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Smallholder chicken production system is dominant in tropical developing

countries and it contributes significantly to the livelihoods of farmers.

Performance of flocks is often too low to meet growing demands for meat and

eggs. Unavailability of productive and adaptive breeds that match suitably with

the environment is a major limitation. Breeds developed for low- or medium-

input systems elsewhere can be evaluated for their performances and introduced

at scale to enhance productivity and improve socioeconomic outcomes.

Such genetic interventions require conducting multi-environment performance

analysis (MEPA) of candidate breeds. However, analytical frameworks and

methods are not readily available to identify the best performing breeds

considering agroecological di�erences. Methods used in plant breeding to

predict productivity and yield stability of genotypes across environments

are theoretically applicable to smallholder livestock systems. In the present

study, we adapted two modeling approaches of MEPA to evaluate growth

performance of chicken breeds across di�erent agroecologies in Ethiopia.

Contrary to the conventional classification system that relies on the types

of plants grown and other agronomic variables to delineate agroecological

classes, we utilized classes defined by Species Distribution Models (SDMs).

SDM defined agroecologies take into account the most relevant environmental

predictors that influence suitability of habitats for a livestock species and are

ideal for breed performance evaluations. Additive main e�ects multiplicative

interaction model (AMMI) and linear mixed-e�ects models (LMM) were fitted

on three agroecologies and five improved chicken breeds to evaluate growth

performance until 180-days-of-age (W180) and yield stability (environmental

sensitivity). A total of 21,562 chickens were evaluated in 1,557 smallholder flocks.

Our results show that LMM had the best model fit on productivity and yield

stability. In both methods of MEPA, Sasso and Kuroiler dual-purpose commercial

hybrid chickens were the most productive breeds for W180. Indexes based on

LMM consistently identified these two breeds also as the most yield stable. Our

results demonstrate that the existing methods of MEPA that are being used in

plant breeding are applicable to breed performance comparisons and prediction

of genotype by environment interactions (GxE). Moreover, the present study
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validated that SDM-defined agroecologies are useful for undertaking MEPA in

smallholder livestock systems.

KEYWORDS

smallholder systems, agroecology, mixed-e�ects models, AMMI models, improved

breeds, yield stability, growth, genotype by environment interactions (GxE)

Introduction

Rapid human population growth, steady economic

development, urbanization, and a shift in dietary patterns in

Africa have induced high demands for animal-sourced foods. In

2022, the size of human population in sub-Saharan Africa grew

at an annual rate of 2.5% (DESA, 2022). As of 2013, the average

annual per capita consumption of meat in Africa reached 19 kg

—this is projected to increase to 26 kg in 2050 (FAO, 2019).

With no sustainable selective breeding scheme in place in the last

decades to improve growth rate and egg number under smallholder

systems, current levels of production mainly based on indigenous

chickens dragged far behind the growing demands. Mean body

weight at 16-weeks-of-age for an individual local chicken kept in

smallholder (low- to medium-input management) systems can

be as low as 621 g, with mean annual egg production below 60

eggs/hen (Dana, 2011; Getachew et al., 2016). Genetically improved

dual-purpose chicken breeds (developed for meat and eggs), on

the other hand, weigh around 1,600 g at the same age with mean

annual production of around 180 eggs (Alemu et al., 2021; Guni

et al., 2021) under smallholder semi-scavenging system. Genetically

improved chicken breeds constitute diverse genetic background,

which is also reflected on their productive performance and

environmental sensitivity. Dual purpose breeds can be an outcome

of selective breeding on indigenous chicken populations from

the tropics (Dana, 2011). They may be composites that created

from multiple parental breeds but are genetically stable enough

to reproduce across generations (Grobbelaar et al., 2010). Dual-

purpose commercial hybrids are produced by crossing two or more

purebred lines to take advantage of heterosis (hybrid vigor) and

are not genetically stable to be maintained over generations (Gura,

2007). Some dual-purpose breeds introduced into tropical regions

have their origin in temperate areas (Hassen et al., 2006).

Thus, far, attempts to enhance livestock productivity in Africa

by introducing improved chicken breeds did not bring about the

desired results mainly due to a mismatch between genotype and

environmental conditions (Tadelle et al., 2000; Safalaoh, 2001;

Magothe et al., 2012; Wurzinger et al., 2014; Birhanu et al.,

2021). Heterogenous production environments (e.g., influenced by

different climatic conditions) require robust experimental designs

and analytical frameworks which can identify breeds that perform

optimally in multiple environments or those utilizable only in

specific production contexts.

Evidence for differential performance of livestock breeds

in response to environmental factors, such as extremes of

temperature, solar radiation, relative humidity and wind speed have

already been documented in poultry (Mazzi et al., 2003; Lara and

Rostagno, 2013; Lan et al., 2016) (Lozano-Jaramillo et al., 2019;

Kebede et al., 2021, 2023, 2024; Gebru et al., 2023); in cattle (Brown-

Brandl, 2013; Bagath et al., 2019); and in swine (Ross et al., 2015;

Mayorga et al., 2019).

Apart from their level of performance for the trait of

interest, candidate breeds need to be evaluated under different

environmental conditions for their yield stability (stability) before

they are introduced at scale to smallholder farmers. Stability is

the ability of a genotype to be less “sensitive” to environmental

influences (Finlay andWilkinson, 1963; Eberhart and Russell, 1966;

Shukla, 1972; Lin et al., 1986; Becker and Leon, 1988). Stable

genotypes or breeds are populations that show less plasticity across

environments (De Jong and Bijma, 2002). Animals that combine

high production potential with resilience to external stressors,

allowing for unproblematic expression of high production potential

and less phenotypic plasticity in a wide variety of environmental

conditions are regarded as “robust” (Knap and Su, 2008; Kebede

et al., 2024). GxE measures the extent to which genotypes differ in

their plastic responses to environmental changes for a given trait

(Sultan, 2021).

As a field of study, agroecology can be seen as the application

of ecological concepts and principles in the management of

plants, animals and their interactions with other life forms in the

environment to enhance food security and nutrition (Francis et al.,

2003). In the present study, the application of agroecology as a

scientific discipline has been exploited to delineate environmental

classes or agroecosystems for a livestock species of interest based

on the most relevant bioclimatic predictors having strong effects on

habitat suitability, productive performance and adaptability.

Livestock species-specific definition of agroecologies based on

species distribution models (SDMs) were proposed by Kebede

et al. (2023). In their study, SDM-defined agroecologies delineated

based on environmental predictors which influence habitat

and phenotypic differentiation resulted in better model fit in

predicting GxE compared to conventional agroecologies. The

conventional agroecologies in Ethiopia are defined primarily based

on environmental predictors which influence plant growth (e.g.,

the length of growing season, cropping pattern, and land use type;

Dove, 1890; MoA, 1998) and are not suitable to serve as a basis for

breed performance comparison.

The level of productivity and yield stability of improved

breeds is considerably affected by the environment they are

introduced into. The definition of agroecologies based on

SDM identified predictors has a potential utility in Multi-

environment performance analysis (MEPA) of livestock.

Unfortunately, analytical frameworks are not readily available

for smallholder livestock breed evaluations to make use of
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SDM-identified agroecologies. On-farm experimental designs

and statistical methods used in plant breeding trials to

predict GxE and to test yield stability across environments

could be adapted to evaluate breed performances across

SDM-defined agroecologies.

Two popular methods of MEPA that are used in plant breeding

are additive main effects and multiplicative interaction models

(AMMI; Gauch, 2013) and linear mixed-effects models (LMM;

Piepho, 1994; Piepho and Möhring, 2005). AMMI is a family

of powerful multi-environment analytical techniques which is

widely used to study GxE interactions (Barhdadi and Dubé, 2010;

Culman et al., 2009; Mukherjee et al., 2012; Rodrigues et al.,

2016; Rincent et al., 2019). While AMMI models provide more

accurate estimates compared to traditional ANOVA (Van Eeuwijk

et al., 2016), LMMs through REML/BLUP are predictively even

more accurate than AMMI (Piepho, 1994; Van Eeuwijk et al.,

2016). Combining different analytical approaches helps identify

stable and productive breeds across environments (Olivoto et al.,

2019a).

The relative efficiency of different MEPA models in analyzing

productivity levels and yield stability among livestock breeds

has not been investigated. The objectives of the present study

are to (1) evaluate two commonly used methods of MEPA for

their applicability in livestock breed performance comparisons

in smallholder livestock systems by taking chicken breeds

as an example; (2) validate applicability of SDM-defined

agroecologies in MEPA; and (3) apply MEPA to identify the

most productive and yield stable chicken breeds for wider use by

smallholder farmers.

Materials and methods

Experimental design

The present study was designed in a Randomized Complete

Block Design (RCBD) in Ethiopia. Five chicken breeds

were assigned as treatments (GEN) into each of the three

agroecologies or environmental class (ENV). Performance

testing sites (PTSs) within each environment were considered

as environmental replicates (REP) or blocks denoted with

b. The administrative concepts of village and districts were

not relevant in the design of present study and were ignored

(Supplementary Table 3).

The number of households receiving a breed of chicken in

each PTS varies across regions (Supplementary Table 3). In total,

25 chicks of an improved breed, vaccinated against major diseases

(Newcastle disease, Gumboro or infectious bursal disease, fowl

pox, and Marek’s) and brooded to the end of 42 day-of-age were

given to each household. The assignment of breeds into households

within a PTS was at random. The sampling framework for the

present study comprised a total of 56 PTSs or smallholder chicken

keeping villages. Performance data was collected on a total of

21,562 female chickens distributed to 1,557 households (Table 1;

Supplementary Table 3). Individual households at each PTS were

georeferenced and linked with their respective agroecologies (see

Supplementary Tables 1, 2).

Phenotypic data and management of
chickens

Improved Horro/Horro, Kuroiler, Potchefstroom

Koekoek/Koekoek, Sasso, and SRIR breeds of chicken were

evaluated for their growth performance until 180-days-of-age

(W180) per PTS (Table 1; Supplementary Table 3). A household

received only one of the five breeds assigned to it at random.

Prior to the onset of the on-farm experiment, participant

farmers were trained on improved management of chickens (e.g.,

feeding, biosecurity measures) to achieve reasonable uniformity

among experimental units. Enumerators monitored farmers to

ensure that they had constructed night shelters for their birds and

provided 30% of their daily feed requirement as a supplement, on

top of scavenging. Every bird was individually identified with a

wing-tag and its live body weight was measured every 2 weeks with

digital weighing scale (10 g accuracy). The scale was calibrated to

“0.0” after hanging a plastic bucket and before each chicken was

placed inside for measurement. Once all chickens in a household

were measured, the average weight of the flock at that specific

datapoint was reported in near real time to a central computer

server via ODK collect, an Android based mobile application

(Hartung et al., 2010).

Environmental data

Multi-environment performance testing of breeds in the

present study was based on the three agro-ecologies (AEI, AEII,

and AEIII) defined for chicken (Gallus gallus) in Ethiopia by

Kebede et al. (2023) through species distribution modeling. Each

agroecology in their study represented a group of performance

testing sites within which environmental conditions are relatively

homogenous. Out of 34 environmental predictors obtained from

WorldClim database (http://www.worldclim.org/; version 2) at a

spatial resolution of 30 s (∼1 Km2; Fick and Hijmans, 2017), and

tested by maximum entropy modeling (Phillips et al., 2017), a final

set of six least correlated predictors (|r| < 0.6) that contributed the

most to suitability of habitat for chickens were used as a basis of

agroecological classification (Kebede et al., 2023). These included

elevation, solar radiation in May, precipitation of the driest month

(Bio14), water vapor pressure of May, precipitation of the coldest

quarter (Bio19), and precipitation of the wettest month (Bio13).

Data preparation for MEPA

Since the focus of our study was on comparison of breed

performance within and between agroecologies, we used average

flock performance of chickens in each household for analysis. A

reasonable level of uniformity was expected within commercial

chicken populations and there was no reason to take the weights

of individual animals for a breed assigned in each household.

Supplementary Figure 1 shows the results of data inspection to

verify assumptions of parametric analysis have been met prior to

MEPA. Interquartile range (IQR) is not affected by extreme values

and has an advantage over standard deviation as a measure of
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TABLE 1 Number of participant households receiving a breed of chicken for a multi-environment performance analysis of live body weight (W180) by

region in Ethiopia.

Region Horro Koekoek Kuroiler Sasso SRIR Total number of households

Oromia 51 63 8 40 17 179

Amhara 44 108 100 98 103 453

Tigray 12 113 64 16 61 266

SNNPR 55 95 99 108 96 453

Addis Ababa 39 82 42 43 206

Total 201 461 313 262 320 1,557

dispersion. The first quartile (Q1) represents the value below which

25% of the data falls. Low outliers (below Q1 - 1.5∗IQR) and high

outliers (above Q1 + 1.5∗IQR) of live body weight at a specific age

were removed from further analysis. No outlier was detected for

W180. A visual inspection of performance data (Figure 1) showed

change in productivity levels (W180) of breeds across agroecologies

and warranted a more detailed analysis.

Modeling of multi-environment
performance data

The term “stability” in the present study is used to describe

the level of fluctuation in W180 of breeds across production

environments (i.e., SDM-defined agroecosystems: AEI, AEII, and

AEIII). A breed that is less sensitive to environmental variations

will be consideredmore stable. The level of productive performance

and yield stability for W180 are evaluated through two different

approaches, discussed below, with the R package metan (Olivoto

and Lúcio, 2020).

AMMI-based productivity and stability
analysis

Additive Main effects and Multiplicative Interaction (AMMI)

model works under a fixed-model framework and is fitted at two

stages (Zobel et al., 1988; Gauch, 1992; Rodrigues et al., 2014).

First, the main effects of the model (i.e., the effects of breeds and

environments) are estimated using the additive two-way analysis

of variance (ANOVA) least squares. Then, PCA is applied to

the residuals of the ANOVA, which includes the interaction, to

obtain the multiplicative terms of the AMMI model. The mean

response of individual breeds averaged over b replications within

each environment was computed. The estimate of the response

variable in a completely randomized design, can be obtained by the

following model:

Yi,j = µ + βi + τj +

n∑

k=1

λkγ i,kδj,k + ρi,j + ǫi,j

where Yi,j is the response variable (i.e., W180 in grams) of

the ith breed (i = 1, 2, 3, 4, 5) in the jth environmental class or

agroecosystem (j= 1, 2, 3);µ is the grandmean; βi is themain effect

of the ith breed; τj is the main effect of the jth environment; λk is the

singular value for the kth principal component (PC) axis; γ i,k is the

ith element of the kth eigenvector; δj,k is the jth element of the kth

eigenvector; ρi,j is the residual, containing all multiplicative terms

not included in the model; ǫi,j is the experimental error assuming

normal, identical and independent distribution ǫi,j ∼ N(0, σ 2); and

n is the number of principal components retained in the model.

We have chosen the AMMI stability value (ASV) and Yield

and Stability Index (YSI) to analyse our data out of several AMMI

based stability measures available in the plant breeding literature.

The ASV is a relatively simple estimate based on PC1 and PC2

scores and can be more clearly explained in terms of environmental

and/or biological factors. Moreover, according to Purchase et al.

(2000), ASV is highly correlated with other stability measures such

as those of Eberhart and Russell (1966), Wricke (1964), and Shukla

(1972). AMMI stability indexes were computed using the R package

agricolae (De Mendiburu, 2021). The AMMI stability value (ASV)

was computed from the first and the second principal components

(PC1 and PC2) of the AMMI model according to Purchase et al.

(2000), ASVI = [[bλ2
1/ bλ2

2 ×(λ0.51 γi1)]
2 + (λ0.51 γi2)

2]]0.5, where b

is the number of blocks.

The yield and stability index (YSI) was calculated by adding

together the AMMI stability value (ASV) with the rank of

mean growth yield of breeds (RY) across environments (i.e.,

YSI = rASV + RY). The advantage of YSI is that

it incorporates both mean yield and stability into a single

criterion. Low values of both parameters (i.e., ASV and YSI)

show desirable breeds with high stability. Graphic nominal

AMMI yield plot (Gauch and Zobel, 1997) as a function of the

environmental PC1 scores was used to visualize yield stability

of the five improved chicken breeds across three agroecologies

for W180.

LMM-based productivity and stability
analysis

We have analyzed our productivity data with linear mixed-

effects models (LMMs). Deciding whether to treat genotype,

environment, or their interaction (GxE) as fixed or random effects

is often subject to debate in GxE analysis. Hence, we used Akaike

information criterion (AIC) to resolve the issue by providing a

way to compare the goodness of fit of the different mixed-effects

models (Akaike, 1987). The model with the lowest AIC value will

be considered as the most appropriate model as it provides the best

trade-off between fit and complexity.
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FIGURE 1

Visual inspection of performance data to see a change in the productivity of breeds (GEN) across environments.

In model 1, we fitted environment (ENV) as a fixed effect

and included breed (GEN) and breed by environment interactions

(GxE) as random effects. In this model, the interest was to

see how specific environments (agroecologies) influence chicken

performance regardless of breed. The equation can be written in

a standard linear mixed model (Yang, 2007; Olivoto et al., 2019a) to

estimate W180 as follows:

y = Xb + Zu + e

where y is a vector of response variable (i.e., body-weight-at-

180-days-of-age); b is a vector of unknown and observable fixed

effects; u is vector of unobservable random effects; X is a design

matrix of 0 s and 1 s relating y to b; Z is a design matrix of 0 s and 1 s

relating y to u; and e is a vector of random errors. The vectors b and

e in mixed model are estimated using the equation by Henderson

(1975).

In model 2, we fitted breed (GEN) as a fixed effect and

included replication (ENV), environment (ENV) and breed by

environment interactions (GxE) as random effects. Here our

focus is on making specific conclusions about the performance

of particular breeds, while allowing for generalization across

environments and understanding how the interaction between

breeds and environments behaves across the different conditions.

Inmodel 3, we fitted breed (GEN), replication (ENV), environment

(ENV) and breed by environment interactions (GxE) as random

effects. This model was fitted to see general patterns regardless

of specific breed and environments. In model 4, we fitted breed

(GEN), replication (ENV), environment (ENV) and breed by

environment interactions (GxE) as fixed effects to get insights into

how performance varies across specific breeds, environments, and

their interactions.

We computed the harmonic mean of the relative performance

of genotypic values (HMRPGV) of the five improved chicken

breeds for W180. HMRGV proposed by Resende (2007) was used

efficiently as LMM-based stability index to select genotypes with

high adaptability and stability in other studies (Colombari Filho

et al., 2013; Azevedo Peixoto et al., 2018; Dias et al., 2018). The

HMRPGV to evaluate the yield stability was estimated according

to the equation (Resende, 2007; Olivoto and Lúcio, 2020):

HMRPGVi =
E

∑E
j=1

1
Gvij
µj

where: HMRPGVi is the harmonic mean of the relative

performance for breed i; Gvij is the growth performance (W180)

of ith breed in the j agroecosystem; and E is the number of

environments in which breed i was tested (j = 1, 2, 3); uj is the

mean performance of all breeds in environment j;Gvij is the relative

performance of breed i in environment j. In the HMRPGVmethod

for stability analysis, the breeds are simultaneously sorted by values

for yield and stability using the harmonicmeans of the LMM so that

the smaller the standard deviation of breed performance among the

agroecologies, the greater the HMRPGV.

WAASB biplots (WAASBY stability index biplots) were

generated based on LMM predictions (Olivoto et al., 2019a,b).

WAASBY stability index biplots allow weighing and visualizing

between stability (y-axis) and performance (x-axis) of the different

chicken breeds across three agroecologies.

Results

AMMI-based productivity and stability
analysis

The AMMI analysis of variance indicated highly significant

(p < 0.001) effects of genotype, environment, and interaction for

W180 (Table 2). The treatment sum of squares (SS) for growth

performance was partitioned into three sources: the genotype
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TABLE 2 Results of AMMI models for W180 of improved chicken breeds.

Trait Source DF SS MS F-value p-value §Percent

W180 Environment (ENV) 2 21,800,000 11,835,319 3.29 ∗ 47.29

Replicate/Environment (REP) 20 57,900,000 3,602,218 27.88 ∗

Breed (GEN) 4 18,600,000 14,636,059 113.26 ∗ 40.35

Interaction (GxE) 8 5,700,000 1,344,379 10.40 ∗ 12.36

PC1 5 961,000 191,910 1.49 ∗ 68.40

PC2 3 94,600 147,610 1.14 ∗ 31.60

Residuals 1,340 153,000,000 129,221

Total 1,382 258,000,000 245,711

W180 denotes live body weight of female chickens at 180-days-of-age.
∗Significant (p < 0.001) value.
§Values obtained from AMMI analysis.

main effect (GEN), the environment main effect (ENV), and the

interaction (GxE). Environment (ENV SS) had higher contribution

(47.3%; p < 0.001) to variability of performance in live body

weight across chicken breeds at 180-days-of-age. W180 was also

significantly influenced by the type of breed (40.4%); p< 0.001).The

AMMI analysis had identified only two principal components for

having effects on productivity (Table 2). Both the first and the

second principal component (PCs) had significant effect (p <

0.001) on productivity. PC1 explained most of the GxE interaction

(68.4%). Higher values of principal component (PC1) indicate GxE

is important in explaining phenotypic variation in the dataset.

AMMI nominal yield plots presented in Figure 2 show the

stability of the five improved chicken breeds for W180 in three

different agroecologies (AEI, AEII, and AEIII). The nominal

yield plots have a complementary advantage over AMMI stability

indexes because they integrate and visualize information on

productivity and stability. Sasso an Kuroiler were the most

productive breeds across agroecologies (AEI and AEIII). However,

in terms of stability alone (without considering body weight),

SRIR had a gentle slope and was observed to be the most stable

across agroecologies. When the five breeds were evaluated at

three different ages (W90, W120, and W180), we still observe

that Sasso and Kuroiler had the highest weight and gentle

slopes showing higher stability at W90 compared to W180

(Supplementary Figure 2).

Table 3 shows the AMMI stability indexes (rASV and rYSI)

computed for W180. Sasso, the breed with the highest live body

weight performance was also identified as the most stable breed

by both indexes. We can easily see that these stability indexes are

influenced more by productivity levels than the slope of the lines

for individual breeds.

LMM-based productivity and stability
analysis

The linear mixed-effects model (LMM) comparisons for W180

of improved chicken breeds using AIC are presented in Table 4. The

model with the best fit (lowest AIC value) had environment (ENV)

and environmental replicates (REP) as a fixed effect, and breed

(GEN) and breed by environment interaction (GxE) as random

effects (model 1).

The interaction between breed and environment was significant

(p < 0.001) for W180 (Table 5). Sasso had the highest body weight

in AEI and AII, while Kuroiler excelled in AEIII. Koekoek had

moderate performance that falls between the two top performers

and SRIR. Horro yielded the lowest body weight in all the three

environmental classes.

Table 6 shows harmonic mean of the relative performance of

genotypic values (HMRPGV) stability index based on the best fit

linear mixed-effect model (model 1). The breeds with the highest

stability (highest HMRPGV) for W180 were Sasso (1.14) and

Kuroiler (1.13). Horro had the lowest stability (0.76).

The results of WAASB stability analysis based on the best fit

LMM (model 1) are displayed in Figure 3. The four quadrants

in each of the three biplots represent classifications regarding

the joint interpretation of mean performance and stability. The

lower the WAASB value, the more stable the breed can be

considered. Quadrant I contained unstable breeds, agroecologies

with high discrimination ability, and productivity level of below

the grand mean. The breed within quadrant III (i.e., SRIR) had

low productivity but could be considered stable due to the lower

value of WAASB. Horro and Koekoek in quadrant I are far from

the origin on the y-axis and are also below the midpoint on

the x-axis showing below average performance and least stability.

The environment included in the third quadrant was considered

as unfavorable and having low discrimination ability of breed

performance. Sasso and Kuroiler breeds positioned on right side

of the biplot in quadrant IV exhibit the highest performance

for W180 and are favored in that specific environmental class

(AEI). These two breeds have low WAASB values indicating their

greater stability.

Discussion

Smallholder chicken production plays significant role in

poverty reduction in developing countries by improving household

income, empowering women, creating jobs, and increasing

the consumption of nutrient rich animal source foods (ASFs;

Birhanu et al., 2023; Passarelli et al., 2020). Introduction of
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FIGURE 2

AMMI nominal yield plots showing mean growth performance and

stability of five improved chicken breeds introduced into three

di�erent agroecologies for growth until 180-days-of-age (W180).

already developed productive and adaptive chicken breeds holds

opportunities to enhance current levels of productivity and

production in a short time compared to developing new ones

through selective breeding. In the last 20 years, the poultry

production landscape has seen positive changes in terms of access

to inputs, support services, and in the development of tailored

business models (Birhanu et al., 2021, 2022, 2023; Birhanu and

Jensen, 2023) justifying the technical feasibility of scaling improved

dual-purpose chicken breeds for the betterment of rural and

urban livelihoods.

GxE studies in livestock most commonly use reaction norms

to describe the response of breeds to environmental variation

(Oliveira et al., 2018; Cheruiyot et al., 2020; Chen et al.,

2021). We adapted two methods of MEPA (AMMI and LMM)

to evaluate productivity (live body weight) and stability. Our

results demonstrate that MEPA has several advantages over

conventional methods such as Analysis of Variance (ANOVA) and

linear regression. MEPA captures both additive and multiplicative

components, improves prediction accuracy through inclusion of

random components, provides visual tools (biplots) that are helpful

to assess stability and adaptability of genotypes across multiple

environments, and better accommodates unbalanced data due

TABLE 3 AMMI stability indexes to analyze yield stability for W180 in

improved chickens.

Breed Trait Stability index

W180 (g) ASV YSI rASV rYSI

Horro 1,132.3 13.1 8 3 5

Koekoek 1,477.5 22.9 8 5 3

Kuroiler 1,692.6 15.5 6 4 2

Sasso 1,697.7 9.5 2 1 1

SRIR 1,455.2 10.7 6 2 4

rASV, rank (AMMI stability value); rYSI, rank (yield and stability index).

W180 denotes live body weight of female chickens at 180-days-of-age.

TABLE 4 Comparison of models fitted with linear mixed-e�ects model

(REML) for W180 of improved chicken breeds using AICa.

Model Fixed e�ect Random e�ect AIC values

1 ENV+ REP (ENV) GEN 1,226

GxE 1,263

∗

2 GEN REP (ENV) 1,829

ENV 1,448

GxE 1,491

∗

3 GEN 1,506

REP (ENV) 1,880

ENV 1,498

GxE 1,542

∗

4 ENV+GEN+GxE 1,853

∗

aAkaike’s information criterion (AIC) and likelihood value AIC were set to zero as reference

for the best model; AIC= 2× # parameters – 2× log-likelihood; thus lower values indicate a

better model.
∗Significant (p < 0.001) value.

to missing observations. In MEPA, it is possible to include

environmental covariates to study how specific variables influence

performance of genotypes.

Our results from AMMI and LMM methods showed the

presence of breed by environment interaction (GxE). Based on

WAASB biplots of LMM, Kuroiler and Sasso were identified as the

two breeds which combined the most high growth performance

(W180) with stability across agroecologies. AMMI (rASV and rYSI)

and LMM (HMRPGV) stability indexes have jointly identified

Sasso as the most stable of the five chicken breeds evaluated.

A change in rank was observed between Sasso and Kuroiler

whereby Kuroiler excelled in body weight in the third environment

(AEIII) but not in the first two. This implies that the two breeds

responded differently to environmental challenges and exhibited

varying phenotypic plasticity probably owing to their different

genetic background. The two breeds indeed have different origins.

Both Sasso and Kuroiler are commercial hybrids developed to
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TABLE 5 W180 (LSMean ± SE) of female chickens by breed (GEN) and

environmental class (ENV) from linear mixed-e�ects model analysis.

ENV/
agroecosystem

Breed LSmean∗ SE Lower.
CL

Upper.
CL

AEI Horro 1,277 67.6 1,145 1,410

Koekoek 1,539 39.9 1,461 1,617

Kuroiler 1,860 45.8 1,771 1,950

Sasso 1,896 61.8 1,775 2,018

SRIR 1,743 46.1 1,653 1,834

AEII Horro 986 55.8 877 1,096

Koekoek 1,568 53.4 1,464 1,673

Kuroiler 1,523 57.0 1,412 1,635

Sasso 1,674 53.7 1,569 1,779

SRIR 1,337 54.4 1,230 1,444

AEIII Horro 1,133 53.4 1,028 1,238

Koekoek 1,325 42.5 1,242 1,408

Kuroiler 1,694 48.0 1,600 1,788

Sasso 1,523 46.0 1,433 1,613

SRIR 1,285 47.2 1,193 1,378

∗Significant (p < 0.001) value obtained for all GE∗AE combinations.

TABLE 6 Harmonic mean of the relative performance of genotypic values

(HMRPGV) stability index based on linear mixed-e�ect model.

Breed W180

Horro 0.76

Koekoek 0.99

Kuroiler 1.13

Sasso 1.14

SRIR 0.97

suit semi-scavenging management systems in Africa and Southeast

Asia (Van Arendonk et al., 2019; Duijvesteijn et al., 2022). Sasso

chicken is a blend of many breeds including the Rhode Island

Red from USA and a strain of indigenous chicken from France

that contribute to its hardiness and adaptability (OSU Breeds

of Livestock, 2024). Kuroiler originates from crossing the Rhode

Island Red, the White Leghorn, the Barred Plymouth Rock and

two Indian indigenous chicken breeds, with some introgression

of broilers to obtain specific broiler characteristics (Ahuja et al.,

2008a,b; Isenberg, 2007). The environmental predictors which

served as the basis for definition of the three agroecosystems

(e.g., elevation, solar radiation, and precipitation) probably had

some effects on availability of feeds and prevalence of diseases

(parasites) inducing direct or indirect impacts on live body weight

our test breeds.

Improved Horro had the lowest body weight, and this

contributed to poor stability indexes by AMMI and LMM. Horro

is a breed under development and has so far been selected for

10 generations from the population of indigenous Horro chickens

(Kebede et al., 2021). The Horro chicken selective breeding

FIGURE 3

WAASB biplots generated based on LMM analysis showing mean

growth performance until 180-days-of-age (W180) of five improved

chicken breeds introduced into three di�erent agroecologies in

Ethiopia. The x-axis represents the mean performance of the breeds

(body weight in grams), while y-axis measures the stability of the

genotypes across environments.

programme focuses on improving age at first egg, egg production,

body weight, and survival (Dana et al., 2010, 2011; Wondmeneh

et al., 2014).

Koekoek and SRIR had average performance in terms of

W180 and stability. The SRIR (Sasso x Rhode Island Red) is a

commercial hybrid closely related with the Sasso (Kebede et al.,

2023).The Koekoek (Potchefstroom Koekoek) is a composite of

the White Leghorn, Black Australorp, and the Barred Plymouth

Rock, developed during the 1950’s in the Republic of South Africa

(Grobbelaar et al., 2010; Kebede et al., 2023). It is very popular

among rural farmers in South Africa and neighboring countries for

egg and meat production as well as their ability to hatch their own

offspring in medium input production systems (Grobbelaar et al.,

2010).

The highest model fit in LMM in the present study was obtained

when environmental class (agroecosystem) was fitted as a fixed and

genotypic effects and their interactions with the environment were

fitted as random (model 1). Fitting breed as randommight be useful

to make conclusion on suitability of environments to a broader

range of breeds. Apart from model fit (based on AIC), however,

fitting breed as random may not be biologically meaningful

considering that we are not evaluating breeds that are random

samples of large population of potential breeds. Hence, if the

interest is to recommend breeds adapted to specific environments,

fitting breed as a fixed effect might be more appropriate. In

contrast to traditional definitions that classify genotypic effects as

fixed, the highest model fit in plant breeding trials was obtained

when genotypic effects were considered as random (Stroup and

Mulitze, 1991; Olivoto et al., 2019a). More studies are needed on
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model validation in livestock for implementation of MEPA under

different scenarios, such as when the interest is to identify breeds

for specific environments and when the intention is to identify

breeds which are broadly adapted to multiple environments under

smallholder systems.

Studies comparing the different methods of MEPA in plant

breeding are documented by Balestre et al. (2009) and Sa’diyah

and Hadi (2016). After comparing Eberhart-Russel, AMMI, and

mixed-models, Ferraudo and Perecin (2014) concluded that the

three methods detected GxE differently but effectively, with mixed

models showing higher sensitivity. Some of the indexes (e.g.,

WAASB) can even integrate the features of AMMI and LMM

techniques and display their results on performance using biplots

(Olivoto et al., 2019a). Biplot-based interpretation of MEPA on

LMM results helps easily identify “which breed wins where”

and facilitates recommendation of specific breeds for specific

agroecologies. LMMs such as the best linear unbiased prediction

(BLUP) and restricted maximum likelihood estimation (REML) are

more predictively accurate than AMMI and the main advantages of

these methods can be combined to recommend highly productive

and stable individuals or populations (Van Eeuwijk et al., 2016;

Olivoto et al., 2019a).

There were some limitations regarding the study we carried out

on yield stability that could be addressed to get better results in the

future. We have observed that the stability indexes in all methods

of MEPA evaluated in the present study are biased toward more

productive genotypes. SRIR, which had a moderate yield but the

most gentle slope for W180, did not achieve the highest stability

indexes on AMMI and LMM because of its inferior performance

when compared to Sasso and Kuroiler. The locally improved Horro

had the lowest productive performance and the least stability

index. This is contrary to genetic and physiological evidence

in the literature supporting that local (indigenous) populations

exhibit better local adaptation to environmental stressors than

introduced breeds.

Methods for multi-environment performance evaluation

should consider economic efficiency apart from productivity

and stability. Socio-economic parameters applicable to MEPA

include farm income, farmers’ trait and breed preferences

(likability), culture, and consumer preferences. Although breeds

such as Kuroiler and Sasso perform better than most local

ecotypes in terms of productivity, the feed utilization efficiency

of these breeds is far lower than current commercial breeds

(Van Arendonk et al., 2019). Pedigree, individual phenotype,

and genomic information were not available in the present study

to perform animal evaluation and select the best performing

individuals within a breed. In circumstances where phenotypic,

pedigree, environmental and genomic information are available,

random regression models via reaction norms (Veerkamp and

Goddard, 1998; Oliveira et al., 2018) are applicable to estimate

the breeding value of individual animals for traits such as

growth and survival under varying environmental conditions.

Spatial analysis considering environmental (climatic) factors was

conducted by Sæbø and Frigessi (2004) and Tiezzi et al. (2017) to

improve genetic prediction in smallholder dairy cattle evaluation.

Challenges affecting genetic evaluations across environments in

smallholder systems due to poor data structure (e.g., small herd

size, low genetic connectedness, and no pedigree) and ways to

address them are discussed in several studies (Powell et al., 2021;

Jorjani et al., 2001; Foulley et al., 1990). Kebede et al. (2023)

followed a different approach to reaction norms to visualize the

influence of bioclimatic predictors on breed performance by

using partial dependence plots produced by General Additive

Models (GAMs). Models applicable to phenotypic plasticity in

evolutionary biology and animal breeding are reviewed by De Jong

and Bijma (2002) and can also be evaluated for their use in in

multi-environment performance evaluations.

The importance of reducing potential confounding between

the effects of management practices of individual households

(e.g., feeding, health, and housing) and challenges from the

physical environment (e.g., climate, geography) need to be carefully

considered in multi-environment performance evaluations. We

tried to standardize the management practices of the farmers

participating in the present study by taking certain precautionary

measures. By implementing RCBD, we tried to control for

variability among experimental units by grouping them into

blocks that are as homogeneous as possible. Within each block

(environmental replicate) treatments (breeds) were randomly

assigned to experimental units (households). The amount of

feed supplemented per flock (on top of scavenging) among

households was regulated, animal health practices were reasonably

kept uniform, and night enclosures were put in place in all the

households to reduce experimental errors. Taking large sample

size of participants has also helped in accounting for variations

in the management of flocks among households with different

socio-economic backgrounds (e.g., literacy levels, farm resources).

Once the right breeds suitable for technological scaling have been

identified, based on their productive performance and stability,

introduction of the breeds has to be accompanied by improved

access to other essential inputs and support services/infrastructure

(e.g., feeds, flock health, extension, marketing, and financial

models) to achieve sustained adoption of innovations.

Conducting MEPA in farm animals has its own peculiarities

compared tomulti-environment trials in plants. In the field of plant

breeding, the analysis of genotype by environment interactions

(GxE) is well-supported by extensive data, largely because plants

can be easily grown across multiple environments with repeated

measures for each genotype at specific locations. Such large datasets

allow precise measurements of GxE, providing clear insights

into performance of genotypes under varying environmental

conditions. However, the scenario is markedly different in animal

breeding. The mobile nature of animals and their cost impedes

the replication of genotypes across diverse environments to

undertake MEPA at individual and population level under on-

farm conditions.

Apart from its practical applicability in developing countries

(Africa and Southeast Asia), MEPA can potentially contribute to

promotion of sustainable food systems in developed regions of

the world by identifying and scaling more productive and better

adapted breeds within a framework of circular economy. Matching

breeds of optimal performance with the right agroecosystem

improves resource efficiency (lowers the amount of farm inputs

required), reduces waste, improves economic viability, and builds

resilience to environmental changes and shocks.
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Equal emphasis should be given to the improvement of local

(indigenous) populations alongside the testing of already developed

improved breeds. Selective breeding on local populations requires

more resources than breed introduction but holdsmany advantages

for smallholder farmers compared to the scaling of commercial

hybrids. To mention but a few (1) animals can be used by farmers

without intellectual property right (IP) restrictions; (2) purebreds

are genetically stable their eggs can be used to sustain future

generations; (3) they have well-established consumer and producer

preference or niche market for their appearances, product quality

and sociocultural values; (4) they can be used in cross-breeding

programmes with improved or other local breeds to develop

robust genotypes; (5) they have certain adaptive qualities making

them suitable for smallholder systems (e.g., alertness, scavenging

ability, disease tolerance, and adaptability to harsh environmental

conditions); and (6) the development of such breeding programs

enhances sustainable utilization and conservation of local genetic

resources in food systems.

Issues of biodiversity conservation, sustainable utilization,

and intellectual property rights should be carefully considered

when performance testing is conducted across wider geographies

or regions. The adverse impacts of market consolidation and

vertical integration from mergers of multinational animal breeding

corporations involved in supply of improved livestock genetic

material in Africa and Asia are well-documented. These include

limited access to breeding stock, high price of animal products

and feed, removal of potential competition in the value chain, and

restriction of product choices of consumers (Bagopi et al., 2016;

Goga and Roberts, 2023; Karamchedu and Syndicus, 2022).

Finally, addressing the pressing challenges in food system

of developing countries (nutritional security, climate change,

gender equality, and employment opportunities) requires strategic

implementation of different but complementary approaches.

The choice of the right genetic intervention depends on the

prevailing socio-economic and environmental contexts of the

specific country.

Conclusion

The performance of animals in smallholder livestock systems

of the tropics are significantly influenced by the environment.

Apart from productivity levels, candidate improved strains should

be evaluated for yield stability to increase production efficiency

and address nutritional security. The present study revealed that

existing methods of multi-environment performance analysis from

plant breeding literature are applicable to chicken (livestock) breed

evaluations. Our results also demonstrate that species-specific

agroecologies defined by SDMs are useful to undertake MEPA in

livestock. LMM-based productivity and stability indexes/biplots

combining information on productivity with yield stability showed

superiority over the other MEPA models. The present study

illustrated that there is a strong need to address limitations of

existing methods and develop robust analytical framework and

methodologies for spatial analysis of within and between breed

performance. Such methods need to integrate environmental,

genetic/genomic, phenotypic and socio-economic information.

Advances in geographic information system, ecology, machine

learning, genomic prediction, and food systems should be

harnessed to optimize MEPA and increase animal productivity and

environmental efficiency.
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