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Introduction: Kakamega Forest, Kenya’s last tropical rainforest, faces threats

from escalating demands for firewood, charcoal, and agricultural expansion

driven by population growth. Sustainable resource management is critical, with

maize stover—a common lignocellulosic crop residue—proposed as a source for

biogas and bioslurry production. However, its removal raises concerns about soil

fertility and erosion control. This study evaluates the trade-o� between maize

stover’s use for energy generation and its role in soil erosionmitigation inWestern

Kenya, considering biophysical conditions and households’ socio-economic

status.

Methods: Socio-economic data were collected from 91 households to assess

energy usage. Soil erosion was quantified using the Revised Universal Soil

Loss Equation (RUSLE). High-resolution remote sensing, self-organizing maps

(SOM), and Hidden Markov Models (HMM) were integrated for annual field

condition monitoring. A decision-tree machine learning model identified farm

characteristics favorable for maize stover use in biogas production.

Results: Larger households were found to consume more energy per capita,

while proximity to forests did not significantly influence firewood or charcoal

consumption. Maize yields were significantly associated with land preparation

methods (tractor, oxcart, or manual plowing; p < 0.001) and field size (p <

0.05). Remote-sensing data indicated that the distance between homesteads and

fields impacted crop growth status. RUSLE analysis revealed that soil erosion was

more strongly influenced by landscape features than by soil properties or farming

practices.

Discussion: The integration of SOM-HMM and microsatellite data improved

field monitoring and data accuracy, providing valuable insights for sustainable

agricultural practices in Kakamega. These findings highlight the complex

trade-o�s between maize stover utilization for energy production and its

role in maintaining soil health, emphasizing the need for balanced resource

management strategies.

KEYWORDS
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1 Introduction

Western Kenya, home to the Kakamega Forest—the nation’s last tropical

rainforest covering 238 square kilometers—faces significant environmental

challenges due to rapid population growth and urbanization (Obonyo et al.,

2023; Mitchell et al., 2009). Sustainable resource utilization is critical to

balance conservation efforts and livelihood needs (Reetsch et al., 2020). Maize
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stover, the residue from maize harvesting, offers a dual benefit: it

can serve as a renewable energy source through biogas production

and as crop residue mulch to reduce soil erosion and enhance soil

fertility. These practices are particularly vital in fragile ecosystems

like Kakamega Forest and Mt. Elgon, where traditional fuel

demands drive deforestation (Tumwesige et al., 2011; Smith et al.,

2015).

Anaerobic digesters using maize stover for biogas production

not only provide energy but also generate nutrient-rich effluent that

improves soil fertility, reducing the need for chemical fertilizers

(Kinyua et al., 2016). However, maize stover collection presents

trade-offs. It may mitigate nitrate leaching but increase sediment

runoff or greenhouse gas emissions due to additional fertilizer

use (Gramig et al., 2013; Mann et al., 2002). Studies suggest

that sustainable management practices, such as no-till farming,

can minimize these adverse effects (Moebius-Clune et al., 2011,

2008).

In Sub-Saharan Africa (SSA), competing demands for maize

stover—primarily as livestock feed—limit its use for soil health

management (Hellin et al., 2013; Erenstein et al., 2011). Addressing

these challenges requires context-specific strategies incorporating

socio-economic and environmental factors (Jaleta et al., 2015;

Orskov et al., 2014). Promoting anaerobic digesters, advancing

maize stover research, and aligning practices with local farmer

needs are essential steps forward.

Kenya has initiated significant efforts to reduce greenhouse

gas (GHG) emissions by 30% (Dalla Longa and van der Zwaan,

2017), prioritizing expanded access to renewable energy. The Draft

Strategy and Action Plan for Bioenergy and LPG Development in

Kenya (2015–2020) highlights advancements in modern bioenergy

technologies (Ministry of Energy Pe, 2015) and the sustainable

utilization of agricultural crops and residues for biogas and biomass

fuel production. Progress in renewable energy adoption is evident,

with the number of installed biogas systems increasing from 6,749

in 2012 (Patinvoh and Taherzadeh, 2019) to ∼20,000 by 2015

(Ministry of Energy Pe, 2015).

This study investigates maize stover utilization in Western

Kenya, examining its dual potential for energy generation and

soil erosion mitigation. Using the Revised Universal Soil Loss

Equation (RUSLE) model, we estimate soil loss at the farm level

while machine learning techniques evaluate the feasibility of maize

stover-based biogas production. To further refine these analyses,

we integrate high-resolution remote sensing data with hybrid

classification methods, offering a comprehensive perspective on

year-round farm conditions (Kim et al., 2012). This approach

aims to contribute to sustainable resource management and

energy solutions.

2 Material and methods

This section outlines the research area (Section 2.1), data

collection of socio-economic information (Section 2.2), soil loss

estimation using RUSLE (Section 2.3), application of remote

sensing (Section 2.4), and machine learning-based estimation

of partial energy replacement by maize stover-based methane

production (Section 2.5). Statistical methods are described in

Section 2.6.

2.1 Study area

The study included 96.7% of farmers from Busia, Bungoma,

Kakamega, and Vihiga counties (Western Kenya) and 3.3% from

Siaya County (Nyanza Province). The region experiences long and

short rainy seasons, with an average maize yield of 1.9 tons/ha

(van Ittersum et al., 2016). Fertilization practices include DAP

at planting and CAN for top-dressing, with a density of 53,333

plants/ha. Detailed descriptions of soil types, agro-climatic zones,

and farm systems are in Jindo et al. (2020). Farmers were supported

by Agrics, a Kakamega-based social enterprise owned by ICS, which

provides input packages and services, as previously detailed (Duflo

et al., 2008).

2.2 Socio-economic information

Socio-economic data were collected from 91 farmers in 2016

using 33-question digital surveys via ODK on Android devices

(FAO, 1983). Interviews lasted ∼30min per farmer and captured

household status, agronomic practices, and energy use. GPS

coordinates of farmer fields and nearby forests were recorded

(Kenya Forest Service), and maize yield (reported as 90-kg bags)

was converted to dry weight using a 0.9 ratio. Distance to

forests was measured using QGIS. Data were validated with

local collaborators.

2.3 Soil loss estimation using Revised
Universal Soil Loss Equation (RUSLE)

We employed the Revised Universal Soil Loss Equation

(RUSLE), a widely used empirical model, to assess soil erosion

risks in maize fields under varying stover management practices

(Benavidez et al., 2018). RUSLE estimates soil loss (A, t ha−1

year−1) as the product of five factors:

A = R× K × LS× C × P (1)

where A is the annual soil loss (t ha−1 year−1), R is the

rainfall erosivity (MJ mm t ha−1 h−1 year−1), K is the soil

erodibility (t ha−1 MJ mm−1), LS is the length-slope factor,

C is the cover management factor, and P is the conservation

practice factor (Wischmeier and Smith, 1978). Data sources for

RUSLE factors are detailed in Supplementary Table 1. The R factor

was derived using WorldClim’s precipitation data (http://www.

worldclim.org/current). For the K factor, soil properties (texture,

organic carbon, bulk density) were extracted from SoilGrids

ISRIC (250m resolution) and calculated using Williams’s (1995)

approach, commonly applied in models like EPIC and SWAT

(Arnold et al., 1998). The LS factor was computed using Moore

and Burch’s (1986) method with a 30m resolution DEM from the

Shuttle Radar Topography Mission (SRTM). Flow accumulation

and slope data were processed in ArcGIS, combining unit stream

length (L) and slope (S) values (details in Supplemental material

and Figure 1). The CCC factor, based on vegetation cover, was

estimated using biannual NDVI data from PlanetScope (Karmage
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FIGURE 1

Location of farmers’ fields (blue circle) and Kakamega forest areas (green polygons) in western Kenya.

et al., 2017). Finally, the P factor was calculated using slope data,

following Kogo et al. (2020).

This approach integrates terrain, soil, and vegetation dynamics

to assess erosion risks comprehensively.

2.4 Remote-sensing data and the
Self-Organizing Maps–Hidden Markov
Models (SOM-HMM) approach

The PlanetScope constellation comprises ∼130 CubeSats,

offering near-daily global coverage at a 3-meter resolution across

four spectral bands (red, green, blue, and near-infrared) (Planet,

2020). This high-resolution imagery supports applications such as

disaster monitoring (Ganci et al., 2020), detecting fine-scale land

cover changes (Halls and Magolan, 2019), precision agriculture

(Breunig et al., 2020), and tree-crown phenology analysis (Wu et al.,

2021). However, like other satellite data, PlanetScope imagery is

prone to artifacts from BRDF effects and cloud contamination,

necessitating preprocessing to reduce these errors (Wang et al.,

2021; Valman et al., 2024).

Despite selecting cloud-free images, some contamination

remained in our dataset (Figure 2). To address this, we applied

a time-series modeling approach using SOM-HMM (Sawada,

2010). Self-Organizing Maps (SOM) cluster and visualize
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FIGURE 2

Change in the PlanetScope basemap satellite imagery (monthly, Nov. 2020). (Upper image) Original imagery before processing; (lower image)

processed using the Hidden Markov Models (spectral cluster). Red boxes indicate cloud shadows, while the yellow box highlights the clouds.

high-dimensional data, while Hidden Markov Models (HMM)

identify sequences of underlying states, enabling monthly and

annual field state classifications based on spectral analysis

(Figure 3).

In addition to optical data, radar remote sensing data from

PALSAR (Phased Array type L-band Synthetic Aperture Radar) was

used to monitor field and soil conditions. As an active microwave

sensor, PALSAR provides cloud-free, day-and-night observations

(JAXA). Backscatter coefficients (HV and HH) were retrieved from

the “Global PALSAR-2/PALSAR Yearly Mosaic” on Google Earth

Engine, and additional metrics, such as HV/HH andHH+VV, were

derived (Shimada et al., 2014). The Radar Vegetative Index (RVI)

was calculated as per Yadav et al. (2022).

2.5 Learning for estimating partial energy
replacement via maize stover-based
methane production

Decision tree learning uses a structured model to analyze

observations and predict target variables, applied widely in

statistics, data mining, and machine learning. Classification trees

predict discrete variables, with class labels at the leaves and

feature combinations on branches, while regression trees estimate

continuous variables. Decision trees aid decision analysis and

summarize complex datasets for actionable insights. Random

forests extend decision trees by constructing multiple trees during
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FIGURE 3

Flowchart illustrating the analysis of PlanetScope high-resolution imagery using self-organizing maps (SOM) and Hidden Markov Models (HMMs) with

four spectral bands. The discrete time-series model includes three modules: (1) spectral codebook generation and encoding via SOM, (2) time-series

modeling with HMMs, and (3) seosanal change profile classification using SOM.

training. For classification, they select the majority class; for

regression, they compute the average prediction (Breiman, 2001).

The predictor variable in this study is the “replacement of

energy consumption by maize stover-based biogas,” derived from

three variables: (1) household energy consumption per capita,

(2) household size, and (3) maize stover yield (calculated using

a harvest index ratio of 0.5 based on other works (Lal, 2004;

Karlen et al., 2015; Obrycki et al., 2018; Paul et al., 2019). Methane

yield from maize stover is estimated at 288 m3 CH4/ton (Total

Solid) based on Langeveld and Peterson (2018), and converted

to calorific value (MJ) following Suhartini et al. (2019). Potential

methane energy is then compared to household energy needs.

The households currently derive energy from some combination

of firewood, charcoal and/or LPG gas, so conversion efficiency of

methane to electricity is not considered. Farmers experiencing soil

erosion (RUSLE> 0) are assumed to retainmaize stover in the field,

prioritizing soil conservation.

2.6 Statistical analysis

Statistical analyses included t-tests, Mann–Whitney tests, one-

way ANOVA, Kruskal–Wallis tests, and correlation analyses.

Post-hoc Tukey and Games-Howell tests were applied for group

comparisons. Normality was assessed using Anderson-Darling

tests, with p ≤ 0.05 considered significant. R packages such as

“agricolae” and “randomForest” were utilized (R Core Team,

2020). ChatGPT (OpenAI model GPT-4) was utilized to assist

in the correction of our R script, ensuring accuracy and

optimization for the analyses conducted in this study. The input

prompts and outputs related to this use are provided in the

Supplementary material for transparency.

3 Results

3.1 Household dataset (Linear regression
and t-test)

Field management practices, such as type of land preparation,

significantly impact maize yield (p< 0.001; Figure 4A). The average

yields in maize fields prepared by tractor, oxcart, and farmer’s

hand are 317.0, 251.3, and 152.8 kg/ha respectively (Figure 4A).

Maize yield was notably influenced by field size (p < 0.01;

Figure 4B) and mechanization level. Farmers with larger fields

tend to utilize tractors for land preparation, whereas those with

smaller fields cultivate manually. The amount of weeding and

manure applications also weakly affects maize yield (0.1 < p <

0.05). The number of hired laborers had no statistically significant

effect on yield. Duration of familiy food self-sufficiency is notably

influenced by the household size (p < 0.05) and, to some extent,

field size (0.1 < p < 0.05). Interestingly, farmers without off-

farm income exhibit a superior duration of self-sufficiency (7.9

months compared to 6.6 months, p < 0.05). Energy consumption

expressed per individual increases with family size (p < 0.05).
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FIGURE 4

(A) Maize yield (kg dry weight/ha) based on the land preparation methods: Hand (red), Oxcart (green), tractor (blue). (B) Maize yield (kg dry weight/ha)

in relation to plot size (ha), measured using GPS. The blue line represents the linear regression line.

While not achieving statistical significance, farmers with off-farm

income allocate a greater proportion of maize for sale compared to

those without such income (0.1 < p < 0.05). No gender disparities

were found in maize yield, land size, or livestock stock units (LSU).

Widows and single mothers do not exhibit inferior performance

or asset levels in relation to crop yield, land size, or livestock.

No significant difference was shown in the relationship between

distance to the homestead and maize yield. The mean maize stover

value is 540.4 kg per household, with a standard deviation of

430.66 kg per household, indicating considerable diversity among

the smallholder farmers in our dataset.

3.2 Soil erosion

The mean value of the potential soil erosion rate of the farmers’

fields is 0.01 ton/ha per year. The maximum and minimum values

of the potential soil erosion rate are 0.19 and 0.003 ton/ha per year,

respectively, but 80.3% of farmers show no soil loss according to

RUSLE (A = 0) as is explained by their fields’ low LS factors. The

mean values of factors K, R, LS, C, and P are 0.0267, 6,529.4, 0.028,

0.0184 and 0.1063, respectively.

3.3 Self-Organizing Maps–Hidden Markov
Models (SOM-HMM)

A spectral codebook for PlanetScope’s multi-band images was

created using SOM, and it contains 400 codes. Next, images of the

target area were encoded using the obtained spectral codebook. The

time series modeling software using SOM-HMM includes a feature

for automatically determining the number of HMM states, and the

optimal number of states was found to be 20. The mean spectral

reflectance spectra of the obtained states corresponded to “water,”

“bare soil/artificial features,” and “vegetation” land cover categories

for each of the 20 states. States 1 to 6 represent “water bodies,”

state 7 corresponds to “bare soil,” and states 8 to 20 correspond

to “vegetation.” Additionally, the temporal changes in states at the

pixel level were found to represent the phenology of that location.

The time series profiles of states for each pixel were classified into

67 categories. As seen in Figure 2, the noise of the cloud and cloud

shadow in optical remote-sensing data is removed by this approach.

In our study, there are substantial relationships between

the field states variables from SOM-HMM and other variables

from the field survey. The distance to the homestead field

significantly affected the monthly state of May and September in
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the SOM-HMM (p < 0.05). The monthly state of March and April

was weakly affected to a lesser degree (0.05< p< 0.1). The distance

to the nearest forest significantly affected the annual Cluster ID of

SOM-HMM (p < 0.05). The distance to the nearest forest from the

farmer’s field significantly affected the monthly state of May, June,

October and November in the SOM-HMM (p < 0.05), and these

months were at the peak of the two cropping seasons (long-rain and

short-rain seasons) where plant growth increases strongly. Other

months, such as July, August, September and December, which

were toward the end of the cropping seasons, have been weakly

affected (0.05 < p < 0.1). No significant difference is shown in the

relationship between annual cluster-ID and maize yield.

3.4 Synthetic Aperture Radar (SAR) remote
sensing data

Linear regression analysis was conducted to find relationship

with SAR derived variables and others. HH has significantly

relationship with monthly state over the year, especially, dry season

such as November (p < 0.05), December (p < 0.05), January

(p < 0.05), and February (p < 0.01), respectively. RVI also has

significantly relationship with the monthly state of November

(p < 0.05) and February (p < 0.05). No significant relationship

is seen between maize yield and the all SAR-derived variables.

Interestingly, manure amount has significant relationship with HV

(p < 0.05) and HH+HV (p < 0.05).

3.5 Correlation matrix

Figure 5 represents the correlation matrix between variables.

The order of the variables in the correlation matrix is arranged

according to the outcomes of the hierarchical clustering conducted

to identify cluster groups across different variables. The correlation

analysis shows that elevation positively correlates with distance

to the forest, crop yield, land preparation type, field size, and

monthly field states from optical remote-sensing data (May, June,

Augustus, September, and October). At the same time, it negatively

correlates with manure application levels. No clear link was

found between the proximity to the nearest forest and energy

consumption. Per capita energy consumption was found to have

a slightly positive correlation with the number of household

members but a negative correlation with self-sufficiency duration.

The proportion of the maize that is sold was correlated with

plot size. The level of energy consumed per person is positively

correlated with household size and negatively with the duration

of self-sufficiency. Maize field states derived from remote sensing

during the May 2021 to October 2021 period have a significant

negative correlation with the distance to the field. Further, annual

Cluster ID has a weak negative correlation with distance to the

nearest forest, household number and soil loss rate. Maize yield

has negatively correlated with the nearest forest, positively with

a type of preparation, field size, and elevation. Daily income is

highly correlated with the number of hired laborers, the number of

household members, and LSU. Variables from SAR-remote sensing

(e.g. RVI, HH/HV and HH+HV) have positive correlations with

monthly field states measured by optical imagery from October

to February. Interestingly, the variables of HH+HV and HV are

positively correlated with the amount of manure application.

Based on the result of the clustering method, the number of

clusters was chosen to 2, as seen in the Supplementary Figure 2. Ten

variables are selected in the small clustering group, including LSU,

Age of the household-head, Off-farm income, and Daily income.

Other large cluster group covers other variables.

3.6 Decision tree random forest

Figure 6 represents the result of the decision tree, which

is one of machine learning methods. The different ratios (0.7,

0.75, and 0.8) between the train data and the test data were

tested. And 0.75:0.25 was chosen due to the lowest value of

RMSE. The number of splits is two according to the “Complexity

Parameter Method” result for the decision tree machine learning

method (Venkatasubramaniam et al., 2017). The mean value of

the percentage of replacing the energy consumption per household

by the maize stover-based biogas generation is 11% of the total

energy composition per household (Figure 6). The largest group

with 63% of the households in this study (n = 57), could replace

3.4% of the energy consumption by the maize stover biogas. They

are categorized as the group which has higher energy consumption

than 5.7 GJ/capita and lower maize yield than 279 kg-DW/ha. The

second and the third largest groups, including 18% and 13% of the

households in our study, respectively, could replace 7.3 and 20% of

the energy by the maize stover. Conversely, the maximum benefit

is achieved in households with fewer members, primarily relying

on LPG gas and producing maize at a rate of 229.46 kg per hectare.

This household, representing 1% of our dataset, can make 245% of

the replacement. Secondly, farmers who produce higher yields than

197 kg-DW/ha, representing 3% of our dataset, can replace 52% of

the energy consumption with maize stover-based biogas.

Energy consumption associated with maize stover-based

biogas production is examined in our study. Key variables

for assessing this method include energy consumption per

capita, household size, crop yield, field size, and duration of

self-sufficiency. Additionally, variables such as “Annual cluster

ID” and “Distance to the nearest forest,” while not directly

linked to household energy consumption or maize yield,

are deemed relatively important (Supplementary Figure 3).

The diversity among farming households is evident in our

dataset, as seen in the variability of these variables, thereby

resulting in different groups for energy substitution with

maize stover.

4 Discussion

Biogas production in Sub-Saharan Africa (SSA) has

considerable potential due to favorable climate, feedstock

availability and a large part of the workforce involved in agriculture

(Timothy et al., 2022). Despite this potential, the uptake of

biogas systems remains slow and sporadic, primarily due to

high installation costs and limited awareness (Rupf et al., 2015).

Biogas also comes with barriers to electrification, as many
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FIGURE 5

Correlation matrix plots using varialbes from field surveys and remote-sensing data. The correlations are represented with a color scale: red indicates

a negative correlation, and blue indicates a positive correlation. Asterisks denotes statistically significant correlations, highlighting stronger

relationships.

available conversion technologies are expensive, inefficient, and

may require costly intermediate steps (Kabeyi and Olanrewaju,

2022). Collaboration among various stakeholders, including

government, financial institutions, NGOs, research entities, and

entrepreneurs, is deemed essential for successful implementation

(Roopnarain et al., 2021). Socio-economic constraints hindering

biogas adoption need to be addressed, with proposed solutions

emphasizing standardization, quality control, and integrated

farming (Mwirigi et al., 2014).

Maize stover, residual biomass left in the field after maize

grain harvest, holds promise as a feedstock for biogas production

(Mazurkiewicz et al., 2019). Maize stover is more abudant

feedstock in smallholder households in Western Kenya than other

feedstocks (Torres-Rojas et al., 2011). This carbon rich material,

holds cellulose, hemicellulose and lignin with the proportion of

34:19:19 (Langeveld and Peterson, 2018), and contains the range

of 0.6%−0.75% of Nitrogen (Karlen et al., 2015; Ludemann et al.,

2022; Meya et al., 2023) and 1.2%−1.7% of Potassium (Islam et al.,

2018; Meya et al., 2023). Its high methane yield potential, valuable

digestate (suited for nutrient recovery), and low hydrogen levels

exceed those of alternative feedstocks such as coffee pulp, cotton

waste, sugarcane leaves, and banana stalks (Nzila et al., 2015).

Convertingmaize stover to biogas circumvents the conflict between

food and biofuel production, and it contributes to sustainable

agricultural practices by returning nutrients to the soil through

digestate application (Mazurkiewicz et al., 2019). However, in

practice, variations in lignin content across maize stover fractions

can impact methane yield, which necessitates further research

(Wozniak et al., 2021). Also, harvesting corn stover for energy

production can lead to increased erosion, reduced soil quality, and

impacts on soil organic carbon dynamics (Mann et al., 2002).

In practice, most farmers included in our dataset had an

extremely low risk of soil erosion, confirming other soil erosion

estimates in Western Kenya (Kogo et al., 2020). The average loss
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FIGURE 6

Decission tree chart from machne learning analysis for substituting energy consuption with maize stover-based methane genaration. The key

variables in this models are energy consuption per capita (“Energy_Cons_GJ_Capita”), maize yield (“Yield_kg_DW_ha”), and numbe of household

members (“Nr_Household”).

is 0.4 t/ha/y. The study area’s most dominant severity class has

low erosion rates (<5 ton/ha/y), which are explained by low LS

factors as supported by other studies (Kogo et al., 2020; Schürz et al.,

2020). Future studies could address this limitation by incorporating

field measurements of erosion rates under varying crop residue

and soil management practices, providing empirical evidence to

complement the modeling results presented in this study.

Several agro-ecological zones exist in Western Kenya, given its

topographic diversity. The positive correlations between elevation

and monthly field states during the cropping seasons could reflect

this difference (Figure 5). As an example, the fields located at

higher elevations close to Mt. Elgon encounter favorable climate

and soil conditions for maize growth which allow higher yield

levels. On the contrary, fields located in lowland areas require

higher manure applications, as reflected in the negative correlation

between elevation and manure application.

Apart from the varied landscape and agro-ecological zones,

the location of the farmer’s field in relation to the farmer’s home

is important, given that different field management (e.g. fertilizer,

manure, weeding, pest management) depending on the distance

to the home creates a fertility gradient within the farm (Vanlauwe

et al., 2006; Tittonell et al., 2007; Kihara et al., 2015; Assefa

et al., 2020). Generally, soils located close to homesteads show

higher fertility including soil organic carbon and cation exchange

capacity due to organic amendments of crop residues and animal

manure compared to those located far from the home (Yakob et al.,

2023). Farmers utilize decomposed plant material, kitchen refuse,

and household wastes, often leaving them in heaps around their

households for decomposition (Nkamleu, 2007). The decomposed

material is applied differentially across fields, with homestead fields

receiving higher application rates.

Our study found that the SOM-HMM approach, utilizing

remote-sensing data, correlates significantly with the distance

between homes and homestead fields. Specifically, we observed

significantly higher above-biomass status during the cropping

season, as reflected by the variables of remote-sensing data,
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in fields closer to the home. High-resolution remote sensing

data has been instrumental in monitoring smallholder farmers’

fields globally (Burke and Lobell, 2017). Additionally, innovative

approaches such as the insurance index and platform-based advice

to farmers have been developed based on vegetative indices like

NDVI. Furthermore, radar sensor measurements can provide

supplementary monitoring of soil moisture and vegetative water

content (Narvekar et al., 2015), as demonstrated in our study,

where positive correlations were observed with variables of the

SOM-HMM during the dry season (January and February).

The effectiveness of these technologies is further enhanced

when combined with freely available soil digital maps, providing

insights into various soil properties. While the use of soil digital

maps at the regional level is often criticized for lacking precision

in capturing spatial heterogeneity at the smallholder farming

level (Jemo et al., 2014; Maynard et al., 2023), the HMM-SOM

model integrated with microsatellite data serves as a valuable

complementary tool for enhancing the monitoring of field status

over the years and improving data quality.

It should be noted that in our study, the variables derived from

the SOM-HMMmodel have no significant correlation with farmer

self-report yield. The mean value of maize yield self-reported by

farmers, 0.22 ton/ha, is much lower than values reported elsewhere

for small-scale farms in Kenya in the same cropping season (2016

long-rain; around 0.80–1.0 ton/ha; Marinus et al., 2021; Kätterer

et al., 2022). The difference is probably attributed to the different

measurement methods between self-report and physical crop-

cutting. Earlier studies found the inaccuracy of farmer self-reported

yields being a strong constraint for the understanding of farming

systems in SSA (Carletto et al., 2015; Burke and Lobell, 2017) while

the gaps with field monitoring based on remote sensing approach

have been often reported (Burke and Lobell, 2017; Paliwal and Jain,

2020). It is important for future work to identify ways to increase

the accuracy of self-reported yield estimates at the plot-level and

find an alternative method (e.g. integration between self-reported

yield and physical crop-cutting measurements).

In Kenya, unsustainable logging for wood fuel, particularly

charcoal production, is a primary cause of deforestation (Watson

and Diaz-Chavez, 2011), while also causing land degradation

and destruction of water catchment areas (Nunes et al., 2021).

Promoting biogas usage can reduce fuelwood and charcoal

demand, contributing to deforestation mitigation efforts. By

shifting from biomass to biogas as an energy source, the demand

for non-renewable biomass decreases, addressing a major driver

of deforestation (Piadeh et al., 2024). In addition, it should

be noted that biogas systems constitute important mid-term

household cooking transition alternatives not only for energy

savings but also for atmospheric emission reductions (e.g. PM2.5,

NOx, and NMVOCs) from firewood fuel, which is a major

social issue in Western Kenya (Carvalho et al., 2019, 2020).

Furthermore, biodigestate from biogas production, known as

“bioslurry,” enhances soil fertility, particularly over the long term,

and helps reduce the need for harmful land-use practices while

supporting forest conservation efforts (Piadeh et al., 2024). Other

studies (Musse et al., 2020; Yadav et al., 2023) have reported

that liquid bioslurry contains 1.5%−2% total nitrogen, 300 mg/kg

of available phosphorus, and 715 mg/kg of available potassium.

This nutrient management cycle, which includes the application

of bioslurry, not only helps maintain soil fertility but also has

the potential to reduce dependence on chemical fertilizers, thus

benefiting smallholder farmers by lowering input costs.

Replacing traditional energy sources and chemical fertilizers

with biogas in Kenya is estimated to save households between

$21 and $25 per month (Kimutai et al., 2024). However, the high

cost of installing biogas systems continues to pose a significant

challenge, particularly in resource-limited settings (Naik et al.,

2014). The cost of a small-scale plant in Kenya was estimated at

$1,500 due to high construction material costs (Roopnarain et al.,

2021). For example, construction materials in Kenya are not only

expensive but also difficult to access, as transportation to and

from villages adds to the expense. The Kenyan government has

facilitated the implementation of ∼20,000 biogas units nationwide

(Kimutai et al., 2024). Also, it is reported that there exist several

company in Kenya that has reduced construction cost up to

20% by modifying design and materials (Clemens et al., 2018).

Despite this effort, these systems account for only 11.4%−14.6%

of the household energy mix in peri-urban areas, reflecting

a limited adoption rate (Kimutai et al., 2024). While these

figures show progress, they highlight barriers to wider adoption.

Financial, cultural, and technical factors likely limit uptake. Future

research should address these to promote biogas use among

smallholder farmers.

Our study revealed significant variability in the potential

for maize stover-based biogas to substitute household energy

consumption (Figure 5). This variation reflects the heterogeneous

nature of smallholder farming in Western Kenya, influenced

by factors such as family size, energy consumption levels, and

maize yields. Farms with fewer household members and higher

maize yields are particularly well-positioned for maize stover

biogas generation. Notably, one subgroup, which accounted for

14% of our observations, demonstrated the capacity to replace

up to 20% of their energy consumption with biogas. However,

the economic feasibility of this solution hinges on addressing

the high installation costs of anaerobic digestion systems. These

findings suggest that while biogas from maize stover offers

promising potential for partial energy substitution in certain

contexts, its broader adoption will require targeted interventions

to make the technology economically viable and accessible for

smallholder farmers.

5 Conclusion

While there is significant potential for biogas production

from crop residues in Sub-Saharan Africa (SSA), including maize

stover, the economic feasibility of adopting anaerobic digestion

systems remains a key challenge. The high installation costs of

efficient biogas systems may limit their accessibility, particularly for

smallholder farmers. Addressing this economic barrier is crucial for

realizing the full potential of biogas as a sustainable energy source

in the region.

This study highlights the dual challenges of utilizing maize

stover for biogas production and managing its removal to

mitigate soil erosion risks. By analyzing geography, household
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characteristics, and field management practices, we propose

strategies that support sustainable development, productivity,

and resource conservation for smallholder farmers in Western

Kenya. Our findings reveal that biogas production from maize

stover can partially substitute conventional energy sources for

specific household profiles, particularly larger families with higher

per capita energy demands. However, this potential remains

constrained by the economic cost of biogas systems and the

variability in maize stover availability across farms.

Integrating bioslurry, a by-product of biogas production, as an

organic fertilizer further underscores the importance of a holistic

approach to stover management. Practices such as proper land

preparation, controlled manure application, and timely weeding

are essential for enhancing maize yields and stover availability.

Additionally, advanced monitoring techniques like the integration

of SOM-HMM and remote-sensing data enable more precise field-

level assessments, improving our understanding of household

energy needs, crop yields, and soil erosion risks. Further research

is needed to explore the financial and technical constraints on

biogas adoption, including the economic viability of bioslurry as

a partial substitute for chemical fertilizers. Future studies should

also integrate farm-level soil loss assessments and refine yield

estimates using physical crop-cutting data combined with remote-

sensing technology.

In conclusion, this study provides valuable insights into

the trade-offs associated with maize stover use for biogas

production in Western Kenya. By addressing both the technical

and economic dimensions of biogas adoption, it contributes

to the broader discourse on sustainable agriculture and energy

production in SSA. These findings emphasize the importance

of targeted interventions to reduce the cost of biogas systems,

making this technology more accessible to smallholder farmers

and enhancing its role in improving livelihoods and promoting

environmental sustainability.
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