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Outer papery peel of onion bulb is an inevitable bio-waste generated in the course of 
postharvest handling and processing. Onion peels are rich source of nutraceutically 
important polyphenolic compounds having many therapeutic potentials. In this 
study, we characterized onion peel extract (OPE) of eight differentially pigmented 
short-day onion varieties through ultra-high-performance liquid chromatography 
coupled with high-resolution single stage Orbitrap spectrometry and evaluated 
the antioxidant potential. A total of 49 phenolic compounds were identified in 
this study which include 33 anthocyanin, 8 flavanol, 4 flavones, and 1 each of 
pyranoanthocyanin, chalcone, phenolic acid, and ellagitannins. Anthocyanin 
was the most abundant polyphenolic compound followed by flavanol in all the 
varieties. Among anthocyanin, 10 cyanidin, 10 delphinidin, 4 peonidin, 4 petunidin, 
3 pelargonidin, and 2 malvidin were identified. Cyanidin-3-(6-malonylglucoside), 
delphinidin, and delphinidin-3-galactoside were the predominant pigment in dark 
red varieties (BDR and BRJ), and its abundance suggests a key role in the differential 
pigmentation pattern of onion peel. Total phenol content (TPC) in peels ranged 
from 1738.21 to 1757.76  mg GAE/100  g DW in dark red onion, 1306.58 to 1646.73  mg 
GAE/100  g DW in red onion, and 78.77 to 85.5  mg GAE/100  g DW in white onion 
varieties. The mean total anthocyanin content was maximum (28.23  mg/100  g 
DW) in dark red varieties (BDR) and minimum (0.11  mg/100  g DW) in white variety 
(BSW). Total antioxidant activity ranged from 4.71 to 79.80  μmol/g DW, 22.71 to 
286.7  μmol/g DW, and 8.72 to 156.89  μmol/g DW estimated through FRAP, ABTS, 
and DPPH methods, respectively. In all three methods, it was maximum in dark 
red var. BDR and minimum in white var. BSU.
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1 Introduction

Onions are among the earliest domesticated vegetables in human history and possess 
several health benefits due to their unique bioactive compounds (Elattar et al., 2024). However, 
the inconvenience of peeling and cutting fresh onions has led to a growing demand for ready-
to-use onion products, such as dehydrated onions and minimally processed options such as 
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peeled or pre-cut onions (Gorrepati et al., 2014; Ahamad et al., 2024). 
Processing onions into various value-added products generates large 
amounts of bio-waste, primarily in the form of outer skins, peels, and 
basal and apical trimmings (Trigueros et al., 2024). Disposal of this 
waste is a major challenge for the industries as it has characteristic 
odor due to the presence of sulfur containing compounds 
(Chadorshabi et al., 2022). However, this waste can advantageously 
be used as a potential source for extraction of high-value secondary 
metabolites, development of functional/nutraceutical food, energy, 
and biogas production (Kumar et al., 2022; Stoica et al., 2022). Sagar 
et al. (2022) outline the methods for transforming onion waste into 
valuable biomolecules using a biorefinery approach to enhance the 
circular bioeconomy.

Onion skin extracts offer natural alternatives for preventing and 
treating diseases related to oxidative stress, microbial infections, or 
cancer (Bozinou et al., 2023). Onion peel extract (OPE) is reported to 
have antimicrobial (Sagar and Pareek, 2020a; Joković et al., 2024), 
antibacterial (Moosazad et al., 2019), antidiabetic (Jung et al., 2011; 
Vu et al., 2020), anti-obesity (Moon et al., 2013), anti-thrombotic (Lee 
et al., 2013), and anti-cancerous (Galavi et al., 2021) properties. OPE 
also decreases the level of total cholesterol, low-density lipoprotein, 
and atherogenic index (Kim et  al., 2012). Onion peel extract is a 
promising component of future nutraceuticals and value-added 
products (Kim et al., 2013). Red onion skin can be used for producing 
value-added products as they are rich in bioactive compounds 
especially phenolics and flavonoids (Chadorshabi et  al., 2022). 
Nutraceutical properties of onion peel have been augmented for the 
development of many value-added products such as wheat pasta 
(Michalak-Majewska et al., 2020), bread (Piechowiak et al., 2020), 
pizza (Sagar and Pareek, 2020b), and various meat products.

Onion peel contains wide array of polyphenolic compounds such as 
flavanols, anthocyanins, and tannins (Sharma et al., 2016; Suh et al., 
1999). Ly et al. (2005) reported nine phenolic compounds in dry outer 
scales of onion (Allium cepa L.). The presence of ferulic, gallic, and 
protocatechuic acids, quercetin, and kaempferol was reported in extracts 
of red onion peel (Singh et al., 2009). Lee and Mitchell (2011) reported 
primary flavonoids in outer paper, first, and second layers of onion as 
quercetin 3,4-O-diglucoside, quercetin 3-O-glucoside, quercetin 
4’-O-glucoside, isorhamnetin 4’-O-glucoside, and quercetin aglycone. 
Sagar et al. (2020) described the flavonoids, total phenols, and antioxidant 
properties of onion skin of 15 Indian cultivars. Anthocyanins are 
versatile natural pigment, widely described for nutraceutical properties 
associated with it. Anthocyanin-associated colors are mainly due to 
cationic flavylium ions (red), quinoidal bases (violet), and its colorless 
adducts (Frond et  al., 2019). Onions with fascinating pigmentation 
patterns from dark red, yellow to white colors are globally produced. The 
abundance of phenolic compounds in the outer scales of onions is 
described to be associated not only with colors but also with many 
biochemical traits (Metrani et al., 2020). In general, the levels of flavanol 
are higher in yellow onions than red onions (Soininen et al., 2014). Sweet 
onion contains 2- to 3-fold higher isorhamnetin 4’-glucoside than red 
onion cultivars (Olsson et  al., 2010). It has been reported that the 
antioxidant and anticancer properties of methanolic extracts from 
different parts (flesh and peel) of onion were significantly different in 
white, yellow, and red onion (Jeong et al., 2009). Sagar et al. (2021) 
studied the physicochemical and thermal characteristics of onion skin 
from 15 Indian cultivars for possible food applications and reported that 
the skin of cv. “NHRDF Red” was best source of protein, fiber, and 
minerals, suggesting its suitability for developing a food product. 

Although ample amount of literature reports the pharmacological and 
nutraceutical potential of onion skin, most of the study is limited to 
profiling of few known compounds. Moreover, scanty information is 
available regarding short-day cultivars of onion which is of higher 
preference under subtropical Indian conditions. Mass spectrometry-
based detections are highly sensitive and selective for identification. 
Therefore, we did high-resolution UHPLC-Orbitrap-Mass Spectrometry-
based characterization of phenolic compounds and established putative 
relation with differential pigmentation in OPE of eight distinctly 
pigmented short-day onion cultivars ranging from dark red to white.

2 Materials and methods

2.1 Plant material

A field experiment was conducted during the winter season at the 
Indian Council of Agricultural Research–Directorate of Onion and 
Garlic Research (ICAR–DOGR) farm in Pune, Maharashtra, India. The 
site, located at 18.32° N and 73.51° E, is 645 m above sea level and has a 
tropical dry humid climate with an average annual precipitation of 
820 mm. The soil at the site is clay loam, with low available nitrogen and 
medium soil organic carbon. The field experiment, designed as a 
completely randomized block design, included eight onion cultivars: 
Bhima Dark Red (BDR), Bhima Raj (BRJ), Bhima Super (BSR), Bhima 
Red (BRD), Bhima Shakti (BSK), Bhima Kiran (BKN), Bhima Shweta 
(BSW), and Bhima Shubra (BSU), each replicated three times (Table 1). 
Onion seeds were sown in the nursery in the second week of October. 
Organic manure was applied in the field at 5 t ha−1 before transplanting. 
On the day of transplanting, the pre-emergence herbicide oxyfluorfen 
was applied, followed by irrigation for weed control. Before transplanting, 
100% of the required phosphorus, potassium, and sulfur and 20% of 
nitrogen were applied as basal fertilizers (10:26:26, muriate of potash, 
and bentonite sulfur). Forty-five-day-old seedlings were transplanted in 
the third week of December at 15 cm spacing between rows and 10 cm 
between plants, maintaining a plant density of 66 plants m2 in 16.8 m2 
plots. The remaining 80% of nitrogen was applied through urea in 11 
equal splits at 6-day intervals from 0 to 60 days after transplanting. 
Irrigation was provided via drip system, weeds were manually removed 
45 days after transplanting, and other intercultural and plant protection 
practices followed ICAR-DOGR’s guidelines. Onion bulbs were 
harvested in the second week of April, once 50% of the plants had top 
fall. After a 3-day field curing, bulbs were separated from the foliage, 
leaving a 2.5 cm neck. Leaves were removed and cured in farm shade for 
2 weeks. The outer two papery layers of onion were removed from bulb, 
dried in shade, and powdered using kitchen blender. One part was used 
for LC–MS characterization at National Referral Laboratory, ICAR-
National Research Centre for Grapes, Pune, and the remaining sample 
were used for biochemical analysis.

2.2 Characterization of phenolic 
compounds

2.2.1 Sample preparation
Dried onion peel powder (2 g) was preliminary soaked in 10 mL 

of water for 30 min followed by extraction with 10 mL of acidified 
methanol by continuous vortexing. Followed by extraction, the vial 
was centrifuged at 10,000 rpm for 10 min; the supernatant was taken, 
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diluted appropriately, and injected to UHPLC-Orbitrap MS for 
qualitative identification of anthocyanin and other major 
phenolic compounds.

2.2.2 LC–MS [UHPLC-Orbitrap MS] conditions
An Ultimate 3000-series Ultrahigh-Performance Liquid 

Chromatograph (UHPLC) hyphenated to a Q Exactive mass 
spectrometer (MS) (Thermo Fisher Scientific, Bremen, Germany) was 
used with an Ascentis Express C18 (100 × 2.1 mm, 2.7 μm) column 
(Supelco). The mobile phase comprised of (A): methanol: water 
(10:90) and (B): methanol: water (90:10) with 0.2% formic acid in both 
phases. The gradient program was 0–1 min/95% A, 1–5 min/95–
55%A, 5–10 min/55–2% A, 10–14 min/2% A, 14–15 min/2–95% A, 
and 15–20 min/95% A, at 0.4 mL/min flow rate. A heated-electrospray 
ionization (H-ESI) source was used. The H-ESI parameters in positive 
polarity were as follows: sheath gas flow rate, 45; auxiliary gas flow 
rate, 8; sweep gas flow rate, 1; spray voltage, 3.50 kV; S-lens RF level, 
50.0; capillary temperature, 320°C; S-lens RF level, 50.0; heater 
temperature, 300°C. The MS analysis was performed in full scan 
(70,000 full width at half maxima at m/z 200), followed by data-
dependent MS/MS (ddMS2) at 17500 resolution (m/z 200) with 
stepped collision energy, operated at 18, 35, and 70 V maintaining the 
automatic gain control (AGC) target at 1e6.

2.2.3 Data processing
The LC–MS data files (n = 3, biological replications) were 

processed by the Trace finder software (version 3.3, Thermo Fisher 
Scientific). The automated data processing involved compound 
identifications by comparison with a database of anthocyanin, 
phenolic compounds, and their derivatives. This database comprised 
more than 235 compounds with compound specific information 
(molecular formula, adduct, monoisotopic molecular mass, and 
fragment mass) from various web-based resources (e.g., ChemSpider) 
and published research papers.

2.3 Determination of total anthocyanin 
content (TAC)

Total monomeric anthocyanin was determined based on the 
principle of pH-dependent structural changes from colored oxonium 
ion to colorless hemiketal forms (Lee et  al., 2005) with some 
modifications suggested by Krithika et  al. (2020). Each extract 
(200 μL) was diluted separately with 800 μL of 0.025 M potassium 
chloride buffer (pH 1.0) and 0.4 M sodium acetate buffer (pH 4.5) and 
incubated for 15 min in dark. Absorbance for each dilution was taken 
using SpectroStar Nano plate (BMG Labtech) at 520 and 700 nm 
against blank made of distilled water. Total anthocyanin content was 
expressed as cyanidin-3-glucoside equivalent per 100 gram of dry 
matter and calculated using the following equation:

 

( )

( ) ( )
( )

Anthocyanin content mg / 100 g DW

A A A A MW D.F T.E.V

W

520nm 700nm 520nm 700nmpHL0 pH4.5

=

  × ×  
ε ×

∗– – –

where MW is the molecular weight of cynidin-3-glucoside 
(449.2 g mol−1), DF is the dilution factor (e.g., DF is 5 for an extract of 

TABLE 1 Details of onion varieties taken for the study.

Variety Color 
category

Image

Bhima Dark Red 

(BDR)

Dark Red

Bhima Raj (BRJ)

Bhima Super (BSR) Red

Bhima Red (BRD)

Bhima Shakti (BSK)

Bhima Kiran (BKN) Light Red

Bhima Shweta (BSW) White

Bhima Shubra (BSU)
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200 μL diluted to a final volume of 1,000 μL), ɛ is the molar extinction 
coefficient of cynidin-3-glucoside (26,900 LM−1 cm−1), T.E.V is the 
total extract volume, and W is the weight of sample (Lee et al., 2008).

2.4 Determination of total phenol content 
(TPC)

The total phenol content was estimated using Folin–Ciocalteu 
reagent followed by Singleton and Rossi (1965) with some 
modifications suggested by Ateeq et  al. (2023). Sample extraction 
(100 μL) was added to 200 μL of 10% (v/v) F-C reagent and thoroughly 
vortexed. To the vortexed mixture, 800 μL of 700 mM Na2CO3 was 
added and incubated for 2 h at room temperature. The reaction 
mixture (200 μL) was transferred in 96-well microplate, and the 
absorbance was taken at 765 nm against 95% methanol as blank on a 
SpectroStar Nano plate (BMG Labtech). Gallic acid was used as 
standard (100–1,000 μg/mL) for the preparation of calibration curve 
(R2 = 0.9996), and the total phenol content was expressed as gallic acid 
equivalent (GAE) per 100 gram of onion peel.

2.5 Determination of total antioxidant 
activity (TAA)

Free radical scavenging assay was followed to assay the antioxidant 
activity of onion peel extract. The same extract was used for FRAP, 
DPPH, and ABTS assay.

2.5.1 Ferric reducing antioxidant power (FRAP) 
assay

Direct measurement of total antioxidant activity was estimated 
through FRAP assay which measures blue to purple color formed 
due to reduction of ferric tripyridyltriazine (FeIII-TPTZ) complex 
(Benzie and Strain, 1999) with some modifications suggested by 
Sagar et al. (2020). FRAP working reagent was prepared by mixing 
300 mM acetate buffer, pH 3.6, 10 mm TPTZ in 40 mM HCl and 
20 mM FeCl3.6H20  in a ratio of 10:1:1 (v/v/v). It was prepared 
freshly as per requirement. Reaction mixtures containing 3.0 mL of 
working FRAP reagent and 100 μL test sample or standard solution 
of Trolox were mixed, vortexed, and incubated for 6 min at room 
temperature. Absorbance at 593 nm was taken using SpectroStar 
Nano plate (BMG Labtech) against a reagent black and corrected by 
methanol as blank. Synthetic analog of Tocopherol (Trolox) was 
taken as standard, and the total antioxidant activity was expressed 
as μmol/g dry weight.

2.5.2 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay
Antioxidant activity was determined using DPPH radical as per 

the methodology described by Stoica et  al. (2022) with some 
modifications. DPPH solution (0.1 mM) was made with ethanol, and 
3.9 mL of it was added to 100 μL of onion peel extract or standard and 
incubated for 30 min at room temperature before reading the 
absorbance at 593 nm against ethanol as a blank on a SpectroStar 
Nano plate (BMG Labtech). DPPH solution without antioxidant was 
kept as control. Trolox equivalent antioxidant capacity (TEAC) was 
calculated using Trolox at 100–1000 μM as reference standard and 

FIGURE 1

Identification of quercetin glucoside by UHPLC-Orbitrap MS; (a): total ion chromatogram (TIC) of the sample, (b): extracted ion chromatogram (XIC) of 
quercetin glucoside at RT-8.9 min, (c): MS spectra of quercetin glucoside and (d): MS/MS spectra of quercetin glucoside.
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presented as μmol Trolox equivalent (TE)/g sample. Each sample/
standard was read in triplicate.

2.5.3 2,2′-azinobis-(3-ethylbenzothiazoline-
6-sulfonic acid (ABTS) assay

ABTS radical scavenging assay was estimated as per the method 
described by Re et al. (1999) and Sagar et al. (2020). ABTS radical was 
prepared by mixing 7 mM aqueous solution of ABTS diammonium 
salt with 2.45 mM potassium persulfate (K2S2O8) in a ratio of 1:1 (v/v) 
and incubated for 16 h in dark at room temperature. Fresh working 
solution was prepared by appropriate dilution of ABTS radical 
solution with ethanol till an absorbance of 0.700 ± 0.002 unit at 
765 nm. A reaction mixture of 100 μL sample or standards and 
3,900 μL of ABTS working solution were incubated for 6 min at room 
temperature before recording the spectrophotometric absorbance at 
765 nm against 75% ethanol as blank. Trolox was used as reference 
standard at 100–1200 μM, and Trolox equivalent antioxidant capacity 
(TEAC) was expressed as μmol TE/g DW.

2.6 Statistical analysis

The results of TAC, TPC, FRAP, DPPH, and ABTS assay were 
presented as mean ± standard deviation of three replicates (biological 
replications). Significance of difference between samples was evaluated 
through analysis of variance (ANOVA) using SAS base 9.2 (Tukey’s 
test, p < 0.05). Multivariate analysis, that is, principal component 
analysis (PCA), cluster analysis, and correlation coefficients were 
carried out with JMP 9.0.0. Biplot between PCA 1 and PCA 2 was 
drawn using MS excel. Chemical structure was drawn on 
ChemDraw 19.1.

3 Results and discussion

3.1 LC–MS [UHPLC-Orbitrap MS] analysis

OPE of eight onion varieties was taken for high-resolution 
UHPLC-Orbitrap Mass Spectrometric analysis, and compound 
identification was performed against an in-house updated high-
resolution accurate mass (HRAM) database, which was originally 
received from Thermo Fisher Scientific. The automated analyte 
identification and confirmation were based on the HRAM 
measurement of the precursor and its characteristic productions, 
each within ±5 ppm of mass error and retention time tolerance of 
±0.1 min. Matching of the isotopic pattern (by >90%) was 
considered as an additional filter. For example, quercetin glucoside 
was identified based on the precursor ion (m/z = 465.1030) with a 
mass error of 0.5 ppm (as observed in MS spectra) (Figure 1). It was 
above the threshold intensity of 5,000. In addition, the detection of 
characteristic fragment (m/z = 303.0501) supported its identification 
(as observed in MS/MS spectra). We  identified 49 polyphenolic 
compounds including 33 anthocyanin (Table 2, compounds 14–46), 
8 flavanol (6–13), 4 flavones (1–4), and 1 each of pyranoanthocyanin 
(47), chalcone (5), phenolic acid (48), and ellagitannins (49). 
Recoveries of reference standard quercetin and pelargonidin-3-O-
glucoside were used for relative quantification of identified 

compounds. Since reference standards of all compounds were not 
available, pelargonidin-3-O-glucoside was used for quantitation of 
all anthocyanin, and quercetin was used for quantitation of 
all flavonoids.

3.1.1 Flavanol
Flavanols are versatile class of flavonoid and characterized to have 

significant role in auxin transport and nodule development in legumes 
and provide protective interface against abiotic and biotic stress 
(Petrussa et al., 2013). Nutritionally, it has potential health benefits 
against cardiovascular disease, mutagenesis owing to its antioxidant 
properties (D’Andrea, 2015). As presented in Table 2, eight peaks were 
putatively identified as flavanol which include two isorhamnetin 
glycosides (Table  2, compounds 7–8), two quercetin glycosides 
(12–13), one quercetin dimer (11), one myricetin (10), one kaempferol 
glycosides (9), and one dihydromyricetin or ampeloptin (6). Quercetin 
glucoside appeared on two retention time (tR) 8.9 and 8.96 with 
baseline separation having same precursor ion m/z = 465.1 and 
fragment ion m/z = 303.05 which indicates that both compounds may 
exist in isomeric forms (Figure 1). Anthology suggests that quercetin 
exists in four mono-glycoside forms with a substitution at positions 4′ 
(quercetin 4′-glucoside) and 3′ (quercetin 3′-glucoside) in aromatic 
ring B and positions 3 (quercetin 3-glucoside) and 7 (quercetin 
7-glucoside) of γ-benzopyrone ring (Kwak et  al., 2017; Lee et  al., 
2012). Another flavonoid isorhamnetin glucoside also eluted at 
different (tR) 10.70 and 10.77 min. Having same elemental composition 
C22H22O12 with a molecular (M+) ion m/z = 479.12 and a characteristic 
fragment ion peak m/z = 317.07 suggest the isomeric presence of 
compound. Literature reports two forms of isorhamnetin glucoside 
having glucosyl substitution at 4’ Carbon (isorhamnetic 4′-glucoside) 
and at 3 position in flavanol skeleton (isorhamnetin 3-glucoside) 
(Bonaccorsi et al., 2005; Park and Lee, 1996). Kaempferol rhamnose 
malic acid was identified based on peak for molecular ion m/z = 549.12 
and characteristic fragment ion m/z = 313.07. Myricetin and 
dihydromyricetin (ampleoptin) were also identified in onion peel 
extract. Taxifolin and their conjugated glycosides are reported in 
onion bulbs (Fossen et al., 1998), while there is limited information 
about the presence of dihydromyricetin in onion. Yang et al. (2020) 
reported dihydromyricetin 3-O-rhamnoside along with 
dihydroquercetin 3-O-rhamnoside in onion. Kaempferol was the only 
acylated flavanol identified. Quercetin, isorhamnetic, myricetin, 
kaempferol, and its conjugated glycosides are most abundant flavonols 
in onion (Rodríguez Galdón et al., 2008; Slimestad et al., 2007).

3.1.2 Anthocyanin
Similar to flavanol, 34 anthocyanin compounds (Table  2, 

compounds 14–46) were putatively identified based on molecular and 
product ion peak with less than 5 ppm mass error. For instance, 
delphinidin-3, 5-diglucoside (25) was eluted at 6.98 min and identified 
based on the characteristic fragment m/z = 303.05 (Figure  2). 
Cyanidin-3-(6-malonylglucoside) with elemental composition 
C24H23O14 (tR = 8.49 min) was identified based on observed parent 
molecular ion peak m/z = 535.11, and its identity was further 
confirmed by characteristic product ion m/z = 287.1 for cyanidin 
aglycone. In similar way, 34 anthocyanins which include 10 cyanidin 
(14–23), 10 delphinidin (24–33), 4 peonidin (39–42), 4 petunidin 
(43–46), 3 pelargonidin (36–38), and 2 malvidin (34–35) were 
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TABLE 2 LC–MS [UHPLC-Orbitrap MS] characterization profile of putative phenolic compounds identified in OPE of eight differentially pigmented onion varieties.

S. 
No

Compound name Formula m/z 
Apex

RT 
measured

Fragment Measured area (value  ×  10,000,000)

Dark red Red Light 
red

White Minimum Maximum

BDR BRJ BSR BRD BSK BKN BSW BSU

Flavones

1 Apigenin glucoside I C21H20O10 433.11 9.92 271.06 0 2.01

2 Chrysoeriol C16H12O6 301.07 12.83 286.05 2 3.28

3 Isovitexin C21H20O10 433.11 9.49 415.1, 313.07 0.81 2.43

4 Luteolin C15H10O6 287.05 12.52 287.05 17.61 59.77

Chalcones

5 Butein C15H12O5 273.08 11.25 137.02 0 0.36

Flavonols

6 Ampeloptin C15H12O8 321.06 7.96 153.02 1.2 1.43

7 Isorhamnetin hexoside I C22H22O12 479.12 10.7 317.07 0 1.28

8 Isorhamnetin hexoside II C22H22O12 479.12 10.77 317.07 0.69 211.43

9 Kaempferol rhamnose 

malic acid

C25H24O14 549.12 9.15 313.07 9.81 117.97

10 Myricetin C15H10O8 319.04 5.35 133.03 0.29 98.78

11 Quercetin dimer C30H20O14 605.09 12.2 301.03 2.31 15.56

12 Quercetin glucoside I C21H20O12 465.10 8.9 303.05 18.97 1365.34

13 Quercetin glucoside II C21H20O12 465.10 6.98 303.05 10.48 1365.34

Anthocyanin

14 Cyanidin C15H11O6 287.05 12.51 287.05 1.25 325.47

15 Cyanidin-3-(6-

malonylglucoside)

C24H23O14 535.11 8.49 535.11, 287.1 0.64 1203.81

16 Cyanidin-3-(6-succinyl-

glucoside)

C25H25O14 549.12 9.13 549.12 9.52 117.97

17 Cyanidin-3-5-diglucoside 

(cyanin)

C27H31O16 611.16 7.34 611.16, 287.1 4.97 82.65

18 Cyanidin-3-

acetylglucoside

C23H23O12 491.12 8.31 491.12, 287.1 2.76 42.5

(Continued)
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S. 
No

Compound name Formula m/z 
Apex

RT 
measured

Fragment Measured area (value  ×  10,000,000)

Dark red Red Light 
red

White Minimum Maximum

BDR BRJ BSR BRD BSK BKN BSW BSU

19 Cyanidin-3-galactoside 

(ideain)

C21H21O11 449.11 7.37 449.11, 287.1 0.53 190.52

20 Cyanidin-3-O-glucoside C21H21O11 449.11 7.37 449.11, 287.1 0.53 190.52

21 Cyanidin-3-O-rhamnoside C21H21O10 433.11 9.51 433.11 0.85 2.44

22 Cyanidin-3-sophoroside C27H31O16 611.16 7.34 611.16, 287.1 4.97 82.65

23 Cyanidin-3-O-

(200galloyl)-galactoside

C28H24O15 601.12 12.34 285.04 0 1.25

24 Delphinidin-3-(6-

malonylglucoside)

C24H23O15 551.1 11.17 303.05, 127 5.51 26.31

25 Delphinidin-3-5-

diglucoside

C27H31O17 627.16 6.98 303.05, 127, 

97.03, 85.03

2.43 124.61

26 Delphinidin-3-galactoside C21H21O12 465.1 10.18 465.1, 303.1, 

127.04

10.48 1365.34

27 Delphinidin-3-O-

arabinoside

C20H19O11 435.09 10.17 435.09, 303.1, 

127.04

1.24 1.64

28 Delphinidin-3-O-(6-O-

feruloyl) monoglucoside

C31H29O15 641.15 12.43 303.05, 97.03, 

85.03

0.91 1.45

29 Delphinidin-3-O-

glucoside-pyruvic acid

C24H21O14 533.09 8.46 127.04, 97.03, 

85.03

2.39 3.82

30 Delphinidin-3-O-

rutinoside (Tulipanin)

C27H31O16 611.16 7.34 611.16, 85.03 4.97 82.65

31 Delphinidin-3-

sophoroside-5-glucoside

C33H41O22 789.21 4.82 303.05, 127 1.42 3.89

32 Delphinidin-3-xyloside C20H19O11 435.09 10.17 435.09, 303.1, 

127.04

1.24 1.64

33 Delphinidin C15H11O7 303.05 11.41 303.05, 127 14.78 2850.25

34 Malvidin-3-arabinoside C22H23O11 463.12 7.59 463.12 11.67 41.57

35 Malvidin-pyruvate C20H15O9 399.07 2.11 399.07 0 0.77

36 Pelargonidin-3-glucoside 

(Callistephin)

C21H21O10 433.11 9.48 433.11, 271.1 0.81 2.43

(Continued)

TABLE 2 (Continued)
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TABLE 2 (Continued)

S. 
No

Compound name Formula m/z 
Apex

RT 
measured

Fragment Measured area (value  ×  10,000,000)

Dark red Red Light 
red

White Minimum Maximum

BDR BRJ BSR BRD BSK BKN BSW BSU

37 Pelargonidin-3-

malonylglucoside

C24H23O13 519.11 9.02 519.11, 271.1 1.66 2.49

38 Pelargonidin C15H11O5 271.06 13.1 271.06 2.17 5.41

39 Peonidin-3-glucoside C22H23O11 463.12 7.65 463.12, 301.1 5.33 41.57

40 Peonidin-3-O-arabinoside C21H21O10 433.11 9.5 433.11 0.85 2.44

41 Peonidin-3-O-xyloside C21H21O10 433.11 9.5 433.11 0.85 2.44

42 Peonidin C16H13O6 301.07 11.21 301.07 0.39 14.22

43 Petunidin 3-5-diglucoside C28H33O17 641.17 8.96 317.07 11.76 30.33

44 Petunidin 3-arabinoside C21H21O10 433.11 9.6 433.11 1.51 2.39

45 Petunidin 3-glucoside C22H23O12 479.12 10.77 317.07 0.69 211.43

46 Petunidin C16H13O7 317.07 12.81 317.07 1.09 452.16

Pyranoanthocyanin

47 Vitisin A-delphinidin-

glucoside

C24H21O14 533.09 8.46 127.04, 97.03, 

85.03

2.39 3.82

Phenolic Acid

48 Protocatechuic acid 

hexoside

C13H16O9 317.09 1.66 137.02 0 0.98

Tannins

49 Trigalloyl levoglucosan IX C20H26O22 619.1 14.49 153.02 2.65 7.87

Lowest value 50 Percentile Highest value

Each compound with chemical formula, mass/charge ratio, and major frequent ion with intensity > 5,000 was presented. Relative abundance in varieties (dark red var. BDR and BRJ; Red var. BSR, BRD, and BSK; light red var. BKN and white var. BSU and BSN) based 
on absolute area measured was presented as heat map.
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identified in this study. Among all anthocyanins, six were acylated 
glycosides, five were aglycone, and three were doubly substituted 
(Table 2). We observed maximum of 30–33 anthocyanin glycosides in 
dark red and red onion varieties and minimum of 9–11 anthocyanin 
in white onion (BSU and BSW). Downes et al. (2009) reported ten 
anthocyanin glycosides of cyanidin and peonidin but did not found 
petunidin, pelargonidin, and malvidin. However, there is limited 
information regarding the presence of malvidin in onion. Petersson 
et  al. (2008) reported malvidin-3-glucoside in red onion bulb 
(Petersson et  al., 2008) and later by Yang et  al. (2020). Vitisin 
A-delphinidin glucoside (47) is a pyranoanthocyanin conjugated with 
delphinidin glucoside which was also identified in onion peel extract. 
The presence of anthocyanin oligomers or pyranoanthocyanin has 
been reported in grapes, rose, and red onion (Fossen and Andersen, 
2003; Santos-Buelga et al., 2014; Rentzsch et al., 2007).

3.1.3 Flavones and other compounds
Flavones (3-deoxyflavanol) are a class of flavonoids widely present 

in fruits and vegetables. Five flavones (1–4), apigenin, luteolin, 
chrysoeriol, and isovitexin were putatively identified from onion peel 
extract with low abundance. Low abundance of flavones in onion has 
been hypothesized (Kothari et al., 2020), but very few reports are 
available. Yang et  al. (2020) reported apigenin 6-C-glucoside and 
luteolin 7-O-glucuronid in onion bulb. A degradation product of 
anthocyanin, protocatechuic acid hexoside, was also identified based 
on precursor ion peak m/z = 317.09 and characteristic fragment ion 
peak m/z = 137.02 (Ly et al., 2005). 2′,3,4,4′-tetrahydroxychalcone was 
also observed having a molecular ion (M+) m/z = 273.08 and 
characteristic fragment ion peak m/z = 137.02. Chalcones are 

abundant in bright yellow color onion (Schwinn et  al., 2016). A 
hydrolysable tannin, trigalloyl levoglucosan, with a precursor 
m/z = 619.1 and fragment ion 153.02 was also identified in this study. 
It is levoglucosan acylated with gallic acid (3, 4, 
5-Trihydroxybenzoic acid).

3.2 Relative distribution of polyphenolic 
compounds

The relative distribution of major classes of putatively identified 
polyphenolic compounds in differentially pigmented onion varieties 
is presented in Figure 3. Based on the absolute area response of the 
identified peak, it was noted that out of 49 identified phenolic 
compounds, maximum of 43 were detected in var. BSR which include 
nine flavanol, four flavones, and thirty anthocyanin glycosides. In 
white onion varieties BSU, only nine compounds were identified 
including five flavanol and eleven anthocyanin.

Flavanols are hydrophilic compound with β-glycosidic linkages 
which makes it a most bioavailable antioxidant in human diet (Price 
and Rhodes, 1997). Onion bulbs are reported to have higher flavanol 
content than anthocyanin (Metrani et  al., 2020; Khandagale and 
Gawande, 2019) and are reportedly only 10% of the total polyphenols 
(Rodrigues et  al., 2017) in bulb. In onion peel extract (OPE) of 
differentially pigmented onion varieties, anthocyanin was the most 
abundant polyphenolic compounds than flavanol. Albishi et al. (2013) 
also reported higher flavonoid content in red onion skin than bulb. 
Inner scales of onion bulbs have lower flavonoid level than outer scales 
(Patil and Pike, 1995). Among flavanol, quercetin glucoside was most 

FIGURE 2

Identification of delphinidin-3, 5-diglucosideby UHPLC-Orbitrap MS analysis; (a): total ion chromatogram (TIC) of the sample, (b): extracted ion 
chromatogram (XIC) of delphinidin-3, 5-diglucoside at RT-6.98 min, (c): MS spectra of delphinidin-3, 5-diglucoside and (d): MS/MS spectra of 
delphinidin-3, 5-diglucoside.
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abundant flavanol observed across pigmented onion varieties followed 
by isorhamnetin, kaempferol, and myricetin. Glucose is the exclusive 
moieties in quercetin attached to 3, 7, or 4′ position of aglycone. 
Quercetin 4′-glucoside and quercetin 3,4′-glucosides are widely 
reported to be the most abundant flavanol in onion bulbs (Pucciarini 
et al., 2019). The abundance of all the flavanol was very low in white 
onion cultivars in comparison with others. Price and Rhodes (1997) 
also reported quercetin and its glycosides as most predominant 
flavanol, and it was higher in red onion varieties Red baron, Rose, and 
Rijnsburger than white variety albino (Price and Rhodes, 1997).

Flavones are 2-phenyl-1-benzopyran-4-one, having additional 
double bond between C2 and C3 of flavonoid skeleton and no hydroxyl 
group at C3 position. It is reported to have lower antioxidant potential 

and poor absorption in human intestine but has significant role in biotic 
defense against insect and microbes (Hostetler et al., 2017). In OPE of 
differentially pigmented varieties, flavone was most abundant in light red 
varieties (BSR), less abundant in red varieties, and absent in white 
onions. A chalcone, butein, was observed only in var. BRD and 
protocatechuic acid in var. BSK. Trigalloyl levoglucosan was observed in 
all red varieties but found absent in white varieties (Table 2).

Among anthocyanin, delphinidin was the most predominant class 
of anthocyanin followed by cyanidin > petunidin > peonidin > malvidin 
> pelargonidin in most of the cultivars (Figure  4). As presented in 
Table  3, relative abundance of cyanidin and its glycosides observed 
maximum in dark red var. BDR and BRJ and gradually lower level in red 
var. BSR, BRD, BSK, and light red var. BKN, while it was minimum in 

FIGURE 4

Relative distribution of classes of anthocyanin compounds in OPE of eight differentially pigmented onion varieties. Length of stacked bar indicates the 
sum of mean measured area (n  =  3) of total compounds identified comprising of cyanidin, delphinidin, malvidin, pelargonidin, peonidin, and petunidin.

FIGURE 3

Relative distribution of classes of phenolic compounds in OPE of eight differentially pigmented onion varieties. Length of stacked bar indicates the sum 
of mean measured area (n  =  3) of total compounds identified comprising of flavanol, anthocyanin, flavones, and other compounds.
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white var. BSU. Contrary of cyanidin, percentage abundance of 
delphinidin and its glycoside was observed minimum in dark red 
verities, slightly higher in red and light red var. and maximum in white 
onions. Relative abundance of cyanidin and delphinidin might be the key 
factor associated with differential pigmentation of onion bulb. Cyanidin 
glycosides were observed with most acylation followed by pelargonidin. 
Acylation is predominant in dark red and red onion cultivars than light 
red and white. Cyanidin-3-(6-malonylglucoside), delphinidin, and 
delphinidin-3-galactoside were the predominant pigment in dark red 
var. BDR and BRJ, and its abundance suggests a key role in differential 
pigmentation pattern. Downes et al. (2009) also reported predominant 
presence of cyanidin-3-(6-malonylglucoside) in dark red onion. Similar 
reports were made by Fossen et al. (1996) and Donner et al. (1997). Most 
abundant aglycone across all the varieties was delphinidin followed by 
petunidin and aglycone form of both are more abundant in colored 
cultivars than white. In cyanidin glycoside, aglycone form is more 
abundant in white than colored varieties. As presented in Figure 5, third 
carbon position in benzopyrylium ring was the most preferred 
substitution followed by fifth carbon position. Glucose (glc), galactose 
(gal), rhamnose (rham), sophoroside (soph), xylose (xyl), arabinose 
(ara), and rutinoside (rut) were the observed glycoside substitution, and 
among these, glucoside and galactoside were the most preferred.

3.3 Principal component analysis (PCA) and 
cluster analysis

PCA was performed on the relative abundance data obtained for the 
putatively assigned anthocyanin compounds (14–47). Principal 
component score of eight varieties varying on PC1 (66.72%) and PC2 
(14.75%) is presented in Figure 6. Eight distinctly pigmented varieties 
under investigation grouped in four groups. White varieties BSU and 
BSW grouped together having negative correlation with both PC1 and 
PC2. Varieties BSK, BRD, and BKN grouped together and showed very 
low variation with PC1 and considerable variation on PC2. Red var. BSR 
and dark red var. BRJ showed very positive correlation with PC1 and 
PC2. Dark red variety BRD showed very high positive correlation with 
PC1 and negative correlation with PC2. Examination of component 
pattern distribution (Supplementary Figure 1) on principle component 
axis revealed that substituted and acylated anthocyanin are strongly 
correlated with PC1 and show very less variation, whereas it is well 
distributed along PC2. Cyanidin (14–23) exhibited exclusive distribution 
on negative axis of PC2 and positive axis of PC1, whereas pelargonidin 
(36–38) on positive axis of PC1 and PC2. Among the five most abundant 
anthocyanin cyanidine-3-(6-malonylglucoside), delphinidin-
3galactoside, delphinidin, petunidin 3-glucoside, and petunidin, all are 

TABLE 3 Percentage of class of anthocyanin present in OPE of different varieties.

Classes of 
anthocyanin 
compound

Class of anthocyanin in OPE (%)

Dark Red Red Light Red White

BDR BRJ BSR BRD BSK BKN BSW BSH

Cyanidin 30 20 19 18 17 16 7 6

Delphinidin 60 68 70 71 73 72 88 87

Petunidin 8 11 11 11 10 12 5 6

Others 2 1 0 0 0 0 0 1

FIGURE 5

Class of putative anthocyanin compounds identified from the OPE of 
eight differentially pigmented onion varieties and its substitution 
pattern. Cyanidin (14–22); delphinidin (24–33); malvidin (34–35); 
pelargonidin (36–38); peonidin (39–42); petunidin (43–46). 
Compound numbering is as per Table 2. Abbreviation are as follows: 
mal-malonyl, sal-succinyl, fer-feruloyl, pyr-pyruvic acid, ac-acetyl, 
glc-glucose, gal-galactose, ara-arabinose, rham-rhamnose, soph-
sophorose, xyl-xylose, rut-rutinose.
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positively correlated with PC2 except cyanidine-3-(6-malonylglucoside). 
This suggests that preceding four anthocyanin compounds might be the 
key determinant of red color var. BSR, BRJ, and BRD while cyanidine-3-
(6-malonylglucoside) in dark red var. BDR.

Varieties were well classified by cluster analysis supporting the 
color distribution pattern (Figure 7). At partial R square value 0.1, 
we observed two cluster, one with light red var. BKN and red var. BSK 
while other having red var. BSR and BRD and dark red var. BRJ. Both 
clades separate with dark red var. BDR at R square value of 2.8. White 
onion var. BSU and BSW formed a separated clade at R square value 
>0.4. PCA and cluster analysis revealed that red var. BSK and light red 
var. BKN have similar anthocyanin distribution pattern. Similarly, 
dark red var. BRJ exhibited similar distribution of anthocyanin that of 
red onion var. BSR and BRD.

3.4 Total anthocyanin and total polyphenol 
contents

Anthocyanin is a subclass of flavonoid compounds imparting 
diverse color to onion bulbs and possess various nutraceutical 
properties. As presented in Table 4, the mean total anthocyanin 
content in dark red varieties was maximum followed by red, light 

red, and white varieties. Within the dark red varieties, the 
anthocyanin content in BDR (28.23 mg/100 g DW) was 
significantly high than BRJ (5.29 mg/100 g DW) with p ≤ 0.0001 
level. Anthocyanin content was observed at par in red varieties 
BRD, BSK, and BSR and in light red var. BKN. In white varieties, 
very low level of anthocyanin was observed, and both were not 
significantly different. Anthocyanin content in dark red var. BDR 
is ~3–5 times higher than red onion var. and ~ 7–8 times higher 
than light red varieties. Zhang et  al. (2016) reported range of 
0.75 ± 0.40 mg/100 g FW anthocyanin content in white, 
9.64 ± 0.30 mg/100 g FW in yellow, and 29.99 ± 1.19 mg/100 g FW 
in red onion. Albishi et al. (2013) also reported more anthocyanin 
content in onion peel extract (OPE) than bulb.

Total phenol content (TPC) in OPE ranged from 1738.21 to 
1757.76 mg GAE/100 g DW in dark red onion, 1306.58 to 1646.73 mg 
GAE/100 g DW in red onion, and 78.77 to 85.5 mg GAE/100 g DW 
in white varieties. As presented in Table 4, TPC in all category of OPE 
extract was significantly different among each other with probability 
level at p ≤ 0.0001 level. Among red onion, TPC was maximum in 
var. BSR followed by var. BSK and BRD. Although OPE of light red 
onion BKN exhibited lower anthocyanin content than red onion, 
TPC was 1441.13 mg GAE/100 g DW which is higher than red onion 
var. BRD. High level of polyphenols in onion skin with similar range 

FIGURE 6

Principal component analysis (PCA) of anthocyanin compounds identified from OPE of differentially pigmented onion varieties, viz., Dark red var. BDR 
and BRJ; Red var. BSR, BRD, and BSK; Light red var. BKN; white var. BSU and BSW.
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was reported in literature (Sagar and Pareek, 2020b; Lee et al., 2015; 
Sagar et al., 2020).

3.5 Total antioxidant activity

Antioxidant activity has been used widely to characterize various 
food matrix for the ability to scavenge or neutralize free radicals 
(Pyrzynska and Pękal, 2013). However, there is no single versatile 
method to determine antioxidant activity accurately. Here, 
we followed three methods, viz., FRAP, DPPH, and ABTS, to estimate 
total antioxidant activity (TAA). The results were compared with 
water-soluble tocopherol analog Trolox and expressed as micromole 

per gram. In all the three methods (FRAP, ABTS, and DPPH), the 
mean antioxidant activity was more in dark red varieties followed by 
light red and white varieties. The antioxidant activity ranged from 
4.71 to 79.80 μmol/g DW, 22.71 to 286.7 μmol/g DW, and 8.72 to 
156.89 μmol/g DW in FRAP, ABTS, and DPPH methods, respectively. 
Total antioxidant activity was maximum in dark red variety BDR and 
minimum in white variety BSU. Among dark red varieties, BDR 
showed significantly high antioxidant activity than BRJ in all the 
three methods (Table 4). In red varieties, the antioxidant activity by 
FRAP method showed the significantly high value in BSR and 
significantly low in BRD. BSR and BSK showed similar level of 
antioxidant activity. All the three red varieties (BSR, BSK, and BRD) 
were significantly different for ABTS and DPPH activities with 

TABLE 4 Total phenol content (TPC), total anthocyanin content (TAC), and total antioxidant activity (TAA) in OPE of eight differentially pigmented 
onion varieties.

Color Variety Total anthocyanin 
content 

(mg/100gDW)

Total phenol 
content 

(mg/100gDW)

Antioxidant activity (μmol TE/gDW)

FRAP ABTS DPPH

Dark Red

Bhima Dark Red 28.23 ± 3.34A 1738.21 ± 2.74B 79.80 ± 0.93A 286.70 ± 0.26A 156.89 ± 7.67A

Bhima Raj 5.29 ± 0.28BC 1757.76 ± 5.80A 70.21 ± 2.18B 215.12 ± 4.56B 156.82 ± 2.90A

Red

Bhima Super 3.03 ± 0.45CD 1646.73 ± 1.71C 66.60 ± 0.54C 174.42 ± 2.36C 147.49 ± 3.28B

Bhima Shakti 8.15 ± 0.25B 1520.24 ± 10.45D 64.99 ± 0.49C 210.15 ± 4.57B 136.54 ± 3.95C

Bhima Red 7.79 ± 0.88B 1306.58 ± 2.41F 50.92 ± 1.83D 156.34 ± 2.60D 111.22 ± 1.35D

Light red Bhima Kiran 4.51 ± 0.49C 1441.13 ± 12.74E 48.52 ± 0.48E 119.47 ± 3.09E 92.88 ± 4.96E

White

Bhima Shweta 0.18 ± 0.05D 85.50 ± 0.28G 6.25 ± 0.03F 42.00 ± 4.25F 9.84 ± 1.10F

Bhima Shubra 0.11 ± 0.02D 78.77 ± 0.25G 4.71 ± 0.02F 22.71 ± 2.66G 8.72 ± 0.43F

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

CV (%) 17.36 0.55 2.02 2.19 3.77

Data are presented as mean ± SD of six parallel replication, and group letters were assigned based on Tukey’s honest significant test (5%).

FIGURE 7

Cluster analysis of anthocyanin compounds identified from OPE of differentially pigmented onion varieties, viz., Dark red var. BDR and BRJ; Red var. 
BSR, BRD and BSK; Light red var. BKN; white var. BSU and BSW.
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maximum in BSR (DPPH method) and BSK (ABTS method). In both 
the methods (ABTS and DPPH), minimum was found in BRD 
variety. Within the white varieties, no significant difference was 
observed in BSW and BSU for FRAP and DPPH. However, 
significantly high antioxidant value was observed in BSW (42 μmol/g 
DW) compared to BSU (22.71 μmol/g DW) in ABTS method owing 
to the better level of polyphenol content.

In all the methods, dark red varieties exhibited highest antioxidant 
activity, and white varieties had lowest which is evident from the 
corresponding anthocyanin and polyphenol content. To investigate the 
profound factor contributing to antioxidant activity of onion peel 
extract, we performed a correlation analysis among total phenols, total 
anthocyanin, and three antioxidant methods. As presented in Figure 8, 
the coefficient of correlation (R2) of antioxidant activity was more in all 
three methods for TPC than anthocyanin content (TAC). The 
coefficient of correlation (R2) for TAA and TPC ranged from 0.8105 to 
0.9637, while it was considerably low with TAC (0.3271–0.6211). Lee 
et al. (2015) also observed poor correlation of total antioxidant capacity 
and anthocyanin content in white, yellow, and red onion. Zhang et al. 
(2016) reported high correlation between total polyphenols and 
antioxidant activity, but contrary to our finding, they also reported 
highly positive correlation between total anthocyanin content and total 
antioxidant content. In bulb of two red onion varieties, a strong 
correlation between total flavanol content and antioxidant activity was 
also observed but reported a poor correlation between total phenol and 
anthocyanin (Metrani et al., 2020).

4 Conclusion

Onion peels of red and dark red onions are very rich source of 
polyphenolic compounds having nutraceutical potential. Present 
study putatively identified 49 polyphenolic compounds from outer 
papery peel of eight distinctly pigmented onion varieties. Identified 
phenolic compounds comprised of 33 anthocyanin, 13 flavanol, 4 
flavones, and 1 each of pyranoanthocyanin, chalcone, phenolic acid, 
and tannin. Anthocyanin was the most abundant compound followed 
by flavanol. Quercetin and its glycosides were the predominant 
flavanol, whereas cyanidin, delphinidin, and its glycosides were 
predominant anthocyanin. Acylated anthocyanin was predominant 
in dark red and red onion varieties. Cyanidin-3-(6-malonylglucoside), 

delphinidin, and delphinidin-3-galactoside were the predominant 
pigment in dark red var. BDR and BRJ, and its abundance suggests a 
key role in differential pigmentation pattern. Antioxidant activity 
showed strong association with total polyphenol content, whereas 
very low association was observed with total anthocyanin content. 
PCA and cluster analysis grouped red var. BSK with light red var. 
BKN and dark red var. BRJ with red var. BSR and BRD. This research 
suggests that utilizing onion peel extracts could enhance the 
development of functional foods and dietary supplements, promoting 
sustainability and health benefits. Furthermore, there is a need for 
quantitative profiling of nutraceutically important polyphenolics 
from peels of widely processed onion varieties and to develop efficient 
extraction process as well as associated product for harnessing wealth 
potential of this emerging bio-waste.
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