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Understanding the cycle of carbon emissions resulting from agricultural

practices is critical for evaluating their e�ect on environmental quality. This

study investigates the influence of corn production on environmental quality

across six major corn producing provinces in China: Hebei, Heilongjiang, Henan,

Hubei, Shandong, and Sichuan, using panel datasets spanning from 1990 to

2022. Utilizing a robust methodological framework and advanced econometric

techniques such as the Panel Mean Group Autoregressive Distributed Lag model

(PMG-ARDL), Panel Quantile Regressions (PQR), Panel Least Square regression

(PLSR), this study o�ers a comprehensive analysis of both short-term and long-

term impacts of several agricultural inputs, agricultural GDP, and temperature

on environmental quality. The findings reveal significant long-term contributions

to carbon emissions from the use of agricultural water, agricultural credit,

and fertilizers use, indicating the environmental costs associated with intensive

agricultural practices. The study shows carbon emissions have a long-term

negative relationship with corn production. The results from the PMG-ARDL

model are consistent with those obtained from the PQR, and PLSQR analyses,

demonstrating strong positive correlations between agricultural loans, fertilizer

use, agricultural water usage, and carbon emissions. The Dumitrescu and Hurlin

results show unidirectional causation of carbon emissions from pesticide use,

temperature, and agricultural GDP, and bidirectional causal relationship between

carbon emissions, corn production, fertilizer use, agricultural water usage,

and agricultural credit. The study underscores the critical need for policies

that balance agricultural productivity with environmental quality, suggesting

directions for future research to explore diverse agricultural systems and

incorporate more dynamic modeling approaches to better understand and

mitigate the environmental impacts of agriculture.

KEYWORDS

agricultural credit, agricultural input, carbon emissions, climate change, corn

production

1 Introduction

Agricultural production systems play a critical role in the global economy, providing

food for billions of people. However, these systems also contribute significantly to

greenhouse gas (GHG) emissions, accounting 34% of worldwide emissions (Crippa et al.,

2021). The shift from traditional to modern farming practices has increased reliance on
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fossil fuels due to advancements in land use and the adoption

modern irrigation equipment (Khan et al., 2021; Dagar et al.,

2020). As a result, agriculture now contributes about 30% of

global GHG emissions (Fox et al., 2019; Maraseni et al., 2018),

leading to a worldwide temperature increase of 1.1◦C over the

past decade (Ahmad et al., 2024; Nathaniel, 2021). The rapid

growth of global GDP, increasing by 8.1% annually from 1961 to

2013, has also significantly increased CO2 emissions, with human

activities responsible for 50% of this increase in recent decades

(Shuai et al., 2018; Picano et al., 2022). It is crucial to address these

challenges, as one of the sustainable development goals is to reduce

CO2 emissions and ensure a healthier living environment for both

current and future populations by 2030 (Murshed and Alam, 2021;

Rehman et al., 2019).

China plays a crucial role in global agriculture, accounting for a

quarter of the world’s grain output and providing sustenance for a

fifth of the global population (World Bank, 2020; FAOSTAT, 2020).

China has experienced an annual growth rate of 4.6% in agricultural

GDP since 1970 (Li et al., 2023; Yang et al., 2022). With the global

population projected to reach 9.8 billion by 2050, the demand for

food is expected to increase significantly (FAO, 2016). Maize, a

staple grain and cash crop, is the world’s second-largest cultivated

crop (FAO, 2019). China is a major producer of maize, cultivating

it across 43.4 million hectares in 2021, which accounts for 21.1% of

the global maize cultivated area and contributes 23% of the world’s

maize production (FAOSTAT, 2023; FAO, 2021). Over the past two

decades, China’s maize production has seen a substantial increase,

rising from 106 million tons to 273 million tons, representing a

remarkable growth of 157.2% (NBSC, 2022). Maize production has

been identified as a significant source of CO2 emissions due to the

extensive fertilizer use and irrigation demands (Ullah et al., 2021;

Rehman et al., 2020). The carbon emissions frommaize production

are particularly more carbon intensive than those wheat and rice

production in China (Wang et al., 2020).

Advanced agricultural technologies have increased grain output

in China, but they have also led to higher CO2 emissions,

particularly in maize production (Chandio et al., 2023). This is

mainly due to the adoption of modern agricultural technologies

in the country. Approximately 55% of the country’s agricultural

output comes from progressive agricultural methods that optimize

the use of pesticides, water, fossil fuels, and fertilizers (Ullah et al.,

2021). Between 1993 and 2007, more than 49% of greenhouse

gas (GHG) emissions in China were sourced from agricultural

activities, a significant increase compared to the global average of

16.7% (FAOSTAT, 2020).

China also uses over 65% of its freshwater resources for

agriculture and has a water usage efficiency of only 32%, a stark

contrast to the global agricultural water consumption rate of 70%

(Li et al., 2021; FAO, 2016). Fossil fuel-reliant irrigation plays a

role in CO2 emissions in China’s maize-producing regions (Li and

Yin, 2024), and inefficient water management contributes to both

water wastage and carbon emissions (Anser et al., 2020). Similarly,

nitrogen fertilizers are a major source of agricultural CO2 emissions

(Shao, 2024). The excessive use of fertilizer, with limited regulation,

contributes to higher CO2 emissions (Rehman et al., 2019). In fact,

the use of chemical fertilizers has increased, with China producing

70.37 million tons of fertilizers, of which 59.12 million tons were

used in agriculture in 2013 (Sharma et al., 2021; Tewatia and

Chanda, 2017).

Moreover, the environmental impact of maize production

in China is notably high, with CO2 emissions reaching 621 kg

CO2-eq per metric ton, surpassing emissions reported in other

major maize-producing countries such as Germany (420 kg CO2-

eq Mg−1) and the USA (231 kg CO2-eq Mg−1) (Chen et al., 2014;

Forte et al., 2017; Grassini and Cassman, 2012). Figure 1 illustrates

the trends in corn production and carbon emissions from 1990

to 2022 in China’s major corn producing regions. The spatial

distribution and temporal trends of annual corn production and

carbon emissions are analyzed over three time periods: 1990–2000,

2001–2010, and 2011–2022. In each period, corn production shows

an upward trend across most regions. By the 2011–2022 period,

Shandong, Henan, and Sichuan stand out as regions with the

highest emissions, indicating a direct relationship between rising

corn production and increased carbon output. This highlights the

environmental impact of agricultural growth in China, suggesting

that while corn production has significantly increased to meet food

demands, it has also contributed to higher carbon emissions. The

per capita carbon emissions from Chinese agricultural sector have

climbed significantly from 3 metric tons to 7.20 metric tons over

the last 20 years (Banerjee and Murshed, 2020; Xu and Lin, 2017).

The growing use of agricultural inputs to enhance productivity

has had a negative impact on the quality of the environment (Aiello

et al., 2018; World Bank, 2020). Forecasts indicated that by 2023,

worldwide CO2 emissions would reach to total 36.8 billion tons,

with China expected to lead with emissions of 11.0 Gt, outpacing

the United States, the European Union, India, and Brazil over the

past 30 years (Zhu and Huo, 2022; Global Carbon Emissions, 2023;

Mele and Magazzino, 2020). Specifically, China’s farming industry

accounted for 7% of its overall carbon emissions (Environmental

Protection Agency [EPA], 2022).

Given these trends, the Intergovernmental Panel on Climate

Change (IPCC) emphasized the necessity of cutting carbon

emissions to cap global temperature rises at 1.5◦C (IPCC,

2018). Similarly, the Food and Agriculture Organization (FAO)

has advised an 80% to 88% reduction in emissions from

agriculture by altering farmingmethods and switching to renewable

energy sources (Reynolds and Wenzlau, 2012). As the principal

global contributor of greenhouse gases, China has committed

to significant emission reductions by 2030 and aims for carbon

neutrality by 2060, a goal announced during the 75th United

Nations General Assembly (Zhu and Huo, 2022). Supporting

this goal, China’s Ministry of Agriculture and Rural Affairs has

published guidelines promoting sustainable agricultural practices

from 2018 to 2030 (Shen et al., 2020). This initiative has led to

a reduction in chemical fertilizer use from 70.37 million tons to

52.51 million tons over the last 10 years (Li et al., 2021). Although

China’s carbon emissions increased steadily from 1996 to 2016, they

have since fallen by 49.6%, from 0.127 kg per yuan to 0.064 kg per

yuan in 2016 (Huang et al., 2019). Further emission reductions

in agriculture are being pursued through the introduction of

intermittent irrigation in agricultural fields (Dong et al., 2018), the

utilization of slow-release fertilizers (Hillier et al., 2009), and the

adoption of straw return techniques to improve soil fertility and

lower carbon outputs (Zhang J. et al., 2019; Zhang C. et al., 2019).
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FIGURE 1

Trends of corn production and carbon emissions in China over the last three decades (source: authors calculation).

Previous studies have explored the relationship between

agricultural practices and carbon emissions. Crippa et al. (2021)

and Qin et al. (2024) found that high-input agricultural systems

contribute significantly to global CO2 emissions due to intensive

use of energy, fertilizers, and irrigation. Zhang et al. (2022) and

Li et al. (2021), revealed that agricultural intensification in major

crop-producing areas has markedly increased CO2 emissions over

the past three decades. Additionally, research on maize production,

a significant source of CO2 emissions in China, has highlighted

the extensive use of fertilizers and irrigation as major contributors

(Ullah et al., 2021; Rehman et al., 2020). Wang et al. (2020),

further highlighted the carbon intensity of maize production

relative to other crops. The role of agricultural credit in CO2

emissions has also been analyzed, showing that financial resources

can promote high-input farming practices that, while productive,

increase emissions (Koondhar et al., 2021a; Onyeneke et al.,

2024). However, a notable gap exists in understanding the specific

environmental impacts of maize production in China, particularly

the combined effects of agricultural credit, water usage, climate

change, and agricultural GDP. Previous studies tend to focus on

broad agricultural practices or individual inputs, without isolating

the contributions of specific staple crops like maize. Moreover,

limited attention has been paid to the nuanced interactions between

climate change and CO2 emissions in the context of China’s

maize production. Climate change exacerbate emissions as farmers

adopt high-input practices to increase yields. Demirhan (2020) and

Chandio et al. (2023) noted that temperature increases and climate

change correlate with higher CO2 emissions due to increased

fertilizer and irrigation use. The relationship between agricultural

GDP and CO2 emissions is found complex. For example, Huang

et al. (2019) found that higher agricultural GDP correlates with

increased emissions in China’s maize sector, whileWang and Zhang

(2021) investigated that rising GDP could support sustainable

practices, underlining the need for policies to balance economic

growth and environmental health. Fox et al. (2019) and Maraseni

et al. (2018) discussed the overall contribution of agriculture to

GHG emissions but did not disaggregate the data to consider

the impact of specific crops. This leaves a critical gap in our

understanding of how staple crops like maize, which is heavily

cultivated in China, contribute to CO2 emissions.

Furthermore, studies that do focus on maize production often

overlook the complex interactions between different agricultural

inputs and CO2 emissions. For instance, Zhang et al. (2022)

examined the environmental impact of maize production in

China but did not fully explored how variables like agricultural

credit, temperature changes, and regional agricultural GDP might
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influence environmental quality in context of carbon emissions.

This is a significant gap, as these factors can have substantial effects

on both the scale and intensity of agricultural activities, thereby

affecting environmental outcomes. This study focuses on the

environmental impacts of maize production, particularly the use

of fertilizers, pesticides, and water, which contribute to increased

carbon emissions. Although previous research has focused on how

agricultural inputs affect productivity, however, there still remains

a lack of analysis concerning their effects on carbon emissions.

Koondhar et al. (2021b) explored the effects of fertilizer use on

cereal crop yields and carbon emissions; however, this study differs

by concentrating on maize production and considering multiple

influencing factors, including the use of pesticides and fertilizers,

consumption of agricultural water, availability of agricultural credit,

impacts of climate change, and the effect of agricultural GDP on

carbon emissions. In fact, previous studies have explored the impact

of irrigated land on agricultural productivity and the connection

between water energy use, management practices, and carbon

emissions. However, the link between agricultural water use and

carbon emissions have not been extensively studied, and this study

aims to address this gap. Additionally, this research examines

the relationship among climate change, particularly temperature

fluctuations, and carbon emissions, which has been underexplored

in previous literature.

This study seeks to address these gaps by examining the

environmental impacts of maize production in China by focusing

on a comprehensive set of variables, including fertilizer use,

agricultural water consumption, pesticide usage, agricultural

credit, temperature, and agricultural GDP. By exploring

these variables collectively, this study aims to contribute new

insights into sustainable agricultural practices and provide

targeted recommendations for balancing productivity with

environmental protection.

The remainder of this paper is organized as follows: Section

2 introduces the Research Methods; Section 3 represents the

results; Section 4 discusses findings; and Section 5 concludes with

suggestions and policy measures.

2 Methodology

2.1 Conceptual framework

The environmental impact of agriculture is influenced by

several factors, including the use of fertilizers, pesticides, irrigation,

and credit availability, which can drive both direct and indirect

carbon emissions (Shao, 2024). This study is anchored in the theory

that modern agricultural practices, while boosting productivity, can

lead to significant environmental externalities, particularly in the

form of greenhouse gas (GHG) emissions. Drawing on resource-

based theory, this study examines how agricultural inputs such as

fertilizers, pesticides, water, and credit impact CO2 emissions. The

theory posits that efficient resource use can mitigate environmental

degradation, while overuse or inefficient practices tend to amplify

carbon emissions (Rehman et al., 2019).

Furthermore, climate change impact suggests that temperature

fluctuations directly and indirectly influence crop yields and

agricultural practices, which, in turn, affect CO2 emissions

(Demirhan, 2020). This study also considers the sustainability and

development theory to evaluate the balance between agricultural

growth and environmental sustainability, exploring whether

economic gains can coexist with reduced carbon emissions.

Figure 2 represents a cyclic process where agricultural

practices designed to enhance productivity simultaneously drive

carbon emissions. This cyclic process illustrates the complex

association between agricultural practices, carbon emissions, and

the environmental impact on maize production. The consumption

of fossil fuels has increased across those producing fertilizers and

pesticides. These industrial activities emit significant levels of

carbon dioxide (CO2) in the environment. The emissions cycle

connects to climate change and contribute to erratic climate

patterns, including extreme temperatures, floods, droughts, and

crop diseases.

Furthermore, agricultural support systems, government and

institutional funding, promote modern agricultural practices

through financial assistance to farmers. This support encourages

farmers to increase the use of fertilizers, pesticides, and water, all of

which are essential for high-yield farming. As a result, the excessive

use of agricultural inputs can reduce soil fertility, contaminate

groundwater, and further increase carbon emissions.

Modern agriculture involves advanced machinery and

technologies that enhance maize productivity, as well as

agricultural GDP. However, this productivity boost comes at

an environmental cost, as the adoption of modern agricultural

technology also leads to higher CO2 emissions. These emissions

contribute to climate change, which in turn impacts crop

yields. The red arrows represent the flow of carbon emissions

through various processes, while the black arrows indicate the

cycling of resources and environmental impact, emphasizing the

interconnectedness between agricultural productivity, carbon

emissions, and environmental sustainability.

2.2 The data

The study analyzes panel data from six major corn-producing

provinces in China: Hubei, Sichuan, Henan, Heilongjiang, Hebei

and Shandong as shown in Figure 3. Themain goal is to evaluate the

impact of maize productivity along with various influencing factors

including pesticides use, fertilizers use, agricultural water usage,

agricultural credit, climate Change, and agricultural gross domestic

product (AGDP), all impact CO2 emissions. The data used in this

study was derived from the China Agricultural Statistical Yearbook

(CASY) for the years 1990 to 2022.1 Temperature records were

1 The study uses panel data from 1990 to 2022 instead of extending to 2023

or 2024, due to inherent delays in data publication in China. Data for China’s

statistical yearbooks are compiled through multiple administrative layers,

beginning at the county level, then aggregated to the city, province, and

finally national levels. This multi-level process causes a delay in releasing the

latest data. For example, the 2023 China statistical yearbook, which includes

data for 2022, is expected to be published in 2024. As this studywas organized

in late 2023, it relies on the most recent available provincial data up to 2022,

ensuring that the analysis was conducted using the latest reliable information

at the time.
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FIGURE 2

Theoretical framework of the study.

obtained from models processed by Cubic Data Academy, which

utilized baseline data from the National Oceanic and Atmospheric

Administration’s National Centers for Environmental Information

(NCEI) (https://www.ncei.noaa.gov/data/global-summary-of-the-

day/archive/) which offers highly accurate dailymeteorological data

from observation stations. These data are further processed by

Cubic Data Academy to produce national temperature datasets,

widely recognized for their reliability in climate studies. To address

missing data within the panel datasets, we applied a meticulous

mean imputationmethod, selected for its appropriateness given the

nature and pattern of the missing data. The integrity of our results

was validated through sensitivity analysis, which explored how

different imputation methods and assumptions about missing data

might affect our findings, detailed in Table 1. CO2 emissions were

estimated based on historical terminal energy consumption data, as

the primary emissions are generally linked to fossil fuel combustion

(IPCC, 2007). Followingmethodologies from Li and Yin (2024) and

Jiehua and Zhang (2020), our calculation for total CO2 emissions

included nine energy sources, arranged in the following order:

diesel, natural gas, coal, electricity, gasoline, kerosene, coke, crude

oil, and fuel oil, as used in the following equation.

Cit =
∑

Eijt × ηj
(
i = 6; j = 1, 2, . . . 9

)
(1)

Cit signifies the total carbon emissions of province i in year

t; Eijt denotes the usage of the jth type of energy in province i

in year t; ηj signifies the carbon emission coefficient of the jth

type of energy; i represents the province i; j represents the jth

energy source. Since the original data on energy consumption

is presented in physical quantities, necessitating conversion into

standard statistical units to compute carbon emissions accurately.

The conversion factors for these emissions are derived from the

“2006 IPCC Guidelines for National Greenhouse Gas Inventories.”

These factors take into account the average lower heating values

and established carbon emission factors for each energy type. The

calculated carbon emission coefficients for the nine energy types—

coal, gasoline, diesel, natural gas, kerosene, fuel oil, crude oil,

electricity, and coke—are 1.9003 kg-CO2/kg, 2.8604 kg-CO2/kg,

3.0202 kg-CO2/kg, 2.9251 kg-CO2/kg, 3.0179 kg-CO2/kg, 3.0959
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FIGURE 3

Map of study provinces in China.

TABLE 1 Variables and data sources.

Variables Definition/Unit Short form Code Sources

Carbon emission Thousand tons Y CE CASY

Corn production Ten thousand tons X1 CP CASY

Pesticide use Tons X2 PU CASY

Fertilizer use Ten thousand tons X3 FU CASY

Agricultural water use Hundred million cubic meters X4 AW CASY

Agricultural loans Ten thousand Yuan X5 AC CASY

Temperature Average annual temperature (◦C) X6 TM NCEI

Agricultural GDP Hundred million Yuan X7 AGDP CASY

CASY, China Agricultural Statistical Yearbook; NCEI, National Centers for Environmental Information.

kg-CO2/kg, 3.175 kg-CO2/kg, 2.1622 kg-CO2/m
3, and 0.801 kg-

CO2/kWh, respectively. The econometric approaches used in the

empirical analysis are outlined in Figure 4.

3 Model specification and
econometric approaches

To investigate the relationship between CO2 emissions and

maize crop production (CP), we incorporated key factors including

the pesticides use (PU), fertilizers use (FU), agricultural water use

(AW), agricultural credit (AC), temperature (TM), and agricultural

gross domestic product (AGDP). To analyze how these variables

interact, the proposed model can be described as follows:

CE (Carbon emissions) = f
(
Corn production, Pesticide

use, Fertilizer use, Agricultural water,

Agricultura credit, Temperature, Agricultural gdp
)

(2)

Frontiers in Sustainable FoodSystems 06 frontiersin.org

https://doi.org/10.3389/fsufs.2024.1492262
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Zhang et al. 10.3389/fsufs.2024.1492262

FIGURE 4

The methodological framework of the study.

The comprehensive and logarithmic form of equations are

given as:

CEit = f (CPα1
it , PU

α2
it , FUα3

it , AWα4
it ,ACα5

it ,TM
α6
it , AGDP

α7
it ) (3)

LCEit = α0 + α1LCPit + α2LPUit + α3LFUit + α4LAWit

+α5LACit + α6LTMit + α7LAGDit + εit (4)

where LCE is logarithm of CO2 emissions; LCP represents the

natural log of corn production; LPU is the natural log of pesticide

usage; LFU stands for the natural log of fertilizer application; LAW

indicates the natural log of agricultural water consumption; LAC

represents the natural log of agricultural credit; LTM denotes the

natural log of temperature; and LAGD corresponds to the natural

log of agricultural gross domestic product (AGDP) for each region;

t specifies the time variable in the panel, while i refers to the

entity’s dimension.

We employed panel unit root tests to ensure stationarity,

Cross-Sectional Dependence (CSD), and slope homogeneity

using the Cross-sectionally Augmented Im, Pesaran, and Shin

(CIPS) approach (Pesaran, 2015, 2006), as outlined in the

following equations:

CD =

√
2T

N (N − 1)




N−1∑

m=1

N∑

k=m+1

µmk


 (5)

̂

1 =
√
N

(
N−1SW̃ −

n

2n

)
∼ X2 (6)

̂

1ad =
√
N (N−1SW̃ −

n

v (T, n)
)) ∼ N(0, 1) (7)

Where N represents the total number of observations in the

dataset, n denotes an independent variable; v(T, n) is a complex

term, and SW refers to Swami’s statistical measure.

Second-generation unit root tests (Im et al., 2003) and cross-

sectional dependence test (Pesaran and Yamagata, 2008) by using

the following equation:

1Mit = βit + βiZit−1 + βiM t−1 +
v∑

m=0

βimM t−1

+
v∑

m=0

βimZit−1 + εit (8)

Where M t−1 denotes the cross-sectional averages. The CIPS

(Cross-sectionally Augmented Dickey-Fuller) results are derived

using the following equation:

ĈIPS =
I

2

n∑

i=1

CADFi (9)

We also utilized second-generation panel co-integration tests

(Persyn and Westerlund, 2008) by using the following equation:

1Xit = ξiγt + ϕiXit−1 + ξiYit−1 +
vi∑

m=0

ϕimXit−m

+
v∑

m=−ri

ϕimYit−1 + εit (10)

The PMG-ARDL (Panel Mean Group Autoregressive

Distributed Lag) was employed, proposed by Shin et al. (2014)

for analyzing the short-term and long-term outcomes (Shin et al.,

2014; Ma et al., 2024a; Tiwari et al., 2023; Wang et al., 2023;

Ye et al., 2023). The mathematical formulation of the model is

given as:

Xit =
r∑

l=1

πil(Xi)t−l +
r∑

l=0

ξil(Zi)t−l + εit (11)

Where Xit is dependent variable at time t for panel unit i;

and Xi represents a vector of independent variables. (Xi)t−l Shows

dependent variable’s lagged values (Xi) at time t − 1; (Zi)t−l is

independent variable (Zi) lagged values at time t − 1; πil and ξ il
are dependent and independent variables lagged values coefficients,

respectively; the error terms is shown by εit . Following equation is

employed to estimate the long and short run impact.

1Xit = λi(Xi,t−1 − ξiZi, t−1)

r−1∑

l=1

πil1(Xi)t−l +
r−1∑

l=0

ξil1(Zi)t−l + εit

(12)

Finally, we used the Dumitrescu and Hurlin (2012) panel

causality test to investigate the relationships among the variables

by using following model:

Yit = αi +
n∑

s=1

λ
(s)
i Yi,t−s +

n∑

s=1

γ
(s)
i Xi, t−s + εi,t (13)

Where sn denotes the lag length for the variables, λ
(s)
i represents

the autoregressive constraint, and γ
(s)
i is the slope constant.

In this study, all regression analyses and simulations were

conducted using Stata 17. This software is particularly well-suited

for implementing the various econometric techniques.
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TABLE 2 Descriptive statistics.

Variable LCE LCP LPU LFU LAW LAC LTM LAGDP

Mean 10.459 6.574 11.230 5.652 4.962 15.376 2.164 7.270

Std. Dev. 0.619 0.979 0.563 0.45 0.245 1.394 0.706 0.918

Min 9.409 4.757 8.798 4.337 4.447 12.458 0.247 5.165

Max 11.935 8.331 12.2 6.574 5.757 18.137 2.784 8.846

Skewness 0.594 −0.223 −1.254 −0.183 1.428 −0.162 −1.295 −0.264

Kurtosis 2.550 1.886 5.739 3.201 5.751 2.201 3.489 2.001

Probability 0.000 0.000 0.000 0.401 0.000 0.002 0.000 0.000

Jarque-Bera 36.620 11.880 113.80 1.447 129.80 6.141 57.370 10.460

FIGURE 5

The variable trends over the period 1990–2022 (source: authors calculation).

4 Results and discussion

4.1 Descriptive summary

Table 2 presents a wide range between the minimum and

maximum values of variables, suggesting the presence of outliers—

data points that significantly differ from the overall trend when

displayed in their logarithmic forms. Low standard deviation

values suggest that the data points are closely grouped around

their means, indicating that the dataset is stable and shows little

variation from the average. Many of the variables display negative

skewness, which points to an asymmetry that leans to the left,

with a higher concentration of values toward the upper end of the

scale. Kurtosis measures how the tails of a distribution compare

to those of a normal distribution, where positive kurtosis indicates

heavier tails and a sharper peak. Higher kurtosis values reflect more

pronounced peaks and heavier tails, while lower values suggest

a flatter distribution with lighter tails. The results of the Jarque-

Bera (JB) test reveal that the data distribution is asymmetrical

and deviates from the classic bell shape of a normal distribution,

indicating variations in skewness and kurtosis. Figure 5 displays the

logarithmic transformations of the variables examined across the
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TABLE 3 Correlation analysis.

Variables LCE LCP LPU LFU LAW LAC LTM LAGDP

LCE 1

LCP 0.282 1

LPU 0.463 0.065 1

LFU 0.621 0.279 0.810 1

LAW 0.116 0.292 0.112 −0.145 1

LAC 0.827 0.448 0.488 0.684 0.086 1

LTM 0.276 −0.298 0.623 0.695 −0.529 0.263 1

LAGDP 0.746 0.415 0.525 0.670 0.263 0.904 0.245 1

TABLE 4 Cross-sectional dependence (CSD) and slope homogeneity outcomes.

Variables Pesaran-scaled LM Pesaran CD Friedman approach Frees approach

LCE 10.459∗∗∗ 19.250∗∗∗ 158.644∗∗∗ 3.758∗∗∗

LCP 6.574∗∗∗ 19.018∗∗∗ 168.588∗∗∗ 4.251∗∗∗

LPU 11.230∗∗∗ 15.397∗∗∗ 144.900∗∗∗ 2.939∗∗∗

LFU 5.651∗∗∗ 17.561∗∗∗ 153.088∗∗∗ 3.365∗∗∗

LAW 4.962∗∗∗ 2.796∗∗ 48.998∗∗∗ 2.046∗∗∗

LAC 15.375∗∗∗ 21.234∗∗∗ 188.880∗∗∗ 5.582∗∗∗

LTM 2.164∗∗∗ 14.394∗∗∗ 136.513∗∗∗ 2.651∗∗∗

LAGDP 7.269∗∗∗ 21.930∗∗∗ 188.303∗∗∗ 5.539∗∗∗

∗∗ , ∗∗∗describes 5% and 10% significance level.

provinces from 1990 to 2022. Table 3 presents the results of the

correlation analysis, demonstrating strong positive relationships

between CO2 emissions and the various independent variables

examined in the study.

The results in Table 4 confirm the presence of cross-sectional

dependence (CSD), indicating that standard shocks affect the

variables across the specified provincial group. Table 5 presents

the findings of second-generation unit root tests, including the

CIPS and CADF test statistics for both level and first difference

specifications. According to the results of the CIPS test, variables

such as carbon emissions, fertilizer use, agricultural water usage,

agricultural credit, and temperature are stationary at the level,

whereas corn production, pesticide use, and agricultural GDP

reach stationarity at the first difference. The CADF test results

show that all variables except for LTM are stationary at the

first difference. Table 6 displays Kao cointegration results, which

shows a significant long-term relationship among the variables

in our model. Co-integration tests are essential for investigating

long-term relationships among variables (Gengenbach et al.,

2006).

Before conducting the multiple regression analysis, the

several diagnostic tests were employed to ensure the validity

of results. Multicollinearity was assessed using the Variance

Inflation Factor (VIF), with all values found to be below 10 as

shown in Table 7, indicating no econometric issues (Wooldridge,

2009). Additionally, the Breusch-Pagan/Cook-Weisberg test was

conducted to check for heteroskedasticity, which can lead to an

underestimation of the intercept and an overestimation of the

TABLE 5 Second generation unit root testing.

Variables CIPS CADF

LCE −1.869 (a)∗ −3.028 (b)∗∗∗

LCP −6.077 (b)∗∗∗ −4.341 (b)∗∗∗

LPU −4.171 (b)∗∗ −3.625 (b)∗∗∗

LFU −1.967 (a)∗ −2.849 (b)∗∗

LAW −1.987 (a)∗ −4.148 (b)∗∗∗

LAC −1.999 (a)∗ −3.792 (b)∗∗∗

LTM −4.869 (a)∗∗∗ −3.555 (a)∗∗∗

LAGDP −5.525 (b)∗∗∗ −3.758 (b)∗∗∗

∗ , ∗∗ , ∗∗∗describes 1%, 5%, and 10% significance level: (a) indicates the stationary level at level

I(0), and (b) denotes the stationary level at first difference I(1).

slope coefficients (Street, 2003). The results showed no evidence

of heteroskedasticity, as the p-value was >0.05, confirming

that the variance of the residuals was constant (Table 8). The

Wooldridge test was employed to test for autocorrelation, and

the results indicated its presence in the panel data, as the

p-value (0.0006) was below 0.05, leading to the rejection of

the null hypothesis (Table 9). To address this issue, the PMG-

ARDL model and dynamic panel models were used, ensuring

the autocorrelation was accounted for and reliable results

were obtained.
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TABLE 6 Cointegration tests.

Kao test Statistics p-value

Modified Dickey–Fuller t −10.230∗∗∗ 0.000

Dickey–Fuller t −7.262∗∗∗ 0.000

Augmented Dickey–Fuller t −2.344∗∗∗ 0.009

Unadjusted modified

Dickey–Fuller t

−14.134∗∗∗ 0.000

Unadjusted Dickey–Fuller t −7.766∗∗∗ 0.000

∗∗∗describes 10% significance level.

TABLE 7 Multicollinearity analysis test Variance Inflation Factor.

Variable VIF 1/VIF

LFU 9.46 0.106

LAGDP 8.37 0.120

LAC 7.42 0.135

LTM 6.34 0.158

LPU 5.36 0.187

LAW 3.61 0.277

LCP 2.4 0.416

Mean VIF 6.14

TABLE 8 Breusch-Pagan/Cook-Weisberg test for heteroscedasticity.

H0 Constant variance

Variables Fitted values of LCE

χ2(1) 1.07

Probability > χ2 0.3008

TABLE 9 Wooldridge test for autocorrelation.

H0 No autocorrelation

Degrees of freedom (1, 5) 60.976

Probability 0.0006

4.2 Discussion

Table 10 presents the PMG-ARDL results, which show that

the use of fertilizers, agricultural water, and agricultural credit

significantly contribute the increase in CO2 emissions over

the long term. Specifically, a one-unit increase in fertilizer

use, agricultural water consumption, and agricultural credit

corresponds to increases in CO2 emissions of 1.49, 1.23, and

0.47 units, respectively, in the long run. It is important to note

that the effects of fertilizer and agricultural water usage are more

substantial compared to other variables in the model. In contrast,

corn production, pesticide use, temperature, and agricultural

GDP show a negative relationship with CO2 emissions in the

long term. Additionally, agricultural water use and agricultural

credit positively impact CO2 emissions significantly, while corn

productivity also correlates positively with CO2 emissions. In

the short term, increases in corn production, fertilizer use, and

agricultural GDP each contribute to significant environmental

degradation, resulting in respective increases in CO2 emissions

of 10%, 17%, and 10%, respectively. Furthermore, the Error

Correction Term (ECT) is notably negative, which indicates strong

support for the model’s validity. This suggests that the model

adjusts quickly toward equilibrium, with an adjustment speed of

15%. This rapid adjustment underscores the model’s effectiveness

in reflecting short-term deviations from long-term equilibrium.

The findings from Table 11 display the PMG-ARDL short-

term analysis results across provinces (the long-term results remain

same as shown in Table 10). In the short term, corn production

notably increases CO2 emissions in Henan and Sichuan provinces,

which are major corn-producing regions with high pesticide use

and agricultural water consumption, both contributing to increased

emissions. In contrast, in Heilongjiang province, corn production

has a negative impact on CO2 emissions. This difference may

be attributed to factors such as urbanization in Northeast China,

which has led to a shift of rural laborers to non-agricultural sectors.

This shift has promoted increased mechanization in agriculture,

enhancing agricultural efficiency and potentially reducing carbon

emissions associated with inputs like pesticides and fertilizers. The

flat terrain of the Heilongjiang Plain, along with its high level

of mechanization in grain production, may also help mitigate

emissions. Furthermore, fertilizer usage significantly contributes

to increased CO2 emissions in both Heilongjiang and Sichuan

provinces. Agricultural water consumption drives CO2 emissions

in Hubei and Sichuan, while agricultural credit is linked to higher

emissions in Heilongjiang and Hubei. Changes in temperature

due to climate change generally raise carbon emissions across all

examined provinces, except Hubei. Agricultural GDP is positively

correlated with carbon emissions in all provinces, except Shandong

and Sichuan. Additionally, Figures 6, 7 illustrate trends in pesticide

use, fertilizer use, agricultural water consumption, agricultural

credit, a temperature, and agricultural GDP over the period 1990

to 2022 across the studied provinces. Figure 8 illustrates the

annual corn production in six major corn-producing provinces

in the study from 1990 to around 2022. The trends suggest

that most provinces have experienced overall growth in corn

production over the past few decades, with varying degrees of

stability or slight declines after reaching peak levels in recent

years. Differences in peak times and fluctuations among provinces

may be due to factors such as regional climate conditions,

government policies, technological advancements, and investment

in agricultural infrastructure. Figure 9 illustrates the share of CO2

emissions by sector in the world and China. The power sector

is the largest contributor, accounting for 57% of total emissions,

industrial sector at 26% and agricultural sector contribute to 1%

share in total carbon emissions from energy use in China in 2022

(Statista, 2024). Globally, the power sector contributes 28% of

total emissions, industrial sector at 23% and agricultural sector

contribute to 17% share in total carbon emissions (IEA, 2022).

To ensure the robustness of our findings, we conducted a

panel quantile regression analysis as shown in Table 12. The results

indicate that corn production negatively affects CO2 emissions. In

contrast, fertilizer use, agricultural credit, and agricultural water

consumption have statistically significant and positive impacts on

carbon emissions, supporting the findings from the PMG-ARDL
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TABLE 10 PMG-ARDL results.

Variables Coe�cient Std. err. z-statistics p-value

Long run e�ects

LCP −0.712∗ 0.307 −2.320 0.020

LPU −0.410∗ 0.234 −1.750 0.079

LFU 1.493∗∗∗ 0.377 3.960 0.000

LAW 1.239∗∗∗ 0.300 4.130 0.000

LAC 0.474∗∗∗ 0.059 8.030 0.000

LTM −3.218∗∗∗ 0.788 −4.090 0.000

LAGDP −0.191 0.139 −1.380 0.168

Short run e�ects

LCP 0.101 0.067 1.510 0.131

LPU −0.032 0.250 −0.130 0.898

LFU 0.171 0.456 0.370 0.708

LAW −0.113 0.101 −1.120 0.262

LAC −0.035 0.053 −0.650 0.513

LTM 0.073 0.119 0.610 0.541

LAGDP 0.101 0.094 1.080 0.282

ECT −0.146∗∗∗ 0.042 −3.510 0.000

Constant 1.076∗∗ 0.322 3.340 0.001

∗ , ∗∗ , ∗∗∗describes 1%, 5%, and 10% significance level.

TABLE 11 Short-run results of PMG-ARDL analysis across the provinces.

Variables Hebei Heilongjiang Henan Hubei Shandong Sichuan

LCP −0.017 (0.087) −0.134∗ (0.067) 0.240∗∗∗ (0.067) 0.034 (0.148) 0.207 (0.132) 0.277∗ (0.163)

LPU 0.000 (0.110) −0.032 (0.071) 0.703∗∗∗ (0.168) 0.223∗ (0.123) 0.068 (0.046) −1.155∗∗ (0.381)

LFU −0.317∗ (0.157) 0.500∗ (0.280) −0.344 (0.302) −0.699∗ (0.392) −0.414 (0.334) 2.298∗∗∗ (0.578)

LAW 0.057 (0.149) −0.280 (0.274) −0.360∗ (0.093) 0.226 (0.195) −0.347 (0.413) 0.024 (0.422)

LAC −0.022 (0.021) 0.122 (0.077) −0.227∗ (0.093) 0.083 (0.074) −0.035 (0.146) −0.128 (0.116)

LTM 0.100 (0.149) 0.000 (0.031) 0.390∗ (0.203) −0.438 (0.375) 0.315 (0.437) 0.070 (0.227)

LAGDP 0.001 (0.071) 0.075 (0.079) 0.259∗∗ (0.077) 0.469∗∗ (0.170) −0.008 (0.185) −0.187 (0.228)

ECT −0.193∗∗∗ (0.042) −0.003 (0.011) −0.264∗∗∗ (0.043) −0.224∗∗ (0.070) −0.144∗∗∗ (0.038) −0.050 (0.047)

Constant 1.232∗ (0.518) 0.012 (0.032) 2.071∗∗ (0.705) 1.641∗ (0.794) 1.221∗ (0.492) 0.280 (0.259)

∗ , ∗∗ , ∗∗∗describes 1%, 5% and 10% significance level.

model (Table 10). Providing financial assistance to farmers appears

to encourage the adoption of modern agricultural practices, which

can enhance crop yields but also increase carbon emissions.

Our results thus suggest a strong link between agricultural

financing and carbon emissions. Additionally, the interaction

between temperature and agricultural GDP was found to have a

negative impact on carbon emissions, consistent with the PMG-

ARDL model. To further evaluate data reliability, we applied a

Panel Least Squares regression analysis (Table 13). The findings

confirm that carbon emissions are significantly influenced by corn

production, agricultural credit, and fertilizer use. Temperature

has a negative effect on carbon emissions, while agricultural

GDP contributes positively. The R-squared value indicates that

approximately 48% of the variation in carbon emissions can

be explained by the model’s explanatory variables. The research

underscores the complex relationship between environmental

quality and corn production, with a particular focus on carbon

emissions. Our findings indicate a long-term negative relationship

between CO2 emissions and corn production. However, the long-

term increase in carbon emissions is significantly driven by the use

of fertilizers, agricultural water, and agricultural credit. The results

from the PMG-ARDL model (Table 10) align with those from
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FIGURE 6

Patterns of pesticide use, fertilizer use, and agricultural water consumption in major agricultural provinces of China from 1990 to 2022. The red color

represents the annual pesticide use (tons), the green color represents the annual fertilizer use (ten thousand tons), and the purple color represents

the annual agricultural water use (hundred million cubic meters). Darker shades indicate higher levels of use in each category across three periods:

1990–2000, 2001–2010, and 2011–2022.

the Panel Quantile Regression (Table 12) and Panel Least Squares

(Table 13), all of which show strong positive correlations between

agricultural loans, fertilizers use, agricultural water use, and

carbon emissions.

The results of this study, as shown in Table 10, provide

key insights into the long-term and short-term impacts of corn

production and various agricultural inputs on CO2 emissions

in China’s major corn-producing provinces. In the long run,

corn production shows a negative impact on CO2 emissions,

suggesting that increased corn production over time is associated

with a reduction in CO2 emissions. This finding aligns with

Zhang et al. (2022), who reported that agricultural intensification,

through higher crop yields, can lead to more efficient resource

use, thereby lowering agriculture’s carbon footprint. However,

this negative relationship differs from the findings of Ullah

et al. (2021), who observed a positive correlation between

corn production and CO2 emissions, attributing it to the high

input demands of modern corn farming, such as fertilizers

and irrigation. This discrepancy may arise from differences in

the scope and scale of the studies; while Ullah et al. (2021)

focused on short-term impacts in specific regions, our study

takes long-term perspective, potentially capturing the benefits

of technological advancements and improved farming practices

that reduce emissions over time. Additionally, regional variation

in agricultural practices and policies may contribute to these

contrasting findings.

The positive and significant effect of fertilizer use on CO2

emissions aligns with the findings of Rehman et al. (2019), who

highlighted that the extensive use of nitrogen-based fertilizers

significantly contributes to CO2 emissions due to both the

production processes of these fertilizers and their application in

the field. Similarly, Shao (2024) emphasized that fertilizer use

is a major contributor to agricultural CO2 emissions globally

and advocated for more efficient fertilizer use to mitigate these

emissions. While several research have investigated the effects

of crop productivity and irrigated land area (Zhai et al., 2017;

Pickson et al., 2021; Zhang et al., 2022), fewer studies have

explored the relationship between carbon emissions, water energy

consumption, and water energy management (Anser et al., 2020;

Wang et al., 2020). The link between agricultural water usage

and carbon emissions, specifically in terms of quantity, remains

underexplored. Our research on agricultural water use indicates
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FIGURE 7

Patterns of agricultural credit use, agricultural GDP, and annual mean temperature in major agricultural provinces of China from 1990 to 2022. The

green color represents the annual agricultural credit use (Ten Thousand Yuan) and agricultural GDP (Hundred million Yuan), while the red color

represents the annual mean temperature (degrees Celsius). Darker shades indicate higher values of credit, GDP, and temperature across three

periods: 1990–2000, 2001–2010, and 2011–2022.

a significant positive influence on carbon emissions, consistent

with Rehman et al. (2020), suggesting that excessive irrigation,

combined with fertilizer use, increases atmospheric evaporation,

contributing to long-term carbon emissions. Our analysis shows

a positive correlation between agricultural credit and carbon

emissions. Agricultural water use similarly exhibits a positive

and significant impact on CO2 emissions. This result aligns

with Li and Yin (2024), who found that irrigation practices,

especially in water-scarce regions, contribute significantly to

CO2 emissions due to the energy required for pumping and

distribution. Inefficient water management practices exacerbate

these emissions in China’s agricultural sector, a finding echoed

by Anser et al. (2020), who recommended more sustainable

water use in agriculture. Agricultural credit has a significant and

positive impact on CO2 emissions in the long run, supporting

Koondhar et al. (2021a), who reported that increased access to

agricultural credit often results in higher CO2 emissions due to

the expansion of high-input farming practices. Onyeneke et al.

(2024) also found that agricultural credit enables farmers to invest

in more intensive practices, which, while increasing productivity,

also heightens emissions. However, our results suggest a stronger

relationship between agricultural credit and CO2 emissions than

reported in other studies. This may be due to the specific

nature of corn production in the studied provinces, where

credit may is often used to finance the purchase of fertilizers,

pesticides, and irrigation equipment-all of which contributing to

higher emissions.

The negative impact of temperature on CO2 emissions

contrasts with the general expectation that higher temperatures

lead to increased emissions. Demirhan (2020) found that rising

temperatures often increase the use of water and energy for cooling

in agriculture, and his finding suggest that, in the long run,

high temperatures could be associated with the adaptation of less

energy-intensive farming practices or shifts in crop types requiring

fewer inputs. This counterintuitive result might also reflect the

specific climatic conditions of the regions studied, where rising

temperatures may reduce the need for energy-intensive practices

like heating or might prompt a shift to less resource-intensive

crops or farming methods. This underscores the complexity of

the relationship between climate variables and CO2 emissions and

highlights the importance of regional studies to fully understand

these dynamics.
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FIGURE 8

Spatial trends in corn production from 1990–2022 (source: authors calculation).

FIGURE 9

CO2 emissions by sectors: China and global, 2022 (Statista, 2024;

IEA, 2022).

TABLE 12 Panel Quantile regression.

Variables Coe�cient Std. err. z-
statistics

p-value

LCP −0.256∗∗∗ 0.020 −12.960 0.000

LPU −0.587∗∗∗ 0.013 −45.770 0.000

LFU 1.281∗∗∗ 0.055 23.410 0.000

LAW 0.855∗∗∗ 0.062 13.870 0.000

LAC 0.193∗∗∗ 0.012 15.450 0.000

LTM −0.160∗∗ 0.051 −3.120 0.002

LAGDP −0.012 0.020 −0.580 0.561

∗∗ , ∗∗∗describes 5% and 10% significance level, respectively.

The agricultural GDP does not have a significant impact on

CO2 emissions in the long run. This finding is somewhat surprising,

as Huang et al. (2019) found a positive relationship between

agricultural GDP growth and CO2 emissions, attributing it to

the expansion of high-input agricultural practices. Some scholars

have highlighted the decoupling effect between agricultural GDP

and carbon emissions, suggesting that increases in agricultural

value-added have limited long-term impacts on emissions due
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to enhanced efficiency and reduced energy dependency (Ghosh

et al., 2023; Amin and Rahman, 2024). Additionally, some studies

report that agricultural growth can reduce carbon emissions

(Mahmood et al., 2019; Samargandi, 2017). Cole et al. (1997)

found that technological advancements in agriculture have led

to a 32% reduction in CO2 emissions. Zaharani et al. (2011)

investigated that modern agricultural strategies such as efficient

water use may contribute to a safe and sustainable environment.

Conversely, Ullah et al. (2021) showed that agricultural value-

added negatively impacts carbon emissions, while Waheed et al.

(2018) identified agriculture as a significant source of CO2

emissions. Wang and Zhang (2021) suggested that increases

in agricultural GDP might also enable investments in more

sustainable practices, potentially mitigating emissions. The lack

of a significant relationship in this study could indicate China’s

agricultural policies have promoted sustainable practices (e.g., crop

rotation, conservation tillage, and integrated pest management)

that help reduce greenhouse gas (GHG) emissions even as

productivity increases (Zou et al., 2024; Yang et al., 2014).

Furthermore, technological advancements and the adoption of

precision agriculture have enabled Chinese farmers to use inputs

more efficiently. For instance, modern irrigation systems and

optimized fertilizer application reduce CO2 emissions, mitigating

the environmental impact typically associated with agricultural

growth (Ma et al., 2024b; Chen et al., 2024; Long et al.,

2018). Moreover, government support for renewable energy in

agriculture, including solar-powered irrigation and bioenergy

from agricultural waste, has also played a key role in reducing

carbon emissions (Zhu and Huo, 2022). Ecological methods

such as Integrated Rice-Animal Farming (IRF) with fish and

ducks have not only reduced the need for fertilizers and

pesticides but also helped preserve environmental diversity in

China (Yifan et al., 2023). Diversified cropping systems, efficient

fertilizer use, intensified crop rotations, and integrated practices

increase agricultural productivity while lowering carbon footprints

(Cheng et al., 2011). Yang et al. (2022) found that the trend

in agricultural carbon emissions shifted from increasing to

continuously decreasing after 2015 at the national level, mainly due

to improvements in major grain-producing areas. They concluded

that advancements in agricultural infrastructure and human capital

have positively contributed to agricultural eco-efficiency growth.

This finding suggests that economic growth in agriculture does

not automatically translate into higher emissions but rather

depends on the nature of the growth and the types of practices

it supports.

The Dumitrescu and Hurlin (2012) approach indicates

causal relationships among variables (Table 14). The findings

reveal significant unidirectional and bidirectional causal

links between the variables. Unidirectional causation is

observed between carbon emissions and pesticide use,

carbon emissions and temperature, and carbon emissions

and agricultural GDP. Additionally, a bidirectional

causal relationship exists between carbon emissions

and several other variables, including corn production,

fertilizer application, agricultural water usage, and

agricultural credit.

TABLE 13 Panel least square regression.

Variables Coe�cient Std. err. t-value p-value

LCP 0.172 0.108 1.580 0.115

LPU −0.127 0.083 −1.540 0.125

LFU 0.358∗ 0.180 1.990 0.048

LAW −0.170 0.155 −1.100 0.272

LAC 0.268∗∗∗ 0.036 7.380 0.000

LTM −0.258∗ 0.137 −1.880 0.062

LAGDP 0.029 0.062 0.470 0.641

Constant 5.799∗∗∗ 0.704 8.230 0.000

R2 0.48

F-statistics

value

44.32

Probability 0.000

Sigma_u 0.443

Sigma_e 0.226

rho

(fraction of

variance

due to u_i)

0.793

∗ , ∗∗∗describes 1% and 10% significance level.

5 Conclusions

This study uses panel datasets from 1990 to 2022 to investigate

the impact of corn production on carbon emissions in China. The

study employs several rigorous econometric methods to ensure

robust results. The findings reveal a negative long-term relationship

between corn production and CO2 emissions in the long term.

The influencing factors, such as fertilizer use, agricultural water

use, and access to credit have positive and significant impact

on carbon emissions in the long term. Agricultural credit plays

a critical role in shaping carbon emissions by enabling high-

input farming practices, leading to increased use of fertilizers,

pesticides, and irrigation equipment. Notably, temperature has a

strong negative impact, likely reflecting the role of climate change

in shaping resource demand and efficiency. Agricultural GDP does

not significantly impact carbon emissions in the long run, possibly

due to the adoption of sustainable farming practices. Causality

analysis reveals unidirectional causality between carbon emissions

and factors like pesticide use, temperature, and agricultural GDP, as

well as bidirectional causality with corn production, fertilizer use,

agricultural water use, and agricultural credit use. Future research

could examine how sustainable farming practices, such as organic

and precision agriculture, reduce carbon emissions. It could also

investigate the role of policies, subsidies, and renewable energy in

agriculture. Expanding the geographic scope to diverse agricultural

settings and integrating agronomy, climate science, and socio-

economic analysis would provide broader and deeper insights into

factors influencing CO2 emissions globally.
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TABLE 14 Pairwise Dumitrescu and Hurlin panel causality test.

Null hypothesis W-bar Z-bar p-value Causation relationship

LCE→ LCP 3.541∗∗∗ 4.401 0.000 Bidirectional causation

LCP→ LCE 8.242∗∗∗ 12.544 0.000

LCE→ LPU 3.044∗∗∗ 3.540 0.000 Unidirectional causation

LPU→ LCE 0.653 −0.599 0.548

LCE→ LFU 3.279∗∗∗ 3.937 0.000 Bidirectional l causation

LFU→ LCE 3.887∗∗∗ 5.001 0.000

LCE→ LAW 4.471∗∗∗ 6.013 0.000 Bidirectional causation

LAW→ LCE 4.705∗∗∗ 6.417 0.000

LCE→ LAC 2.587∗∗ 2.748 0.006 Bidirectional causation

LAC→ LCE 2.011∗ 1.752 0.079

LCE→ LTM 0.776 −0.387 0.698 Unidirectional causation

LTM→ LCE 3.719∗∗∗ 4.709 0.000

LCE→ LAGDP 0.877 −0.211 0.832 Unidirectional causation

LAGDP→ LCE 5.219∗∗∗ 7.308 0.000

∗ , ∗∗ , ∗∗∗describes 1%, 5%, and 10% significance level.
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