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Background: Agricultural activities are the second largest source of its greenhouse 
gas emissions in China, making it imperative to prioritize the reduction of carbon 
emissions in agriculture to achieve carbon neutrality. Agricultural modernization 
is recognized as a key strategy for achieving this reduction. In response, China 
has introduced a smart agriculture policy to catalyze the progress of agricultural 
modernization. However, it is not clear that the policy will achieve agriculture 
carbon reductions.

Purpose: To examine the impact and mechanism of smart agriculture policy 
on agricultural carbon emissions, thereby facilitating the transition toward low-
carbon practices in agriculture.

Methods: Using panel data across China’s 31 provinces from 2001 to 2020, this 
paper applies a multi-period differences-in-differences (DID) method to assess 
the impact and mechanisms of the smart agriculture policy on carbon reduction.

Results: ① The smart agriculture policy exerts a significant positive influence on 
reducing agricultural carbon emission. ② The policy’s effectiveness is particularly 
notable in China’s central and western regions and non-grain producing areas, 
in contrast to the limited impact observed in the eastern provinces and grain-
producing areas. ③ Smart agriculture policies have greatly reduced agricultural 
carbon emissions by promoting the agricultural-scale operation and the 
advancement of agricultural technology.

Conclusion: The paper reveals that smart agriculture policy has a positive effect 
on carbon emission reduction and provides relevant policy recommendations for 
the government. This has considerable implications for promoting sustainable 
agriculture.
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1 Introduction

Global warming and increasing extreme weather events profoundly affect human 
productivity and livelihood. This gives rise to a common human goal to reduce greenhouse 
gas emissions. In the field of agricultural production, subject to traditional production, the 
greenhouse gases generated in the process of agricultural production remain high, and it is 
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one of the main sources of global greenhouse gas emissions 
(Bennetzen et al., 2016).

China, a leading agricultural nation globally, also grapples with 
significant agricultural carbon emissions. Since the turn of the 
millennium, the yield per unit area for grain has surged by 26.38%. 
Concurrently, there has been a substantial increase in the application 
of chemical fertilizers, pesticides, and agricultural films, with 
respective increases of 45.25, 41.23, and 93.21% (Tian and Wu, 2020). 
Practices such as frequent land-use changes, excessive resource 
exploitation, and inadequate waste management further aggravate the 
issue of carbon emissions (Zhu and Xing, 2017). Studies indicate that 
traditional agricultural production techniques account for 17% of the 
nation’s total greenhouse gas (GHG) emissions (Xu and Lin, 2017). By 
analyzing the data of agricultural carbon emission over the years, it is 
found that the total agricultural carbon emission in China shows a 
fluctuating upward trend from 2000 to 2021, with an annual growth 
rate of 0.23% (Chen et al., 2024). But in recent years, there has been a 
downward trend, approaching a peak. Since China’s agricultural 
technology level and agricultural scale still need to be improved, the 
emissions caused by them may become the biggest uncertainty factor 
causing agricultural carbon peak (Chi et al., 2020).

Reducing agricultural carbon emissions requires a shift away from 
traditional production and the integration of advanced technologies 
into modern agricultural practices. Consequently, the emergence of 
smart agriculture, underpinned by digital technologies such as 
robotics, the Internet of Things (IoT), and remote sensing, has become 
pivotal for advancing sustainable agricultural practices and 
safeguarding grain production amidst climate variability (Adamides, 
2020). In this vein, the Chinese government launched the “Internet 
Plus” strategy in 2015, which includes integrating the Internet and the 
Internet of Things into agricultural development. The policy aims to 
foster a mature agricultural iot system, improve agricultural 
technology, guarantee the quality of agricultural products, and 
ultimately establish a networked and intelligent agricultural ecosystem.

To implement “Internet Plus” strategy and foster advancement in 
smart agriculture, the Chinese government has promulgated several 
key directives and policies to assist farmers. For instance, the 
Document No. 1 in 2012 initially proposed to promote the information 
development of rural agriculture. In 2015, the Document No. 1 
prioritized the acceleration of smart agriculture as the inaugural 
policy of the year, marking the first time agricultural modernization 
was highlighted in this manner. In 2018, the connection between 
smart agriculture and rural revitalization was further strengthened, 
underscoring the importance of agricultural development. 
Additionally, pilot projects were initiated in nine provinces in 2015 
and 2018 to demonstrate the integration of smart agriculture with 
rural revitalization strategies. Yet, questions remain: Can the 
implementation of smart agriculture policy effectively reduce 
agricultural carbon emissions? Are there regional disparities in the 
policy’s carbon emission reduction efficacy? What are the underlying 
mechanisms through which these policies achieve carbon 
emission reduction?

Currently, scholarly work pertinent to this paper predominantly 
centers on the impact of agricultural policies on carbon emissions and 
the environmental impact of smart agriculture. Regarding the impact 
of agricultural policies, Lu (2013) demonstrated that policies aimed at 
agricultural carbon emission reduction (ACER) successfully bolstered 
the low-carbon production intentions of agricultural firms, thereby 

encouraging their engagement in low-carbon practices. Solazzo et al. 
(2016) observed that green agricultural development policies are 
efficacious in reducing agricultural carbon emissions. Shi et al. (2021) 
dissected the impacts and mechanisms of government regulatory 
policies on ACER, specifically addressing measures such as emissions 
trading and targeted subsidies, thereby enriching the theoretical 
underpinnings of ACER effects. Du et  al. (2023) evaluated the 
influence of China’s National Experimental Demonstration Zones of 
Sustainable Agricultural Development policy on ACER, concluding 
that the policy significantly contributed to carbon emission reductions. 
These studies offer substantial insights for the present paper, yet they 
do not delve into the specific carbon emission reduction effects and 
mechanisms of smart agriculture policy. Turning to the environmental 
impact of smart agriculture, Yuzhen (2021) developed a theoretical 
framework, positing that the adoption of smart agriculture 
technologies modulates the usage of agrochemical inputs, leading to 
environmental benefits. Wang et al. (2020) investigated the nexus 
between the agricultural producers’ inclination toward smart 
agriculture and their low-carbon production behaviors, suggesting 
that producers may be averse to the risks inherent in low-carbon 
practices, and that government policies promoting smart agriculture 
could mitigate such risks. Santiteerakul et al. (2020) discovered that 
the adoption of smart agriculture by agricultural operators leads to a 
diminished utilization of chemicals, including fertilizers and 
pesticides. Although these works have explored the environmental 
effect of smart agriculture, they have primarily concentrated on the 
technology itself, and have not yet thoroughly investigated the policy-
driven carbon reduction effects from a smart agriculture 
policy perspective.

Therefore, taking China as an example, we study the relationship 
between smart agriculture policy and agricultural carbon emissions 
with the help of multi-period difference in differences (DID) to 
explore the answers to the above questions. DID is a prevalent 
analytical tool for evaluating policy impacts, positing policy changes 
and new implementations as “quasi-natural experiments” that are 
exogenous to the economic system. This methodology offers several 
distinct advantages: (1) It mitigates time-invariant heterogeneity and 
partially addresses endogeneity stemming from omitted variables; (2) 
The DID method provides a more rigorous scientific approach, 
enhancing the precision of policy effect estimations; and (3) It reduces 
the likelihood of reverse causality issues by rendering policies 
exogenous in relation to micro-level subjects.

The implementation of smart agriculture policies has been 
indicated by our study to have led to a significant decrease in total 
agricultural carbon emissions. The efficacy of these policies in carbon 
emission reduction exhibits notable regional heterogeneity. In 
provinces that are economically less developed, particularly in central 
and western China, as well as in those not classified as major grain 
producing areas, the policies have demonstrated a substantial 
inhibitory effect on carbon emissions. Conversely, in the economically 
vibrant eastern regions and the major grain producing areas, the 
impact of smart agriculture policy on reducing carbon emissions is 
not significant enough. The mechanism by which these policies reduce 
emissions primarily involves the expansion of the agricultural-scale 
operation and the advancement of agricultural technology.

The paper’s contributions as follows: (1) It empirically examines 
the influence of smart agricultural policies on the reduction of 
agricultural emissions, thereby enriched existing lit research. (2) 
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We  explored the mechanisms through which smart agricultural 
policies affect carbon emissions, delineating a clear pathway for 
emission reduction. It also offers policy recommendations aimed at 
national and local governments to foster emission reduction and 
agricultural sustainability. (3) By verifying the carbon emission 
reduction effects of smart agriculture policy in China, the paper 
provides valuable insights and policy implications for other countries 
and regions striving to achieve agricultural carbon reduction and 
sustainable development.

The structure of the ensuing paper is outlined as follows: Section 
1 offers a comprehensive literature review coupled with an exposition 
of the implementation of smart agriculture policy within China. 
Section 2 articulates the theoretical framework and posits the research 
hypotheses. Section 3 details the data sources and the econometric 
modeling approach. Empirical analysis, encompassing robustness 
checks, heterogeneity examination, and mechanism inquiry, is 
conducted in Section 4. Section 5 extends the analysis further. Finally, 
Section 6 encapsulates the conclusions drawn from the paper and 
presents pertinent policy recommendations.

2 Theoretical analysis and research 
hypothesis

2.1 Smart agriculture policy and 
agricultural carbon emission reduction

Since the advent of the 21st century, China has placed significant 
emphasis on advancing the domain of agricultural informatization 
and intelligence, issuing a succession of pivotal policy documents 
from the central government and initiating pilot projects across nine 
provinces in 2015 and 2018. The smart agriculture policy is primarily 
anchored in three strategic thrusts: Firstly, it aims to expedite the 
development of agricultural informatization by constructing a digital 
agricultural production framework, integrating modern information 
technologies such as the Internet of Things (IoT) and big data, and 
advancing initiatives for the modernization and enhancement of 
smart agriculture. Secondly, it seeks to establish and disseminate the 
agricultural and rural big data systems, fostering data resource 
integration and sharing, facilitating real-time access to resource 
information for agricultural producers, and offering decision support 
for agricultural operations. Thirdly, it leverages smart agricultural 
technologies to augment the efficiency of agricultural resource 
utilization, encourages the judicious use of pesticides and fertilizers, 
and steers the agriculture toward sustainability, environmental 
friendliness, and green development.

Addressing the absence of modern technology in China’s 
agricultural production, along with the ecological degradation 
wrought by extensive farming practices and the excessive use of 
chemical inputs, the smart agriculture policy is formulated with a dual 
focus. Firstly, it is designed to catalyze the transition toward 
agricultural modernization, enhance production efficiency, and 
ensure the sustainable progression of the agricultural industry, thereby 
implicitly aiming to reduce agricultural carbon emissions. Secondly, 
the policy strives to integrate information technology to bring 
agricultural practices up to standard and ecological requirements, 
thereby directly reducing the carbon footprint of farming operations. 
In sum, Hypothesis H1 is introduced.

H1: The implementation of smart agricultural policy is conducive 
to reducing agricultural carbon emissions.

2.2 Smart agricultural policy, 
agricultural-scale operation, and 
agricultural carbon emission reduction

The implementation of smart agriculture policy not only 
promotes the development of smart agriculture, but also provides 
impetus for the large-scale agricultural production and operation 
by improving the level of agricultural management and reducing 
the dependence on manpower. Specifically, smart agriculture 
policies introduce advanced information technology and 
automation equipment. It not only optimizes the agricultural 
production process and improves efficiency, but also enables 
agricultural operators to manage a larger land area more effectively, 
which promotes the expansion of production scale (Li et al., 2016). 
At the same time, the development of smart agriculture has also 
given rise to integrated agricultural service companies, which 
provide whole-process managed services, such as land 
management, planting planning, pest control and harvesting, 
greatly reducing the burden of agricultural operators. Agricultural 
operators are able to devote more energy and resources to 
expanding the scale of production. However, some bottlenecks may 
also be encountered in this process, such as low farmers’ acceptance 
of technology and policy (Reddy, 2019), insufficient capital 
investment (Yin et  al., 2023). To overcome these challenges, 
relevant actors have adopted a series of strategies, including 
strengthening famer’s education and training, providing financial 
subsidies, to ensure the smooth implementation of smart 
agriculture policies and ultimately achieve effective expansion of 
agricultural production scale. Through the application of change 
theory, we  can have a clearer understanding of how smart 
agriculture programs can promote the scale up of agricultural 
production by addressing potential bottlenecks.

Agricultural-scale operation can significantly reduce carbon 
emissions within the agricultural sector. By scaling up agricultural 
operation and refining management practices, the efficiency of 
pesticides can be optimized, thereby reducing the chemical inputs 
required per unit area of crops (Schlesinger, 2000). Additionally, 
employing intensive management practices can improve the 
operational efficiency of agricultural machinery and irrigation 
systems, as documented (Su et al., 2022), which in turn can lead to a 
decrease in carbon emissions throughout the farming process. Scaled 
management is pivotal for the conservation of soil nutrients and the 
protection of arable land. This approach effectively mitigates the loss 
of organic carbon during production.

In conclusion, the implementation of smart agriculture policy is 
pivotal for expanding the agricultural-scale operations. An expanded 
scale can significantly reduce chemical inputs, machinery usage and 
associated fuel consumption, irrigation energy expenditure, and soil 
organic carbon depletion, thereby diminishing the overall emission of 
carbon within agriculture. Consequently, Hypothesis H2 is introduced.

H2: Agricultural-scale operation plays an intermediary role in the 
impact of smart agriculture policy on agricultural 
carbon emissions.
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2.3 Smart agriculture policy, agricultural 
technology advancement, and agricultural 
carbon emission reduction

The advent of smart agriculture policy has catalyzed a 
comprehensive advancement in agricultural technology. These policies 
serve as a potent signal, galvanizing collaboration among universities, 
research institutions, corporations, private investors, and financial 
entities, while also spurring enterprises to augment their research and 
development (R&D) expenditures. This concerted effort propels the 
evolution of agricultural technology (Luo et al., 2023). Furthermore, 
smart agriculture policy drives a shift in agricultural practices, 
speeding up the adoption and spread of innovative agricultural 
technologies. This shift not only meets the burgeoning demand for 
innovative agricultural solutions but also stimulates further 
advancement and refinement of these technologies (Huang and 
Zhu, 2022).

Advancements in agricultural technology are pivotal for reducing 
carbon emissions within the agricultural sector. These Advancements 
enhance agricultural management practices, leading to a diminished 
utilization of pesticides and chemical fertilizers, and bolstering the 
sequestration of soil organic carbon (Li et al., 2022). Consequently, 
this optimization results in a reduction of carbon emissions associated 
with agriculture. Moreover, agricultural technology advancement 
increases production efficiency and yield per unit area, reducing the 
land needed for agriculture and lowering the carbon emission 
intensity of agricultural production (Li et  al., 2022). Given this 
analysis, Hypothesis H3 is introduced.

H3: Agricultural technology advancement plays a mediating role 
in the impact of smart agriculture policy on agricultural 
carbon emissions.

3 Variable selection and data 
description

3.1 Data source

The paper utilizes a panel dataset encompassing 31 Chinese 
provinces from 2001 to 2020, excluding Hong Kong, Macao, and 
Taiwan due to limitations in data availability. Agricultural carbon 
emission data are sourced from the China Rural Statistical Yearbook, 
while Supplementary data are derived from the China Statistical 
Yearbook, China Regional Economic Statistical Yearbook, additional 
issues of the China Rural Statistical Yearbook, and various provincial 
statistical yearbooks. To mitigate the impact of non-stationary 
macroeconomic data on the empirical findings, a logarithmic 
transformation is applied to all variables with absolute values.

3.2 Variable description

3.2.1 Dependent variable
The dependent variable in this paper is total agricultural carbon 

emissions. Total agricultural carbon emissions are mainly studied in 
the narrow sense of agriculture (planting), and the estimation formula 
is as follows:

 1 1= =
= =∑ ∑

n n
it iJt iJt j

j j
C P S Q

 
(1)

itC  is the total amount of agricultural carbon emissions. iJtP  is the 
carbon emission of the jth carbon source in province i at year t, iJtS  is 
the quantity of the jth carbon source in province i at year t, and JQ  is 
the carbon emission coefficient of the jth carbon source. Where: 
carbon sources include fertilizer, pesticide, agricultural film, diesel 
fuel, tilling and agricultural irrigation, and the agricultural carbon 
emission coefficients refer to Li et al. (2016), as shown in Table 1.

3.2.2 Independent variable
To foster the development of smart agriculture, the Chinese 

government has strategically established high-tech agricultural 
industrial demonstration zones in select provinces. Initially, in 2015, 
the inaugural zones were established in Shaanxi and Shandong. 
Subsequently, an expanded initiative in 2018 led to the creation of 
seven additional zones in Shanxi, Jiangsu, Henan, Jilin, Heilongjiang, 
Inner Mongolia, and Xinjiang. In light of this phased rollout of the 
smart agriculture pilot policy, this paper delineates 2015 and 2018 as 
temporal breakpoints and employs a multi-period Differences-in-
Differences (DID) methodology. The provinces that have not yet 
embraced the smart agriculture policy serve as the control group, while 
those that have are designated as the treatment group. The binary 
variable, post-policy implementation, is denoted by 1 for the treatment 
group at the time of adoption and 0 for all other instances. The 
independent variable is the interaction term between treat and time.

3.2.3 Control variables
Several factors exhibit significant correlations with the 

development of smart agriculture, necessitating the control of these 
variables to ensure accurate analysis and policy formulation.

 (1) Population size: The demographic transition profoundly 
influences the agricultural cultivation structure, thereby 
affecting the predominance of grain-oriented cultivation 
practices (Luo and Chou, 2018).

TABLE 1 Carbon sources, coefficients, and reference sources of 
agricultural carbon emissions.

Carbon 
sources

Coefficients Reference sources of 
agricultural carbon 
emissions

Chemical 

fertilizer
0.8956 kg/kg

T. O. West, Oak Ridge National 

Laboratory, USA

pesticide 4.9341 kg/kg Oak Ridge National Laboratory, USA

Agricultural 

film
5.18 kg/kg

Institute of Agricultural Resources and 

Ecological Environment, Nanjing 

Agricultural University

Diesel oil 0.5927 kg/kg
IPCC UN Panel of governmental experts 

on Climate Change

plow 312.6 kg/km2
College of Biology and Technology, China 

Agricultural University

Irrigation for 

agriculture
25 kg/ hm2 Dubey
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 (2) Level of economy: The level of economic development in 
different regions is different, and the scale of moderate 
agricultural operation in different regions is different. The 
economic level will also have an impact on the planting 
structure (Pang et al., 2021).

 (3) Industrial structure: The composition of industry exhibits a 
significant correlation with the volume of carbon emissions 
from agriculture. This relationship varies with the 
proportionate representation of different industrial sectors 
(Dong et al., 2020).

 (4) Agricultural economic development: The development of the 
agricultural economy can significantly affect the ecological 
environment, potentially leading to an escalation in agricultural 
carbon emissions (Li et al., 2016).

 (5) Cultivated land size: The expanse of cultivated land influences 
the adoption of low-carbon farming practices among farmers, 
with larger areas often associated with the implementation of 
more sustainable production methods.

To address potential bias stemming from unobservable variables, 
this paper employs several methodological refinements. Initially, fixed 
effects for each province are incorporated to account for province-
specific characteristics, such as geographic and cultural factors, that 
may influence the estimation outcomes. Subsequently, time fixed 
effects are introduced to mitigate the impact of policy shifts unrelated 
to smart agriculture on the results.

See Table 2 for the specific definitions of the variables used and 
descriptive statistical analysis.

3.2.4 Mediating variables
The theoretical analysis has identified two key mediating variables: 

agricultural-scale operation and agricultural technology advancement. 
Agricultural-scale operation is operationalized by referencing the 
work of Liu and Xiao (2020), who utilized the ratio of transferred 
arable land to contracted land, subjecting it to logarithmic 
transformation. Meanwhile, we refer to the method of Zhong et al. 
(2022) to measure agricultural technology advancement. This involves 
calculating the total factor productivity (TFP) across China’s 31 
provinces from 2001 to 2020 using the DEA-Malmquist index. The 
TFP is subsequently decomposed into the technical efficiency change 
index (EFF) and the technological advancement index (TECH), with 
the latter serving as a proxy for agricultural technology advancement.

3.3 Model setting

The implementation of China’s smart agriculture policy is 
hypothesized to induce several effects. Firstly, it may result in 
variations in carbon emissions within the pilot provinces, comparing 
periods before and after the policy’s enactment. Furthermore, the 
policy is also expected to generate disparities in the aforementioned 
indicators between pilot and non-pilot provinces when assessed 
concurrently. The model’s regression estimates, grounded in a double-
difference approach, adeptly control for extraneous cointegrating 
policies and pre-existing disparities between pilot and non-pilot 
provinces. This methodological rigor allows for the precise 
identification of the policy’s net impact on provincial carbon emissions 
and employment levels. Given that the policy was rolled out in two 

phases, the paper employs an asymptotic DID model to assess its long-
term effects. However, considering that the traditional DID required 
to meet the homogeneity hypothesis of processing effects, and in 
reality, different groups may have different responses to the same 
policy, we introduced heterogeneous processing effects to solve this 
problem and divided China into three regions, namely middle, east 
and west, to ensure the robustness of the results.

3.3.1 Model specification
This paper employs a model to quantify the emission reduction 

impact of the smart agriculture policy. Based on the above discussion, 
the paper assesses the efficacy of the policy in reducing carbon 
emissions among pilot provinces at a provincial level. The DID is 
utilized to conduct this evaluation, formulated as follows.

 0 1 1α α φ λ ε= + + ∑ + + +it it it i t itlnC Policy X year  (2)

In this analysis, itC  is the dependent variable, denoting the total 
agricultural carbon emissions of a province for a given year. itPolicy  
is the independent variable, defined as the interaction between the 
treated (indicating whether the province is a pilot or not) and the time 
(marking the year of policy implementation), which signifies whether 
the province is affected by the smart agriculture policy in that year. To 
facilitate the explanation of the fluctuations of the data and facilitate 
the calculation, we take the logarithm of the explained variables above.

3.3.2 Mediating effects model
Exploring the role mechanism model of the emission reduction 

effect of smart agriculture policy. To empirically ascertain the 
mechanisms by which these policies effect change, a mediation effect 
model is formulated, expanding upon Equation (1), as 
delineated below:

 0 21β β φ λ ε= + + ∑ + + +t k
it it it i t itM Policy X year

 (3)

 
0 1 32γ γ φ γ λ φ ε= + + + + + ∑ +∑ k k

it it it i t it it
k

lnC Policy M year X
 
(4)

Let k
itM  represent the kth mediating variable, encompassing both 

the agricultural-scale operation as well as advancements in agricultural 
technology. Equation (2) is employed to assess the total impact of 
smart agricultural policies on agricultural carbon emissions. 
Equation (3) evaluates the direct effect of these policies on the 
mediating variables. Provided that the core explanatory variables in 
Equation (2) yield significant coefficients, Equation (4) is then utilized 
to examine the mediating effect of the policy shock on 
carbon emissions.

4 Empirical analysis

4.1 Baseline regression

The paper introduces control variables incrementally into the 
baseline regression model (2) to assess the impact of smart 
agricultural policies on agricultural carbon emissions, with the results 
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presented in Table  3. The coefficients associated with smart 
agricultural policies are uniformly negative and significant at the 1% 
level. Initially, column (1) reveals a significantly negative regression 
coefficient for total agricultural carbon emissions under the smart 
agriculture policy without the inclusion of control variables, 
suggesting a reduction in carbon emissions in pilot provinces. 
Subsequent columns (2) to (7) incorporate control variables stepwise, 
building upon the foundation of column (1). Specifically, column (7) 
demonstrates that after introducing control variables and two-way 
fixed effects for provinces, the regression coefficient for the smart 
agriculture policy is −0.094, significant at the 1% level. This indicates 
that, on average, the policy leads to a 9.4% increase in total 
agricultural carbon emissions in the subsequent year. In essence, the 
smart agriculture policy significantly curbs agricultural carbon 
emissions. Consequently, the findings confirm the policy’s positive 
contribution to agricultural carbon emission reduction in China, 
thereby validating research hypothesis H1.

Among the remaining control variables, the coefficients for 
population size and the tertiary industry structure are significantly 
negative, suggesting that a larger population and greater development 
of the tertiary sector may contribute to the suppression of agricultural 
carbon emissions. Conversely, the coefficients for the scale of 
secondary industry and economic development are significantly 
positive, implying that increased energy consumption could be  a 
driving factor behind the rise in agricultural carbon emissions. 
Additionally, the expansion of arable land and the growth in the gross 
value of agricultural output might result in heightened use of chemical 
fertilizers and pesticides, consequently boosting carbon emissions.

Column (1) is reduced by 1% for the variable explained. The 
results of the robustness test of the reduced sample show that there is 
no substantial change in the hypotheses of this paper and the results 
of the validation.

Column (2) presents the findings from a test that excludes the 
impact of municipalities on carbon emission efficiency. Given the 
initiation of the smart agriculture policy post-2017, the sample period 
was chosen to closely align with this policy’s implementation, 
enriching the data set with a substantial number of observations. The 
empirical analysis confirms that, aside from minor adjustments in the 
elevation coefficient, the validation conclusions remain consistent 
with those of the original study.

Column (3) details the results of a robustness test employing a 
one-period lag. The analysis and comparison of the regression 
outcomes confirm the consistency of these results with those of the 
initial examination, thereby validating the robustness of the findings.

Column (4) presents results that account for the exclusion of other 
agricultural policies, utilizing the trio of policies on agriculture, rural 
areas and farmers enacted in 2018 (referred to as Policy1) for the 
robustness test. Upon rigorous analysis and comparison of the 
regression outcomes, it is evident that the findings are positively 
significant, corroborating the baseline estimation’s conclusions.

4.2 Parallel trend test

The baseline regression analysis demonstrates that smart 
agricultural policies significantly reduce agricultural carbon emissions. 
However, the effectiveness of DID in identifying effects depends on the 
realization of the parallel trend assumption. To substantiate the validity 
of Hypothesis 1, a parallel trends test has been conducted on the data, 
the procedure of which is delineated as follows:
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TABLE 2 Variable meaning and descriptive statistics.

Variables Variable meaning/calculation method Mean 
value

Standard 
deviation

Variable explained
Total carbon emissions 

from agriculture
The total amount of regional agricultural carbon emissions /t is taken as logarithm 17.7161 1.5798

Explanatory 

variables
Policy interaction term

Treat: Whether it is a smart agriculture pilot province

Time: the value is 1 after the smart agriculture policy is implemented; otherwise, the 

value is 0

The interaction term of time*treat is used for the explanatory variables

0.0532 0.2246

Mediating variable

Agricultural-scale 

operation

The ratio of the cultivated land transfer area to the cultivated land area contracted for 

operation shall be taken as logarithm
3.0600 0.6208

Agricultural technology 

advancement
DEA-Malmquist decomposition of TFP yields the technological advancement index 1.4587 0.7565

Variable of control

Size of population The total population of the region /104 people, take the logarithm 8.0854 0.8597

Level of economy Per capita regional GDP /(yuan/person), take the logarithm 10.1821 0.8159

Secondary industry 

structure
Ratio of the added value of the secondary industry to regional GDP 0.4221 0.0835

Structure of tertiary 

industry
Ratio of tertiary industry added value to regional GDP 0.4603 0.0909

Scale of cultivated land Total grain sown area /hm2, logarithm 8.0994 1.1748

Development of 

agricultural economy
Total output value of planting industry/108 yuan, take the logarithm 6.6048 1.2089
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Among them, is a set of dummy variables that take the value of 1 
if province i has implemented the pilot low-carbon city policy in year 
t, and vice versa 0. The sign meanings of the remaining variables are 
the same as those in Equation (5). On this basis, we take the 6th period 
before the implementation of the smart agriculture policy as the base 
period, and the running results are shown in Figure 1.

Examination of Figure 1 reveals that prior to the introduction of 
the smart agriculture policy, no significant disparities existed in 
agricultural carbon emissions, thereby fulfilling the parallel trends 
assumption. In contrast, post-implementation, a noticeable 
reduction in agricultural carbon emissions is observed in the 
treatment groups relative to the control group. This reduction 
underscores the enduring impact of the smart agriculture policy in 
fostering a decrease in agricultural carbon emissions. Consequently, 
the findings within this paper have successfully withstood the 
parallel trends test, substantiating the robustness of the 
conclusions drawn.

4.3 Placebo test

To mitigate the potential influence of unobservable omitted 
variables on the baseline regression, this paper employs a placebo test 
to ascertain the effects of smart agricultural policies. Following the 
methodology of Cai et al. (2016), “pseudo-policy dummy variables” 
are generated through a random sampling process, repeated 500 
times, based on the distribution of provinces where smart agriculture 
policy has been implemented. Model (2) is then regressed to yield an 

ensemble of 500 estimated coefficients alongside their respective 
p-values.

The findings are presented in Figure  2, illustrating that the 
regression coefficients are predominantly centered around zero and 
conform to a normal distribution, with the majority exhibiting 
statistical insignificance. The baseline regression’s coefficient estimates 
are situated in the extreme upper tail of the distribution for spurious 
regression coefficients, which are characterized as low-probability 
outcomes in the provincial placebo tests. Consequently, the 
benchmark estimation results presented in this paper are unlikely to 
be attributed to unobservable factors.

4.4 Robustness test

To ensure that the paper’s findings are not confounded by 
extraneous variables, a battery of robustness checks has been 
performed, as detailed in Table 4.

Column (1) is reduced by 1% for the variable explained. The 
results of the robustness test of the reduced sample show that there is 
no substantial change in the hypotheses of this paper and the results 
of the validation.

Column (2) presents the findings from a test that excludes the 
impact of municipalities on carbon emission efficiency. Given the 
initiation of the smart agriculture policy post-2017, the sample period 
was chosen to closely align with this policy’s implementation, 
enriching the dataset with a substantial number of observations. The 
empirical analysis confirms that, aside from minor adjustments in the 

TABLE 3 Estimated impact of smart agriculture policy on total agricultural carbon emissions.

Variables of 
interest

Total carbon emissions from agriculture

(1) (2) (3) (4) (5) (6) (7)

Whether to 

implement smart 

agriculture policy

−0.378*** (4.70)
−0.551*** 

(10.18)

−0.627*** 

(13.15)
−0.651*** (9.49)

−0.556*** 

(10.35)
−0.432*** (3.89)

−0.094*** 

(−0.69)

Size of population
−1.349*** 

(−2.86)

−1.353*** 

(−3.53)

−1.309*** 

(−3.54)
−0.486** (−2.28) −0.453** (−2.11) −0.281 (−1.52)

Secondary industry 

structure
1.250*** (4.50) 1.128*** (3.25) 1.032*** (3.55) 0.939*** (3.10) 0.925*** (3.64)

Tertiary industry 

structure
−0.238* (−0.62) −0.153 (−0.46) −0.127 (−0.39) 0.171 (0.50)

Scale of cultivated 

land
0.783*** (9.79) 0.782*** (9.72) 0.543*** (7.74)

Level of economy 0.052*** (1.13) 0.013*** (0.89)

Total agricultural 

output value
0.326*** (4.99)

Provincial fixed 

effects
Under control Under control Under control Under control Under control Under control Under control

Time fixed effect Under control Under control Under control Under control Under control Under control Under control

Constant
21.226*** 

(481.68)
31.837*** (8.45) 31.363*** (10.33) 31.156*** (10.69) 18.366*** (8.55) 17.676*** (7.89) 16.419*** (8.93)

N 620 620 620 620 620 620 620

R2 0.510 0.624 0.684 0.684 0.839 0.842 0.871

Ps: *, **, and *** denote statistical significance at the 10, 5, and 1% levels, respectively.
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elevation coefficient, the validation conclusions remain consistent 
with those of the original paper.

Column (3) details the results of a robustness test employing a 
one-period lag. The analysis and comparison of the regression 
outcomes confirm the consistency of these results with those of the 
initial examination, thereby validating the robustness of 
the findings.

Column (4) presents results that account for the exclusion of other 
agricultural policies, utilizing the trio of policies on agriculture, rural 
areas and farmers enacted in 2018 (referred to as Policy1) for the 
robustness test. Upon rigorous analysis and comparison of the 
regression outcomes, it is evident that the findings are positively 
significant, corroborating the baseline estimation’s conclusions.

4.5 Heterogeneity analysis

Due to variations in agricultural resource endowments and levels 
of digital economic development across China’s regions, a regionally 
differentiated analysis of the carbon emission reduction effects of 
smart agricultural policies is warranted. The regional classification is 
based on economic development and grain production status, 
followed by sequential regression analyses on the categorized areas.

 (1) Heterogeneity between the eastern region and the central and 
western regions.

Geographical constraints contribute to the uneven economic 
development across China, with the eastern region demonstrating 
robust development compared to the relatively underdeveloped 
central and western regions. This disparity is largely attributed to the 
eastern provinces’ coastal location, which affords them flat terrain, 
dense populations, and convenient transportation infrastructure. In 

contrast, the central and western provinces, situated inland and 
characterized by plateaus and deserts, have lower population densities 
and face transportation challenges. Consequently, this study 
categorizes the 31 provinces into eastern, central, and western regions 
to investigate the heterogeneity in the impact of smart agricultural 
policies on agricultural carbon emission reductions across these 
diverse geographical areas.

The disparities in regional outcomes are presented in Table 5, 
illustrating that the impact of smart agriculture policy on agricultural 
carbon emissions varies across regions. Specifically, columns (1) and 
(2) indicate that the influence of these policies in the eastern region is 
comparatively mild. In contrast, columns (3) to (6) reveal that the 
policies have a significantly negative effect on the total volume of 
agricultural carbon emissions in the central and western regions. This 
suggests that the primary findings of this study are predominantly 
attributed to the central and western regions.

The primary factors contributing to the evident disparity between 
the eastern region and the central and western regions are as follows: 
Firstly, the eastern region of China, being a more economically 
developed area, has already achieved a high level of modernization in 
its agricultural production. Its agricultural technology, equipment, and 
management are relatively advanced, leaving limited room for further 
improvement at the current technological level. Additionally, due to its 
superior resources and economic conditions, the region may have 
embraced the concept of low carbon and environmental protection 
earlier. As a result, related policies and market mechanisms have 
become more mature, leaving less opportunity for further exploration 
of carbon emission reduction within the existing framework. 
Furthermore, as a result of their superior resources and economic 
conditions, they may have embraced the idea of low carbon and 
environmental protection at an earlier stage. Consequently, the 

FIGURE 1

Results of the parallel trend test.
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corresponding policies and market mechanisms are also more 
developed, leaving less opportunity for further exploration of the 
potential for reducing carbon emissions within the current framework. 
The central and western regions, in comparison to the eastern region, 
possess a greater abundance of conventional agricultural production 
techniques, untapped agricultural resources, and significant potential 
for reducing carbon emissions. Consequently, they are more receptive 
to the policy subsidies and technological advancements introduced 

through the implementation of the smart agriculture policy. By 
implementing contemporary agricultural technology, such as intelligent 
irrigation and accurate fertilization, the local community may minimize 
the inefficiency of chemical fertilizers and water resources, thereby 
attaining a reduction in carbon emissions in agriculture.

Based on the findings previously discussed, it is clear that the 
central and western regions have a significant potential for reducing 
carbon emissions. Moreover, the implementation of smart agriculture 

FIGURE 2

Placebo test results.

TABLE 4 Robustness test results.

Variables of 
interest

Robustness test

(1) (2) (3) (4) (5) (6) (7)

1% winsorization 
treatment

Excluding municipalities 
directly under the Central 

Government

One period 
lag

Other agricultural policies 
are excluded

Whether to implement 

smart agriculture 

policy

−0.368*** 

(4.60)
−0.547*** (10.10) −0.474*** (8.14)

−0.502*** 

(10.05)
−0.515*** (10.01)

Whether to implement 

policies on agriculture, 

rural areas and farmers

0.378*** (4.70) 0.551*** (10.18)

Variable of control Out of control Under control Out of control Under control Under control Out of control Under control

Provincial fixed effects Under control Under control Under control Under control Under control Under control Under control

Time fixed effect Under control Under control Under control Under control Under control Under control Under control

Constant
21.136*** 

(482.10)
32.167*** (8.89)

21.324*** 

(566.69)
23.578*** (7.30) 31.893*** (8.56)

21.126*** 

(481.68)
31.837*** (8.45)

N 620 620 620 620 620 620 620

R2 0.503 0.629 0.759 0.762 0.624 0.510 0.624

Ps: *, **, and *** denote statistical significance at the 10, 5, and 1% levels, respectively.
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TABLE 6 Heterogeneity of major and non-grain producing areas.

Variables of interest Agricultural carbon emissions

(1) (2) (3) (4)

Major grain producing areas Non-grain producing areas

Whether to implement smart agriculture policy −0.390* (5.46) −0.419* (7.75) −0.552*** (6.11) −0.644*** (7.26)

Variable of control Out of control Under control Out of control Under control

Provincial fixed effects Under control Under control Under control Under control

Time fixed effect Under control Under control Under control Under control

Constant 22.088*** (483.24) 35.083*** (7.05) 20.714*** (350.83) 24.744*** (5.72)

N 620 620 620 620

R2 0.763 0.828 0.768 0.776

Ps: *, **, and *** denote statistical significance at the 10, 5, and 1% levels, respectively.

policy in these areas has led to notably more effective results. 
Consequently, the government should consider expanding the 
adoption of smart agriculture policy in the central and western 
regions. In the eastern region, the government should consider the 
specific agricultural and low-carbon development contexts and launch 
a well-planned pilot program to promote the harmonious and 
sustainable development of agriculture and the economy.

 (2) Heterogeneity between major and non-grain producing areas.
Separate regressions are conducted for major grain producing 

areas and non-grain producing areas, with the designation of major 
grain producing areas based on the ‘Opinions on Reform and 
Improvement of Certain Policies and Measures for Comprehensive 
Agricultural Development, as issued by China’s Ministry of Finance 
in 2003. The regression outcomes are detailed in Table 6. Specifically, 
columns 1 and 2 represent the 13 provinces categorized as major grain 
producing areas, while columns 3 and 4 correspond to the 18 
provinces in non-grain producing areas.

Table 6 demonstrates that in the samples collected from the major 
grain producing areas, the smart agriculture policy does not contribute 
to a decrease in total agricultural carbon emissions. However, in the 
samples from the non-grain producing areas, the smart agriculture 
policy effectively reduces total agricultural carbon emissions. This 
indicates that the non-grain producing areas have greater potential for 
reducing carbon emissions.

The primary regions for grain production are limited by the “red 
line of arable land” policy, resulting in a significant portion of grain 
crops being cultivated. As a result, the planting patterns and 
management processes are more consistent, agricultural production 
is highly standardized, and there is limited potential for reducing 
carbon emissions in agriculture. In regions where grain production is 
not the primary focus, the cultivation of grains exhibits greater 
diversity and agricultural production is less standardized. 
Consequently, these locations provide greater potential for reducing 
carbon emissions in agriculture.

According to the analysis provided, it is evident that places that 
non-grain producing areas have a higher potential for reducing carbon 
emissions in agriculture. The government should enhance the 
execution of smart agriculture policy in these regions, reinforce 
standardized agricultural output, and broaden the utilization of 
contemporary agricultural technology. In addition, for major grain 
producing areas, the government should promote the optimization of 
agricultural planting structure, especially increasing the proportion of 
carbon sink grains planted to improve soil carbon sequestration and 
storage capacity. Furthermore, by implementing technology 
advancements and refining management practices, it is possible to 
enhance the productivity per unit of land, so facilitating the transition 
of agriculture toward a more efficient and environmentally sustainable 
production model.

TABLE 5 Heterogeneity of eastern, central, and western provinces.

Variables of 
interest

Agricultural carbon emissions

(1) (2) (3) (4) (5) (6)

The Eastern region The Central Region The western 
region

Whether to implement 

smart agriculture policy
−0.205* (1.90) −0.494** (2.75) −0.454*** (8.07) −0.463*** (7.41) −0.684*** (9.61) −0.647*** (8.94)

Variable of control Out of control Out of control Out of control Out of control Out of control Out of control

Provincial fixed effects Under control Under control Under control Under control Under control Under control

Time fixed effect Under control Under control Under control Under control Under control Under control

Constant 21.728*** (259.20) 29.700*** (6.44) 21.933*** (539.10) 29.374*** (6.23) 20.664*** (432.62) 18.429*** (5.00)

N 620 620 620 620 620 620

R2 0.503 0.488 0.906 0.923 0.915 0.921

Ps: *, **, and *** denote statistical significance at the 10, 5, and 1% levels, respectively.
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4.6 Test for endogeneity

Endogeneity is an inherent issue in panel data analyses. 
Addressing endogeneity is crucial for establishing the presence of a 
causal link between variables. In this paper, we employ the two-stage 
least squares instrumental variable (IV-2SLS) method for regression, 
with the findings detailed in Table 7.

Table 7 demonstrates that the coefficients for the implementation 
of smart agricultural policies are significantly negative. A modest 
enhancement in both the magnitude and statistical significance of 
these coefficients. This suggests that, when accounting for endogeneity 
due to reverse causality, the impact of these policies on reducing 
agricultural carbon emissions is more pronounced. Furthermore, the 
Cragg-Donald Wald F statistic, at 2595.28, exceeds the critical value 
of 16.38, indicating that the IV-2SLS regression is robust against the 
issue of weak instruments. The findings from the IV-2SLS regression 
confirm that the introduction of smart agricultural policies has 
significantly contributed to the reduction of overall agricultural 
carbon emissions, addressing the endogeneity concern.

4.7 Mechanism analysis

In order to further explore the path of smart agriculture policy 
affecting agricultural carbon emissions, based on theoretical analysis, 
this paper empirically analyzes the action mechanism of smart 
agriculture policy on agricultural carbon emissions from two 
perspectives of operation scale and technology advancement.

The agricultural-scale operation is quantified by the ratio of 
transferred cultivated land to the total contracted cultivated land area. 
Technology advancement in agriculture is assessed through the 
decomposition of Total Factor Productivity (TFP) to derive the TECH 
variable. Utilizing a sequential testing approach for mediating effects, 
this paper conducts regression analyses for Equations (3, 4) in an 
orderly fashion, with the intermediary effect test outcomes presented 
in Table 8.

Columns (1)–(2) of Table 8 examines to determine if the smart 
agriculture policy has a significant impact on the agricultural-scale 
operation and agricultural technology advancement. The findings 
indicate that the core explanatory variables exert a positive and 
significant influence on these mediating variables at the 1% confidence 
level, suggesting that the implementation of such policies significantly 
amplifies the agricultural-scale operation and fosters technology 
advancement. Column (3) presents the impact of the agricultural-
scale operation on agricultural carbon emissions. The estimated 
coefficient for the agricultural-scale operation is significantly negative, 
suggesting that the implementation of smart agriculture policy, 
through the expansion of the agricultural-scale operation. It can lead 
to a reduction in total agricultural carbon emissions. Column (4) 
reveals that the coefficient attributed to agricultural technology 
advancement is significantly positive at the 1% confidence level, 
underscoring the role of technological advancements as a pivotal 
conduit in the smart agriculture policy to mitigate carbon emissions. 
This paper employed Sobel’s test to assess the significance of the 
mediating effects, yielding Z-values of −2.0431 and − 2.2378 for the 
respective mediating variables. Both values surpass the 5% significance 
level threshold, confirming the statistical significance of both the scale 
of operations and technology advancement as mediators. The results 

of the joint test after adding all mediating variables are reported in 
Column (5) of Table 8. Upon analysis of Table, the direction and 
significance of the two mediating variables are consistent with those 
presented in columns (3) and (4) of Table 8. This correspondence 
supports the proposition that the agricultural-scale operation, along 
with advancements in agricultural technology, constitute legitimate 
mediating mechanisms. As a result, Hypothesis H2 is corroborated.

This indicates that the agricultural-scale operation and 
agricultural technology advancement play a crucial role in attaining 
the goal of reducing carbon emissions in agriculture, as outlined in the 
smart agriculture strategy. Hence, in pilot zones where smart 
agriculture policy is being implemented, governments should 
additionally enhance the scope of agricultural scale management and 
stimulate agricultural technology advancement through diverse policy 
instruments and financial mechanisms.

5 Further analysis

In order to further verify the comprehensive impact of smart 
agriculture policy on carbon emissions, we use agricultural carbon 
emission intensity and density different from the above to measure 
agricultural carbon emissions, and explore the specific role of smart 
agriculture policy on agricultural carbon emission reduction.

Agricultural carbon emission intensity is the agricultural carbon 
emission per unit of agricultural output value, reflecting the 
relationship between agricultural carbon emission and agricultural 
economy; Agricultural carbon emission density is the total amount of 
agricultural carbon emissions per unit of land area, reflecting the 
efficiency of carbon emissions in agricultural production activities. 
Among them, the agricultural carbon emission intensity (kg/104 yuan) 
is equal to the ratio of the total agricultural carbon emission to the 

TABLE 7 IV-2SLS results of the impact of smart agriculture policy on total 
agricultural carbon emissions.

Variables of 
interest

IV-2SLS

(1) (2)

Promulgation of 
policies

Total carbon 
emissions from 

agriculture

The previous smart 

agriculture policy
−0.8699*** (0.017)

Whether to 

implement smart 

agriculture policy

−0.8357*** (0.158)

Variable of control Under control Under control

Provincial fixed 

effects
Under control Under control

Time fixed effect Under control Under control

Constant 0.0258 (0.031) 18.2782*** (0.253)

Cragg-Donald Wald F 

statistic
2595.28

N 620 620

R2 0.854 0.242

Ps: *, **, and *** denote statistical significance at the 10, 5, and 1% levels, respectively.
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TABLE 9 Impact estimates of the impact of smart agriculture policy on agricultural carbon emission intensity and density.

Variables of interest (1) (2) (3) (4)

Agricultural carbon emission intensity Agricultural carbon emission density

Whether to implement smart agriculture policy −2.3e+06*** (−10.97) −2.5e+06*** (−10.14) −2.6e+05*** (−7.71) −2.4e+05*** (−7.86)

Variable of control Out of control Under control Out of control Under control

Provincial fixed effects Under control Under control Under control Under control

Time fixed effect Under control Under control Under control Under control

Constant 3.1e+06*** (20.55) −1.3e+07* (−1.83) 5.4e+05*** (25.10) −9.9e+05 (−0.72)

N 620 620 620 620

R2 0.776 0.797 0.599 0.604

Ps: *, **, and *** denote statistical significance at the 10, 5, and 1% levels, respectively.

total agricultural output value, and the agricultural carbon emission 
density (kg/667 m2) is equal to the ratio of the total agricultural carbon 
emission to the grain sown area. Both variables are taken in 
logarithms. Processed. Overall, the exploration of the impact of smart 
agriculture policy implementation on the intensity and density of 
agricultural carbon emissions is deemed to possess significant 
research value.

The differences in differences regression is conducted on the 
intensity and density of agricultural carbon emissions by the 
enactment of smart agriculture policy, and the regression results are 
shown in Table 9. The regression analysis detailed in Table 9 indicates 
that Smart agricultural policy is instrumental in lowering the 
Agricultural carbon emission density, indicating a reduction in the 
average carbon emissions generated per unit of land area. The impact 
of smart agriculture policy on agricultural carbon emission intensity 
is also negative and significant, which indicates that smart agriculture 
policy also has a reduction effect on carbon emission per unit of 
agricultural output value.

The findings of the mechanism analysis test are displayed in 
Table 10. The effects of the two mediating variables on the intensity 

of agricultural carbon emissions are reported in columns (1) ~ (2) 
of Table 10. Two regression coefficients are found to be significantly 
negative and pass the Sobel test. The (3) ~ (4) column shows the 
effect of two mediation variables on the agricultural carbon 
emission density, and the regression results are similar to the 
(1) ~ (2) column, which also passed the Sobel test. The estimation 
results demonstrate that the implementation of smart agriculture 
policy enhances both the agricultural-scale operation and the 
technology advancement. Consequently, this leads to a simultaneous 
reduction in both the density and intensity of carbon emissions 
in agriculture.

6 Conclusion and policy 
recommendations

This paper employs a multi-period difference-in-differences (DID) 
approach, delving into the policy’s role and the underlying mechanisms 
influencing agricultural carbon emissions. Rigorous tests are performed 
on the findings to substantiate the robustness of the regression 

TABLE 8 Mediating mechanism test of the impact of smart agriculture policy on total agricultural carbon emissions.

Variables of 
interest

Agricultural carbon emissions

(1) (2) (3) (4) (5)

The agricultural-
scale operation

Agricultural 
technology 

advancement

Total carbon emissions from agriculture

Whether to implement 

smart agriculture policy
0.0206*** (0.0098) 0.0057** (0.0023) −0.0391*** (0.0098) −0.0392*** (0.0099) −0.644*** (0.0098)

The agricultural-scale 

operation
−0.2341*** (0.0561) −0.2294*** (0.0553)

Agricultural technology 

advancement
−0.0056** (0.1279) −0.0054** (0.1008)

Variable of control Under control Under control Under control Under control Under control

Provincial fixed effects Under control Under control Under control Under control Under control

Time fixed effect Under control Under control Under control Under control Under control

N 620 620 620 620 620

R2 0.539 0.724 0.865 0.864 0.873

Ps: *, **, and *** denote statistical significance at the 10, 5, and 1% levels, respectively.
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outcomes. The principal findings of this research are summarized as 
follows: (1) Overall, smart agriculture policy significantly reduces the 
total amount of agricultural carbon emissions. Compared to non-pilot 
provinces, the pilot provinces reduced their agricultural carbon 
emissions by 9.4% on average. (2) From the perspective of 
heterogeneity, smart agriculture policy has a significant effect on 
carbon emission reduction in the economically underdeveloped areas 
and non-grain producing areas in central and western China. However, 
for the economically developed regions and major grain producing 
areas in eastern China, the carbon reduction effect of smart agriculture 
policy is limited. (3) Upon analyzing the underlying mechanisms, it is 
evident that the smart agriculture policy can significantly influence the 
reduction of agricultural carbon emissions by promoting the 
agricultural-scale operation and the advancement of 
agricultural technology.

Building on the empirical evidence presented, this paper offers the 
following targeted policy recommendations: (1) The government 
should enhance and refine the smart agriculture policy framework 
based on pilot experiences, progressively extend the pilot areas, and 
strive to elevate the level of agricultural intelligence, thereby 
promoting high-quality and sustainable agricultural development. (2) 
Advancing smart agriculture requires considering regional 
characteristics and implementing targeted measures accordingly. In 
less developed areas of central and western regions and non-grain 
production areas, smart agriculture should be prioritized to mitigate 
environmental impacts and reduce agricultural carbon emissions 
through intelligent production. For other regions, it is necessary to 
balance smart agriculture with low-carbon goals according to the 
needs of low-carbon development, achieving coordinated progress 
between the two. (3) Promoting the development of smart agriculture 
requires actively nurturing new agricultural operation entities and 
reasonably expanding agricultural-scale operations. In the pilot areas 
for smart agriculture policy, there should be an effort to foster the 
growth of new agricultural operation entities, such as family farms 
and rural cooperatives. Concurrently, agricultural-scale operations 
should be  moderately increased to achieve economies of scale in 
farming, reduce environmental impacts, and foster a harmonious 
coexistence between agriculture and the ecological environment. (4) 
The government should intensify fiscal support for agriculture, 
encouraging technological innovation, particularly in the application 
of technologies such as the Internet of Things, big data, and artificial 
intelligence in the agricultural sector. Additionally, enterprises should 

be motivated to increase R&D investment to incubate and expand 
innovative agricultural businesses, accelerating the transformation 
and application of technological achievements. These can help 
overcome limitations in resources and technology, facilitating the 
intelligent upgrade of agricultural production methods. Furthermore, 
the government should enhance farmers’ acceptance and application 
of smart agricultural technologies through education and training, 
thereby improving the efficiency of agricultural production and 
management, and propelling the development of agriculture toward 
modernization and sustainability.

During the empirical analysis phase, several limitations were 
encountered in this paper: First, constrained by data availability, a 
detailed municipal-level analysis was precluded, necessitating the use 
of broader provincial-level data. Second, while the paper centers on 
environmental impact, the potential socio-economic ramifications of 
smart agriculture policy, including effects on farmers’ income and 
employment, warrant further investigation. Addressing these issues 
will be the focus of subsequent research endeavors.
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