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Introduction: Agriculture faces significant challenges in ensuring global 
food security while minimizing resource costs and environmental impacts. 
The development of digital infrastructure offers transformative potential for 
agricultural systems and aligns with the United Nations Sustainable Development 
Goals. This study examines the role of digital infrastructure in enhancing grain 
production capacity in China, a key player in the global food system.

Methods: We analyzed data from 277 prefecture-level cities in China from 2011 
to 2021. A double machine learning model was employed to empirically assess 
the impact of digital infrastructure on grain production capacity, allowing for 
robust insights into causal relationships.

Results: Results reveal that digital infrastructure significantly enhances grain 
production. Mechanism analysis results indicate that digital infrastructure 
construction drives agricultural technological advancements and farmland 
scale, contributing to increased production capacity. Heterogeneity analysis 
results show that the impact of digital infrastructure construction is significant in 
major grain-producing regions and the central-eastern regions, while its effects 
are relatively limited in grain production-consumption balanced regions, main 
grain consumption regions, and the western regions.

Discussion: The results underscore the importance of strengthening digital 
infrastructure in rural areas to improve grain production capacity. Tailored 
policy implications are suggested to enhance sustainable food production and 
contribute to global food security, particularly in regions with varying agricultural 
dynamics.
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1 Introduction

Food security is essential for national stability and a pressing concern for the global 
community. With the world population expected to surpass 9.7 billion by 2050, the challenge 
of increasing food production by 70% to meet future demand becomes increasingly urgent 
(FAO, 2022). However, in many developing countries like China, the agricultural systems are 
struggling to keep pace, hampered by slowing productivity growth, the intensifying effects of 
climate change (Zhao et al., 2017), pressuring water and soil resources (Wang et al., 2023), 
rising production costs (Tian et al., 2020; Giller et al., 2021), and geopolitical uncertainties 
(Sun et al., 2021) that disrupt supply chains (Warsame et al., 2022). In response, the United 
Nations’ Sustainable Development Goals (SDGs) offer a framework to foster innovation and 
resilience in agriculture, ensuring the long-term sustainability of global food systems. 
Addressing these challenges requires a transformative approach, integrating technological 
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innovation and sustainable practices to achieve the SDGs and ensure 
future food security.

Various strategies and technological innovations have been 
developed globally in response to these challenges. Water-saving 
technologies, such as drip irrigation, desalination, and wastewater 
treatment, have been essential in reducing water shortages (Naqvi 
et al., 2024; Morchid et al., 2024). Agroecological approaches like crop 
rotation, agroforestry, and agricultural waste recycling have also been 
adopted to increase productivity while promoting sustainability (Jose 
et al., 2024; Maroušek et al., 2023). Modern agriculture has greatly 
benefited from technological advancements, especially machine 
learning models. Early yield prediction made possible by these models 
helps farmers optimize crop management and minimize resource 
waste (Lutz and Coradi, 2022; Kliestik et al., 2023; Leukel et al., 2023). 
Furthermore, precision agriculture enhances economic results and 
sustainability by enabling precise management of water, fertilizers, and 
pesticides through the use of big data and the Internet of Things (Lima 
et al., 2020; Storm et al., 2024; Son et al., 2024). New digital twin 
technologies simulate agricultural systems in real time, which further 
improves resource efficiency (Kliestik et al., 2024). These technological 
advances, driven by digital infrastructure, are revolutionizing global 
agriculture, fostering more sustainable and resilient food systems, and 
contributing significantly to the achievement of the UN Sustainable 
Development Goals (SDGs) (Shamdasani, 2021).

China has a vital role in the world’s food supply as one of the 
biggest producers of grains worldwide. Even with notable progress—
the country’s grain output increased significantly from 304.8 million 
metric tons in 1978 to 695.4 million metric tons in 2023 (National 
Bureau of Statistics of China, 2023)—it still faces formidable obstacles 
in increasing its capacity for producing grains. To address these 
challenges, China has focused on several key measures, including 
protecting cultivated land (Cao et al., 2023), strengthening agricultural 
insurance (Xie et al., 2024), deepening agricultural subsidy policies 
(Zhang et  al., 2021; Yang et  al., 2023), promoting technological 
innovation (Basso et al., 2021), and optimizing production models 
(Guo et al., 2021). Among these strategies, the strengthening of digital 
infrastructure has emerged as the most critical component (Ding 
et al., 2024).

Both in China and internationally, building digital infrastructure 
forms a crucial foundation for modern agricultural practices. 
Existing research shows that robust digital infrastructure improves 
agricultural productivity and eco-efficiency by enabling more 
efficient information flow and fostering the widespread adoption of 
technological innovations (Shamdasani, 2021; Ren et  al., 2024). 
Over the past decade, substantial improvements in agricultural 
infrastructure—driven by digital innovation and supported by 
advanced communication networks—have transformed grain 
production worldwide. The integration of digital technologies into 
agricultural industries has proven instrumental in enhancing 
agricultural supply chains, boosting productivity, and promoting 
sustainability (Massruhá et  al., 2023; Dolgui and Ivanov, 2022; 
Verdecchia et  al., 2022). In particular, digital infrastructure has 
extended agricultural services, improved food security, and 
increased farmers’ incomes through the adoption of technologies 
such as precision agriculture and automated machinery (Ren et al., 
2024; Hao et al., 2024). By digitalizing agricultural practices and 
introducing new technologies, rural economies have strengthened, 
resulting in higher production efficiency and improved quality of 
life for farming communities (Chen et al., 2022; Wu et al., 2021). 

This transformation has been particularly evident in China, where 
recent investments in digital infrastructure have significantly 
improved agricultural eco-efficiency and overall productivity (Ren 
et al., 2024).

Notwithstanding these developments, scholarly research on the 
direct effects of digital infrastructure development on food production 
is still lacking, underscoring the need for a more thorough analysis of 
how new technologies can improve food security. Although the 
amount of research on the subject is increasing, more investigation is 
required to completely grasp and utilize the potential of digital 
infrastructure in agriculture. A thorough search of Google Scholar 
was done using terms like “digital transformation,” “ICT 
infrastructure,” “digital technology,” and “grain production,” with a 
focus on the recent five years, to determine the study’s uniqueness and 
applicability. The search yielded approximately 30 articles on digital 
transformation in agriculture, 18 on ICT infrastructure, and 25 on 
digital technology’s role in grain yield. While there is substantial 
research on agricultural digitalization, few studies focus specifically 
on the impact of digital infrastructure on grain production capacity, 
revealing a clear gap in empirical research on this subject.

This paper aims to fill the gap by exploring whether digital 
infrastructure construction can improve grain production capacity 
and identify the specific pathways through which this occurs. Using 
data from 277 prefecture-level cities in China from 2011 to 2021, the 
study employs a double machine learning model to examine the 
impact of digital infrastructure on grain production. It focuses on 
promoting agricultural technology progress and expanding cultivated 
land scale operations, thereby broadening the research scope on 
digital infrastructure and grain production capacity.

The main contributions of this paper are as follows:

 (1) Comprehensive examination of digital infrastructure and grain 
production: It extensively investigates the impact and 
mechanism of digital infrastructure construction on grain 
production capacity. While previous research has 
predominantly focused on the influence of digital and 
technology on agricultural development, this study hones in on 
the specific category of broadband infrastructure among digital 
infrastructures. It broadens the scope of research on 
technological progress in grain production and lays the 
groundwork for understanding the implementation effects of 
the “Broadband China” pilot policy on grain production. The 
research also contributes to the realization of the United 
Nations Sustainable Development Goals (SDGs), particularly 
those related to food security, innovation, and infrastructure.

 (2) Mechanistic insights into agricultural technological 
advancements: The study investigates how digital infrastructure 
promotes agricultural technological progress and expands the 
scale of agricultural operations, thereby contributing to 
improved grain security. It provides insights into how regional 
grain producers utilize digital resources to maximize 
production, with varying impacts across different regions.

 (3) Innovative research methodology: Methodologically, the study 
employs a doubly robust machine learning model to assess the 
policy effects of the “Broadband China” pilot on grain 
production capacity. Leveraging the algorithm’s advantages in 
high-dimensional, non-parametric forecasting, this approach 
mitigates estimation bias and model specification bias seen in 
traditional econometric models, thereby enhancing the stability 
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and accuracy of parameter estimation and bolstering the 
reliability of research conclusions.

2 Policy background and theoretical 
mechanisms

2.1 Policy context of the “Broadband 
China” strategy

Broadband networks, recognized as strategic public infrastructure, 
play a pivotal role in advancing informatization, fostering economic 
growth, and augmenting national competitiveness (Pradhan et al., 
2018). To reinforce strategic direction and systematic deployment, and 
to propel the rapid and sustainable development of broadband 
infrastructure, the State Council of China promulgated the 
“Broadband China” strategy and its implementation plan in 2013 
(State Council of China, 2013). Subsequently, in 2014, 2015, and 2016, 
three waves of policy pilot cities were designated with the overarching 
goal of achieving objectives such as fiber optic connectivity to urban 
households, widespread broadband coverage in rural areas, and 
attainment of a certain level of penetration for fixed broadband 
households, alongside substantial enhancements in broadband 
application proficiency (Ministry of Industry and Information 
Technology, 2016). As the “Broadband China” strategy progresses, 
rural Internet infrastructure has undergone swift expansion. The 
proliferation of network coverage and accelerated access speeds in 
rural regions has catalyzed the diffusion and maturation of 
information technology, thereby propelling the momentum of digital 
infrastructure development in rural areas (China Internet Network 
Information Center, 2020).

2.2 Theoretical analysis and research 
hypotheses

Digital infrastructure construction serves as a “booster” for 
enhancing grain production capacity. According to agricultural 
production factor theory, the precise allocation of production factors 
and the implementation of innovative technological methods are the 
core drivers of improvements in agricultural productivity. Firstly, 
digital infrastructure facilitates the restructuring of agricultural 
production factor allocation, enabling digitalized production and 
operations. It integrates data elements with traditional agricultural 
production factors (Dayıoğlu and Turker, 2021), promoting the 
transformation of grain production methods (Basso et  al., 2021), 
optimizing resource allocation, and enhancing the efficiency of 
resource utilization (Hu et al., 2023; Cheng et al., 2024). Secondly, the 
incorporation of information technologies such as the Internet, the 
Internet of Things, cloud computing, and big data allows digital 
infrastructure to integrate autonomous perception, intelligent 
decision-making, and precise control (Son et al., 2024). By establishing 
agricultural information platforms and utilizing smart agricultural 
equipment, grain producers can access up-to-date technologies, 
market insights, and meteorological data, enabling more informed 
and scientific production decisions (Massruhá et al., 2023). Finally, 
digital infrastructure construction significantly reduces knowledge 
acquisition costs by removing information barriers (Fabregas et al., 

2019). It enhances the coordination between supply chain inputs and 
outputs, improves access to rural financial services, reduces financing 
costs for grain producers (Xiong et al., 2024), and strengthens the 
synergy between the grain production industry, production systems, 
and management systems, thereby improving the adaptability and 
competitiveness of grain production.

Therefore, Hypothesis 1 is proposed: Digital infrastructure 
construction helps improve grain production capacity.

Hypothesis 2 is proposed: Digital infrastructure construction 
enhances grain production capacity by promoting 
technological advancement.

As digital infrastructure construction continues to improve, the 
rapid diffusion of digital technology into the agricultural field has 
significantly enhanced the level of intelligence, informatization, and 
specialization of agricultural production (Chen et al., 2022; Broo and 
Schooling, 2023). Firstly, digital infrastructure construction promotes 
the integration of digital technology with traditional production 
factors, improves the digitization, informatization, and automation of 
agricultural production (Verdecchia et al., 2022), breaks through the 
constraints of low production and high risk in traditional production 
and operation efficiency, improves production efficiency (Deichmann 
et al., 2016), reduces labor costs and production marginal costs (Yang 
C. et al., 2024), guides small-scale producers to shift from dispersed 
production to scaled production, and enhances the enthusiasm of 
grain producers to expand cultivated land scale (Trendov et al., 2019). 
Secondly, digital infrastructure construction promotes the sharing and 
circulation of agricultural information (Fabregas et al., 2019), making 
land circulation and integration more convenient. Through 
information platforms, grain producers can learn more about land 
circulation information and make more reasonable land resource 
allocations, thereby expanding the scale of cultivated land (Du et al., 
2023). Finally, the construction of digital infrastructure can introduce 
more capital and financial support into the agricultural production 
field, providing grain producers with more convenient financial 
services to expand production scale and introduce advanced 
technologies and equipment, accelerating the expansion of cultivated 
land scale management (Zhang et  al., 2023; Xiong et  al., 2024). 
Moderate scale management can reduce the production cost per unit 
area, improve the overall efficiency of grain production (Xu et al., 
2019), and further enhance grain production capacity.

Therefore, Hypothesis 3 is proposed: Digital infrastructure 
construction enhances grain production capacity by promoting the 
scale of cultivated land (Figure 1).

3 Model construction and research 
design

3.1 Model construction

The “Broadband China” plan is used as an exogenous policy 
shock proxy to investigate the effects of digital infrastructure on 
grain production capacity, with a double machine learning model 
employed to assess the strategy’s impact. The double machine 
learning method is more suited for this study’s research issues 
because it overcomes the drawbacks of conventional causal 
estimation techniques and offers distinct benefits in variable 
selection, model estimation, and causal inference (Athey et al., 2019). 
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Additionally, several other elements also affect the capability for 
producing grains, such as the degree of social and economic 
development, the cost of labor, the availability of arable land, and the 
climate. It is essential to account for the influence of other factors on 
grain production capacity to appropriately evaluate the consequences 
of policies. Double machine learning can automatically select high-
dimensional variables, orthogonalize to address bias, and avoid 
problems caused by the “curse of dimensionality,” redundant 
variables, and estimation bias (Chernozhukov et  al., 2018). 
Furthermore, there can be nonlinear correlations between factors in 
the context of how digital infrastructure affects grain production. 
Double machine learning efficiently avoids the issue of model 
specification bias in traditional linear regression models by using 
machine learning methods to handle nonlinear data (Yang et al., 
2020). Consequently, in order to assess the policy implications of the 
“Broadband China” plan and investigate the influence of digital 
infrastructure on grain production capacity, this study employs a 
double machine learning model.

We use the “Broadband China” pilot programs that were put into 
effect in 2014, 2015, and 2016 as quasi-natural experiments to do an 
empirical test on the effect of building digital infrastructure on grain 
production capacity. Following the approach outlined by 
Chernozhukov et al. (2018), we construct a double machine learning 
model. The partial linear model is formulated as follows:

 ( )0it it it itGP Broadband g X Uθ= + +  (1)

 ( )|, |, 0it it itE U Broadband X =  (2)

In Equations (1) and (2), itGP represents the dependent variable, 
which is grain production capacity, itBroadband  is a binary variable 
indicating the “Broadband China” policy; i represents cities, t  
represents years; 0θ  is the estimated coefficient of interest, representing 
the policy effect of the “Broadband China” policy on grain production 
capacity. itX  is the set of high-dimensional control variables, and its 
specific form, ( )itg X



 is estimated using a machine learning 

algorithm, itU  is the error term, with a conditional mean of 0. By 
directly estimating the above model, we obtain the estimator for 0θ .
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In Equation (3), N represents the sample size. Next, we consider 
the bias of the estimator, denoted as:
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 1

2

, ,

1 1
−

∈ ∈ ∈ ∈

=
√

 
  
 

∑ ∑ it it

i I t T i I t T

a Broadband Broadband U
n n

,
 

follows a normal distribution with a mean of 0. b = 
( )

( )

1

2

, ,

1 1
,

−

∈ ∈ ∈ ∈

−  
         

∑ ∑


it

it

i I t T i I t T it

g X
Broadband Broadband

n n g X

 
In addition,

 

dual machine learning uses machine learning and its regularization 
algorithm to estimate the specific function form ( )itg X

 , which 

inevitably introduces “regularization bias.” Although it can prevent 
the variance of the estimator from being too large, it also leads to its 

lack of unbiasedness. Specifically, the convergence speed of
 
( )itg X
  

to
 
( )itg X  is slow, 

gn ϕ−
> 1/2n− . Therefore, as n  tends to infinity, b

 
also tends to infinity, and 

θ
 is difficult to converge to 0θ .

FIGURE 1

Theoretical analysis chart.
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To reduce estimation bias and accelerate convergence speed, 
we construct auxiliary regression models1:

 ( )it it itBroadband m X V= +  (5)

 ( )| 0it itE V X =  (6).

In Equations (5) and (6), ( )itm X  represents the regression of 
treatment variables on high-dimensional control variables, where itV  
is the error term with a conditional mean of 0. The specific derivation 
process is as follows:

Estimate the auxiliary regression model ( )itm X  using machine 
learning algorithms, and calculate the residual itV , according to the 
following Equation (7):2

 ( )it it itV Broadband m X= −


 (7)

Similarly, estimate the main model ( )itg X


, using machine 
learning algorithms, obtaining the following Equation (8):

 ( )1 0it it it itGP g X Broadband Uθ+ − = +


 (8)

Use itV


 as an instrumental variable for itBroadband , and conduct 
regression to obtain unbiased coefficient estimates:

 ( )

1
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According to the Equation (9), we obtain:
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1 In Double Machine Learning, orthogonality ensures that errors in the 

nuisance functions (i.e., the machine learning predictions for the treatment 

and outcome models) do not bias the estimate of the treatment effect. The 

orthogonal score function is used to achieve this and is constructed as follows:

( ) ( ){ } ( ){ }0 it it it it 0 itW;, ;, Broadband m X GP Broadband g XΨ θ η = − − θ −  

Where: 0θ is the treatment effect parameter of interest, ( ) ( ){ }it itm X ,g Xη =  

are the nuisance functions, W  represents the entire data set (including itGP , 

itBroadband , ( )itm X ), ( )itg X  is the model for the treatment variable, and 

itX  is the model for the outcome.

2 Orthogonality in Double Machine Learning ensures that errors in the 

nuisance functions (machine learning models for the treatment and outcome) 

do not bias the treatment effect estimate. Residuals from the first stage, 

( )= − it it itV Broadband m X , are orthogonal to second-stage errors. itU This 

implies [ ]· 0=it itE V U , making the residuals centered around zero, and 

eliminating the need for a constant term in the second-stage regression.
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distribution with mean 0, after two uses of machine learning, the 
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( )g mn ϕ ϕ− + , which represents the convergence speed of ( )itm X


 to 
( )itm X  and ( )itg X

  to ( )itg X , Compared to Equation (3), 

¡
0 0n θ θ

 
− 

 
 converges faster to 0, thus obtaining an unbiased estimate 

of the coefficient.

3.2 Variable setting

3.2.1 Dependent variable
Based on the research by Bastos et al. (2020), grain production 

capacity is chosen as the dependent variable, represented by grain 
yield per unit area. Grain yield per unit area is calculated by dividing 
total grain production by the total sown area of grains.

3.2.2 Core explanatory variable: “Broadband 
China” policy dummy variable

The list of pilot cities and the pilot time of the “Broadband 
China” strategy are matched. A policy dummy variable named 
“Broadband” is set as a proxy variable for digital infrastructure 
construction. If region i  joins the “Broadband China” 
demonstration area in year t, then Broadband is set to 1 for that 
region in year t and all subsequent years, otherwise it is set to 0 (Lv 
et al., 2023).

3.2.3 Control variables
To ensure the accuracy and stability of policy effect estimates, this 

study, based on the research by Zhang et al. (2021), as well as Peng 
et  al. (2022), controls for a series of factors that may affect grain 
production capacity, covering socioeconomic factors, human capital 
levels, and natural endowments, considering the availability of urban 
data. Control variables are set as follows:

Socioeconomic Level: Urbanization rate, industrial structure, and 
level of transportation. Human Capital Level: Education level of rural 
residents, agricultural labor force, and rural per capita income level; 
Natural Resource Endowment: Arable land resources, water resources, 
cropping index, planting structure, and geographical conditions, all 
reflecting the influence of natural geographic resources on 
grain production.

We investigate the mechanism through which digital 
infrastructure construction influences grain production capacity. To 
elucidate this mechanism, the study will examine two aspects: 
promoting technological progress and cultivating land management 
scale. In terms of technological progress, the paper refers to research 
by He et al. (2021), selecting mechanization level and green technology 
progress as proxy variables. Specifically, mechanization level is 
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measured by the ratio of total agricultural machinery power to the 
number of people employed in the primary industry, and agricultural 
machinery power per agricultural laborer, while green technology 
progress is measured by the number of green patent applications. 
Regarding cultivated land management scale, the study draws on 
research by Duan et al. (2021), utilizing per capita arable land area as 
a measurement indicator. Through analysis of these mechanism 
variables, the study aims to comprehensively understand the influence 
mechanism of digital infrastructure construction on grain production 
capacity, providing a scientific basis for relevant policy formulation.

3.2.4 Data processing
The sample data mainly comes from various sources such as the 

“China Statistical Yearbook,” “China Rural Statistical Yearbook,” 
“China Urban Statistical Yearbook,” provincial and municipal 
statistical yearbooks, and the official website of the Ministry of 
Industry and Information Technology. Considering the availability of 
sample data, a total of 277 prefecture-level cities in China from 2011 
to 2021 are selected as the research sample range, and missing data are 
supplemented using linear interpolation (Table 1).

4 Empirical results analysis and 
discussion

4.1 Baseline results analysis

Using a double machine learning model, we evaluate the impact 
of the “Broadband China” policy on grain production capacity.3 The 
sample is split in a 1:4 ratio, and a gradient boosting algorithm is 
applied for regression prediction.4 Results in Table 2 column (1) show 
that, controlling for city and time fixed effects and first-order control 
variables, the “Broadband China” policy significantly enhances grain 
production capacity at the 1% level, confirming Hypothesis 1.

In Table 2 column (2), after adding second-order control variables, 
the positive effect remains significant with minimal change in the 
coefficient. This confirms that the promotion effect of digital 
infrastructure on grain production capacity is robust, further verifying 
Hypothesis 1.

4.2 Handling endogeneity issues

To avoid endogeneity issues caused by omitted variables, 
we  construct a partially linear instrumental variable model using 
double machine learning, as suggested by Chernozhukov et al. (2018).

 ( )0it it it itGP Broadband g X Uθ= + +

3 We implemented the method using the ddml package as described by 

Zhang and Li (2023).

4 The 1:4 split refers to a holdout method used to create training and testing 

datasets. In this process: 80% of the data was used for training the machine 

learning models, and 20% was reserved for testing to evaluate model 

performance. We employed K-fold cross-validation (with K = 5) within the 

training set to tune hyperparameters and avoid overfitting.

 ( )it it itIV m X V= +

In this model, itIV  serves as the instrumental variable for 
itBroadband . Following Zhang and Li (2023) and Yang S. et al. (2024), 

this study uses the interaction between 1984 postal and 
telecommunications data for each prefecture-level city and the time 
trend as an instrumental variable. Historical postal and 
telecommunications infrastructure, foundational to modern internet 
technology, reflects the initial level of digital infrastructure and 
influences broadband construction, satisfying the relevance condition. 
Additionally, as 1984 postal data are unrelated to current grain 
production capacity, the exclusion restriction is met. Column (1) of 
Table  3 shows a significantly positive coefficient at the 1% level, 
indicating the “Broadband China” policy enhances grain production 
capacity. Additionally, following Lv et  al. (2023), the interaction 
between the lagged “Broadband China” policy and the annual national 
internet growth rate is used as another instrumental variable. This 
approach meets the relevance and exclusion conditions, as the national 
internet growth rate is unaffected by city-specific factors. Column (2) 
of Table 3 shows a significantly positive coefficient at the 5% level, 
confirming the robustness of the “Broadband China” policy’s impact 
on grain production capacity.

4.3 Robustness testing

4.3.1 Excluding the impact of concurrent policies
The sample period of this study is from 2011 to 2021. During this 

period, other policies related to digital infrastructure construction 
might affect the robustness of the baseline estimation results. 
Therefore, we control for other concurrent and similar policies. Upon 
reviewing relevant policies, we identified that the “National Big Data 
Comprehensive Pilot Zones” and “Smart Cities” policies might overlap 
with the “Broadband China” policy. Consequently, we  included 
dummy variables for the “National Big Data Comprehensive Pilot 
Zones” and “Smart Cities” policies in the regression analysis. Column 
(1) of Table 4 shows that, even after excluding the interference of these 
two concurrent policies, the conclusion of this study remains valid.

4.3.2 Adjusting the research sample
There are significant differences in the levels of economic 

development and broadband infrastructure among Chinese cities, 
with central cities having distinct economic advantages. To better 
identify the impact of the “Broadband China” policy on grain 
production capacity, we excluded data from municipalities directly 
under the central government, provincial capital cities, and 
sub-provincial cities, and re-ran the model. The regression results, as 
shown in Column (2) of Table  4, indicate that the estimated 
coefficients remain significantly positive, further affirming the 
robustness of the baseline regression conclusion.

4.3.3 Province-time interaction fixed effects
Provinces are a crucial administrative level in China’s government 

structure, and cities within the same province often share similar 
policy environments, potentially leading to similar external influences 
on grain production processes. To more accurately estimate the 
impact of the “Broadband China” strategy on grain production, 
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we  included province-time interaction fixed effects to control for 
potential temporal variations within provinces. The regression results, 
as shown in Column (3) of Table 4, indicate that the impact of the 
“Broadband China” policy on grain production remains significantly 
positive, confirming that the original conclusion holds true.

4.3.4 Respecifying the double machine learning 
model

To ensure the model’s robustness, the sample splitting ratio in the 
double machine learning model was adjusted from the baseline 1:4 to 
1:2 and 1:7. The regression results in Column (4) of Table 5 remained 
significantly positive, supporting the original conclusion. Additionally, 
a more flexible interactive model was employed to avoid specification 
bias, and the results in Column (5) of Table 5 confirmed the robustness 
of the “Broadband China” policy’s positive effect on grain production 
capacity. Finally, alternative algorithms, including lasso, ridge, and 
random forest regressions, were tested, and the results in Column (6) 

of Table 5 continued to show a significant positive impact, validating 
the consistency of the findings.

4.4 Mechanism examination

This study explores how digital infrastructure development 
enhances grain production through technological advancement. The 
results in Column (1) of Table 6 show that the “Broadband China” 
policy has a significantly positive impact on mechanization levels and 
green technological innovation at the 1% statistical level. This indicates 
that digital infrastructure facilitates information sharing, reduces 
knowledge acquisition costs, accelerates mechanization, and integrates 
green technology into grain production, fostering innovation-driven 
growth. As a result, technological advancements contribute to 
improved grain production capacity, confirming Hypothesis 2, which 
posits that digital infrastructure construction enhances grain 
production capacity by promoting technological advancement.

Furthermore, the results in Column (2) of Table 6 demonstrate 
that the “Broadband China” policy significantly promotes the scale 
operation of cultivated land at the 1% statistical level. This suggests 
that digital infrastructure reduces unit production costs and enhances 
efficiency by supporting large-scale land management, thereby 
validating Hypothesis 3, which posits that digital infrastructure 
construction enhances grain production capacity by promoting the 
scale of cultivated land management.

4.5 Heterogeneity analysis

This study examines the heterogeneity of digital infrastructure’s 
impact on grain production capacity across different agricultural 
regions, dividing the sample into grain production zones, main 

TABLE 2 Baseline regression results on the impact of digital 
infrastructure construction on grain production capacity.

Variables (1) (2)

Grain 
production

Grain 
production

Broadband 0.032*** (3.164) 0.036*** (3.453)

Control variables first-order term YES YES

Control variables second-order term NO YES

Time fixed effects YES YES

City fixed effects YES YES

N 3,047 3,047

*, **, and *** indicate significance at the 10, 5, and 1% levels respectively, and robust 
standard errors are in parentheses.

TABLE 1 Definition and descriptive statistics of major variables.

Variable name Calculation method and symbol Mean Sd

Grain production Unit Area Grain Yield 0.607 0.433

Broadband =1 if the region joins the “Broadband China” demonstration area; otherwise =0 0.242 0.428

Technological advancement Agricultural Labor-to-Machinery Power Ratio (Ln-tech) 7.141 1.638

Natural Logarithm of Green Patents Applied (Ln_gpatent) 5.014 1.677

Scale Natural Logarithm of Ratio of Grain Sowing Area to Grain Planting Employment. 5.373 1.721

Urbanization Ratio of Urban Population to Total Population 0.561 0.145

Industrial structure Proportion of Gross Domestic Product (GDP) Generated by the Tertiary Industry 1.086 0.599

Transportation Natural Logarithm of Road Freight Volume 9.062 0.860

Natural Logarithm of Road Passenger Volume 8.181 1.130

Education Years of Education for Rural Residents. 2.168 0.716

Agricultural labor Number of Workers Engaged in Agriculture, Forestry, and Fisheries (in ten thousand people) 0.705 2.134

Income Natural Logarithm of Per Capita Income of Rural Residents 10.24 0.420

Agricultural land resources Natural Logarithm of Total Area of Arable Land at the End of the Year 5.498 0.908

Water resources Natural Logarithm of Total Water Resources 12.814 1.235

Planting structure The ratio of Grain Sowing Area to Total Cropped Area 0.677 0.242

Crop rotation index The ratio of Cropped Area to Total Arable Land Area 0.677 0.242

Geographic conditions Average Slope 10.632 5.606
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TABLE 5 Robustness regression results on the impact of digital infrastructure construction on grain production capacity.

Variables (4) (5) (6)

Adjusting sample proportions Interactive 
model

Changing machine learning

(Kfolds)  =  3 (Kfolds)  =  8 Lassocv Ridgecv Rf

Broadband 0.028** (2.371) 0.031*** (2.708) 0.085*** (8.331) 0.034** (1.965) 0.045** (2.170) 0.056** (1.970)

Control Variables 

First-order term

YES YES YES YES YES YES

Control Variables 

Second-order term

YES YES YES YES YES YES

Time Fixed Effects YES YES YES YES YES YES

City Fixed Effects YES YES YES YES YES YES

N 3,047 3,047 3,047 3,047 3,047 3,047

*, **, and *** indicate significance at the 10, 5, and 1% levels respectively, and robust standard errors are in parentheses.

consumption zones, and production-consumption balance zones. The 
results, shown in Table 7, Column (1), indicate that the “Broadband 
China” policy significantly boosts grain production in all zones, with 

the strongest effect in grain production zones, further supporting 
hypothesis 1.

In grain production zones, where large areas are dedicated to grain 
planting, digital infrastructure optimizes resource allocation and 
modernizes traditional systems, leading to higher efficiency and 
productivity. In production-consumption balance zones, where both 
production and market activity are balanced, easier access to knowledge 
and technology results in a significant positive effect. Main consumption 
zones, although economically advanced with high digital coverage, have 
a more moderate impact due to their lower grain production levels.

To further analyze the heterogeneity of the impact of digital 
infrastructure on grain production, this study divides the sample into 
regions in the eastern and western parts of China based on the level 
of economic development. Regression results are presented in Column 
(2) of Table 7, showing that the impact is more significant in eastern 
regions, which have better economic development, broadband 
coverage, and digital infrastructure, allowing for more efficient 
application of digital technologies in grain production. In western 
regions, the effect is less pronounced due to lower levels of economic 
development and less advanced digital infrastructure.

TABLE 3 Instrumental variable regression results on the impact of digital 
infrastructure construction on grain production capacity.

Variables IV (1) IV (2)

Grain Production Grain Production

Braodband 0.853*** (2.63465) 0.02058** (2.21322)

Control variables 

first-order term

YES YES

Control variables 

second-order term

YES YES

Time fixed effects YES YES

City fixed effects YES YES

N 3,047 3,047

*, **, and *** indicate significance at the 10, 5, and 1% levels respectively, and robust 
standard errors are in parentheses.

TABLE 4 Robustness regression results on the impact of digital infrastructure construction on grain production capacity.

Variables (1) (2) (3)

Remove parallel policy interference Adjust 
research 
sample

Province-time 
interaction fixed 

effects

Grain production Grain 
production

Grain production Grain 
production

Grain 
production

Broadband 0.033*** (3.063) 0.032*** (2.980) 0.032*** (2.774) 0.030*** (2.926) 0.024*** (2.611)

Bigdata YES YES

Smartcity YES YES

Control variables first-order term YES YES YES YES YES

Control variables second-order term YES YES YES YES YES

Time fixed effects YES YES YES YES YES

City fixed effects YES YES YES YES YES

Province-time fixed effects NO NO NO NO YES

N 3,047 3,047 3,047 2,673 3,047

*, **, and *** indicate significance at the 10, 5, and 1% levels respectively, and robust standard errors are in parentheses.
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5 Research conclusion and policy 
recommendations

5.1 Conclusion

In the context of the ongoing global food crisis and the 
United Nations Sustainable Development Goal (SDG) of 
achieving “zero hunger,” China plays a pivotal role due to its 
substantial grain production capacity. As the nation modernizes 
its agricultural sector, digital infrastructure has become a crucial 
factor in improving sustainable grain production. This study, 
based on panel data from 277 prefecture-level cities from 2011 to 
2021, investigates the mechanisms through which digital 
infrastructure enhances agricultural productivity. The findings 
can be summarized as follows:

Firstly, digital infrastructure construction significantly enhances 
grain production capacity, a finding that remains robust across various 
tests. Secondly, digital infrastructure promotes grain production by 
advancing agricultural technology and expanding farmland 
management. Thirdly, heterogeneity analysis shows that the impact is 
most pronounced in major grain-producing regions and the central 

and eastern areas, while the grain production-consumption balance 
areas, main sales areas, and western regions show more limited growth 
potential. Therefore, further efforts are needed to optimize the role of 
digital infrastructure in boosting grain production in these regions.

5.2 Policy implications

Based on the research results, the following policy 
recommendations are proposed:

Firstly, it is crucial to strengthen digital infrastructure, particularly 
in underdeveloped regions, to further strengthen the role of digital 
infrastructure in increasing grain production capacity and achieving 
the United Nations Sustainable Development Goals (SDGs). 
Governments should prioritize expanding broadband networks, 
reducing the cost of digital access for farmers, and encouraging the 
development of digital platforms that provide agricultural information. 
Secondly, policymakers should promote smart agriculture by offering 
targeted financial support, including subsidies for research and 
development, equipment purchases, and farmer training programs. 
Enhancing innovation and improving access to modern agricultural 
tools will directly contribute to the achievement of the SDGs, 
particularly in boosting agricultural efficiency and ensuring the long-
term sustainability and security of food systems. Thirdly, local factors 
should be  taken into consideration while developing digital 
infrastructure. Addressing regional disparities through targeted 
financing, technical assistance, and talent development programs will 
enhance digital capabilities, especially in developing countries. This 
focused strategy will enable the digital revolution of agriculture and 
fully utilize its potential to drive sustainable grain production.

Collectively, these measures will drive more efficient and 
environmentally sustainable agricultural practices, contributing to the 
achievement of SDG 2 (Zero Hunger) by ensuring food security, and 
SDG 9 (Industry, Innovation, and Infrastructure) through the 
enhancement of technological capabilities in agriculture.

5.3 Research limitations

While this study makes valuable contributions, it has certain 
limitations. The study’s only source of data is Chinese, which 

TABLE 6 Mechanism regression results on the impact of digital 
infrastructure construction on agricultural technological advancement 
and farmland scale of grain production.

Variables (1) (2)

Technological 
advancement

Scale

Ln_Tech (Ln_gpatent)

Broadband 0.052*** (2.883) 0.401*** (7.463) 0.055*** (2.670)

Control variables 

first-order term

YES YES YES

Control variables 

second-order term

YES YES YES

Time fixed effects YES YES YES

City fixed effects YES YES YES

N 3,047 3,047 3,047

*, **, and *** indicate significance at the 10, 5, and 1% levels respectively, and robust 
standard errors are in parentheses.

TABLE 7 Heterogeneity regression results on the impact of digital infrastructure construction on different grain production areas.

Variables (1) (2)

Grain areas Regions

Major grain-
producing regions

Grain production-
consumption 

balanced regions

Main grain 
consumption 

regions

Central-
eastern 
regions

Western 
regions

Braodband 0.042*** (2.609) 0.033** (1.983) 0.026* (1.745) 0.044*** (3.227) 0.027* (1.953)

Control variables first-order term YES YES YES YES YES

Control variables second-order term YES YES YES YES YES

Time fixed effects YES YES YES YES YES

City fixed effects YES YES YES YES YES

N 1859 495 693 2,541 506

*, **, and *** indicate significance at the 10, 5, and 1% levels respectively, and robust standard errors are in parentheses.
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could not accurately reflect the variety of agricultural techniques 
found around the world. Furthermore, differences in 
infrastructure development between regions imply that certain 
communities need more specialized, customized interventions to 
fully benefit from digital improvements. Future studies should 
examine how digital infrastructure affects food production over 
the long run in different nations and areas, as well as how these 
technologies might be modified for use in a variety of agricultural 
settings, and the role of digital infrastructure in other industries 
can be explored.
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