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The construction of ecological barriers in the Yellow River Basin represents

a significant step toward reducing agricultural carbon emissions, achieving

carbon neutrality, and reaching carbon peaking in China. The diverse agrarian

development objectives of various regions within the basin have resulted in

a heterogeneous approach to greening agriculture. Therefore, this paper will

evaluate the development of carbon sink agriculture across 34 cities and

municipalities in the lower Yellow River basin from 2008 to 2021 based on

the EBM-GML model, and analyze the spatial-temporal evolution of agricultural

green total factor productivity (AGTFP) in each region through the application

of the Moran index, kernel density estimation, and spatial Markov chain analysis.

The results demonstrate that agricultural carbon emissions in the Lower Yellow

River Basin gradually decreased throughout the study period. Furthermore,

overall carbon emission e�ciency improved, indicating significant potential for

further emission reduction. In addition, Agricultural Green Technology Progress

(AGTC) has become a primary driver of AGTFP growth, while Agricultural Green

Technology E�ciency (AGEC) has demonstrated a gradual upward trend. Locally,

most areas are weakly connected and display an isolated development trend.

The results of the kernel density analysis demonstrate a notable degree of

mobility in the distributional dynamics of AGTFP growth, characterized by a

gradual narrowing of the gap between locations. The transfer of (AGTFP) types

in the lower reaches of the Yellow River Basin is stable, with a noticeable

“club convergence” phenomenon, while geographical conditions significantly

influence the transfer of AGTFP types in this region. Based on long-term trend

predictions, the future trajectory of AGTFP in the lower YellowRiver Basin appears

optimistic and is expected to improve progressively, with the overall distribution

tending toward equilibrium.

KEYWORDS

green agricultural development, low carbon, lower yellow river basin, spatial and

temporal evolution, carbon emission e�ciency

1 Introduction

The acceleration of global warming has led to a series of adverse effects, including the

melting of glaciers, rising sea levels, increased frequency of extreme weather events, and

severe impacts on biodiversity. To achieve the temperature control targets set out in the

Paris Agreement, the Chinese Government has committed to a phased emissions reduction
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program. This commitment represents a positive contribution to

the development of a global community united in addressing the

21st century’s challenges. The Yellow River Basin encompasses

four distinct geomorphological units from west to east. It serves

as a significant ecological barrier within China and boasts

abundant agricultural resources. Consequently, the basin plays a

pivotal role in China’s agricultural economic development and

ecological security (Liu et al., 2024). The accelerated development

of the Yellow River Basin over an extended period has led to

a considerable increase in resource and environmental loading,

significantly impacting the region’s ecological environment (Zhu

et al., 2024). The Chinese Academy of Agricultural Sciences

(CASA) has published the “2023 China Agricultural and Rural

Low-Carbon Development Report,” which indicates that China’s

plantation production significantly contributes to greenhouse gas

emissions and lacks the innovative technologies needed to increase

production while reducing emissions. Consequently, it is essential

to further investigate the potential for combining strategies to

simultaneously minimize pollution and carbon emissions and

to develop a more sustainable production model that balances

economic growth with environmental protection. The Yellow River

Basin, which encompasses four major grain-producing regions,

is facing mounting pressure on agricultural carbon emissions.

This underscores the need for transitioning to a low-carbon

ecological development model, gradually reducing agricultural

carbon emissions, and pursuing green agricultural development.

The advancement of green agriculture can effectively address the

persistent depletion and overexploitation of agricultural resources

and facilitate the transformation of agriculture from unregulated,

carbon-intensive development to a more sustainable, resource-

efficient model (Zhang et al., 2023). It is therefore necessary

to determine how agricultural carbon emissions in the Yellow

River Basin and municipal areas should be measured, analyzed,

and quantified. What is the efficiency intensity of agricultural

low-carbon production? What are the principal factors that

drive agricultural green total factor productivity (GTFP)? How

do the spatial and temporal evolution characteristics change?

The investigation of these questions offers theoretical value and

practical significance, particularly in terms of promoting the

application of agricultural green technology and facilitating the

high-quality development of agriculture.

In their analysis of the measurement aspects of total factor

productivity (TFP) in agriculture, Myeki et al. (2023) employed

the Malmquist-Luenberger productivity index to examine TFP in

African countries. Le Clech and Fillat Castejón (2020) Measuring

global agricultural TFP and its evolution through the Malmquist

Index (MI) and FPI. Yaqoob et al. (2022) used the Tornqvisit-

Theil index to measure TPF in African agriculture. In their study,

Bernard et al. (2023) employed a non-parametric data envelopment

analysis-Malmquist technique to analyze total factor growth

rates for 42 countries in Africa. Spolador and Danelon (2024)

Analyses of Total Factor Productivity in Brazilian Agriculture

Using the Stochastic Production Frontier Approach. Shah et al.

(2024) employed the DEA Malmquist productivity index method

to assess the overall efficiency of agricultural water use in 31

provinces of China. Scholars have also conducted comprehensive

analyses from the standpoint of the factors that influence it. These

include the consumption of resources, innovative technologies, and

environmental constraints (Gebeyehu and Bedemo, 2024; Zhou

et al., 2024; Bocean, 2024). Baležentis et al. (2021) employed

the log-mean Divisia index in their analysis and constructed

a data envelopment analysis model intending to identify the

unobserved benefits of different factors of agricultural production

on agricultural productivity. Quddus and Kropp (2020) concluded

that labor poses a significant barrier to agricultural production,

based on structured questionnaire findings. Adenubi et al. (2021)

investigated the influence of digital technology adoption on TFP

in agriculture through the utilization of an econometric approach.

Ortiz-Bobea et al. (2021) employed robust econometric modeling

to analyze the impact of climate on global agricultural total factor

productivity, demonstrating that anthropogenic climate change

(ACC) exerts a considerable influence on agricultural productivity

and that global agriculture is particularly susceptible to persistent

climate change. Huang and Ping (2024) employed mediation

effect modeling to investigate the impact of agricultural science

and technology innovation on agricultural green total factor

productivity (AGTFP) and the mediating role of environmental

regulation in 30 provinces in China. Jin et al. (2024) employ an

econometric model to empirically examine the impact of digital

financial inclusion on agricultural total factor productivity and

its mechanism of action in Zhejiang Province. In examining the

spatiotemporal dynamic evolution of agriculture, Araújo et al.

(2024) employed the Mann-Kendall trend test to analyze the

spatial dynamics of land use and the soybean crop over time.

Maranhão et al. (2019) analyze the spatial and temporal dynamics

and spatial correlation of plantation and livestock farming in Brazil

through the examination of relevant time series data. Allaire et al.

(2015) investigated the geographical and temporal dissemination

of distinct forms of organic agriculture in France. Rossi et al.

(2022) Spatio-temporal dynamics and correlates of CO2 emissions

in the State of Mato Grosso (SMT), Brazil, assessed using a time

series of multispectral images. Zhang (2024) employed a series

of analytical techniques, including the center-of-gravity-standard

deviation ellipse, kernel density estimation, and GeoDetector, to

examine the spatial distribution pattern of green total factor

productivity in Chinese agriculture and the dynamic evolution

of its distribution across different regions. He and Ding (2023)

employed spatial autocorrelation analysis and geographically and

temporally weighted regression (GTWR) to empirically investigate

the effects of technological progress and agricultural centrality on

the spatio-temporal heterogeneity of agricultural carbon emissions.

In conclusion, the literature on agricultural total factor

productivity has yielded significant insights. In this paper, the

AGTFP of the Lower Yellow River Basin is assessed using a

relevant model, and the interregional interconnectedness within

the Lower Yellow River Basin is examined. Based on the concept

of regional coordinated development, the spatial and temporal

correlation of agricultural green development is investigated, and

the spatial-temporal evolution of AGTFP in the downstream

watershed is analyzed to gain deeper insights into the dynamic

characteristics of agricultural green development throughout

the study period. Interregional agricultural green production

activities are analyzed to elucidate the migration patterns of

agricultural green development within the main grain-producing
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areas, revealing the spatio-temporal characteristics of green

agricultural development in the Lower Yellow River Basin.

Finally, suggestions for improvement and enhancement paths

for low-carbon agricultural development are proposed. This

study contributes to understanding the pathways for developing

countries like China to advance carbon sink agriculture.

2 Methodology

2.1 Materials

In light of the limitations imposed by natural conditions, the

effective utilization of available resources is emerging as a key driver

of both economic growth and ecological sustainability. In contrast

to conventional total factor productivity (TFP), which primarily

considers inputs, outputs, and scaling, AGTFP assesses the quality

of economic development by incorporating additional factors such

as undesirable outputs. Focusing on carbon sink agriculture in the

Lower Yellow River Basin, this paper constructs a measurement

index system for analyzing AGTGP of carbon sink agriculture

in the Lower Yellow River Basin (see Table 1), which is mainly

composed of three categories: resource inputs, desired outputs and

non-desired outputs.1 The resource input category serves as an

input indicator for AGTFP, encompassing all types of factor inputs.

The primary indicator of success in the desired output category is

the growth of the agricultural economy. The indicator for the non-

desired output category is agricultural carbon emissions. While

facilitating the allocation of carbon sink agricultural resources,

it is essential to promote agricultural economic growth and the

development of ecological safeguards in the Yellow River Basin

to ensure stable economic development in the major grain-

producing regions.

In traditional agricultural production, the most prevalent

agricultural input variables are land, labor, and capital (Touch

et al., 2024; Rittirong et al., 2024). Considering data availability and

agricultural cultivation characteristics, this paper selects the sown

area of crops, labor force, total power of agricultural machinery,

agrochemical inputs, including fertilizers, and effective irrigated

area as input indicators. The “crop-sown area” refers to the

total land area available to farmers for agricultural activities,

including the cultivation of crops. Laborers are individuals directly

participating in the operation and production of agricultural

activities. Fertilizers, pesticides, and agricultural plastic films are

consumables essential for ensuring output per unit area. Effective

irrigated area refers to the arable land that has access to a reliable

water source, where the land is relatively flat, with appropriate

irrigation infrastructure or equipment in place, and where

irrigation can be routinely performed under typical conditions.

Agricultural output is categorized into desired and undesirable

outputs, where agricultural economic growth is the desired output

1 The data mentioned in the paper were obtained from the China

Agricultural Statistical Yearbook (https://www.stats.gov.cn), Henan Provincial

Statistical Yearbook (https://tjj.henan.gov.cn), Shandong Provincial Statistical

Yearbook (http://tjj.shandong.gov.cn), and the EPS database (https://www.

epsnet.com.cn). Missing data were filled in using interpolation and the ARIMA

filling method.

component of the AGTFP and is usually measured in terms

of output value or yield. In accordance with the established

criteria for data validity, this paper has elected to utilize the

value added by the agricultural sector as its primary measure.

The value added of agriculture excludes the intermediate input

costs of agriculture, making its value fluctuations more indicative

of the overall development of the agricultural economy. In non-

desired outputs, agricultural carbon emissions are used as its

measure. The most important sources of carbon emissions in

agriculture can be categorized into two primary sources: firstly,

direct emissions from energy combustion, primarily from diesel use

in agricultural machinery operations and electricity consumption

in irrigation machinery, and secondly, indirect emissions from

agricultural production consumables, such as fertilizers and

pesticides. Referring to the carbon emission estimation formula of

Jin and Zhong (2024) to calculate the agricultural carbon emission.

2.2 Super-e�cient EBM modeling

Current research indicates that most methods for measuring

total factor productivity in agriculture are primarily based on the

SBM model, which was proposed by Tone (2001) as a measure

of slack efficiency built upon the DEA model. Although it can

circumvent the premise of proportional increases and decreases, it

does not address the radial problem. The EBM model, proposed

by Tone and Tsutsui (2010), effectively addresses the limitations

of the SBM model by incorporating both radial and non-radial

distance functions. Additionally, the EBM model is capable of

incorporating undesirable outputs, allowing for the analysis of

the relationship between various agricultural inputs, economic

performance, and agro-ecological systems. Therefore, this study

utilizes the EBMmodel to calculate the AGTFP values of the Lower

Yellow River Basin from 2008 to 2021. The following is the specific

calculation formula:

γ ∗ = min
ρ − εx

∑N
i=1

ω−
i −b−i
xic

µ + εy
∑M

m=1
ω+
mb

+
m

ymc
+ εq

∑j
w=1

ω
q−
w b

q−
w

qwc

(1)

In the formula, γ ∗denotes the AGTFP in carbon sink

agriculture; x, y, and q respectively represent the raw data for

inputs, desired outputs and non-desired outputs; m, s, and q

represent the number of indexes for inputs, desired output and

non-desired outputs; ρ and µ are radial modeling parameters; b

and ω denote the slack variables and weights of the elements,

respectively; i denotes non-radial input factors; εx is a non-radial

core parameter and satisfies 0 ≤ εx ≤ 1.

2.3 Global Malmquist-Luenberger index
methodology

The GML index was proposed by Pastor and Lovell (2005) after

analyzing the limitations of the Malmquist productivity index. It

addresses the limitations of the ML index, such as the inability to

analyze short-term changes in productivity between consecutive

periods, the tendency of the mixed directional distance function to
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TABLE 1 Measurement index system of AGTFP in carbon sink agriculture.

Index Index category Variable Description of variables

Input Factor inputs Rural resident population Year-end resident rural population in the region

Crop sowing area Total area under agricultural products in the region

Total power of agricultural machinery Total power of agricultural machinery owned by the region

Fertilizer Fertilizer use in agriculture

Pesticide Pesticide use in agriculture

Agricultural Plastic Film Agricultural Plastic Film use in agriculture

Effective irrigated area Area effectively irrigated in agricultural production

Output Expected output Agricultural value added Gross agricultural output at current prices minus intermediate agricultural

inputs at current prices.

Non-expected outputs Agricultural carbon emissions Carbon emission by agriculture carbon

lead to infeasible solutions in linear programming, and the inability

to observe long-term productivity trends. Therefore, in this study,

the GML index is used to observe the growth of AGTFP. Since

the model measures both efficiency and technological change, the

growth of AGTFP is further decomposed into Agricultural Green

Technological Progress (AGTC) and Agricultural Technological

Efficiency (AGEC). Following Pastor and Lovell (2005), the GML

index is calculated using the following formula:

GMLt,t+1
(

xt , yt , qt , xt+1, yt+1, qt+1
)

=
1+ DT

G

(

xt , yt , qt
)

1+ DT
G

(

xt+1, yt+1, qt+1
)(2)

In the above formula, the global directional distance function

DT
G

(

xt , yt , qt
)

= max
{

β|
(

y+ βy, q− βq
)

∈ PG(x)
}

; If more

desired outputs and fewer non-desired outputs are produced, then

the GMLt,t+1 > 1, which represents an increase in AGTFP.

Conversely, a decrease in AGTFP occurs when fewer desired

outputs and more non-desired outputs are produced. In order to

gain further insight into the alterations in AGTC and AGEC, the

GML index is subjected to a further decomposition as follows:

GMLt,t+1
(

xt , yt , qt , xt+1, yt+1, qt+1
)

=
1+ DT

G

(

xt , yt , qt
)

1+ DT
G

(

xt+1, yt+1, qt+1
)

=
1+ DT

G

(

xt , yt , qt
)

1+ DT
G

(

xt+1, yt+1, qt+1
)

∗

1+DT
G(x

t ,yt ,qt)
1+Dt

G(x
t ,yt ,qt)

1+DT
G(x

t+1 ,yt+1 ,qt+1)
1+Dt+1

G (xt+1 ,yt+1 ,qt+1)

= AGECt,t+1∗AGTCt,t+1 (3)

If AGEC > 1, it indicates an increase in the efficiency of green

technology in agriculture, and vice versa, it indicates a decrease in

the efficiency of green technology in agriculture; if AGTC > 1,

it indicates progress in green technology in agriculture, and vice

versa, it indicates a regression in green technology in agriculture.

2.4 Moran index

In order to achieve a more comprehensive understanding of

the green development of agriculture in the Yellow River Basin

and to present the findings in a detailed and specific manner,

this paper will employ the Moran index, as proposed by Moran

(1950), to examine the measurement results in greater detail,

exclude erroneous data, visualize and analyze the data, and observe

the spatial autocorrelation of all units within the study area with

neighboring regions.2 The formula is as follows:

Moran
′

s I =
n

S0

∑n
i=1

∑n
j=1 wij(yi − y)(yj − y)
∑n

i=1 (yi − y)2
(4)

In the above equation, S0 =
∑n

i=1

∑n
j=1 wij; n is the total

number of space units; yi and yj represent the attribute values of the

ith and jth spatial units respectively; y is the mean of all spatial cell

attribute values;wij is the spatial weight value. Since different spatial

weights can affect the resulting values, this paper utilizes Queen’s

method to construct the spatial weight matrix in order to obtain

more stable results.

2.5 Kernel density

The evolutionary characteristics and patterns of the overall

distribution pattern of AGTFP among regions are further explored.

In this paper, kernel density estimation is selected as an analytical

method to explore the evolution of AGTFP. Estimating the

temporal distribution pattern of AGTFP in the Lower Yellow River

Basin using the Kernel density method. The kernel density function

of the random variable x is:

f (AGTFP) =
1

nm

n
∑

i=1

K

(

AGTFPi − AGTFP

m

)

(5)

xi is the AGTFP for each municipality; AGTFPi are

independently distributed observations; AGTFP is denoted as

the mean value of AGTFP; n is the number of observations,

m is the window width, and K (x) represents the Gaussian and

density functions.

2 All remotely sensed data in this article were obtained from the Geospatial

Data Cloud (https://www.gscloud.cn/).
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2.6 Spatial Markov chain

The Markov chain model will consider the evolution of

regional phenomena as a Markov process. This will be achieved

by introducing the method of transfer probability matrix

analysis, which will superimpose the dynamic evolution of each

phenomenon in the region at different times. This will enable

the reflection of the state of each area in the region and its

mobility of upward or downward transfer. Accordingly, the present

paper employs the Markov chain model to investigate the spatial

evolution of AGTFP.

Firstly, a 1 × k matrix At = [a1t , a2t , · · · , akt] is constructed

to store the probability of the carbon emission efficiency of each

region in t periods. Secondly, the transfer of regional carbon

emission efficiency in different periods can be represented by

setting up a k× kmatrix S:

S =











P11 P12 P13 P14
P21
P31
P41

P22 P23 P24
P32 P33 P34
P42 P43 P44











(6)

In accordance with the principle of categorizing the number

of each type of phenomenon in a similar manner, this paper

classifies the AGTFP values in the lower Yellow River basin into

four categories based on the quartiles, with values assigned to

k = 1, 2, 3, 4, respectively, in descending order of magnitude. The

matrix is a Markov transfer probability matrix, wherein the matrix

element Pij denotes the probability of being type i at moment t and

type j at moment t+1. This is defined as Pij =
zij
zi
, where zij denotes

the number of regions belonging to type i in period t that are of

type j at moment t + 1, and zi is the number of regions belonging

to type i.

To further analyze the spatial characteristics of regional

phenomena, based on the transmission probability matrix of the

traditional Markov chain, the concept of “spatial lag” is introduced

as a condition, and the same is divided into 4 types, and the 4 × 4

transmission probability matrix into the 4 matrix of 4 × 4 transfer

conditional probabilities:

lagkS =











P11|1 P12|1 P13|1 P14|1
P21|1
P31|1
P41|1

P22|1 P23|1 P24|1
P32|1 P33|1 P34|1
P42|1 P43|1 P44|1











(7)

The element Pki|jin the matrix represents the probability that

the region will change from the initial state type i to type j at

the next moment under the condition that the spatial lag type

is k (k = 1, 2, 3, 4). The spatial lag type takes into account the

geographical units neighboring the region, and the spatial lag value

lagα of the region α is a weighted average of the observed values

of the geographical units surrounding the region, as specified in

the equation:

lagα =

n
∑

β=1

YβWαβ (8)

In this equation, Yβ represents the observed value of region β ;

lagα denotes the spatial lag value of region α; n signifies the total

number of cities; and the spatial weight matrix Wαβ depicts the

spatial relationship between region α and region β .

It is assumed that after a long period of transfer, the system

will emerge in a stable state called equilibrium, which implies that

the state will be unaffected by changes in time and remain steady

over time. Accordingly, the equilibrium state can be determined

using the Markov transfer probability matrix, and the equilibrium

distribution probabilities of the stochastic process offer valuable

insights for predicting future trends of the Markov process.

Therefore, the following can be observed:

lim
k→∞

τ
(

k
)

= lim
k→∞

τ
(

k+ 1
)

= τ (9)

This equation is obtained by substituting it into the recursive

equation of the Markovian prediction model:

lim
k→∞

τ
(

k+ 1
)

= lim
k→∞

τ
(

k+ 1
)

S (10)

The equation represents the equilibrium state matrix for

the evolution of the Markov process, designated as τ . If τ

satisfies the condition
∑n

i=1 τi = 1, 0 ≤ τ ≤ 1, then τ represents an

equilibrium point of a traditional Markov process. Furthermore, it

can be incorporated into a spatial Markov chain, through which the

equilibrium points can be computed with different lags.

To ascertain whether the spatial lag effect is statistically

significant, a hypothesis test is required. This assumes that the

shifts in the types of agricultural carbon emission performance

are independent of each other and independent of the type of

neighborhood state. The test is formulated as follows:

ϕb = −2 log







k
∏

l=1

k
∏

i=1

k
∏

j=1

[

mij

mij(S)

]nij(S)






(11)

In this context, k represents the number of city carbon emission

performance state types. mij denotes the traditional Markov

transfer probability, while mij(S) signifies the spatial Markov

transfer probability of neighborhood state type S. Similarly, nij(S)

denotes the number of cities that indicate the spatial Markov

transfer of neighborhood state type S. Finally, ϕb is defined

as obeying the chi-square distribution with degree of freedom

k(k− 1)2.

3 Empirical analysis

3.1 Total agricultural carbon emissions and
their annual growth rate

Using the formula for carbon emissions from agriculture, the

carbon emissions from the plantation industry in the lower Yellow

River Basin from 2008 to 2021, and the annual growth rate over

this period, are calculated as shown in Figure 1. The graph indicates

that total agricultural carbon emissions show an inverted “U” trend,

with an average annual growth rate of −1.2%. Total agricultural

carbon emissions increased annually from 2008 to 2013, with an

average annual growth rate of 1%, peaking at 23.730 million tons in
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FIGURE 1

Total carbon emissions from cultivation and its annual growth rate.

2013. Afterward, agricultural carbon emissions decreased annually,

reaching a minimum of 19.436 million tons in 2021.

The development trend of agricultural carbon emissions in the

Lower Yellow River Basin consists of three main phases. The first

phase, from 2008 to 2010, saw the fastest increase in agricultural

carbon emissions due to the rigid growth in consumption demand

for agricultural products in China. Resource and environmental

constraints are growing increasingly severe, the overall balance

of supply and demand for agricultural products is tightening,

structural imbalances are intensifying, and the influence of the

international market has grown considerably. As a result, China

has introduced a series of relevant policies during this period,

which, while boosting farmers’ motivation to cultivate, improving

production efficiency, and securing domestic food security, have

also contributed to increased use of agricultural inputs such

as chemical fertilizers, thereby exacerbating carbon emissions

from agriculture.

The second phase, from 2011 to 2015, saw a lower overall year-

on-year growth rate in agricultural carbon emissions, indicating

a more stable platform period. During this period, China was in

the “Twelfth Five-Year Plan” and was transitioning from crude

small-scale farming to modernized agriculture. Concurrently, the

use of bio-pesticides, high-efficiency, low-toxicity, and low-residue

pesticides, organic fertilizers, and the recycling of agricultural film

and pesticide packaging were promoted, resulting in a low rate of

change in agricultural carbon emissions.

The third phase, from 2016 to 2021, saw a yearly decline

in agricultural carbon emissions. During this period, China’s

food subsidies transitioned from three subsidies to agricultural

support protection subsidies, focusing on protecting arable land

and soil fertility and large-scale production. The production

of major grain-producing areas shifted to green development.

Document No. 1 issued during this period also clearly states that

environmental protection should be strengthened, leading to a

significant reduction in agricultural carbon emissions.

3.2 Sources of agricultural emissions,
regional shares, and changes in carbon
emissions

Figure 2 illustrates the sources and regional distributions

of carbon emissions resulting from cultivation activities.

Agricultural fertilizers are identified as the primary contributor

to carbon emissions among the various indicators, accounting for

approximately 75 percent of total emissions, while other sources

contribute significantly less to overall emissions. Further analysis

reveals an inverted U-shaped trend in the development of carbon

emissions across various agrarian activities, including pesticides,

agricultural plastic film, diesel, arable land, and fertilizers. While

agricultural carbon output is declining, agrarian irrigation is

increasing annually. Regarding the regional distribution of

agricultural carbon emissions, the majority in the Lower Yellow

River Basin originate from Shandong Province. However, the

proportion attributable to Henan Province is rising, increasing

from 29.6% in 2008 to 37.1% in the most recent dataset.

Figure 3 illustrates the mean annual carbon emissions from

agriculture in the municipalities of the Lower Yellow River Basin.

To more clearly demonstrate the range of carbon emissions,
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FIGURE 2

Sources and regional proportions of carbon emissions from cultivation.

this paper employs the natural break classification method

to categorize them into five levels. As Figure 3 demonstrates,

there are notable variations in the annual agricultural carbon

emissions across the Lower Yellow River Basin. Most high-

emission areas are concentrated in the central part of Shandong

Province, with the highest in Weifang, where the average annual

agricultural emissions are 1.472 million tons. The cities of Hebi,

Jiyuan, Sanmenxia, and Luohe have relatively low average annual

agricultural carbon emissions, with Jiyuan exhibiting the lowest

level at 76,820 tons. From 2008 to 2015, the areas in the southern

part of Henan Province and the northern part of Shandong

Province with the highest levels of emissions gradually increased in

size. In Shandong Province, the highest number of high agricultural

carbon emission areas were identified in Weifang City, Jining City,

and Dezhou City, with the greatest emissions occurring in 2015.

From 2016 to 2021, high-emission areas in Shandong Province

were reduced. The central region of Henan Province demonstrated

greater stability, as evidenced by Luohe City and Zhengzhou City.

Since 2017, the agricultural carbon emission pattern in the Lower

Yellow River Basin cities has remained consistent. Overall, primary

agricultural carbon emissions exhibited a high southeast and low

northwest trend.

In conclusion, agricultural carbon emissions in the

Lower Yellow River Basin are gradually declining. However,

agricultural fertilizers account for a relatively high proportion

of these emissions, while carbon emissions from agricultural

irrigation are on the rise. The majority of agricultural carbon

emissions are concentrated in Shandong Province, particularly

in cities with more developed agriculture, such as Weifang

and Nanyang. This suggests that, despite the shift toward

sustainable development, the agricultural sector in these

regions has not yet fully transitioned from a resource-intensive

model to one that is more environmentally conscious. The

continued prevalence of high inputs and emissions indicates

there is still room for improvement in the sustainability of

agricultural practices.

3.3 The e�ciency of green production in
agriculture

The efficiency of agricultural green production was measured

using the EBM model. To gain insight into the spatial evolution

of the Lower Yellow River Basin, the data were visualized and

mapped using ArcGIS software, as shown in Figure 4. Spatially,

the green productivity of agriculture in most cities has increased

markedly over the study period, with the most pronounced

increase occurring between 2015 and 2021. Since 2008, regional

cities such as Kaifeng, Nanyang, Jinan, and Qingdao have

exhibited considerable growth in agricultural green productivity,

whereas Heze, Binzhou, Hebi, and Jiyuan have demonstrated

comparatively modest gains. It is noteworthy that the agricultural

carbon emission performance of cities such as Anyang, Xuchang,

and Puyang exhibited a discernible downward trend between

2008 and 2010. Furthermore, areas such as Jinan, Qingdao,

Luoyang, and Sanmenxia demonstrated favorable upward trends

from 2011 to 2015. However, during the subsequent period

of 2016 to 2021, the agricultural carbon emission performance

of Dezhou and Weihai exhibited a declining trend, indicating

a discernible decline in green production efficiency. By 2021,

the spatial pattern of agrarian carbon emission performance in

the Lower Yellow River Basin exhibited a distinctive “high in

the southwest and low in the northeast” trend. Additionally,

the agricultural green production efficiency in Henan Province

cities demonstrated notable superiority over those in Shandong

Province. This was primarily reflected in the high values of

Shangqiu and Yantai. Conversely, the northern regions of Henan
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FIGURE 3

Carbon Emissions from Cultivation by City.

FIGURE 4

E�ciency of green agricultural production in municipalities, 2009–2021.

and Shandong exhibited comparatively lower levels of agricultural

green production efficiency.

3.4 Results of AGTFP calculations

The indices for the three scenarios of the Lower Yellow River

Basin from 2008 to 2021 were calculated using the EBM-GML

model as the AGTFP, AGTC, and AGEC indices, respectively.

Figure 5 illustrates the alterations in the cumulative indices

reflecting the AGTFP, AGTC, and AGEC in the Lower Yellow River

Basin. The cumulative AGTFP index demonstrated a fluctuating

growth trend from the outset. In contrast, the cumulative AGTC

index exhibited a growth trend, while the cumulative AGEC index

displayed an inverse trajectory, suggesting a deterioration in the

efficacy of green eco-technology in agriculture. This is consistent

with the findings of Yin et al. (2024) regarding agroecological total

factor productivity. The ascendance of the AGTFP index parallels
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FIGURE 5

Schematic diagram of changes in accumulation index under di�erent scenarios in the lower Yellow River Basin 2008–2021.

that of AGTC and inversely correlates with that of AGEC. This

indicates that the advancement of agricultural green technology

is the primary catalytic for AGTFP growth in the Lower Yellow

River Basin, while the efficacy of agricultural green technology has

a constrained influence.

The period in question can be roughly divided into three

stages based on AGTFP: 2009–2014, 2015–2018, and 2019–

2021. The initial stage of AGTFP showed gradual and consistent

growth, with an average annual growth rate of 0.527%. This is

particularly evident in the parallel growth of AGTC (0.658%),

while AGEC (−0.067%) showed a contrasting trend, declining.

This stage reflects that during this period, the management

of the agro-ecological environment began. However, due to

serious environmental pollution and inefficient resource use, the

development of agro-ecological functions slowed. Additionally, the

analysis of the concept of green agricultural development was

not sufficiently in-depth. In the second stage, agricultural supply-

side structural reform was pursued with unwavering commitment,

the construction of rural ecological civilization was reinforced,

and China’s No. 1 central document for 2024 issued during this

period made numerous references to the green development of

agriculture and the implementation of the corresponding ecological

restoration project. The AGTFP in the Lower Yellow River Basin

entered a development period, with an average annual growth

rate of 0.038%. In this context, AGTC continued to be the core

driver (0.364%), while AGEC was characterized by negative growth

(−0.284%). This can be described as a “single-core” growth mode

driven by technological progress. In the third stage, AGTFP in

the Lower Yellow River Basin decelerated, with an average annual

growth rate of 0.313%. During this period, the primary driver

of AGTFP alternated between AGTC and AGEC, with AGTC

exhibiting an average annual growth rate of −0.029% and AGEC

demonstrating an average annual growth rate of 0.334%. However,

the “double-driver” mode of joint promotion by AGTC and AGEC

did not occur.

Figure 6 illustrates the accumulation index of AGTFP in the

downstream region of the Yellow River Basin and its variation

across different downstream regions. The growth of AGTFP in

the lower Yellow River Basin follows a gradient pattern between

the provinces of Henan and Shandong. Historically, the AGTFP

of Shandong Province has consistently surpassed that of Henan

Province. However, after 2011, Henan Province experienced a

reversal, with Henan Province surpassing Shandong in AGTFP and

subsequently taking the lead.

This paper employs the GML index to calculate the AGTFP

of each region in the lower Yellow River Basin from 2009 to 2021

and decomposes these measurements. The mean values of AGTFP

and agricultural technological progress (AGTC) are in Table 2.

Additionally, the agricultural technological efficiency (AGEC) in

the lower Yellow River Basin is 0.995, 1.005, and 0.990, respectively.

It can be observed that the advancement in agricultural technology

(AGTC) is the primary driver of AGTFP in the region.

AGTFP increased in most regions during the period, with

particularly high rates in Dezhou City, Zaozhuang City, Zhoukou
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FIGURE 6

AGTFP accumulation index in the lower Yellow River Basin and di�erent regions 2008–2021.

City, and Zhengzhou City, where the average annual growth

rate exceeded 0.5 percent. Conversely, some regions, primarily in

Shandong Province, experienced negative growth. The majority

of these cities are situated in Henan Province, which boasts

a robust agricultural sector with substantial investments in

ecological infrastructure and a notable capacity for adopting

novel agricultural green products. Cities with slower growth

rates include Rizhao City, Liaocheng City, Luoyang City, and

Yantai City, among others. Their average annual growth rates are

−0.889%, −0.646%, −0.292%, and −0.190%, respectively. These

cities are mainly in Shandong Province, where rapid development

in manufacturing and tourism, combined with relatively low

agricultural resources and a suboptimal ecological environment,

leads to lower prioritization of agricultural green technology.

3.5 Moran’s I index results

In this paper, we used Geoda software to calculate the global

Moran’s I index of AGTFP from 2009 to 2021 in the lower Yellow

River basin to test its significance. The results are shown in Table 3.

The results demonstrate that Moran’s I is greater than zero

in the majority of years, exhibiting an overall oscillating trend.

Furthermore, the majority of years showed statistically significant

results. During the 12th Five-Year Plan period, a negative spatial

correlation between AGTFP and the Lower Yellow River Basin

was observed. However, as economic development advanced

and environmental protection policies were implemented,

AGTFP demonstrated a gradual positive correlation, shifting

after 2016. AGTFP development is influenced by various natural

environmental factors, such as topography, climate, and water

sources. It is therefore unsurprising that neighboring major food-

producing regions tend to have similar natural environments. This

has led to a convergence of AGTFP levels in neighboring regions.

From a social perspective, neighboring regions are expected to

imitate and borrow from each other in the process of continuously

promoting agricultural green total factor productivity (TFP).

This is because they have similar natural and social conditions,

providing a foundation for policy application and technology

implementation. As a result, spatial correlation characteristics of

AGTFP emerge.

To elucidate the extent of auto-correlation disparities in

AGTFP within the lower Yellow River basin, hot and cold spots

were plotted by aligning the attributes of each spatial unit with its

location at the α = 0.05 significance level, thus demonstrating the

heterogeneity of the local spatial units and their evolving trends

(see Figure 7). The calculated spatial units can be classified into four

types, characterized as follows:

1. This area is characterized by a high intensity of AGTFP

within its spatial unit and in neighboring units of superior

agricultural green development quality, known as “high-high (H-

H)” agglomeration areas. From 2009 to 2013, these areas were

primarily located in the western portion of Shandong Province

and the northern region of Henan Province. From 2014 to 2017,
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TABLE 2 Lower Yellow River cities AGTFP, AGEC, and AGTC indices.

Region or
City

AGTFP AGTC AGEC AGTFP
annual
growth

Region or
City

AGTFP AGTC AGEC AGTFP
annual
growth

Zhengzhou 1.007 1.001 1.008 0.553% Henan Province 0.998 1.000 0.999 0.415%

Kaifeng 1.002 1.001 1.002 0.506% Jinan 1.018 1.010 1.008 0.021%

Luoyang 0.995 1.005 0.991 −0.292% Qingdao 1.001 1.005 0.997 0.046%

Pingdingshan 0.998 1.000 0.999 0.865% Zibo 0.993 1.007 0.986 0.086%

Anyang 0.993 0.998 0.996 0.485% Zaozhuang 0.989 1.003 0.988 0.754%

Hebi 1.001 1.001 1.000 0.416% Dongying 1.001 1.001 1.000 0.000%

Xinxiang 0.983 0.985 0.998 0.228% Yantai 0.988 1.014 0.977 −0.190%

Jiaozuo 0.998 0.998 1.000 0.379% Weifang 0.998 1.001 0.999 0.173%

Puyang 0.996 1.001 0.995 0.320% Jining 0.986 1.000 0.986 −0.212%

xuchang 1.002 1.001 1.001 0.142% Tai’an 0.989 0.997 0.993 0.013%

luohe 0.986 1.001 0.986 0.395% Weihai 0.999 0.998 1.000 −0.145%

Sanmenxia 1.015 1.002 1.013 0.419% Rizhao 0.986 1.009 0.977 −0.889%

Nanyang 1.028 1.003 1.023 0.379% Linyi 0.987 1.004 0.986 −0.037%

Shangqiu 0.997 1.000 0.997 0.147% Dezhou 1.025 1.003 1.022 3.748%

Xinyang 1.001 1.001 1.000 0.709% Liaocheng 0.990 1.007 0.984 −0.646%

Zhoukou 0.983 0.985 0.998 1.040% ShanDong

Province

0.997 0.997 1.000 −0.053%

Zhumadian 0.994 1.007 0.988 0.512% Lower Yellow

River basin

0.995 1.005 0.990 0.489%

Jiyuan 0.988 1.005 0.984 0.260%

TABLE 3 Global Moran’s I index of green total factor productivity in

agriculture in the lower Yellow River Basin, 2009–2021.

Year Moran’s I Zscore P-value

2009 0.155 2.117 0.028

2010 0.073 1.609 0.070

2011 −0.222 −1.916 0.055

2012 −0.093 −1.353 0.075

2013 0.162 1.568 0.066

2014 0.202 1.980 0.048

2015 0.023 0.522 0.294

2016 −0.023 0.115 0.411

2017 0.200 1.976 0.048

2018 −0.234 −1.776 0.076

2019 0.097 1.331 0.085

2020 0.098 1.406 0.098

2021 −0.231 −2.255 0.028

the intensive areas gradually declined, shifting toward the central

and northern regions of Henan Province. From 2018 to 2021, the

intensive areas in central Henan Province experienced a reduction

and a subsequent relocation toward northern Shandong Province.

2. The term “lagging area” is used to describe a region where

agricultural green development is poor, both within the region itself

and in neighboring regions. Such regions are referred to as “low-

low (L-L)” agglomeration areas. These areas are characterized by

low levels of agricultural green development and exhibit similar

lags in neighboring regions. The spatial distribution of these areas

is more dispersed but concentrated in central Henan Province

and northern Shandong Province from 2009 to 2015. From 2016

to 2019, the lagging areas were mainly concentrated in parts of

Shandong Province, and by 2021, they shifted gradually to the

coastal areas of Shandong Province.

3. The region is experiencing a period of growth. This type

of region is characterized by low agricultural green development

but exhibits relatively high agricultural green development in

neighboring units. It can be classified as a “low-high (L-H)”

agglomeration region. This type of region is characterized by the

advancement of agricultural green technology and infrastructure,

enhancing economic growth and facilitating the expansion of

AGTFP, thus creating a novel spatial heterogeneity. Figure 7

illustrates that there is a paucity of these regions, primarily

concentrated in Henan Province and other cities from 2009 to

2015. Subsequently, this type of region gradually ceased to exist and

re-emerged in Liaocheng City in 2021.

4. The region in question is characterized by a decline in

quality. This type of region is characterized by high agricultural

green development, albeit at relatively low levels in neighboring

units. The spatial relationship indicates a negative correlation and
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FIGURE 7

LISA clustering of AGTFP in the lower Yellow River basin, 2009–2021.

can be classified as a “High-Low (H-L)” agglomeration region.

This suggests that the region’s agricultural green development

is associated with elevated carbon emissions that extend to

neighboring regions. Consequently, while agricultural green

development increases, the agricultural greenness of neighboring

regions demonstrates a contrasting decline. This category of region

is less prevalent, with most examples located in the southern part of

Henan Province and the coastal cities of Shandong Province.

3.6 Evolution of distributional dynamics of
AGTFP growth in the lower Yellow River
basin

This paper utilizes kernel density analysis to gain deeper

insight into the time-series dynamic evolution characteristics of the

agricultural green total factor productivity growth rate (AGTFP).

Figure 8 illustrates the distribution of AGTFP kernel density

estimates for the Lower Yellow River Basin and the two principal

grain-producing regions within the basin.

The kernel density estimation of AGTFP in the Lower Yellow

River Basin, as illustrated in Figure 8A, from 2009 to 2021,

demonstrates a rightward shift in the position of the curve, the

center of the kernel density function, and the curve as a whole.

This indicates that AGTFP in the Lower Yellow River Basin follows

a gradual growth process. Regarding the peak value, the evolution

process presents a high-low-high pattern, with an expanded change

interval, indicating a certain difference in AGTFP in the Lower

Yellow River Basin. Regarding curve morphology, the period

from 2009 to 2013 shows a clear single-peak distribution. From

2014 to 2018, the peak evolved from a single peak to a bimodal

distribution, characterized by a secondary peak. From 2019 to

2021, the peak shifts from a bimodal to a trimodal distribution,

with two additional smaller peaks. From 2019 to 2021, the peak

transforms from a double peak with “one main peak and one

peak” to a triple peak with “one main peak and two small

peaks.” This suggests that AGTFP in the Lower Yellow River

Basin experienced a notable surge during the observation period.

However, the discrepancy between provinces gradually increased,

leading to multilevel differentiation. This may be attributed to

differing attitudes toward green agricultural development among

various municipalities, influenced by factors including economic

development, urban-rural structure, and the application of green

agricultural technologies. Consequently, there is a disparity in

R&D and the application of green agricultural technologies among

municipalities, increasing the inter-provincial disparity in AGTFP.

Figure 8B illustrates the AGTFP kernel density estimation for

the two principal grain-producing regions from 2009 to 2021.

The data indicate a rightward shift in the position of the curve,

the center of the kernel density function, and the curve as a

whole, suggesting growth in AGTFP in Henan Province. Regarding

the evolution of the peak, it has diminished, indicating that

the disparity in AGTFP between cities in Henan Province has

increased. The curve exhibited a single-peak distribution from 2009

to 2012. From 2013 to 2016, the distribution pattern transformed

from a single-peak distribution to a “one main peak, one peak”

pattern. From 2017 to 2020, the distribution pattern shifted from

a “one main peak, one peak” pattern to a single-peak distribution.

Finally, in 2021, the distribution pattern reverted to a “one main

peak, one peak” pattern. This suggests that during the observation

period, the AGTFP gap in Henan Province showed a pattern

of strengthening and then weakening. This may be attributed to

Henan Province’s ongoing economic advancement and distinctive
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FIGURE 8

Estimation of AGTFP kernel density in the Lower Yellow River Basin and the two main grain producing regions within the basin.

geographical advantages, which have led to a greater focus on low-

carbon development. This focus has contributed to the expansion

of AGTFP within the province and reduced the gap between

municipalities.

Figure 8C illustrates that from 2009 to 2021, the center of

the kernel density function and the curve as a whole exhibited

a rightward shift, indicating that AGTFP in Shandong Province

experienced growth. Regarding the change in peak value, the

wave peak’s transition from decreasing to increasing and then

decreasing again reflects the ongoing increase in the AGTFP

gap between cities in Shandong Province. The curve’s shape

demonstrates a transition from a single-peak distribution from

2010 to 2014, evolving to a “one main peak, one peak” distribution

from 2015 to 2017, and then shifting gradually to a triple-

peak distribution with “one main peak and two smaller peaks”

from 2018 to 2021. The data demonstrate significant disparities

in AGTFP across Shandong Province. Cities and municipalities

exhibit distinct industrial structures and development trajectories,

with considerable variation in financial investment in agricultural

green construction. These factors collectively contribute to the

ongoing expansion of AGTFP in Shandong Province.

To gain further insight into the spatio-temporal evolution

characteristics of AGTFP, traditional, and space-based Markov

transfer probability matrices have been constructed. A classification

of agricultural green total factor productivity based on LISA

clustering was devised, comprising four states: lagging, degraded,

growing, and balanced. These states are denoted by k = 1, 2, 3, 4,

respectively. In this context, transfer from a low-value region

to a high-value region is defined as upward migration, while

transfer from a high-value region to a low-value region is defined

as downward migration. Table 4 presents the traditional Markov

transfer probability matrix for AGTFP from 2009 to 2021, based

on the calculations provided.

1. The lower diagonal values of intra-group mobility of AGTFP

are all larger than the non-diagonal values, which are 0.3333,

0.2692, 0.3299, and 0.3535, respectively. This indicates that there

is a “path-dependence” effect in the transfer of different states

of AGTFP.

2. The probability of transferring AGTFP to a neighboring state

is relatively low. The probability of transferring the backward state

to the degraded state is 0.2500, the probability of transferring the

growth state to the equilibrium state is 0.2680, and the maximum

probability of transferring all kinds of states across the state is

TABLE 4 Markov matrix for carbon emission performance classes at the

agriculture level of lower Yellow river basin in 2009–2021.

n 1 2 3 4

1 108 0.3333 0.2500 0.1944 0.2222

2 104 0.2500 0.2692 0.2500 0.2308

3 97 0.2268 0.1753 0.3299 0.2680

4 99 0.1818 0.2121 0.2525 0.3535

0.2308. This indicates that there is a possibility of transferring

across the state.

3. There is a Matthew effect in the evolution process of AGTFP.

The probability of maintaining the original state in the backward

state and the equilibrium state is greater than that of the degraded

state and the equilibrium state. Furthermore, the region in the

equilibrium state is more easily maintained in its leading position.

However, it is more difficult for the backward region to transfer to

a more optimal state, and the phenomenon of bifurcation occurs.

The addition of spatial lag conditions to the traditional Markov

chain transfer probability matrix allows the construction of a

spatial Markov transfer probability matrix. The effect of different

adjacent geographical contexts on AGTFP transfer is explored

by comparative analysis of the transfer probability of AGTFP in

different adjacent geographical contexts. Table 5 presents the spatial

Markov transfer probability matrix of various AGTFP types in the

lower Yellow River basin from 2009 to 2021, as calculated:

1. The lower diagonal values of intra-group mobility for

AGTFP are all larger than the non-diagonal values, which are

0.3333, 0.2692, 0.3299, and 0.3535, respectively. This indicates a

“path-dependence” effect in the transfer between different states

of AGTFP.

2. The probability of transferring AGTFP to a neighboring state

is relatively low. The probability of transferring from the backward

state to the degraded state is 0.2500, from the growth state to

the equilibrium state is 0.2680, and the maximum probability of

transferring across all states is 0.2308. This suggests that there is a

possibility of transferring across different states.

3. A Matthew effect is observed in the evolution process of

AGTFP. The probability of maintaining the original state is higher

for the backward and equilibrium states compared to the degraded

state. Furthermore, regions in the equilibrium state are more likely
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TABLE 5 Spatial Markov transfer probability matrices of di�erent types of

AGTFP in the lower Yellow River basin in 2009–2021.

Type t/t+1 n 1 2 3 4

1 1 46 0.2826 0.3261 0.1739 0.2174

2 19 0.5789 0.1579 0.1053 0.1579

3 7 0.5714 0.0000 0.4286 0.0000

4 11 0.0000 0.3636 0.2727 0.3636

2 1 29 0.3793 0.2069 0.1724 0.2414

2 45 0.2444 0.2889 0.2444 0.2222

3 30 0.2333 0.2000 0.4000 0.1667

4 20 0.2000 0.2000 0.3000 0.3000

3 1 19 0.2632 0.2105 0.2632 0.2632

2 31 0.0968 0.2903 0.3871 0.2258

3 46 0.1304 0.1957 0.3261 0.3478

4 35 0.2286 0.1429 0.2286 0.4000

4 1 14 0.5000 0.1429 0.2143 0.1429

2 9 0.1111 0.3333 0.1111 0.4444

3 14 0.3571 0.1429 0.1429 0.3571

4 33 0.1818 0.2424 0.2424 0.3333

to maintain their leading position. However, it is more difficult for

the backward region to transition to a more optimal state, leading

to a phenomenon of bifurcation.

Table 6 presents the results of the long-term evolution trend

analysis of AGTFP transfer within the lower Yellow River basin.

In the absence of spatial lag, comparing the equilibrium state

with the initial state based on the traditional Markov transfer

probability matrix reveals a reduction in the number of backward

and degraded states and an increase in the probability of upward

transfer. For example, the initial probability of transferring to

the equilibrium state is 0.0294, which increases to 0.2716 under

equilibrium conditions. Over time, a more balanced distribution of

the four state types is expected to occur under conditions where

degraded areas are in proximity to one another. In neighboring

conditions, the probability of an upward shift in AGTFP is higher

than that of a downward shift. Based on these conclusions, it can be

posited that AGTFP in each backward state region will transition

to a higher state. Furthermore, the overall trend in AGTFP transfer

shows an upward pattern.

In conclusion, the spatial spillover of agricultural economic

activities between regions is influenced by the interaction of various

factors, leading to changes in both the positive and negative impacts

of these activities. The spatial spillover effect of AGTFP results

from the collective influence of multiple geographic elements,

including market conditions, technology, and systems. Given the

current trajectory, the long-term evolution of AGTFP in the Lower

Yellow River Basin appears promising. AGTFP is likely to continue

growing over time, with a clear tendency toward concentration at

higher values. Additionally, the number of regions exhibiting each

performance type is expected to rise, progressing from lower to

higher performance categories. The impact of varying neighboring

regional contexts on the trajectory of AGTFP is variable. Cities near

TABLE 6 The evolution trend prediction for carbon emission performance

classes at the agriculture level of lower Yellow river basin in 2009–2021.

Type 1 2 3 4

No spatial

lag

Initial state 0.2647 0.5882 0.1176 0.0294

Equilibrium

state

0.2460 0.2248 0.2576 0.2716

Spatial lag Equilibrium

state

1 0.3653 0.2188 0.2369 0.1791

2 0.2671 0.2215 0.2818 0.2295

3 0.1794 0.2001 0.2953 0.3252

4 0.2927 0.2141 0.1874 0.3058

regions with less advanced development exhibit a reduced tendency

for spatial shifts in AGTFP advancement. Conversely, cities close to

developed regions have a higher probability of AGTFP transfer to

these developed areas. Overall, AGTFP shows an increasing trend.

Through the analysis of the spatial Markov chain, we found

that when a region is in the growth area, the likelihood of

upward transfer increases, while other areas are more likely to

maintain the status quo, indicating that China’s agriculture remains

in a transformative phase toward intelligence and sustainability.

Currently, China emphasizes the importance of adhering to

a strategy of coordinated regional development to dismantle

administrative barriers, reduce market segmentation, and promote

regional economic integration. From the perspective of inter-

regional economic development, we conclude that the green

development of agriculture in the main grain-producing areas

of the lower Yellow River Basin is in a critical phase, and

the overall development situation shows a stable and improving

trend. Thus, based on the findings of this paper, we conclude

that the agricultural aspect of China’s inter-regional low-carbon

development evolves from low to high quality, dependent on

the development of surrounding areas. However, factors such as

industry, labor force, and natural environment impede the upward

transfer of agricultural low-carbon development. There is a need

to prioritize the development of various regions and subsequently

extend benefits to surrounding areas. While this aligns with the

theory of the “trickle-down effect,” it must be contextualized within

China’s specific circumstances. Through regional coordination,

we aim to achieve low-carbon agricultural co-development and

establish ecological barriers to mitigate ecological losses resulting

from economic development.

4 Conclusions and implications

This paper employed the EBM model to assess the AGTFP

of cities in the Lower Yellow River Basin from 2008 to 2021

and further decomposed AGTFP measurements using the GML

index to explore the driving roles of AGEC and AGTC in AGTFP

growth. Through the adoption of the Moran index, the spatial

interactions between AGTFP in cities across the Lower Yellow

River Basin were examined, revealing interregional linkages. The

time flow characteristics of AGTFP growth were analyzed using

kernel density. Finally, spatial-temporal analyses of AGTFP were
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conducted using spatial Markov chains to explore the fundamental

characteristics and spatial-temporal dynamics across regions with

varying development levels in the pursuit of low-carbon agriculture

in the Lower Yellow River Basin. The principal conclusions of the

study are as follows:

Firstly, agricultural carbon emissions in the Lower Yellow

River Basin exhibit an inverted “U” trend, with an average

annual growth rate of −1.2%. These emissions peaked at 23.730

million tons in 2013 before declining annually. The primary

source of agricultural carbon emissions is chemical fertilizers,

with the majority originating from Shandong Province. Regionally,

this indicates a persistent pattern of “high in the southwest,

high in the northeast, and low elsewhere” in the main grain-

producing areas. This distribution confirms that the majority of

agrarian carbon emissions originate from Shandong Province.

Additionally, areas with the highest agricultural carbon emissions

are concentrated in the more developed agricultural regions. The

spatial pattern of agrarian carbon emissions is characterized by

“high in the southwest and low in the northeast,” suggesting that

the predominant agricultural developmentmode in themain grain-

producing areas is still characterized by high carbon intensity.

Secondly, an analysis of the spatial and temporal data reveals

a fluctuating growth trend in the cumulative AGTFP index in the

Lower Yellow River Basin. The advancement of green technology

in agriculture is the primary driver of AGTFP growth in the

Lower Yellow River Basin, while the efficiency of this technology

has a relatively limited impact on AGTFP growth. During the

observation period, AGTFP in Shandong Province was higher

than in Henan Province. However, from 2011 onwards, Henan

Province surpassed Shandong Province in AGTFP, assuming the

lead position. With a few exceptions, where AGTFP growth

is closely linked to neighboring cities and municipalities, most

regions exhibit a weakly linked, isolated development pattern.

Thirdly, the results of the dynamic evolution show a tendency

toward unipolar growth in the AGTFP distribution pattern, with

pronounced mobility in distribution dynamics. Regarding peak

changes, AGTFP in the Lower Yellow River Basin has increased

during the observation period, narrowing the gap between regions.

The evolution of AGTFP in Henan Province resembles that in the

Lower Yellow River Basin, while Shandong Province’s overall kernel

density pattern differs from both the Lower Yellow River Basin

and Henan Province. Despite the observed increase in AGTFP,

the pattern exhibits characteristics of multipolarization. Regarding

spatial dynamics, a “path dependence” effect is observed in AGTFP

growth transfer in the Lower Yellow River Basin. Furthermore,

AGTFP transfer can lead to a “club convergence” phenomenon

within specific geographic ranges due to the spillover effects exerted

by neighboring regions. The probability of AGTFP remaining in

its original state is higher than the probability of upward transfer.

This indicates that spatial conditions significantly affect AGTFP

development and that there is also a notable “Matthew effect.”

Optimizing AGTFP development globally is a crucial

factor in accelerating the implementation of higher quality

and productivity standards while promoting environmentally

sustainable agricultural practices. It also plays a key role in

advancing intelligent and environmentally sustainable agricultural

development and stimulating new industry growth. Additionally,

it is crucial for reducing regional development disparities and for

promoting the integrated advancement of agricultural development

and ecological systems. Based on the research findings discussed,

this paper offers the following insights:

Firstly, it is improve awareness among stakeholders of

green development and gradually shift the existing agricultural

development model. Although the provinces in the Lower Yellow

River Basin play a crucial role in ensuring China’s food security, the

agricultural economic development and resource endowment vary

across cities within the basin, leading to disparities in the adoption

of green technologies and the process of green transformation.

According to the National Agricultural Green Development Plan

for the 14th Five-Year Plan of the Ministry of Development of

China 2021, in order to alleviate the vicious competition brought

about by homogenization, cities should formulate locally adapted

agricultural green development plans according to the current

state of local development and demand, among other factors. it is

essential to clarify the role of ecological protection in the Yellow

River Basin in promoting economic development, to establish

the government as a hub between agricultural stakeholders and

economic development, encourage production and management

entities to adopt environmentally friendly practices, and provide

relevant policy support and incentive mechanisms.

Secondly, it is imperative to enhance research and development

in agricultural green technology, along with the transformation

and application of its findings. From a macro perspective, it

is important to bolster policy support for agricultural green

technology innovation, establish diverse funding sources, and

maintain a dynamic innovation workforce by facilitating the

steady transfer of professionals in relevant fields, thereby

ensuring continuous advancement in agricultural green

technology. Promoting the application of agricultural green

technology outcomes in relevant agricultural scenarios is essential.

Additionally, developing agricultural green technology services,

optimizing technology transfer, and enhancing the dissemination

and application of agricultural green technology are key objectives.

Also, it is essential to focus on reducing pesticide and fertilizer

use, mitigating pollutant loss from farmland, and promoting soil

testing and formula application, organic fertilizer substitution,

biological control technologies, and other methods to minimize

ecological impact.

Thirdly, the objective is to achieve a form of regional

development that is synergistic in nature, whereby economic

growth is balanced with the protection of the natural environment.

The principal objectives are to reinforce the exchange and

collaboration on green technologies in agriculture between towns

and cities, to encourage the inter-provincial dissemination of green

technologies, to establish a cross-regional cooperation mechanism,

to create a regional platform for agricultural cooperation, and to

promote the coordinated development of greening in agriculture.

The key to achieving coordinated development of urbanization

and agricultural modernization is to integrate urban and rural

areas, resources and the environment. Such integration should

promote the orderly and balanced development of the spatial

distribution of green total factor productivity in agriculture, thereby

enhancing the impact of high-quality agricultural development on

neighboring regions. This, in turn, should support economic and

social development strategies that are consistent with the spatial

development framework.
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