbers of instances (Li et al., 2023). Su et al. enhanced YOLOv5 
with BiFPN and SE modules, significantly improving the detection 
accuracy of kidney bean brown spot disease, with mAP increasing 
by 25.6% (Su et  al., 2023). Similarly, Guan et  al. integrated 
deformable convolution and dual-layer routing attention 
mechanisms into YOLOv8, achieving a 12% improvement in mAP 
for corn canopy organ detection, demonstrating the potential of 
these models in real-world agricultural environments (Guan et al., 
2024). These advancements underscore the growing potential of 
deep learning for large-scale agricultural monitoring. However, 
the application of these methods to more complex crops, such as 
Chinese cabbage, requires further exploration and optimization, 
as addressed in this study.

Currently, despite significant progress in crop instance 
segmentation using drone-based multispectral technology, several 
challenges and limitations remain. Most existing methods rely on 
image processing algorithms and machine learning models to detect 
crop features, but there is a lack of dedicated instance segmentation 
datasets specifically designed for crops using drone multispectral 
imagery (Arun et al., 2023). While segmentation algorithms have 
shown maturity in studies on crops like corn and wheat, they still 
struggle with Chinese cabbage, which exhibits diverse morphologies 
and significant individual variability (Herrera et  al., 2024). The 
morphological diversity and individual differences of Chinese cabbage 
increase the complexity of segmentation tasks, requiring more 
sophisticated models and larger training datasets to accurately identify 
and segment Chinese cabbage plants of varying shapes and sizes. 
Additionally, the overlapping and contact between Chinese cabbage 
leaves make it challenging for algorithms to accurately delineate leaf 
boundaries, which is crucial for the study of fine-grained crop features 
(Huang et al., 2024). Despite numerous studies on crops like corn and 
wheat (Chivasa et al., 2021; Sun et al., 2022), research on Chinese 
cabbage instance segmentation remains limited. The absence of 
dedicated studies and datasets for Chinese cabbage highlights the need 
for further research. Therefore, this study aims to fill this gap by 
developing a robust segmentation framework tailored for Chinese 
cabbage using UAV multispectral imagery, contributing to improved 
crop monitoring and management.
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Addressing the limitations of current crop monitoring techniques, 
this study leverages deep learning methodologies and unmanned 
aerial vehicle (UAV) multispectral imagery to conduct high-fidelity 
instance segmentation of Chinese cabbage. Existing methods often 
struggle with accurately capturing detailed instance-level data in 
complex agricultural environments, limiting their applicability in 
precision agriculture. By combining the advanced feature extraction 
capabilities of deep learning with rich, high-dimensional multispectral 
data, this study aims to enhance the precision and efficiency of 
Chinese cabbage monitoring. The study’s pivotal contributions are 
outlined as follows:

 1. Construction of the UAV-based multispectral dataset: We used 
UAV to collect multispectral images containing 5 spectral 
bands, segmtioned these images using SAM models, combined 
with manual correction, and finally created a comprehensive 
dataset specifically for the segmentation of Chinese 
cabbage instances.

 2. Comparative analysis of segmentation algorithms: 
We  evaluated various instance segmentation algorithms 
tailored for Chinese cabbage, analyzing their performance and 
the influence of different spectral band combinations.

 3. Impact of model variants and spatial resolutions: 
We investigated how different model sizes and image spatial 
resolutions affect segmentation accuracy for Chinese cabbage.

 4. Application of YOLOv8-Seg for growth monitoring: We applied 
YOLOv8-Seg to extract key growth metrics, including the 
number of plants and average leaf area, to assess the growth 
conditions of Chinese cabbage in the study area.

The remainder of this manuscript is organized as follows: Section 
2 introduces the materials and methods used in this study, including 
the study area, data acquisition process, and the detailed procedures 
for dataset construction. Additionally, it describes the instance 
segmentation models applied in the study, including their components 
and supporting formulas. Section 3 presents the experimental results 
and analysis, beginning with the evaluation metrics used for the 
models, followed by a performance comparison of instance 
segmentation across different models and spectral band combinations. 
It also provides an in-depth analysis of the segmentation results and 
the growth conditions of Chinese cabbage based on the visual outputs. 
Section 4 offers a detailed discussion of the findings, highlighting the 
advantages of the proposed approach and the limitations of other 
methods through the comparison of model performance at different 
scales and spatial resolutions. Finally, Section 5 summarizes the main 
results of the study, provides a more detailed comparison of each 
approach, and outlines future research directions.

2 Materials and methods

2.1 Study area overview and data 
acquisition

Situated in the northwest of Henan Province, China, Wuzhi County 
boasts a landscape characterized by its vast flatness, complemented by 
a temperate continental monsoon climate that cycles through four 
distinct seasons. With an average annual temperature of 14.4°C and 

precipitation totaling 575.1 millimeters, the region presents an ideal 
environment for cultivating Chinese cabbage, thereby being designated 
as the focal area for this research, as shown in Figure 1. The study area 
covers an area of 4,305 square meters. For the purposes of data 
collection, this study employs the DJI Phantom 4 RTK, a sophisticated 
multispectral drone. This quadcopter is outfitted with a color sensor 
dedicated to visible light imaging, alongside five monochrome sensors 
designed for capturing multispectral data. Imagery is archived in JPEG 
format for visible light captures and TIFF format for multispectral data, 
boasting a resolution of 1,600 × 1,300 (aspect ratio of 4:3.5). Detailed 
specifications and parameters of the drone and its imaging capabilities 
are systematically outlined in Tables 1, 2.

This study executed the acquisition of image data from Chinese 
cabbage crops, which were sown in early September and subsequently 
imaged on October 1, 2023. The growth period of Chinese cabbage 
lasts approximately two and a half months, with the first month after 
sowing being crucial for its development. During this period, the 
Chinese cabbage plants undergo rapid growth, providing valuable 
growth-related information for this study. Therefore, this study chose 
this specific period for data collection to gather comprehensive 
growth-related information. Data collection comprised three UAV 
flights, resulting in a total of 6,102 images. This collection comprised 
1,017 visible light images alongside 5,089 images captured in single 
spectral bands. The imagery was systematically collected at uniform 
intervals along the UAV’s flight path, maintaining a velocity of 1.0 m/s 
at an altitude of 8.5 meters, ensuring a high-resolution capture of 
0.4 cm per pixel. The drone images were acquired with a side overlap 
of 65% and an end overlap of 65%.

2.2 Construction of Chinese cabbage 
instance segmentation multispectral 
dataset

2.2.1 Preprocessing of multispectral images
This study leverages the Structure from Motion (SFM) technique 

for the preprocessing of multispectral images captured by unmanned 
aerial vehicles (UAVs), facilitating the generation of registered 
orthophoto images of the research area (Arruda Huggins de Sá Leitão 
et al., 2023). The SFM approach requires only the sequence of images 
captured, automating essential steps such as feature extraction. This 
eliminates the need for manual intervention or additional hardware 
like depth sensors or laser scanners, significantly enhancing cost-
efficiency and operational flexibility (Jayathunga et al., 2023).

Initially, reflectance values are calibrated and applied across the 
image data, using known reflectance values from reference board 
images. This crucial step mitigates variations in image brightness due 
to changes in lighting conditions and camera settings, ensuring 
uniform and accurate reflectance across the dataset (Dietenberger 
et  al., 2023). Subsequently, a feature-based matching algorithm 
identifies shared feature points among the images, determining their 
relative positions and orientations. This alignment establishes a spatial 
reference among the images, creating a solid foundation for precise 
geometric analyses essential for 3D reconstruction and measurement.

The optimization of camera parameters is then undertaken on the 
aligned images. This includes adjusting external parameters (such as 
camera position and orientation) and internal parameters (like focal 
length and distortion), based on known control points or ground 
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control points. The goal is to minimize reprojection errors or maximize 
geometric consistency observed, thereby enhancing the accuracy of 
subsequent analyses. Through feature matching across aligned images, 
three-dimensional point cloud data is generated, which, via 
interpolation calculations on raster grids, leads to the creation of a 
Digital Elevation Model (DEM) with detailed elevation information.

Finally, using the DEM and image data, orthorectification 
transformation is performed, accurately aligning image pixels to their 
true geospatial locations and producing orthomosaic images. 
Additionally, various spectral band data are merged to derive RGB 
(Red-Green-Blue), NER (Near Infrared-Red Edge-Red), and NRG 

(Near Infrared-Red-Green) images. Orthomosaic images emerging 
from different band combinations are illustrated in Figure  2, 
demonstrating the effectiveness of the preprocessing workflow and 
setting the stage for detailed multispectral analysis.

2.2.2 Construction of multispectral instance 
segmentation dataset based on SAM

In this study, the Segment Anything Model (SAM) is utilized for 
the semi-automatic annotation of preprocessed multispectral images, 
streamlining the segmentation process. SAM uniquely integrates 
features across multiple scales, automatically identifying the most 
salient features for precise segmentation (Ying et  al., 2023). It 
incorporates a spatial attention mechanism within convolutional neural 
networks (CNN), enhancing the model’s ability to pinpoint critical 

FIGURE 1

Overview of the study area.

TABLE 1 Parameters of DJI Genie P4 RTK multi-spectral version UAV.

UAV vehicle parameters

Takeoff weight 1,391 g

Wheelbase 350 mm

Maximum take-off altitude 6,000 m

Maximum ascent speed 6 m/s(automatic flight); 5 m/s(manual control)

Maximum descent speed 3 m/s

Flight time About 30 min

Aircraft operating frequency 5.725GHz-5.850GHz

Image sensor 1 inch CMOS; effective pixel 20 million

TABLE 2 DJI Genie P4 RTK multi-spectral version UAV camera 
parameters.

Band number Band name Band range

1 Blue 450–500 mm

2 Green 500–600 mm

3 Red 630–700 mm

4 Near infrared (NIR) 760–1300 mm

5 Red edge 690–760 mm
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features scattered across various image locales by adapting feature 
weights accordingly (Soylu et al., 2023). This methodology not only 
emphasizes local details but also assimilates global context, fostering a 
holistic comprehension of the image content and consequently 
bolstering the efficacy of image processing tasks (Gui et al., 2024).

Employing SAM for segmentation, followed by meticulous 
manual adjustments to refine the polygon masks of individual Chinese 
cabbages, resulted in the generation of 24,774 distinct Chinese 
cabbage segmentation instances. Furthermore, through the application 
of specialized cropping tools, orthomosaic images derived from 
assorted band combinations were segmented into 640 × 640 pixel 
frames, culminating in a collection of 923 images. Eighty percent of 
the image slices were randomly selected as the training set, while the 
remaining 20% were designated as the validation set. Figure  3 
showcases a segment of the constructed Chinese cabbage instance 
segmentation multispectral dataset, featuring an array of cropped 
images in RGB, NRG, and NER formats alongside labels denoting 
Chinese cabbage segmentation instances, thereby illustrating the 
comprehensive scope and precision of the dataset compiled through 
this innovative approach.

2.3 Instance segmentation model

2.3.1 YOLOv8
YOLO (You Only Look Once) is a widely adopted algorithm for 

real-time object detection. It predicts the class and location of objects 
in an image through a single forward pass, without the need for 
multiple passes through a Region Proposal Network (RPN) to generate 
candidate regions (Zhu et al., 2023). The YOLO series has evolved 
continuously to accommodate diverse application scenarios. 
Compared to its predecessors, YOLOv8 introduces deeper network 
architectures and additional convolutional layers, enhancing feature 
perception and improving detection accuracy.

YOLOv8-Seg is an extension of YOLOv8, specifically optimized 
and enhanced for instance segmentation tasks. It retains the core 

architecture of YOLOv8, which consists of three main components: the 
Backbone, Neck, and Head networks. In the Backbone, YOLOv8-Seg 
draws on the ELAN structural design from YOLOv7 and replaces the 
C3 module from YOLOv5 with the C2f module, which improves 
gradient flow. Additionally, the number of channels is adjusted across 
models of different scales to achieve better performance (Liu G. et al., 
2024). For the Neck, the model incorporates Path Aggregation Feature 
Pyramid Networks (PAFPN) to facilitate multi-scale feature integration. 
It combines both the Feature Pyramid Network (FPN) and the Panoptic 
Feature Pyramid (PFP), enhancing the model’s ability to detect objects 
of varying sizes (Xie et  al., 2024; Yue et  al., 2023). In the Head, 
YOLOv8-Seg adopts a Decoupled-Head architecture, generating both 
segmentation and detection outputs at each scale. The model creates 
independent segmentation masks for each target and applies different 
thresholds to fine-tune the final output. Moreover, it introduces the 
Task-Aligned Assigner for positive and negative sample matching, 
improving the stability of the training process (Wang and Liu, 2024). 
The architecture of YOLOv8-Seg is illustrated in Figure 4, showing the 
complete framework. This model is designed to efficiently run on a 
variety of hardware platforms, from CPUs to GPUs, making it adaptable 
to different computational environments (Casas et al., 2023).

YOLOv8-Seg consists of five models of varying scales: 
YOLOv8n-Seg, YOLOv8s-Seg, YOLOv8m-Seg, YOLOv8l-Seg, and 
YOLOv8x-Seg. YOLOv8n-Seg is the most lightweight model, designed 
for resource-constrained environments. YOLOv8s-Seg strikes a 
balance between model size and detection speed, making it suitable 
for standard tasks. YOLOv8m-Seg offers higher detection accuracy 
and robustness, making it well-suited for small to medium-sized tasks 
that demand greater precision. YOLOv8l-Seg, as a larger model, 
delivers excellent accuracy and robustness, ideal for applications 
requiring high performance. YOLOv8x-Seg is the largest and most 
complex model, providing the highest segmentation precision and 
robustness but requiring substantial computational resources (Wu 
et al., 2023). Table 3 compares the performance of these models on the 
COCO val2017 dataset, using single-model, single-scale testing.

2.3.2 Input
The Input layer of YOLOv8-Seg is primarily responsible for 

transforming the incoming images into a format that the model can 
effectively process. Its core functions include image preprocessing, 
data conversion, and data transmission. First, the input layer scales the 
images to a fixed size to meet the network’s input requirements and 
normalizes the pixel values to the [0, 1] range. This normalization 
mitigates the impact of varying numerical ranges, ensuring the 
model’s stability and accuracy during both training and inference. 
Additionally, YOLOv8-Seg adopts the BGR (Blue-Green-Red) channel 
order instead of the more common RGB (Red-Green-Blue) format. 
Therefore, the input layer rearranges the image’s channels into BGR 
format to ensure the data is correctly interpreted by the model. Next, 
the preprocessed images are transformed into a four-dimensional 
tensor with the shape (batch_size, channels, height, width). This 
tensor format enables efficient parallel computation on hardware 
devices such as GPUs. Finally, the processed tensor data is passed to 
subsequent layers of the network, such as convolutional and pooling 
layers, for further feature extraction and processing. This series of 
preprocessing, conversion, and transmission operations ensures the 
quality and consistency of the input data, thereby enhancing the 
model’s overall performance and inference accuracy.

FIGURE 2

Images of different band combinations.
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2.3.3 Backbone network
The Backbone Network plays a pivotal role in extracting feature 

information from the input image, delineating details across various 
scales and semantics via a structured hierarchical representation. This 
network architecture is composed of five convolutional (Conv) 
modules, four C2f modules, and a singular SPPF (Spatial Pyramid 
Pooling Fusion) module, all orchestrated to refine feature extraction. 
The integration of residual connections and bottleneck structures is 
strategic, aiming to streamline the network’s size while concurrently 
boosting its performance (Yang et al., 2023). Residual connections are 
instrumental in facilitating direct information flow from the input 
across layers, effectively mitigating the challenges associated with 

vanishing and exploding gradients. This innovation significantly 
augments the network’s expressive capabilities and accelerates 
model convergence.

2.3.3.1 CBS convolutional module
The CBS convolutional module consists of a convolutional layer 

(Conv2d), a batch normalization layer (BatchNorm2d), and a SiLU 
activation function, as shown in Figure 5. The convolutional layer 
slides a fixed-size kernel over the input image, performing pointwise 
multiplication between pixel values in  local regions and the 
corresponding kernel weights, followed by summation to generate a 
feature map. Stacking multiple convolutional layers allows the 

FIGURE 3

Chinese cabbage instance segmentation dataset.

https://doi.org/10.3389/fsufs.2024.1433701
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Yuan et al. 10.3389/fsufs.2024.1433701

Frontiers in Sustainable Food Systems 07 frontiersin.org

network to extract increasingly abstract features, facilitating the 
representation of complex image information. The batch 
normalization layer standardizes the input by calculating the mean 
and variance within each batch, scaling the data to follow a standard 
normal distribution. This normalization accelerates model 
convergence and mitigates the risk of vanishing or exploding 
gradients during training. After batch normalization, the data 
undergoes a non-linear transformation through the SiLU (Sigmoid-
Weighted Linear Unit) activation function. Compared to the 
traditional ReLU function, SiLU retains non-zero gradients for small 
input values, enhancing both the training dynamics and the model’s 
generalization ability. The inclusion of the activation function 
introduces non-linearity into the network, enabling it to effectively 
learn complex data patterns and capture high-dimensional features 
with greater accuracy.

2.3.3.2 C2f module
The C2f module maps image features into the feature space of 

each target instance through feature extraction, aggregation, and 
fully connected layer transformations, providing precise feature 
representations for instance segmentation (Wang H. et al., 2024). 
Its structure consists of a slicing operation, two 1 × 1 convolutions, 
n Bottleneck operations, and a concatenation operation. First, the 
initial 1 × 1 convolution facilitates cross-channel information 
interaction, enhancing the feature representation capability. After 
the slicing operation, the feature maps generated by each 
convolution are progressively concatenated with the original 
feature map. Finally, the second 1 × 1 convolution compresses the 
number of channels in the concatenated feature map to match the 
input channel size, ensuring the lightweight nature of the model. 
This design not only improves computational efficiency but also 

FIGURE 4

The structure of YOLOv8-Seg.

TABLE 3 Comparison of various models in YOLOv8-Seg.

Model Size (pixels) Speed CPU 
ONNX(ms)

Speed A100 
TensorRT(ms)

Params (M) FLOPs (B)

YOLOv8n-Seg 640 96.1 1.21 3.4 12.6

YOLOv8s-Seg 640 155.7 1.47 11.8 42.6

YOLOv8m-Seg 640 317.0 2.18 27.3 110.2

YOLOv8l-Seg 640 572.4 2.79 46.0 220.5

YOLOv8x-Seg 640 712.1 4.02 71.8 344.1
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strengthens the model’s ability to learn and process information 
in complex feature spaces. The detailed structure of the C2f 
module is illustrated in Figure 6.

2.3.3.3 SPPF module
The SPPF (Spatial Pyramid Pooling Fusion) module performs 

pooling operations on input feature maps at multiple scales, generating 
several sub-feature maps and fusing them to extract more 
comprehensive and detailed information (Lu et  al., 2024). Pooling 
operations perform local statistical operations on the input feature 
maps, enabling dimensionality reduction and information compression 
while retaining essential features. This process enhances the network’s 
computational efficiency and generalization ability. The mathematical 
expression of the pooling operation is shown in Equation (1):

 
( )_ 1

1in
out

L padding dilation kernel size
L

stride
+ − × −

= +
 

(1)

The SPPF (Spatial Pyramid Pooling Fusion) module is based on the 
design of Spatial Pyramid Pooling (SPP). SPP utilizes three adaptive 
max-pooling layers of different sizes, arranged in parallel between two 
convolutional layers, to transform feature maps of arbitrary sizes into 
fixed-size feature vectors. Building on this foundation, SPPF optimizes 
the SPP structure by reorganizing the parallel pooling layers into a 

serial structure and standardizing the convolutional layers to a size of 
1 × 1. This combination of serial max-pooling operations and unified 
convolutional layer design allows the SPPF module to extract and 
transform features more efficiently, significantly enhancing the model’s 
computational efficiency and detection accuracy. The detailed structure 
of the SPPF module is illustrated in Figure 7.

2.3.4 Neck module
Positioned between the Backbone network and the output Head, 

the Neck module leverages the Path Aggregation Feature Pyramid 
Network (PAFPN) for adept multi-scale feature fusion, integrating 
both Feature Pyramid Network (FPN) and Path Aggregation Network 
(PAN) structures (Wu et  al., 2024). FPN boosts image feature 
representation by fusing deep and shallow feature maps via top-down 
upsampling, enhancing semantic detail transmission (Li et al., 2023). 
Conversely, PAN, building on FPN, employs a bottom-up approach to 
relay fine details like edges, colors, and positions from shallow to deep 
layers, ensuring comprehensive feature integration (Du et al., 2023). 
This sophisticated design equips the model to process features across 
scales precisely, enabling accurate identification and segmentation of 
diverse object instances.

2.3.5 Head network

The Head module integrates both detection and segmentation 
tasks through a modular design, enabling efficient multi-task 
processing. It adopts a Decoupled-Head architecture, separating 
classification and localization tasks to enhance both detection and 
segmentation accuracy and efficiency (Cao et al., 2024). Additionally, 
the Head module employs the Task-Aligned Assigner strategy for 
positive and negative sample matching, optimizing the training process 
and ensuring reasonable sample assignment, further improving the 

FIGURE 5

CBS convolutional module.

FIGURE 6

C2f module.
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model’s stability and generalization ability (Solimani et al., 2024). The 
detailed structure is illustrated in Figure 8. In this architecture, the 
Segment module generates segmentation masks for each target 
instance, while the Detect module predicts the target’s class and 
bounding box. The outputs from both modules are integrated using a 
Cat (concatenation) operation to ensure consistency between detection 
and segmentation results. Next, the Crop step precisely extracts the 
target regions, producing clearer instance areas to prepare for the final 
output. The Threshold operation is then applied to filter high-
confidence instances, reducing noise interference and generating the 
final output. Moreover, the Head module produces multi-scale feature 
maps with resolutions of 80 × 80, 40 × 40, and 20 × 20, enabling the 
detection of objects of varying sizes. This multi-scale strategy ensures 
that the model maintains strong performance for both large and small 
objects, significantly enhancing detection accuracy and generalization.

2.3.6 Loss calculation
The loss calculation of YOLOv8-Seg consists of regression loss, 

classification loss, and mask loss, where the regression loss is 
composed of CIoU Loss and Distribution Focal Loss (DFL) (Zhang 
et al., 2024). The total loss value is obtained by applying proportional 
weighting to these four components.

2.3.6.1 CIoU loss
The Intersection over Union (IoU) metric quantifies the 

overlap between predicted and ground truth bounding boxes, 

ranging from 0 to 1. A value approaching 1 signifies a substantial 
overlap, indicating high accuracy of the prediction, whereas a value 
near 0 denotes minimal overlap. The Complete Intersection over 
Union (CIoU) enhances this measure by incorporating the 
distances between the centers, as well as the width and height 
differences of the predicted and actual instances, alongside their 
overlap. In instance segmentation, CIoU refines the model’s 
capability to precisely locate and identify objects. It resolves the 
challenge of guiding bounding box regression, even in scenarios 
where the predicted and ground truth boxes do not intersect, thus 
elevating instance segmentation accuracy (Jia et al., 2023). The 
calculation steps of CIoU (Complete Intersection over Union) are 
shown in Equations (2–4):
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Among them, IoU represents the intersection over union, b  
and gtb denote the centroids of two bounding boxes, ρ  signifies 
the Euclidean distance between two bounding boxes, cstands for 
the diagonal distance of the closed region between two bounding 
boxes, Z  denotes the aspect ratio loss between the predicted and 
true bounding boxes, á  is the loss coefficient, w  represents the 
width of the predicted bounding box, h  indicates the height of the 
predicted bounding box, gtw  signifies the width of the true 
bounding box, and gth  denotes the height of the true 
bounding box.

2.3.6.2 Varifocal loss
To tackle the challenge of imbalanced distributions between 

positive and negative samples, the Varifocal Loss function employs 
asymmetric weighting strategies. This approach adjusts the weighting 
of samples to balance the influence of positive and negative samples 
in the loss calculation, enhancing model training efficiency and 

FIGURE 7

SPPF module.

FIGURE 8

Detection head.
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accuracy. The specific computation steps for Varifocal Loss are 
detailed in Equation (5):

 
( )

( ) ( ) ( )( )
( )

q qlog p 1 q log 1 p q 0
VFL p,q

q 0P log 1 pγ

− + − − >=  =−α −  
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Among them, q is the IoU value of the predicted and true boxes. 
If the predicted and true boxes intersect, then q 0> , it is a positive 
sample; If the predicted box and the true box do not intersect, then 
q 0=  is a negative sample. As shown in the formula, by utilizing γ, the 
factor scaling loss of the Varifocal Loss function only reduces the loss 
contribution of negative samples (q 0= ), rather than reducing the 
weight of positive samples (q 0> ) in the same way.

2.3.6.3 Distribution focal loss
The Distribution Focal Loss (DFL) leverages cross-entropy to 

refine the probabilities associated with the positions immediately to the 
left and right of the labeled position. This precision enables the network 
to more rapidly align with the designated target area, significantly 
boosting the model’s ability to generalize across intricate scenarios. The 
calculation formula for DFL, which supports this optimization, is 
provided in Equation (6):

 ( ) ( ) ( ) ( ) ( )( )i i 1 i 1 i i i 1DFL S ,S y y log S y y log S+ + += − − + −
 (6)

Among them, iy  and i 1y + represent the values of two points 
adjacent to y ( iy ≤y≤ i 1y + ), and iS  and i 1S +  represent the probability 
output values at different positions, respectively. From the formula, it 
can be seen that when i 1y +  is closer to y and the probability output 
value of S is larger, the DFL loss value is smaller, making the 
distribution closer to the center of the annotation. Therefore, DFL can 
make the network focus faster on the values near the target y, increase 
its probability, and thus accelerate convergence.

2.3.6.4 Mask loss
Mask loss measures the difference between the predicted masks 

generated by the model and the ground truth masks. To ensure 
accuracy in instance segmentation tasks, Binary Cross-Entropy (BCE) 
is employed as the loss function. BCE is a pixel-wise loss function that 
quantifies the alignment between the predicted probability and the 
ground truth label by computing the cross-entropy for each pixel. The 
formula is provided in Equation (7):

 ( )mask gtLOSS BCE M,M=  (7)

In the formula, M represents the predicted mask generated by the 
model, gtM  denotes the corresponding ground truth mask.

The loss function of the YOLOv8-Seg model is defined in 
Equation (8):
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Where α , β , γ , and ω  are constants.

3 Experimental results and analysis

3.1 Experimental environment

This study’s experiments were carried out on a platform featuring 
a 64-bit Windows 10 operating system, powered by an AMD Ryzen 
75,800× 8-Core Processor at 3.8GHz and equipped with an NVIDIA 
GeForce RTX 3060 GPU. The computational framework for deep 
learning comprised Python 3.8, PyTorch 1.12.0, and CUDA 11.3. The 
configuration for the experimental setup was meticulously defined as 
follows: the number of training epochs was established at 200, with a 
batch size of 2. The initial learning rate was determined to be 0.002, 
with the learning rate momentum adjusted to 0.937. Additionally, the 
weight decay coefficient was precisely set at 0.0005, and AdamW was 
selected as the optimizer to facilitate the training process.

3.2 Evaluation metrics

To ascertain the efficacy of the proposed method, a set of 
evaluation metrics has been employed, including: mAP0.5 (Mean 
Average Precision at an Intersection over Union (IoU) threshold of 
0.5, reflecting average precision for each class), mAP0.75 (Mean 
Average Precision at an IoU threshold of 0.75, indicating average 
precision for each class), and mAP0.5:0.95 (Mean Average Precision 
across IoU thresholds from 0.5 to 0.95, offering a comprehensive 
average precision across each class). The methodologies employed to 
calculate these pivotal evaluation metrics are outlined as follows.

Average Precision (AP) is defined as the area under the precision-
recall curve, where a higher AP value indicates better model 
performance. Mean Average Precision (mAP), representing the 
aggregate AP across all classes, is calculated using the formulas in 
Equations (9,10):
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3.3 Model performance evaluation

3.3.1 Comparison of different model accuracies
To evaluate the segmentation performance of various models on 

our tailored dataset, we conducted comparative experiments under 
the same experimental conditions, using prominent instance 
segmentation algorithms such as Mask R-CNN, Cascade Mask 
R-CNN, PointRendb, RTMDet, and the YOLO series—YOLOv5-Seg, 
YOLOv6-Seg, YOLOv8-Seg, and YOLO11-Seg. The outcomes of these 
comparisons are systematically presented in Table 4, detailing the 
performance metrics of the different models on the validation set. In 
Table 4, (B) represents the bounding box metrics, while (M) represents 
the segmentation masks metrics.

Mask R-CNN enhances segmentation accuracy through region-
specific scanning, yet its two-stage architecture leads to extended 
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processing times for both detection and segmentation phases. 
Conversely, Cascade Mask R-CNN aims to expedite segmentation 
compared to its predecessor at the expense of slight accuracy reductions. 
PointRend excels in refining segmentation along target edges by 
generating additional sampling points, albeit at the cost of increased 
computational complexity. According to the data presented in Table 4, 
YOLOv8-Seg outperforms its counterparts in average precision (AP) 
across various Intersection over Union (IoU) thresholds. Specifically, in 
detection, the mAP0.5:0.95 of YOLOv8-Seg surpasses that of Mask 
R-CNN, Cascade Mask R-CNN, PointRend, RTMDet, YOLOv5-Seg, 
YOLOv6-Seg, and YOLO11-Seg by margins of 6.1, 6.2, 6.0, 8.2, 0.7, 0.4, 
and 1.2%, respectively. In segmentation, YOLOv8-Seg similarly leads, 
with its mAP0.5:0.95 exceeding those of the aforementioned models by 
4.1, 5.2, 2.2, 8.2, 0.4, 1.0 and 2.7%, respectively, showcasing its superior 
accuracy and efficiency in both detection and segmentation tasks.

3.3.2 Comparison of different band combinations
Preliminary tests have shown that the YOLO series algorithms 

outperform traditional segmentation methods in terms of overall 
accuracy. In order to delve deeper into the impact of different spectral 
band combinations on segmentation precision, this study conducted 
additional experiments focusing on the performance of YOLOv5-Seg, 
YOLOv6-Seg, YOLOv8-Seg and YOLO11-Seg across RGB, NRG, and 
NER bands. The results of these investigations are detailed in Table 5, 
shedding light on the efficacy of each algorithm under various 
spectral conditions.

As shown clearly in Table 5, YOLOv8-Seg consistently achieves the 
highest segmentation accuracy across most tested spectral band 
combinations, outperforming YOLOv5-Seg and significantly surpassing 
YOLOv6-Seg. In contrast, YOLO11-Seg exhibits relatively poorer 
performance. The series of comparative tests among the RGB, NRG, and 
NER bands revealed that the RGB combination emerged as the most 
accurate, followed by NRG, with NER registering the lowest accuracy 
scores. This discrepancy underscores the inherent advantages of the 
RGB band configuration, which encompasses the red, green, and blue 
bands of the visible spectrum. While RGB bands offer rich color details 
crucial for visual interpretation by human eyes, their significance in 
algorithmic interpretation may vary. Although algorithms can process 
information from various spectral bands, including near-infrared 
(NIR), the RGB bands still play a crucial role in providing contextual 
information and aiding in the identification of individual Chinese 
cabbage plants. The combination of RGB bands enables algorithms to 
capture subtle variations in color, which can help distinguish between 
different plant species or health conditions. In addition, one significant 

advantage of the results obtained with RGB images in our study is that 
Chinese cabbage segmentation can be  achieved using simple RGB 
drones, which are a more cost-effective technology compared to 
multispectral drones. This highlights the practicality and accessibility of 
our approach for agricultural applications.

3.3.3 Visualization analysis
To better present the experimental results, we selected Chinese 

cabbage samples representing different growth statuses—optimal 
growth, waterlogged stress, and standard growth—from the dataset for 
visual analysis. Figures 9, 10 illustrate the segmentation performance 
of various algorithms. As shown in Figure 9, in segmenting optimally 
grown Chinese cabbages, the algorithms exhibited differences in 
boundary handling, with Mask R-CNN, Cascade Mask R-CNN, and 
RTMDet struggling to accurately capture complex edge regions. For 
Chinese cabbages under standard growth conditions, Mask R-CNN 
and PointRend encountered occasional missed detections. When 
dealing with waterlogged-stressed Chinese cabbages, all algorithms 
demonstrated varying degrees of missed detections, failing to fully 
identify all instances. These findings suggest that mainstream instance 
segmentation algorithms still require improvement when addressing 
complex growth environments and varying morphological features.

In comparison to conventional mainstream instance segmentation 
algorithms, as shown in Figure  10, the YOLO series consistently 
outperforms the others in segmentation tasks. However, there are 
noticeable performance differences across YOLO versions. YOLOv5-Seg 
and YOLOv6-Seg occasionally misidentify two adjacent, healthy 
Chinese cabbages as a single instance, leading to instance merging issues. 
Furthermore, both models demonstrate inconsistencies when handling 
waterlogged-stressed Chinese cabbages, frequently encountering missed 
detections and false positives. In contrast, YOLOv8-Seg stands out with 
superior segmentation accuracy, particularly excelling in preserving the 
morphological integrity of Chinese cabbages and significantly reducing 
false positives and instance merging issues. Although the newly 
introduced YOLO11-Seg incorporates structural updates, it does not 
surpass YOLOv8-Seg in segmentation performance and experiences 
some accuracy decline in complex scenarios. Overall, YOLOv8-Seg 
remains the top-performing version, consistently achieving more stable 
detection results across diverse growth conditions.

3.3.4 Analysis of Chinese cabbage growth status
Analyzing plant growth status is crucial for a holistic assessment 

of crop development. In this study, the YOLOv8-Seg model is 
deployed for instance segmentation of Chinese cabbage plants within 

TABLE 4 Performance comparison of different models.

Model (B)map50 Map75 Map50-95 (M)map50 Map75 Map50-95

Mask R-CNN 96.8 94.5 86.5 96.8 92.5 82.2

Cascade Mask R-CNN 96.8 93.7 86.4 96.8 91.8 81.1

PointRend 97.7 93.6 86.6 96.8 92.7 84.1

RTMDet 95.7 90.4 84.4 95.6 89.2 78.1

YOLOv5-Seg 97.4 95.9 91.9 97.3 95.2 85.9

YOLOv6-Seg 96.9 95.6 92.2 96.9 95.2 85.3

YOLOv8-Seg 97.3 96 92.6 97.3 95.3 86.3

YOLO11-Seg 98.4 95.7 91.4 97.9 93.5 83.6
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the research area, facilitating the acquisition of detailed growth data 
for individual plants and subsequent statistical analyses. The dataset 
comprises 640 × 640 pixel image patches derived from the original 
imagery, with Figure 11 depicting the distribution of Chinese cabbage 
quantities and their average leaf areas across various image patches.

The horizontal axis of Figure 11 delineates different plots, while 
the vertical axis quantifies both the number of Chinese cabbages and 
their average leaf area per plot. The data indicates a consistent planting 
density, with most plots hosting between 40 to 50 Chinese cabbages. 
Nevertheless, a pronounced variability in average leaf area, ranging 
from 400 to 10,000, points to diverse growth conditions across the 
area. A smaller leaf area might signal suboptimal growth, potentially 

due to adverse environmental conditions or insufficient nutrients, 
whereas a larger leaf area suggests robust growth, likely a result of 
favorable conditions and adequate nutrient availability.

This methodical examination and quantification of Chinese 
cabbage growth enable informed adjustments to farming practices, 
such as fine-tuning fertilization and irrigation strategies. By tailoring 
these practices to the precise needs of the crops, based on observed 
growth patterns, it’s possible to optimize nutrient and water distribution, 
thereby bolstering the efficiency of crop growth and increasing yields.

Delayed plant growth not only compromises crop yield and 
quality but also elevates the risk of pest invasion. Thus, the swift 
identification and remediation of growth issues are critical for 

TABLE 5 Comparison of model performance of different band combinations.

Band Model (B)map50 Map75 Map50-95 (M)map50 Map75 Map50-95

RGB

YOLOv5-Seg 97.4 95.9 91.9 97.3 95.2 85.9

YOLOv6-Seg 96.9 95.6 92.2 96.9 95.2 85.3

YOLOv8-Seg 97.3 96 92.6 97.3 95.3 86.3

YOLO11-Seg 98.4 95.7 91.4 97.9 93.5 83.6

NRG

YOLOv5-Seg 97.3 95.9 91.9 97.3 95.2 85.4

YOLOv6-Seg 96.9 95.5 91.9 96.9 95 84.9

YOLOv8-Seg 97.4 96 92.6 97.4 95.5 86.1

YOLO11-Seg 98.4 95.6 91.1 97.9 93.6 83.5

NER

YOLOv5-Seg 97.3 95.6 90.1 97.2 94.6 83.2

YOLOv6-Seg 97 95.4 90.5 96.9 94.5 82.8

YOLOv8-Seg 97.2 95.5 90.5 97.1 94.7 83.4

YOLO11-Seg 98.4 95.7 89.6 97.8 92.6 81.4

FIGURE 9

Comparison of mainstream algorithms results.
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improving both yield and quality. To examine the diversity in plant 
growth within the research area more closely, this study curated 
Chinese cabbage images from the dataset that exemplify conditions of 
optimal growth, waterlogging effects, and average growth for in-depth 
analysis. Utilizing instance segmentation, we measured individual 
Chinese cabbage leaf sizes to compute the average leaf area per plant 
across different plots. This average leaf area then serves as a benchmark 
to identify plants experiencing stunted growth, which are subsequently 
highlighted in the visual presentations. These observations reveal that 
the affected plants display signs of inhibited growth and reduced leaf 
size, with a noticeable concentration in areas suffering from 
waterlogging or insufficient soil nutrients, as shown in Figure 12.

The findings underscore the significant impact of environmental 
conditions on plant growth, particularly affecting those with hindered 
development. Accordingly, we  propose the implementation of 
targeted improvement strategies for specific plots. Measures such as 
enhancing drainage systems and fine-tuning fertilization practices are 
suggested to foster plant health and vitality. By addressing the distinct 
needs of each plot based on observed growth patterns, these 
interventions aim to boost overall crop yield and quality, ensuring 
healthier and more resilient plant development.

4 Discussion

4.1 Performance analysis of different model 
scales

Based on the current experimental outcomes, the YOLOv8-Seg 
model emerges as the top performer in segmentation accuracy 

across all spectral band combinations, showcasing its peak 
effectiveness particularly within the RGB spectrum. This model is 
designed with five distinct scale variations—n, s, m, l, x—to cater 
to a diverse range of detection, segmentation, and classification 
demands across different classes. To delve deeper into the 
capabilities of YOLOv8-Seg, this study undertook a comparative 
evaluation of its five scale models against the tailored dataset. The 
findings from this detailed analysis are systematically compiled in 
Table  6, providing a comprehensive overview of each model’s 
segmentation prowess.

Within the array of YOLOv8-Seg configurations, the ‘n’ model 
distinguishes itself by having the minimal parameter count, 
positioning it as the streamlined option ideal for high-speed 
processing in scenarios where computational resources are limited. 
Despite this, its segmentation precision is slightly diminished 
compared to its counterparts. On the other hand, the ‘x’ model stands 
at the apex of complexity, boasting the highest parameter tally, 
engineered for deep and comprehensive segmentation tasks, albeit 
with significant computational demands.

The ‘s’ variant strikes a balance, enhancing segmentation accuracy 
beyond the ‘n’ model, tailored for moderately complex, real-time 
segmentation tasks. The ‘m’ model, of intermediate size, caters well to 
standard computing setups but might lag behind the more elaborate 
models in handling intricate segmentation challenges.

Models ‘l’ and ‘x’ excel in delivering meticulous segmentation 
accuracy but do so at the expense of processing speed, necessitating 
robust computational support. Such requirements render them less 
viable for environments with stringent resource limitations.

Figure 13 provides a visual juxtaposition of the loss functions and 
accuracies for these models, highlighting the practicality and efficiency 

FIGURE 10

Comparison of YOLO algorithm results.
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of the ‘n’ model. It adeptly navigates the demands of accurate, real-
time segmentation within our custom dataset, proving to be a cost-
effective solution that minimizes training overhead while maintaining 
performance integrity.

4.2 Performance analysis of different 
spatial resolutions

This study employs a resolution of 640 × 640 pixels for image 
processing. Given the potential impact of resolution on the model’s 
segmentation capability, an extensive evaluation was conducted to 

ascertain the YOLOv8n-Seg model’s performance across a spectrum 
of spatial resolutions within the RGB band. This approach aimed to 
discern how varying spatial resolutions affect the model’s precision 
and efficacy. To achieve this, the study meticulously examined 
segmentation outcomes at 11 distinct resolution levels. The 
comprehensive results of these experiments, offering a granular view 
of the model’s adaptability to different image spatial resolutions, are 
detailed in Table 7.

The experiments reveal that images of higher resolution are 
imbued with more detailed information, facilitating the model’s ability 
to precisely represent and capture object features. Conversely, lower-
resolution images may lack essential details, posing challenges to 

FIGURE 11

Distribution of quantity and leaf area of Chinese cabbage.

FIGURE 12

Analysis of Chinese cabbage growth heterogeneity and environmental impact.
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effective segmentation. According to the data in Table 7, there’s a clear 
trend where the YOLOv8n-Seg model’s segmentation accuracy 
diminishes as image spatial resolution decreases, particularly 
noticeable when the resolution is reduced to 2 cm/px. In contrast, the 

model’s performance enhances in tandem with the improvement in 
image resolution.

Figure 14 illustrates the model’s accuracy across various spatial 
resolutions, indicating that the YOLOv8n-Seg model sustains 

TABLE 6 Performance comparison of YOLOv8-Seg models at different scales.

Model (B)map50 Map75 Map50-95 (M)map50 Map75 Map50-95 Parameters

YOLOv8n-Seg 97.3 96 92.6 97.3 95.3 86.3 3.2

YOLOv8s-Seg 97.7 96.5 93.9 97.6 95.6 87.5 11.7

YOLOv8m-Seg 98 96.7 94.7 97.9 95.9 88.3 27.2

YOLOv8l-Seg 98 96.9 95.1 97.8 96.1 88.4 45.9

YOLOv8x-Seg 98.3 97 95.2 98.1 96.1 88.1 71.7

FIGURE 13

Performance curves of models at different scales.
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FIGURE 14

Performance curves of models with different resolutions.

commendable segmentation accuracy even at reduced spatial 
resolutions, especially within the range of 1.333 to 1.143 cm/px. 
This suggests an optimal balance between resolution and 
segmentation performance, highlighting the model’s robustness in 
handling images with varying levels of detail.

5 Conclusion

This study focuses on the YOLOv8-Seg algorithm, comparing 
its performance in extracting single Chinese cabbage from UAV 
multispectral imagery with other instance segmentation models, 
including YOLOv5-Seg, YOLOv6-Seg, YOLO11-Seg, Mask 
R-CNN, PointRend, Cascade Mask R-CNN and RTMDet. 
Additionally, we  evaluate the performance of YOLO series 
algorithms across different spectral band combinations (RGB, 
NRG, NER) and analyze the effects of varying model scales 

and spatial resolutions on segmentation accuracy and 
crop monitoring.

 1. SAM for dataset creation: SAM leverages advanced deep 
learning techniques to automatically identify and generate 
masks for all objects within an image, significantly enhancing 
the efficiency of manual labeling by rapidly producing accurate 
labeled masks. Furthermore, SAM is applicable to a wide range 
of image types, including standard RGB, multispectral, and 
infrared, thereby effectively addressing dataset scarcity in 
existing instance segmentation tasks.

 2. Comparison of segmentation algorithms: Comparative analysis 
indicates that the YOLO series consistently outperforms other 
mainstream segmentation algorithms. Specifically, 
YOLOv8-Seg achieved superior segmentation accuracy, with 
its mAP0.5:0.95 surpassing those of Mask R-CNN, Cascade 
Mask R-CNN, PointRend, RTMDet, YOLOv5-Seg, 

TABLE 7 Performance comparison of different resolutions.

Resolution Size (B)map50 Map75 Map50-95 (M)map50 Map75 Map50-95

2 128 × 128 94 88.2 74.6 92.7 59.5 55.7

1.6 160 × 160 95.2 91.1 79.4 94.6 78.7 64.9

1.333 192 × 192 95.3 92.2 83 95 85.8 69.9

1.143 224 × 224 96.6 93.6 85.6 96.3 89.1 73.9

1 256 × 256 96.6 94.2 87.6 96.4 91.3 76.7

0.889 288 × 288 96.5 94.4 88.4 96.4 92.5 78.6

0.8 320 × 320 96.8 94.8 89.6 96.7 93.2 80.5

0.727 352 × 352 97 95.2 90.3 96.9 93.7 81.7

0.53 480 × 480 97.3 95.8 91.8 97.2 94.7 84.5

0.5 512 × 512 97.2 95.6 91.8 97.1 94.9 85.2

0.4 640 × 640 97.3 96 92.6 97.3 95.3 86.3
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YOLOv6-Seg, and YOLO11-Seg by 4.1, 5.2, 2.2, 8.2, 0.4, 1.0, 
and 2.7%, respectively. Although YOLOv6-Seg performed 
relatively weaker within the YOLO series, it still outperformed 
Cascade Mask R-CNN, Mask R-CNN, and PointRend. 
Furthermore, visual analysis under different growth conditions 
showed that YOLOv8-Seg maintained superior segmentation 
capabilities and preserved the morphological integrity of 
Chinese cabbage better than other algorithms.

 3. Impact of spectral band combinations: the YOLO series 
algorithms exhibited different levels of segmentation accuracy 
across various spectral band combinations in UAV 
multispectral data. YOLOv8-Seg consistently achieved the 
highest segmentation accuracy, particularly in the RGB band, 
reaching 86.3% on the mAP50-95 metric. The strong 
performance of the RGB band highlights its inherent 
advantage in capturing rich color information, which aids in 
accurately identifying individual plants. Additionally, the 
success of using RGB imagery demonstrates the feasibility of 
deploying simple RGB drones as a cost-effective alternative to 
multispectral drones, enhancing the practicality of this 
approach for agricultural applications.

 4. Model Scales and spatial resolution analysis: analysis of 
different YOLOv8-Seg model scales and spatial resolutions 
reveals significant trade-offs between computational efficiency 
and segmentation accuracy. The ‘n’ model, characterized by 
minimal parameters, is ideal for scenarios with limited 
computational resources, while the ‘x’ model offers the highest 
segmentation accuracy, making it suitable for more complex 
tasks. Despite these differences, YOLOv8n-Seg maintains 
satisfactory accuracy even at lower resolutions (1.333 to 
1.143 cm/px), underscoring its robustness and adaptability in 
various agricultural scenarios.

This study demonstrates the significant potential of YOLOv8-Seg 
combined with UAV technology for agricultural applications, 
particularly in precision agriculture and crop monitoring. The 
algorithm’s ability to maintain high accuracy across different spectral 
bands, model scales, and spatial resolutions underscores its versatility 
and robustness. Future work will focus on extending this approach to 
other crop types, such as vegetables and fruits, to broaden its 
applicability. Additionally, we aim to refine the model’s architecture by 
integrating multi-scale feature extraction, enhancing accuracy for 
different object sizes. We also plan to optimize the model for more 
efficient processing of UAV data, making it suitable for large-scale 
agricultural monitoring. These improvements will support more 
precise and efficient decision-making in agricultural production.
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