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Among cereals, three crops namely maize, wheat, and rice account for 90% of 
the total cereal production, with global production levels of 791.2, 522.6, and 
1229.63 million tons for wheat, rice and maize, respectively. The global challenges 
of food insecurity, climate variability, and unsustainable land use necessitate a 
redefined approach to cereal production, focusing on climate resilience, low 
vulnerability, and high productivity while establishing food and environmental safety. 
Integrated crop management (ICM) offers a holistic farming approach that integrates 
various agricultural practices to ensure long-term benefits and mitigate risks. This 
comprehensive review examined a total of 108 documented studies from existing 
literature pertaining to the last 23 years, besides case studies on ICM in rice, wheat, 
and maize production, analyzing its benefits, challenges, and future directions. In 
Asian countries, where rice is a staple food, ICM practices have effectively addressed 
challenges such as yield stagnation, declining profits, and crop failures. Nutrient 
and pest management, along with conservation agriculture (CA), have played 
a crucial role in overcoming these challenges. China’s implementation of site-
specific management duly integrated with other practices, has successfully reduced 
excessive nitrogen use besides improved environmental and health outcomes. 
Sustainable corn production has been achieved in the USA and Africa through 
comprehensive implementation of CA and crop diversification. Globally, ICM has 
demonstrated yield increases of 10–19% for rice, 16–30% for wheat, and 13.5–30% 
for maize crops. Despite having ample potential, the widespread adoption of ICM 
faces technical, climate-related, and economic constraints. Overcoming these 
challenges requires targeted training, extension services, and supportive policies. 
Furthermore, future research should focus on addressing key knowledge gaps 
to facilitate the widespread implementation of ICM. While promoting climatic 
resilience and sustainability in cereal production systems, ICM can contribute to 
food security and environmental preservation globally.
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1 Introduction

With over 700–800 million people uncertain about their next 
meal, the modern world is grappling with an unprecedented hunger 
and malnutrition crisis (FAO et al., 2022). The scale of this crisis has 
escalated drastically, with over 345 million people experiencing severe 
food insecurity in 2023, which is more than double the number in 
2020. Factors such as conflicts, economic shocks, climate extremes, 
and rising fertilizer prices have combined to create an unprecedented 
food crisis (WFP, 2023). To ensure global food security, it is essential 
to manage and utilize resources like land, water, and nutrients 
sustainably, while also respecting planetary boundaries (Grote et al., 
2021). Striking the right balance between food and nutritional 
security, environmental protection, and climate change mitigation 
poses a significant challenge for our food systems and the management 
of land and water resources (IPCC, 2019; Willett et al., 2019). Rice, 
wheat, and maize, the three staple crops, provide about 40% of our 
daily calories and form the foundation of human nutrition (Neumann 
et al., 2010; World Economic Forum, 2018). Although these crops 
contribute significantly to global cereal production, their current 
output falls short of meeting the requisite demand of a growing 
population, leading to significant environmental pressures (Vinci 
et al., 2022).

However, cereal production is not feasible without alarming 
consequences. It accounted for 18% of greenhouse gas emissions 
(GHGs) from the agro-food sector between 1961 and 2019 due to high 
reliance on synthetic pesticides, nitrogen (N) fertilizers, and the use 
of polluted irrigation water (Pillay et al., 2018; Hamel et al., 2020; 
Vinci et  al., 2022). Addressing these environmental challenges, 
necessitates climate-smart agricultural practices that aim to reduce 
synthetic inputs, promote multiple production approaches, and 
enhance sustainability (Cambareri, 2017; Hamel et al., 2020). In this 
context, integrated crop management (ICM) emerges as a pragmatic 
approach to address the challenges associated with cereal production. 
ICM is a holistic farming approach that integrates various agricultural 
practices, including irrigation, nutrient management, pest 
management, and soil conservation (Choudhary et al., 2018; Singh 
et al., 2022). By combining these components, ICM could greatly 
optimize crop production, while minimizing negative environmental 
impacts (Math et  al., 2018). It also offers several advantages over 
traditional methods, such as enhanced productivity, reduced input 
costs, improved soil health, pest and disease management, and 
resilience to climate variability (Ottoman et  al., 1997; Khatun 
et al., 2018).

Despite these advantages, the full potential of ICM practices 
in cereal production remains largely unexplored due to various 
challenges. These challenges include high input costs (28–34%) 
associated with additional labor requirements, IPM practices, 
additional nutrient requirements in addition to lack of knowledge 
and awareness, resistance to change, limited government support, 
and climatic variability (Bagheri et  al., 2019). Encouraging 
farmers to adopt ICM practices can revolutionize cereal 
production, besides protecting the health of individuals coupled 
with a safer environment. While some review papers have 
discussed the general question of feeding the growing world 
population, limited attention has been given to the specific role of 
staple food crops like rice, wheat, and maize (Shiferaw et al., 2011, 
2013; Fukagawa and Ziska, 2019; Tadesse et  al., 2019; Mishra 

et al., 2022). This review aims to fill that gap by exploring the ICM 
approaches being practiced in cereals globally, highlighting their 
challenges, and presenting futuristic directions for achieving 
sustainable cereal production while maintaining a cleaner and 
safe environment.

2 Background

The historical perspective of ICM can be  traced back to the 
mid-20th century, when conventional agricultural practices heavily 
relied on chemical inputs (Blois, 2023). These systems were 
characterized by the intensive use of agrochemicals to maximize 
production, including extensive tillage, mono cropping, and limited 
recycling of materials (Sumberg and Giller, 2022). However, the 
overreliance and indiscriminate application of these inputs led to a 
range of environmental and health issues (Hemathilake and 
Gunathilake, 2022). The invention of organo-chlorine insecticides, 
particularly DDT, in the 1940’s revolutionized pest control practices 
(Pimentel, 1996). This was followed by the green revolution in the 
1950’s and early 1960’s, which brought about a complete 
transformation of agriculture and a significant increase in food 
production (Pretty, 2018). During this period, there has been a shift 
away from understanding pest phenology, density, and natural 
enemies, and synthetic pesticides and fertilizers were seen as “the 
sole answer to world hunger” (Penn State Extension, 2022). However, 
this approach led to a high level of dependence on chemicals, 
resulting in increased selection pressure on pests and the 
development of resistance. Consequently, this has necessitated a 
growing demand to explore production practices that were 
environmentally friendly, economically viable, and 
socially responsible.

The earliest known developments in literature regarding 
integrated pest management (IPM), ICM, integrated production (IP), 
and integrated farming (IF) emerged during the 1950’s in many 
countries worldwide (Kneib and Schulz, 2006). Further research on IF 
in its various guises, such as integrated farming systems (IFS) and 
IPM, was conducted in the late 1970s (Rose et al., 2019). It was not 
until 1991 that ICM was first introduced as an attempt to address 
public perception of farming. In Great Britain, a new organization 
called linking environment and farming (LEAF) was formed with the 
aim of promoting good agriculture and reassuring consumers that the 
food they consumed was safe (Finch et al., 2014). In recent years, 
advancements in technology and the growing realization of the 
importance of regenerative agriculture have further propelled the 
adoption of ICM. Pioneering practices involving ICM, such as IP, IF, 
and IPM, have been developed as holistic concepts that encompass all 
crop and farming activities (Rossi et  al., 2010). Furthermore, the 
integrated crop-livestock system (ICLS) has gained attention as an 
alternative management strategy that sustainably intensifies food 
production while benefiting producers, soil health, and the 
environment (Kumar et al., 2019). This historical perspective of ICM 
reflects a shift from conventional agricultural practices, which heavily 
rely on chemical inputs to a better holistic and sustainable approach. 
The integration of various practices, technologies, and ecological 
principles in ICM has allowed farmers to optimize crop production 
while minimizing environmental impacts and promoting long-term 
agricultural sustainability.
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2.1 Global cereal production scenario

Cereals hold immense importance as the most traded 
commodities worldwide in terms of quantity, with the United States 
of America (USA) and Europe emerging as major exporters, while 
Asia stands as the largest importer (FAO et al., 2022). These crops 
cover half of the world’s harvested area, spanning over a vast area of 
736 million hectares (m ha), and contributing a staggered total 
production of 2,996 MT. Among cereals, maize, wheat, and rice play 
pivotal roles, accounting for approximately 90% of the total cereal 
production. Maize, with its versatile applications, stands as a key 
player in global agriculture. The USA takes the lead in maize 
production, boasting a remarkable output of over 360 MT. China and 
Brazil follow closely behind, with maize productions of 260 MT and 
104 MT, respectively (FAOSTAT, 2022). Wheat, often considered the 
“staff of life,” holds tremendous value in the global food system. China, 
India, and Russia have emerged as the major wheat producers, 
contributing significantly to the world’s wheat production. China leads 
the pack with a wheat production of 135 MT, followed by India with 
107 MT and Russia with 86 MT. The details have been given in 
Figure 1 for better presentation.

Rice provides a substantial portion of the energy for being 
consumed by 2,700 million people in Asia, with China securing the 
position of the largest rice producer, with an impressive output of 213 
MT; while India closely follows (155 MT).Other major rice producers 
include Indonesia, Bangladesh, Vietnam, and Thailand (FAOSTAT, 
2022). Its production demands effective management strategies, 
including IPM and water conservation techniques, to ensure 
sustainable cultivation and meet the dietary needs of millions. The 
global production scenario of these cereals highlights their critical role 
in ensuring food security, sustainable agriculture, and economic 
stability. The adoption of ICM practices in cereals therefore becomes 
imperative to address the challenges posed by population growth, 
climate change, resource constraints, and environmental concerns. By 
implementing sustainable and integrated approaches, farmers can 
enhance productivity, reduce environmental impacts, and contribute 
to a resilient and sustainable future of cereal production with 
cleaner environment.

2.2 Evolution of ICM practices in cereals

The evolution of ICM practices in cereals, including rice, wheat, 
and maize, has witnessed a transition from conventional methods to 
more sustainable and integrated approaches. The Food and Agriculture 
Organization (FAO) recognizes the significance and relevance of ICM, 
emphasizing its superiority over individual agronomic management 
approaches (Pooniya et al., 2022). However, specific practices may 
vary based on the crop and region. In rice production, the focus has 
shifted toward water management techniques aimed at optimizing 
water use efficiency (WUE) and reducing methane emissions. One 
promising technique is alternate wetting and drying (AWD), an 
economically viable and eco-friendly irrigation system (Ishfaq et al., 
2020; Suwanmaneepong et  al., 2023). AWD maximizes rainfall 
capture, reduces irrigation pumping, and maintains grain quality and 
yield (Howell et al., 2015; Henry et al., 2017). IPM strategies in rice 
emphasize upon biological control, resistant varieties, and cultural 
practices like synchronized planting, reducing the reliance on 

pesticides and promoting sustainable rice production (Enriquez 
et al., 2021).

In wheat production, there has been a greater emphasis on 
precision agriculture technologies, enabling targeted fertilizer 
application, site-specific crop management, and precise pesticide 
usage. Disease-resistant varieties, conservation tillage, and yield 
monitors are also utilized to ensure it (Mercer, 2019). Precision 
agriculture technologies can help farmers achieve consistent crops 
while reducing inputs like fertilizer and pesticides, thereby leading to 
improved sustainability and profitability (Finco et al., 2021). Maize 
production has also witnessed advancements in the use of cover crops 
(Effland et al., 2022), crop rotation, and intercropping, particularly 
with soybean (Iqbal et al., 2019). Optimized nutrient management 
practices have also been employed to enhance soil health and mitigate 
pest and disease pressures (Kumar et  al., 2014a). Technological 
advances have played a significant role in increasing productivity and 
reducing costs on corn farms, ensuring food safety in regions where 
maize is a staple crop, such as East Africa (Mutiga et al., 2019). These 
advances have also contributed to the global expansion of maize 
production (Erenstein et al., 2022). Overall, the evolution of ICM 
practices in rice, wheat, and maize embraces a holistic and sustainable 
approach, incorporating site-specific technologies and practices to 
optimize yields, reduce inputs, and ensure long-term environmental 
and economic sustainability.

3 Methods

3.1 Search term strategy

In order to comprehensively assess the current practices and 
future prospects of ICM in sustainable cereal production, a systematic 
literature review was conducted. The search term strategy involved the 
following topics.

3.1.1 Keywords
Relevant keywords including “ICM,” “IPM,” “conservation 

agriculture (CA),” “water management,” “soil fertility,” and “nutrient 
management” were combined using Boolean operators to form the 
search string: ‘(ICM OR Integrated crop management) AND (IPM) 
AND (CA) AND (water management OR irrigation) AND (soil 
fertility OR soil health) AND (nutrient management OR fertilizer use 
efficiency)’. This string was used to retrieve the literature from various 
platforms such as Google Scholar, J-gate, CAB direct, and Scopus, 
covering the period from 2000 to 2023. This approach aimed to 
capture a wide range of scholarly works focusing on ICM practices 
within the context of specific cereal crops (rice, wheat and maize). In 
addition to academic databases, government websites and reports, 
notably the FAO and the U.S. Department of Agriculture (USDA), 
were extensively explored to gather valuable insights on ICM practices 
in cereal production. The search was conducted in English language 
to ensure accessibility and uniformity of the collected literature.

3.1.2 Publication filtering
After the initial collection of literature, a filtering process was 

employed to select publications that were most relevant to the 
objectives of this review. The filtering criteria included the (a) 
alignment of the publication with the scope of ICM in cereal 
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production, (b) publication within the time frame of 2000–2023, 
(c) peer-reviewed status to ensure research quality, (d) focus on 
maize, wheat, and rice production systems, (e) exclusion of 
duplicate records and non-English publications. This step ensured 
that the selected literature would provide valuable insights for 
the analysis.

3.1.3 Selection of publications
To effectively present the ICM approaches of cereals at the global 

level, a total of 45 publications for rice, 28 publications for wheat, and 
35 publications for maize were selected from the filtered literature. The 
selection criteria included: (a) relevance to ICM practices, (b) coverage 
of key topics such as IPM, CA, water management, and NUE, (c) 

FIGURE 1

Area, production and productivity of (a) Rice, (b) Wheat and (c) Maize over the past 25 years. Source: Directorate of Economics and Statistics, DAC&FW, 
GOI (2023).
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inclusion of studies that provided quantitative or field-based evidence 
on the effectiveness of ICM practices, and (d) recent publications to 
ensure up-to-date information. The rejection criteria included: (a) 
studies that lacked direct relevance to ICM or cereal production, (b) 
duplicate publications or studies that were reviews without original 
data or analysis, (c) non-peer-reviewed sources. This rigorous 
selection process ensured that the chosen publications were both 
significant and relevant for analyzing current practices and 
advancements in ICM approaches for sustainable cereal production.

3.2 Analyzing the information

Once the literature collection was completed, a detailed analysis 
of the gathered information was conducted. Given the limited 
availability of extensive literature on the global evolution and 
advancement of ICM practices in cereal production, this review 
endeavors to bridge the knowledge gap through a rigorous analysis 
that enhances our understanding of ICM’s role in achieving sustainable 
cereal production. To enhance clarity and facilitate a better 
understanding, the collected literature was meticulously organized 
into subsections corresponding to specific cereal crops, namely rice, 
wheat, and maize, along with their respective ICM practices, 
background, challenges in adoption of ICM, success stories and future 
direction and recommendations. The analysis of the information 
aimed to achieve the objectives of this review, which included: (i) 
Evaluating current practices and challenges in cereal production, 
focusing on the adoption of ICM in rice, wheat, and maize. (ii) 
Analyzing success stories, challenges, and future research directions 
to foster sustainable cereal production through ICM; and (iii) 
Summarizing key findings to promote the widespread adoption of 
ICM practices in cereals.

4 Approaches to ICM in cereal 
production at global level

Agriculture contributes approximately 4% to the global gross 
domestic product (GDP) as per latest reports (Statista, 2023). In 
developing and developed countries, the agricultural GDP accounts 
for 8 and 25%, respectively (FAO, 2011). It is worth noting that around 
2 billion people, comprising 26.7% of the world’s population, depend 
on agriculture for their livelihoods (FAO, 2018). Agricultural 
development plays a crucial role in eradicating extreme poverty, 
promoting shared prosperity, and feeding the projected 9.7 billion 
people by 2050. Furthermore, growth in the agricultural sector is 2–4 
times more effective in raising income level among the poorest 
segments of society compared to other sectors (The World Bank, 
2023). However, the increasing demand for food production to sustain 
a growing population poses significant challenges to agriculture, 
exacerbated by climate change and current agricultural practices. In 
this context, redefining cultivation approaches that address food 
security and climate resilience becomes imperative. ICM serves the 
purpose by combining the best aspects of traditional methods with 
appropriate modern technologies to achieve a balance between 
economic crop production and positive environmental management 
(Choudhary and Rana, 2018). ICM is referred to by different names 
in different countries, i.e., integrated crop and resource management 

in Indonesia; integrated crop management systems in European 
Union (Bradley et al., 2002). ICM offers a holistic framework that 
could integrate various practices to optimize cereal production while 
minimizing environmental impacts. This article has intended to 
explore the diverse approaches to ICM in cereal production at a global 
level, highlighting the strategies and initiatives implemented in 
different regions.

4.1 ICM practices in rice

Rice is a staple food in Asia, contributing to 90% of total 
production (Fukagawa and Ziska, 2019). Southeast Asia, also known 
as the rice-bowl of Asia, employs diverse rice ecosystems and 
cultivation methods, including lowland, upland, aerobic, submerged, 
and the system of rice intensification (SRI) (Settele et al., 2018; Yuan 
et  al., 2022). While these approaches provide food security and 
promote biodiversity conservation, rice farmers face challenges such 
as stagnating yields, declining profits, water and labor shortages, 
adverse weather conditions, besides environmental concerns 
(Balasubramanian et al., 2005). To address these constraints in rice, 
ICM has emerged as a promising solution, delivering 10–19% higher 
yields and 70% higher nitrogen use efficiency (NUE) compared to 
conventional practices (Regmi and Ladha, 2006; Chu et al., 2016; 
Biswakarma et  al., 2021). The information appended in Table  1 
presents a review of several ICM models adopted worldwide in lieu of 
global adoption of ICM practices in rice.

4.1.1 Soil fertility and nutrient management
ICM components like integrated soil fertility management 

(ISFM), integrated nutrient management (INM), site-specific nutrient 
management (SSNM), and green manuring improve soil fertility and 
nutrient management in rice cultivation, enhancing yields and long-
term sustainability (Sharma and Sharma, 2004; Agegnehu and Amede, 
2017; Urmi et al., 2022). Numerous studies mentioned in forthcoming 
paragraph highlight the significance of ICM and its components in 
enhancing soil fertility and nutrient management in rice.

In India focus areas include direct-seeded rice (DSR) with residue 
retention and improved nutrient practices, such as no-till (NT) and 
INM with 30% residue retention in the rice-wet to rice-dry system, 
leading to increased productivity and C: N sequestration in paddy 
soils of north-eastern India (Yadav et al., 2017; Biswakarma et al., 
2021). Similarly, adopting ICM practices, such as increased plant 
density, decreased N application, and the use of alternate wetting and 
drying (AWD) irrigation has significantly improved agronomic 
nitrogen use efficiency (ANUE) of Chinese farmers (Chu et al., 2016; 
Wang et al., 2017). In Nepal, SSNM, practices based on leaf color chart 
(LCC) with a critical value of 4.0, and crop-need-based N application, 
have demonstrated substantial increases in NUE compared to farmer’s 
practice (Regmi and Ladha, 2006). Indonesian rice farmers have also 
successfully adopted ICM practices tailored to their agro-climatic 
conditions, including improved nutrient management, young single 
seedling planting, and intermittent irrigation, resulting in higher 
yields and better net returns (Wardana et al., 2002).

4.1.2 Water management
Water is crucial for rice cultivation, but traditional practices like 

continuous flooding often lead to water wastage (Dixit et al., 2016). In 
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light of water scarcity, and the need to meet the food demands of Asia’s 
poor population, improved water management practices are essential 
(Facon, 2000). IWM an integral component of ICM promotes better 
irrigation practices through AWD and intermittent irrigation. These 
practices ensure efficient water use, minimize wastage and ensure 
sustainable water resources for rice production (Khatun et al., 2018). 
In China, farmers are adopting alternate wetting and moderate soil 
drying (AWMD) in combination with other ICM practices to augment 
water productivity. Studies by Zhang et al. (2018) demonstrated that 
AWMD reduced water input by 15.4 to 16.5% and increased irrigation 
water productivity (grain yield/ amount of irrigation water applied) 
compared to flood irrigation. Similarly, Zhang et  al. (2019) 
implemented AWMD from 10 days after rice transplanting until 
maturity, which resulted in 29.9% increase in grain yield besides a 
17.1% reduction in total methane emissions. Chu et al. (2016) also 
reported an increase to the tune of 27–28% in WUE using AWMD 
compared to flood irrigation. Thus, AWMD has been a proven 
technique to be  an effective alternative to continuous flooding, 
improving productivity, conserving water resources, and enhancing 
rice yields in China (Xue et al., 2013; Chen et al., 2021).

In Indian context, several water management practices such as 
AWD, SRI and drip irrigation are being implemented to optimize 
water use, conserve resources, and enhance overall water productivity 
in rice cultivation (Surendran et al., 2021; Mallareddy et al., 2023). 
Studies have revealed significant water savings of 78.05 and 63.66%, 
when irrigation was applied through SRI [i.e., water application 

whenever hairline cracks (very thin, surface-level cracks that form 
when the soil dries out and shrinks, often due to loss of moisture or 
compaction) appear in field] and intermittent irrigation, respectively 
(Islam et al., 2014). These practices have been scientifically proven to 
improve WUE compared to traditional continuous flooding methods, 
leading to enhanced sustainable water management and increased 
productivity in rice production in India (Das et al., 2014; Biswas et al., 
2021). In addition to India and China, Indonesian farmers have also 
adopted intermittent irrigation as a component of ICM to attain the 
aforementioned benefits (Wardana et al., 2010).

4.1.3 Crop diversification
Current rice production practices in Asia, specifically including 

India, often rely on continuous cultivation of rice or the rice-wheat 
cropping system (RWCS). However, these practices pose several 
challenges, such as nutrient depletion, soil degradation, pest and 
disease buildup, water scarcity, and reduced resilience to climate 
change (Papademetriou, 2000). The RWCS is extensively cultivated 
over a 13.5 m ha area in Asia, with 57% share located in South Asia, 
particularly the Indo-Gangetic plains (IGP) (Ladha et  al., 2009; 
Banjara et al., 2021). Recognizing the need for enhanced productivity, 
resource utilization, and sustainable agriculture, crop diversification 
in rice-based cropping systems (RBCS) has emerged as an effective 
strategy (Singh et  al., 2012). Crop diversification is a crucial 
component of ICM in rice cultivation as it manages risks, enhances 
soil health and nutrient management, besides reducing reliance on a 

TABLE 1 Globally adopted ICM models in rice.

ICM model Country Remarks Reference

Zero-till DSR with wheat and mungbean residues, application of 75% RDF 

(100:21.8:41.5 NPK kg ha−1) as liquid bio-fertilizer, arbuscular mycorrhizal 

fungi, glyphosate and pendimethalin (PE) fb bispyribac and need based 

IPDM practices

India Average 10–13% higher yields, 19–22% 

additional returns, positive impact on 

soil organic carbon in the Indo-Gangetic 

Plains of North-western India

Biswakarma et al. (2021)

33% increase in plant density spaced at 20 × 15 cm, 10% decrease in N 

application (270 kg ha−1), 60–60 PK kg ha−1, AWMD irrigating when soil 

water potential reaches −10 kpa at 15–20 cm depth, and 2–3 cm submergence 

during first week after transplanting and at the time of N top-dressing

China Substantially improvement in sink size 

(total number of spikelets per m2), 

productive tillers, root oxidation activity, 

leaf area duration, grain yield, NUE, and 

WUE in rice.

Chu et al. (2016)

Transplanting of single seedling at 20 × 20 cm, applying 2 t ha−1 cattle manure 

at the time of land preparation, split application of P, N application based on 

scale 4 reading of LCC, intermittent irrigation after the 1st soil surface cracks 

appear, i.e., every 7–10 days

Indonesia Higher rice grain yields, improved N 

fertilizer efficiency, and 55% water 

savings leading to 2–3 times higher 

water productivity

Wardana et al. (2010)

Transplanting 18–25 days seedlings at 20 × 20 cm spacing @ 25 hills m−2 with 

3–5 cm submergence, applying P & K using omission plot estimation, N as 

per crop need using LCC, 2 hand weedings, and applying furadon granule, 

malathion dust, phosphume, zinc phosphide for pest management

Nepal 66% yield increase compared to farmers 

practice in the Eastern-Gangetic plains 

of South Asia

Regmi and Ladha (2006)

Use pure and high quality seeds with at least 85% germination, proper land 

leveling, maintain at least 1 seedling/ hill at 10 DAT, 3–5 cm submergence at 

early tillering and grain filling stages, INM, IPM as needed, harvest, 

threshing, cleaning, grading and storage need to be done properly.

Philippines Increased grain yield and gross returns Cruz et al. (2005)

Row seeding with IRRI drum seeders, P and K application based on soil 

nutrient status, top-dressing of N using LCC, adoption of IPM and timely 

harvest to minimize post-harvest losses.

Vietnam Improved yields and water use efficiency Pham et al. (2005)

DSR, direct seeded rice; RDF, recommended dose of fertilizer; IPDM, integrated pest and disease management; PE, pre emergence; fb, followed by; LCC, leaf color chart; AWMD, alternate 
wetting and moderate soil drying; NUE, nitrogen use efficiency; WUE, water use efficiency; INM, integrated nutrient management; IPM, integrated pest management; IRRI, international rice 
research institute.
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single crop (Zhao et al., 2015). In China, the inclusion of legumes as a 
winter crop in rice rotations has been widely practiced to reduce 
nitrogen losses, greenhouse gas emissions, and maintain economic 
and environmental benefits (Xia et al., 2016; Cai et al., 2018).

Field studies conducted in Thailand, China, and Vietnam have 
clearly demonstrated the benefits of growing nectar-producing plants 
around rice fields. These practices have resulted in significant 
reductions in pest populations, a 70% decrease in insecticide 
applications, a 5% increase in grain yields, and a 7.5% economic 
advantage (Gurr et al., 2016).

4.1.4 Resource conservation technology and 
conservation agriculture

Improper management of rice fields has led to soil degradation, 
including reduced soil organic carbon (SOC) and deficiencies of 
macro and micronutrients (Das et al., 2014). In China, the extensive 
use of N, super rice, and hybrid rice varieties has contributed to 
significant progress in rice production (Zhu and Chen, 2002; Cao 
et al., 2010). Nevertheless, excessive use of N fertilizer (330 kg ha−1) to 
maximize yields has caused soil and environmental pollution (Zhou 
et al., 2016; Gu et al., 2017). Achieving a balance between high rice 
yields and minimizing environmental consequences has now become 
a priority in China (Chen et al., 2014). By implementing ICM practices 
such as reducing N fertilizer by 10% (270 kg ha−1), increasing plant 
density by 25%, applying organic manures, and increasing tillage 
depth, N losses have been reduced by 47.8% compared to conventional 
practices (Chen et al., 2021).

In India, prominent RBCS include rice-rice, rice-wheat, rice-
pulse, and rice-potato systems (Deep et al., 2018). Among these, the 
RWCS is prominent in NWI and plays a vital role in the country’s food 
and nutritional security, contributing approximately 75% to the 
national food chain (Benbi and Senapati, 2010). However, continuous 
adoption of the RWCS has resulted in declining groundwater tables, 
soil degradation, and environmental issues. Puddling in rice 
cultivation, while effective for weed control, leads to soil structure 
damage and reduced permeability, negatively affecting subsequent 
crops like wheat. Similarly, stubble burning, a common practice to 
clear fields quickly, contributes to air pollution, greenhouse gas 
emissions, and the loss of valuable organic matter, posing significant 
health and environmental challenges (Dhanda et al., 2022; Khedwal 
et al., 2023). To ensure sustainable intervention in the RWCS and 
safeguard the food security of millions in South Asia, alternative 
agricultural practices such as direct-seeded rice followed by zero-tilled 
wheat (DSR-ZTW) need to be  promoted. DSR-ZTW helps save 
irrigation water (20–25%), reduce production costs, and improve 
system yields (Raj et al., 2017; Jat et al., 2019). This CA-based ICM in 
the RWCS of the IGP in NWI helps enhance system productivity and 
soil health (Biswakarma et  al., 2021). In the Northeastern region 
(NER) of India, continuous rice-rice (R-R) systems are being practiced 
due to abundant water availability (Yadav et  al., 2016). However, 
farmers in the NER rely on sub-optimal fertilizer and manure 
application, primarily depending on inherent soil fertility and residue 
incorporation (Das et  al., 2015; Patel et  al., 2015). Nevertheless, 
climate change, frequent droughts, and occasional floods pose 
significant threat to farmers in this region. Conservation-effective 
tillage practices, such as NT, and INM with 30% residue retention have 
been found to be very effective in sustaining system productivity of 
these areas (Yadav et al., 2017). In addition to these practices, IWM 

and integrated pest and disease management (IPDM) through ICM 
are crucial for ensuring sustainable rice production in Asia. These 
approaches address the challenge of feeding the growing population 
while minimizing environmental impacts and preserving long-term 
agricultural productivity.

4.2 ICM practices in wheat

Wheat is a vital food source for approximately 35% of the global 
population (Grote et al., 2021). It is cultivated across diverse regions, 
including Europe, North America, and Asia. Wheat contributes 20% 
of the total calories consumed worldwide, and its versatility in culinary 
applications plays a crucial role in diets worldwide (Scott, 2014; Zhang 
et al., 2022b). While modern wheat varieties have high yield potential, 
conventional practices have led to soil degradation and reduced 
genetic diversity (Reynolds et al., 1994; Biswakarma et al., 2021). In 
response to these challenges, the FAO is actively promoting the 
adoption of ICM practices among wheat farmers globally, with the 
potential to increase crop yields by 16–30% globally (Tadesse et al., 
2017; Zhang et al., 2020; Singh, 2022). The information in Table 2 
provides an overview of various ICM wheat models implemented 
worldwide, and the following section discusses different approaches 
to facilitate the successful adoption of ICM in wheat production.

4.2.1 Soil fertility and nutrient management
The use of chemical fertilizers and manures has significantly 

increased global food production, with N fertilizers alone being 
responsible for a 40–60% increase in wheat yield (Erenstein et al., 
2008). However, concerns have arisen regarding the low NUE of wheat 
crops and the environmental impacts of current nutrient management 
practices. The N recovery rate of wheat is approximately 35–45% 
(Raigar et al., 2022), and excessive N application can lead to decreased 
grain yields and increased N loss in the wheat-soil system (Kubar 
et al., 2022). While efforts to develop stress-resistant wheat varieties 
are ongoing, adopting ICM practices is considered the best approach 
to redefine nutrient management for safe and sustainable wheat 
production (Dobermann and Cassman, 2002). Several studies have 
demonstrated the positive response to ICM components such as INM, 
SSNM, and green manuring in improving wheat yields.

In Indian Punjab, Khurana et al. (2008) tested the potential of 
SSNM in irrigated wheat and found increased grain yield from 4.2–4.8 
tonnes ha−1, NPK accumulation of 12–20, and 13% higher returns 
compared to farmer’s practice. Similar observations have been 
reported worldwide, highlighting the beneficial effects of SSNM on 
yield and quality (Jin and Jiang, 2002; Mauriya et al., 2013; Richards 
et al., 2015). In India, INM is widely adopted as a sustainable strategy 
under ICM, combining inorganic fertilizers with organic amendments 
such as Azolla compost, bio-fertilizers, and vermi-compost leading to 
improved wheat productivity and soil quality (Nehra et al., 2001; Devi 
et  al., 2011; Bharali et  al., 2017; Sharma et  al., 2019). In China, 
excessive N fertilizer application by farmers aiming for high yields has 
resulted in reduced NUE and significant environmental impacts (Ju 
et al., 2009). Notably, in the North China Plain, wheat fields receive 
one of the most intensive N applications in the world, with farmers 
typically applying 300 kg N ha−1 (Cui et  al., 2008). Consequently, 
China is focusing on precision N management in wheat to improve 
NUE without compromising yields by designing suitable integrated 
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crop N systems. Several studies suggest adopting integrated crop and 
soil management strategies, such as improved cultivars, early sowing, 
and applying N fertilizer at the stem elongation stage rather than the 
re-greening stage, to increase yields and NUE (Lu et al., 2016; Cai 
et al., 2021; Kubar et al., 2022; Li et al., 2023).

4.2.2 CA and crop diversification
In recent years, wheat yields have either plateaued or shown 

slower growth due to intensive cropping and excessive use of chemical 
inputs (Michel and Makowski, 2013). The increasing threat of 
recurring droughts, worsened by climate change, further challenges 
global wheat production. In India, the practice of growing wheat as a 
Rabi crop (winter season crop) following rice, maize, and soybean 
often leads to delayed sowings and exposure to high temperatures 
during grain filling, resulting in lower yields (Lobell et  al., 2013; 
Newport et al., 2020). Burning rice residues is a common practice due 
to difficulties in tillage and sowing, which negatively affects air quality 
and health (Abdurrahman et al., 2020). To address these challenges, 
ZTW cultivation is being recommended to promote timely sowing of 
the wheat crop and incorporate rice stubbles, thereby providing 
substantial yield benefits (Jat et  al., 2019). Studies in India have 
supported the adoption of ICM practices, such as raised bed planting 
or CA, in wheat production for improved yields, reduced costs, and 
environmental sustainability (Kumar et al., 2014b; Biswakarma et al., 
2021; Pooniya et al., 2022; Singh, 2022).

In the USA and China, large-scale, energy-intensive production 
systems have dominated wheat farming. However, concerns have 
emerged regarding their negative environmental impacts, prompting 
scientists to suggest alternative practices using ICLS for wheat 

production in these countries. Practices such as sod-based rotations, 
sod intercropping, and incorporating dual-purpose cereal crops have 
shown success in achieving sustainability in wheat production in the 
USA (Sulc and Franzluebbers, 2014). Similarly, including wheat in 
systems based on rangelands in China has proven to be effective (Hou 
et al., 2008). These practices aim to improve environmental outcomes 
while maintaining productivity and economic viability in wheat 
production systems.

4.2.3 Pest and disease management
Plant pests and diseases have a significant impact on crop yields 

globally, causing an annual loss of 20–40%. Wheat is particularly 
affected, with average yield losses ranging from10.1to 28.1%, while 
in case of severe infestations it may exceed 50% (Oerke, 2006; Savary 
et al., 2019). In north-west Europe, fungal diseases accounted for 
25% of the total wheat yield gap (Laidig et al., 2022). The recurring 
losses caused by a set of five fungal diseases alone resulted in a loss 
of approximately 62MT of wheat production annually, representing 
8.5% of the world’s total wheat production (Chai et  al., 2022). 
Continuous fungicide application is the predominant approach, 
though increased fungicide resistance poses challenges (Lynch et al., 
2017; Jorgensen et al., 2018). ICM approaches offer solutions through 
strategies such as crop rotation, chemical and biological controls, 
and host plant resistance. Recent studies have also highlighted the 
effectiveness of these approaches, which utilize multiple methods to 
enhance pest and disease management in wheat (Pooniya 
et al., 2022).

One specific threat to wheat production is spot blotch, caused by 
Cochliobolus sativus, which significantly reduces yields in warmer 

TABLE 2 Globally adopted ICM models in wheat.

ICM model Country Remarks Reference

Seed rate of 100 kg ha−1, and optimum fertilizer dose of 120:60:40 kg NPK 

ha−1, with full dose of PK and half of N as basal and remaining N as 2 equal 

splits at tillering and booting stage, weed control with sulfosulfuron + 

metsulfuron @ 40 g ha−1 as PoE after 1st irrigation at 25–30 DAS and irrigating 

at critical stages

India Average increase in wheat productivity 

by 21.43% and improved returns

Singh (2022)

Zero-till wheat with mungbean and rice residues, application of 75% RDF 

(120:26:33 NPK kg ha−1) as liquid bio-fertilizer, arbuscular mycorrhizal fungi, 

and weed control with glyphosate (PP); pendimethalin (PE) fb total PoE, and 

need based IPDM practices

India Average 14–16% higher wheat yields, 

improved soil carbon dynamics, 

increased farm profits and water savings 

in the upper Indo-Gangetic Plains of 

North-western India

Biswakarma et al. (2021)

Seeding rate of 525 seed m−2, 180:90:60 NPK kg ha−1, all of PK and 33.3% of N 

as basal and remaining N at stem elongation stage, flue gas desulfurization 

gypsum @ 15 Mg ha−1 and cow manure 30 Mg ha−1, combined with optimum 

pest, disease and weed management practices

China Increased crop yield by 25.3–30.8% and 

N productivity by 97.6–109%, improved 

soil quality by lowering soil pH and Na+, 

and increased soil organic carbon

Zhang et al. (2020)

Minimum tillage using two wheel tractor, sowing with seed drill, irrigating 

twice using flooding, PK application based on omission plot estimation and N 

as crop need based using LCC at critical value 4.0 and additional 25 kg N ha−1 

when LCC value falls below 5

Nepal Overall increment in yield, fertilizer use 

efficiency and returns

Regmi and Ladha (2006)

Early planting with seed rate @ 123 kg ha−1 with average final stand of 200 

plants m−2, N application at basal, tillering and foliar application at late boot 

stage, application of PGR (ethephon) and optimized cultural management 

practices

United States Increased grain yield and protein 

content, reduced lodging and effective 

pest and disease control

Mohamed et al. (1990)

PP, pre plant application; PE, pre emergence application; PoE, post emergence application; IPDM, integrated pest and disease management; DAS, days after sowing; PGR, plant growth 
regulator; LCC, leaf color chart.
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non-traditional wheat-growing regions. This foliar disease annually 
results in substantial yield losses, averaging 15–20% in South Asia, and 
thus poses a threat to the livelihoods of millions of small farmers. 
With the increasing occurrence of heat stress in Asia, the level of 
disease damage is further amplified. Genetic improvement combined 
with integrated management strategies, such as using resistant 
varieties, timely seeding, appropriate fertilization, crop rotation, and 
judicious fungicide application etc. help to reduce yield losses caused 
by spot blotch (Duveiller and Sharma, 2009). Another economically 
important root disease of wheat worldwide is take-all, caused by the 
fungus Gaeumannomyces graminis var. tritici (Kwak and Weller, 2013). 
This disease affects the crop at all stages, and ICM practices such as 
late sowing, optimal planting, application of ammonical fertilizers, 
and straw burial have proven effective in controlling this disease 
(Colbach et al., 1997; Loyce et al., 2008). In addition to diseases, pests 
also cause significant yield losses in wheat (Daamen et al., 1989). 
Efficient crop management practices utilizing IPM approaches have 
been shown to effectively control pests (Malschi et al., 2015). For 
instance, a case study by Babendreier et  al. (2022) in the Greater 
Mekong Subregion (GMS) of Southeast Asia demonstrated that 
implementing the IPM strategy led to 2–10% higher rice yields, a 
twofold increase in the abundance of natural enemies such as spiders, 
and 1.5 fewer insecticide applications.

4.3 ICM practices in maize

Maize, also known as the “queen of cereals,” holds significant 
global importance and is cultivated in approximately 155 countries 
(Revilla et al., 2021). Due to the wide adaptability and versatility, 

serving as food grains, animal feed, fodder, and raw material for 
various industrial products it has earned title of being a miracle 
crop (Dass et al., 2008). However, the intensive tillage required for 
maize cultivation contributes to around 25% of the total production 
cost, resulting in reduced net income (Hobbs et al., 2008). Therefore, 
the challenge lies in developing alternative production systems that 
are climate and resource resilient, ensuring sustained crop yields in 
the long term (Gathala et al., 2011). In recent years, attention has 
shifted toward improved maize-based systems such as ICLS, SSNM, 
CA, and ZT. These practices have gained prominence due to 
concerns about natural resource degradation and the need to 
mitigate production costs (Pariz et al., 2011; Saharawat et al., 2012). 
Maize cultivation offers great potential for harnessing the benefits 
of these ICM practices, as evidenced by various models presented 
in Table 3.

4.3.1 Soil fertility and nutrient management
In many Asian countries, INM practices are being widely 

implemented, combining inorganic fertilizers with organic composts, 
green manures, and bio-fertilizers to improve soil quality and maize 
productivity (Abid et  al., 2020; Bhandari et  al., 2021). Studies 
conducted in India have clearly demonstrated the benefits of applying 
25% recommended dose of fertilizer (RDF) in combination with 
bio-fertilizers, green manuring with sun hemp (Crotalaria juncea), 
and the incorporation of compost at an appropriate rate, which in turn 
have resulted in improved soil nutrient status, better physic-chemical 
properties, and increased maize yields (Kalhapure et  al., 2013). 
Similarly, the adoption of SSNM in Vietnam has shown positive 
outcomes (Huan et al., 2011). The use of plant growth-promoting 
rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) has 

TABLE 3 Globally adopted ICM models in maize.

Parameter Conventional practices Integrated crop management (ICM)

Soil fertility Heavy reliance on chemical fertilizers, leading to nutrient 

imbalances and soil degradation.

Combines organic and inorganic inputs, promoting balanced 

nutrition and improved soil structure and fertility.

Nutrient management Generalized fertilizer application without soil testing, often 

resulting in inefficiencies.

Site-specific nutrient management based on scientific assessments 

like soil health cards for optimal nutrient use.

Water management Inefficient irrigation methods, leading to water wastage and 

salinization.

Promotes efficient techniques like micro-irrigation, drip systems, 

rainwater harvesting, and scheduling based on crop needs.

Crop diversification Monocropping dominates, increasing vulnerability to pests, 

diseases, and market risks.

Encourages diverse cropping systems, including rotations and 

intercropping with cereals, pulses, and horticultural crops.

Resource use efficiency Overuse of inputs like water, fertilizers, and pesticides, reducing 

long-term productivity.

Focuses on precise and judicious use of inputs to enhance 

efficiency and reduce costs and environmental impact.

Pest and disease management Sole reliance on chemical pesticides, leading to resistance and 

ecological imbalance.

Advocates integrated pest management (IPM), combining 

biological, cultural, and chemical controls to manage pests 

sustainably.

Conservation practices Rarely adopted, leading to soil erosion and loss of organic matter. Incorporates practices like minimum tillage, residue retention, and 

cover cropping to conserve soil and water resources.

Yield and productivity Short-term yield gains but declining productivity over time due to 

resource degradation.

Maintains or improves yields sustainably through holistic 

management of inputs, pests, and environmental factors.

Economic viability High input costs and diminishing returns in the long run. Reduces input costs through efficient practices, improving profit 

margins for farmers.

Environmental impact Contributes to environmental issues like water pollution, 

greenhouse gas emissions, and loss of biodiversity.

Minimizes environmental footprint by reducing reliance on 

synthetic inputs and adopting eco-friendly practices.
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also been reported to enhance nutrient availability in maize cultivation 
in the USA (Adesemoye et al., 2008).

4.3.2 Crop diversification
Maize is a versatile crop that can be grown in diverse soil and 

climatic conditions, making it suitable for crop diversification. 
However, the intensive cultivation of maize in regions like Central US, 
combined with the vulnerability to climate change, increases the risk 
of extreme weather events such as drought (Ortiz-Bobea et al., 2018). 
Crop diversity has been increasingly recognized for its potential to 
mitigate risks associated with climate change (Renard and Tilman, 
2019). Long-term studies in the US have demonstrated that farmers 
who adopt temporal and diverse crop rotations involving crops like 
alfalfa, rye, sorghum, and soybean observed improved yield besides 
regenerated soil health (McDaniel et al., 2014; Tiemann et al., 2015). 
Diverse crop rotations have led to significant increase of 28.1% in 
maize yields across different growing conditions and reduced yield 
declines during drought years by 14–89.9% in the USA (Bowles et al., 
2020). Similarly, Renwick et al. (2021) also found that diversifying 
maize-soybean rotation with small grain cereals and cover crops not 
only mitigated maize water stress but also reduced drought-induced 
yield loss up to 17.1per cent.

In India, maize is grown throughout the year and serves as a 
solution to water scarcity and declining water tables in Rabi rice-
growing regions of Andhra Pradesh, Karnataka, and Tamil Nadu 
states. It also acts as an alternative crop to mitigate heat stress in wheat 
cultivation in Northern India. Spring maize, grown after the harvest 
of potato and sugarcane, has emerged as a profitable alternative to 
summer rice in NWI (Dass et  al., 2012). In Brazil, the ICLS is a 
preferred approach for maize crop diversification. ICLS involves using 
the same production area for both agriculture and livestock 
production, either simultaneously or sequentially, to optimize land 
and environmental resource utilization (Carvalho et al., 2010). In 
Brazil, diversification efforts focus on selecting appropriate cover 
crops, particularly grasses that produce high biomass, which can 
be used as mulch to enhance level of soil organic matter. This promotes 
nutrient cycling, specifically N and carbon replenishment, water 
retention, and overall soil improvement (Ryschawy et  al., 2017). 
Intercropping grasses such as Urochloa ruziziensis, Panicum 
maximum, and Brachiaria mutica with maize facilitates greater 
nutrient cycling, contributing to the sustainability of agricultural 
systems (de Castro Dias et  al., 2020; Mingotte et  al., 2020; Silva 
et al., 2020).

4.3.3 Conservation agriculture and crop 
establishment methods

Maize cultivation is widespread globally, primarily in the 
America, Asia, Africa and Europe regions (Erenstein et al., 2022). 
During 2020, approximately one-third of global farms cultivated 
maize, with a majority (84%) being small farms (<2 ha) in Asia, 
Africa, and South America, while larger farms were found in the USA 
and Brazil (Erenstein et al., 2021; Lowder et al., 2021). These regions 
encompass diverse agro-ecologies, ranging from drought-prone 
rainfed areas in sub-Saharan Africa to temperate highlands in Africa 
and irrigated off-season maize production in South Asia’s IGP (Indo-
Gangetic Plain). To enhance the sustainability of maize production 
in these regions, conservation tillage and crop establishment methods 
are crucial. The US Corn Belt, spanning over 12 states with Iowa and 

Illinois serving as top corn producers, has witnessed the development 
of conservation tillage practices driven by the desire to reduce soil 
erosion and petroleum consumption (Campbell et al., 1984). Long-
term conservation tillage practices in the US Corn Belt from 2005 to 
2017 have also demonstrated a 3.3% increase in maize yield and an 
observed improvement in soil organic carbon sequestration (Deines 
et al., 2019). Several studies have also shown that minimum tillage 
practices, compared to conventional tillage, can significantly enhance 
maize yields and biomass returns in both mono cropping and 
rotation systems (Campbell et al., 1984; Mirsky et al., 2012; Fiorini 
et al., 2020).

The Songliao Plain in Northeast China, known for its black soils, 
has the largest maize cropland and is considered the nation’s 
“breadbasket” (Wang et al., 2023). However, water limitation in this 
region leads to huge yield variability (Liu et al., 2013). Conservation 
tillage practices, such as NT or ridge tillage (RT), have been 
successfully adopted in Northeast China to enhance soil quality, 
fertility, and address water-related challenges (Liang et al., 2007; Lou 
et al., 2012; Zhang et al., 2015). In contrast, in arid zones like Xinjiang, 
where water scarcity is common, farmers are adopting plastic film 
mulching (PM) with drip irrigation instead of conservation tillage 
(Zhang et  al., 2017). A meta-analysis on PM adoption revealed a 
significant increase in maize yield (36%) and NUE (34%) compared 
to conventional tillage. However, PM is suitable under specific hydro-
thermal conditions (with precipitation <650 mm and 
temperature > 23°C), whereas conservation tillage can be  applied 
under various environmental conditions (Zhang et  al., 2022a). In 
India, which is also a major maize-producing country, different 
sowing methods such as raised bed planting, zero-till planting, 
conventional till flat planting, furrow planting, and transplanting have 
been used to achieve higher yields, cost reduction, and environmental 
sustainability (Choudhary et al., 2018).

4.3.4 Pest and disease management
Pests and diseases are significant threats to maize production 

globally, drastically impacting food security and economic stability. 
Insects like stalk borers and fall armyworm (FAW), and diseases like 
grey leaf spot, cause substantial yield losses besides reduced grain 
quality (Rahmawati et  al., 2020). Factors such as monoculture, 
reduced or NT practices, excessive use of chemicals, and climate 
change have contributed to the severity of infestations, putting maize 
yields at risk. Integrated pest management, another component of 
ICM is essential for minimizing yield losses by managing insects and 
diseases below economic threshold levels (Nwilene et al., 2008). One 
notorious pest is the FAW, which poses significant global threat to 
maize crop, and many countries have adopted integrated methods to 
control it (Ahissou et al., 2021). This pest can cause extensive damage 
by feeding on maize plants, leading to yield loss and consequently 
financial hardships for farmers. In India, FAW has been first identified 
in Karnataka in 2018 and became an invasive pest. The Indian 
government has developed an IPM package that includes cultural, 
biological, chemical, and mechanical methods to control this pest 
(Kumar et al., 2014c). Effective control measures for FAW include 
monitoring, early-stage neem oil spray, pheromone traps, release of 
natural enemies like Trichogramma pretiosum, and judicious chemical 
use such as Spinosad and Emamectin benzoate (Mooventhan et al., 
2019). In Cameroon, an IPM approach incorporating cultural 
practices, chemical control, botanical products, push-pull farming, 
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and biological control have been employed to control FAW (Akeme 
et al., 2021).

Combined management options, such as conventional tillage, 
intercropping, and resistant varieties, have proven effective in reducing 
grey leaf spot severity and increase maize yield in Tanzania (Lyimo 
et  al., 2012). Similarly, various ICM practices have effectively 
controlled different types of maize stalk borers by combining cultural, 
biological, and chemical control methods in a holistic and sustainable 
manner (Ndemah, 1999). By implementing these integrated 
approaches, farmers can reduce reliance on chemical pesticides, 
minimize yield losses, and ensure the long-term maize productivity 
(Mooventhan et al., 2019).

5 Success stories in adoption of ICM in 
cereals in various countries

ICM practices in cereal production have shown promising results 
worldwide, thus demonstrating their vast potential to enhance 
agricultural sustainability and productivity. For instance, India and 
China observed increased corn yields by 20–30 and 13.5%, respectively 
by employing ICM over farmer practices while minimizing the 
production costs (Wang et  al., 2017; Wani et  al., 2017). Few 
distinguished success stories have been mentioned below for a 
better understanding.

5.1 ICM for sustainable maize production in 
Zambia

In Zambia, the conservation agriculture scale up (CASU) project 
has been launched in alliance with the ministry of agriculture and 
FAO (Baudron et al., 2007). This initiative promoted ICM practices, 
including minimum tillage, legume-based rotations, crop residue 
retention, and precision input application primarily to ensure 
sustainable maize production among smallholder farmers. The 
program aimed to benefit approximately 229,000 Zambian farmers, 
with a particular emphasis on empowering women. While the 
program successfully reached its target farmer base, its actual impacts 
varied. Many farmers reported significant yield improvements, with 
some experiencing up to double maize yields compared to traditional 
practices. However, challenges such as inconsistent adoption of 
practices, limited access to inputs, and variable climatic conditions 
constrained the full realization of its goals, particularly regarding 
widespread long-term sustainability and gender-specific outcomes 
(Baudron et al., 2007; FAO, 2019; Listman, 2022).

5.2 ICM for sustainable rice production in 
Vietnam

Vietnam heavily relies on rice cultivation for socio-economic 
development, with more than 15 million smallholder farmers 
depending on rice as their primary source of income. However, 
conventional rice production practices in Vietnam have been 
resource-intensive and have led to low-quality output (IFC, 2019). To 
address these challenges, Rikolto, an international NGO, initiated a 
project to promote sustainable and inclusive rice production through 

ICM practices (Rikolto, 2023). This project aimed to improve the 
livelihoods of nearly 2 million smallholder farmers, particularly in the 
rice-rich Mekong Delta region. Farmers received training and support 
in adopting ICM practices, such as efficient nutrient management and 
simplified crop management techniques. While the project succeeded 
in training thousands of farmers and improving awareness of 
sustainable farming methods, its actual impacts varied. According to 
project assessments, many participating farmers reported moderate 
increases in income due to reduced input costs and better yields. 
However, achieving the scale of 2 million farmers proved challenging, 
with actual adoption rates lower than expected due to barriers such as 
limited access to inputs, financial constraints, and traditional farming 
habits. Despite these challenges, the project demonstrated measurable 
improvements in rice quality and sustainability practices, contributing 
positively to the livelihoods of a significant portion of the targeted 
farmers (IFC, 2019; Rikolto, 2023).

5.3 ICM for sustainable rice and wheat 
production in Philippines

The Philippine Rice Information System (PRiSM) project has been 
implemented to enhance rice production through ICM practices 
(Wang et al., 2017). This project utilizes remote sensing technology to 
monitor rice fields and provide farmers with real-time information on 
crop growth, pest infestations, and nutrient deficiencies. Equipped 
with this information, farmers can make informed decisions regarding 
crop management, including fertilization timing, pest control 
measures, and water management. The PRiSM project has successfully 
increased rice yield besides reduced production costs at farmer’s fields. 
Furthermore, ICM practices have also been explored in wheat 
production in the Philippines, where studies have demonstrated 
improved grain yield, better radiation use efficiency, and enhanced 
NUE in double-season rice crop. Overall, ICM practices have shown 
potential to bridge the yield gap and increase production in rice and 
wheat farming in the Philippines (Wang et al., 2017).

5.4 Farmer field school of ICM in Indonesia 
(FFS-ICM) for sustainable maize production

In Indonesia, the FFS-ICM program was launched in 2009 to 
improve corn production, drawing inspiration from the previous 
Farmer Field School of Integrated Pest Management (FFS-IPM). This 
initiative aimed to achieve self-sufficiency in rice and maize 
production. The FFS-ICM program provides farmers with training 
and capacity-building on ICM practices, encompassing efficient water 
management, balanced nutrient application, and proper crop residue 
management (Kariyasa and Dewi, 2013). Studies have indicated that 
the FFS-ICM program has led to increased corn productivity and 
improved input use efficiency in Indonesia. The success of the 
FFS-ICM program is contingent upon available infrastructure and 
government support in the respective implementation areas (Kariyasa, 
2014). Overall, the FFS approach in Indonesia has served as a 
successful model for promoting ICM practices, resulting in improved 
crop yield, reduced production costs, and enhanced farmer income 
while fostering sustainable and inclusive agriculture (Van den Berg 
et al., 2020).
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5.5 ICM for sustainable cereal production 
in India

India has successfully implemented ICM practices in cereal 
production, particularly in rice and wheat crops. One notable 
success story is the implementation of IPM practices by the 
consortium for e-resource in agriculture (CeRA) which played a 
significant role in promoting sustainable pest management 
practices, focusing on the use of biological control methods such 
as bio-pesticides and natural enemies (Pretty and Bharucha, 
2015). This initiative has led to successful pest control outcomes 
in rice and wheat crops, particularly in the northwestern parts of 
the country (Vennila et al., 2016; Singh and Jasrotia, 2020). In the 
Nellore district of Andhra Pradesh, the adoption of SRI practices 
has resulted in increased rice yields by 29% and a remarkable 40% 
reduction in water usage. This has improved food security, 
reduced production costs, and increased income of rice farmers 
in the region (Adusumilli and Laxmi, 2011).

Similarly, in wheat production, the Punjab State Farmer’s 
Commission has actively promoted ICM practices to address 
declining soil fertility and curb excessive reliance on chemical 
inputs. Farmers in Punjab have adopted practices such as CA, 
balanced nutrient management, and IPM, leading to wheat yield 
increase of 20–30% and enhanced resource use efficiency, 
ultimately leading to sustainable intensification of wheat farming 
(Bagheri et al., 2019; Pooniya et al., 2022). Likewise, the Bihar 
rural livelihoods promotion society (BRLPS) has implemented an 
ICM project focused on maize production in Bihar (Vennila 
et al., 2016). This project aims to promote practices such as CA, 
INM, and improved seed varieties. Consequently, maize farmers 
in Bihar have experienced increased yield, better soil moisture 
conservation, and enhanced nutrient use efficiency, leading to 
improved food security, increased incomes, and enhanced 
resilience for smallholder farmers. These success stories highlight 
the immense potential of ICM practices in cereal production to 
enhance productivity, conserve resources, reduce environmental 
impact, and improve the livelihoods of farmers. By adopting a 
holistic and knowledge-based approach, farmer’s can establish 
sustainable and profitable cereal production systems (Bagheri 
et al., 2019).

6 Soil health card scheme and its role 
in enhancing ICM adoption

The Government of India introduced the Soil Health Card (SHC) 
scheme in 2015 to encourage balanced fertilizer use and promote 
sustainable agricultural practices. This initiative involved nationwide 
soil testing and the distribution of SHCs to farmers, offering crop-
specific fertilizer recommendations tailored to improve productivity 
and reduce costs. The scheme has reached approximately 120 million 
farmers, with soil samples analyzed in laboratories across the country. 
SHCs provide critical data on soil’s physical and chemical characteristics, 
including soil type, GPS location, farm size, and 12 essential parameters. 
These cards also recommend suitable crops based on the soil’s nutrient 
status, enabling precise fertilizer application and sustainable land use. A 
notable impact of the SHC scheme is its contribution to reducing 
fertilizer misuse and improving crop yields. Pilot studies conducted in 
Karnataka and Andhra Pradesh demonstrated significant increases in 
productivity, with yield improvements of 31–45% in chickpeas, 15–16% 
in cotton, 12–15% in paddy rice, and 8–9% in sugarcane (Chander et al., 
2014; Fishman et al., 2016; Raju et al., 2015).

These outcomes align closely with the nutrient management 
principles of ICM, which emphasize site-specific, scientifically guided 
nutrient application. Furthermore, the scheme promotes the adoption of 
organic fertilizers and bio fertilizers, supporting soil health restoration 
while reducing reliance on synthetic inputs (Reddy, 2019). The SHC 
initiative also plays a vital role in enhancing farmer awareness and 
building capacity, both critical for strengthening ICM adoption. By 
educating farmers about soil health and its direct link to productivity, the 
scheme motivates the transition from conventional practices to resource-
efficient and environmentally sound approaches. Additionally, its 
emphasis on balanced fertilization helps address economic challenges, 
such as high input costs, by enabling smallholder farmers to use resources 
more effectively. As a replicable model, the SHC scheme has significant 
potential for adoption in other developing countries facing challenges like 
soil degradation and nutrient imbalances (Reddy, 2019). Its integration 
into broader ICM frameworks offers a pathway to sustainable cereal 
production, improved soil health, and long-term agricultural resilience. 
This synergy between the SHC scheme and ICM accentuate the 
importance of policy-driven interventions in overcoming adoption 
barriers and fostering sustainable agricultural systems (Table 4).

TABLE 4 Comparison of conventional practices and integrated crop management approaches.

ICM model Country Remarks Reference

Zero-till raised bed maize with wheat residue, seed treatment with liquid 

bio-fertilizers, 75% RDF (150:26.2:50 NPK kg ha-1-100% RDF), IWM with 

glyphosate (PP), atrazine (PE) fb mulch, need based IPDM are followed

India Achieved 7.8–21.3% higher maize 

yields, 24.3–27.4% additional returns, 

and improved soil properties, i.e., soil 

organic carbon, microbial biomass 

carbon

Pooniya et al. (2022)

Intercropping maize with forage crops such as Panicum maximum, need based 

nutrient, pest and disease management.

Brazil Increased returns and achieved 

sustainability by adopting integrated 

crop livestock system

Mingotte et al. (2020) and 

Silva et al. (2020)

Maintaining plant density of 76,000 plants ha−1 at spacing 60 × 22 cm, NPK 

application based on SSNM, and adjusting N using LCC, pest management 

using IPM and combined to bio-insecticides

Vietnam Higher yields and improved NPK and 

organic matter of the soil

Huan et al. (2011)

RDF, recommended dose of fertilizer; IPDM, integrated pest and disease management; PP, pre-plant application; PE, pre emergence; fb, followed by; SSNM, site-specific nutrient management; 
LCC, leaf color chart; IPM, integrated pest management.
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7 Inclusion of pulses in ICM for 
sustainable agriculture

The incorporation of pulses, or grain legumes, into ICM 
systems offers substantial potential to enhance agricultural 
sustainability. Pulses contribute significantly to environmental 
health through their unique traits, such as biological nitrogen 
fixation, reduced greenhouse gas emissions, minimal reliance on 
synthetic fertilizers and pesticides, and high water-use efficiency. 
Additionally, their ability to naturally enrich soil fertility aligns 
seamlessly with the core principles of ICM, which prioritize 
balanced nutrient management and soil health restoration (Reddy 
et al., 2023). Integrating pulses into cereal-based cropping systems, 
such as rice-wheat or maize-wheat rotations, provides both 
agronomic and environmental benefits. Diversifying crops with 
pulses reduces the prevalence of pests and diseases, improves soil 
structure, and enhances water efficiency. Practices like intercropping 
cereals with legumes or including pulses in crop rotations disrupt 
monoculture cycles, leading to increased soil organic matter and 
reduced land degradation (Kumar et al., 2023). These measures 
contribute to sustainable productivity and resilience, particularly in 
regions with resource constraints or vulnerability to 
climate variability.

Pulses are also integral to addressing food and nutritional security. 
Rich in protein, essential amino acids, and micronutrients, they are a 
critical dietary component, especially in developing countries such as 
India. Their inclusion in ICM systems not only supports sustainable 
farming practices but also diversifies farmers’ income sources while 
improving dietary quality (Hussain et al., 2023). Policy interventions, 
including subsidies for pulse cultivation and the promotion of bio 
fortified pulse varieties, have further incentivized their adoption 
within ICM frameworks. Integrating pulses into ICM facilitates the 
creation of balanced and sustainable agricultural systems, conserving 
natural resources, mitigating the effects of climate change, and 
contributing to global food security objectives. By incorporating 
pulses, ICM systems can achieve enhanced productivity, ecological 
balance, and economic viability, ensuring long-term 
agricultural sustainability.

8 Challenges in implementation of 
ICM in cereal production

The successful implementation of ICM practices in cereal 
production faces several obstacles globally. These can be categorized 
into technical, economic and climatic barriers, which must 
be  addressed to achieve sustainable and resilient cereal 
production systems.

8.1 Technical challenges

One major technical challenge is the limited knowledge and skills 
necessary for effective implementation of ICM. Farmers, especially in 
developing nations, lack access to up-to-date information and training 
on IPM, INM, and other sustainable practices. This knowledge gap 
hinders their ability to embrace and execute ICM practices in an 
effective manner (Bagheri et al., 2019). For example, the emergence of 

FAW (Spodoptera frugiperda) as a major maize pest in Sub-Saharan 
Africa has caused significant yield losses (Matova et  al., 2020). 
However, farmers in this region are still struggling to adopt IPM 
practices due to limited knowledge and access to appropriate control 
measures (Otim et al., 2021). Additionally, adapting ICM practices to 
site-specific conditions also poses a challenge. The applicability of 
ICM practices varies across regions due to differences in climate, soil 
types, and pest dynamics (Matteson, 2000).

Developing site-specific ICM recommendations and adapting 
them to local conditions can be particularly challenging in areas with 
limited scientific resources and research infrastructure especially 
when managing the disease pest interactions in Asian rice cultivation 
(Gianessi, 2014). To overcome these technical challenges, it is essential 
to enhance farmers’ technical knowledge through training and 
extension services. Extension support plays a pivotal role in promoting 
the adoption of new technologies among staple crop farmers. 
Developing region-specific ICM recommendations can immensely 
help crop growers in customizing ICM practices to suit their specific 
environments. Finally, improving data collection and monitoring 
systems can support evidence-based decision-making and the 
assessment of ICM practices outcomes (Pooniya et al., 2022).

8.2 Economic challenges

Farmers globally face various economic challenges when adopting 
ICM practices in cereal production. One significant issue is the 
upfront investment required for equipment, training, and other 
resources. Limited government support, such as subsidies and 
extension services, further hinders adoption (Rizal and Nordin, 2022). 
For instance, transitioning from conventional to ICM practices may 
entail additional costs, creating uncertainty about the economic 
feasibility of the transition (Bradley et al., 2002). Additionally, farmers 
face financial barriers, such as limited access to credit and financial 
services. Crop growers may struggle to secure loans due to factors 
such as lack of collateral, high-interest rates, and complex loan 
procedures (Viatte, 2001). While economic challenges relate to 
broader structural costs and policy gaps, financial challenges 
specifically pertain to the ability of individual farmers to access funds. 
Overcoming these interconnected burdens requires targeted financial 
incentives, a combination of policy interventions, and education and 
training programs to help farmers adopt ICM practices more 
effectively in cereal production (Bagheri et al., 2019).

8.3 Climatic barriers

Climatic barriers in implementing ICM practices arise from 
diverse and unpredictable weather conditions. Regions with erratic 
rainfall patterns like parts of Sub-Saharan Africa, may struggle with 
precise timing of irrigation and nutrient application (Bagheri et al., 
2019). Extreme weather events like droughts, floods, and heat waves 
can disrupt ICM implementation and pose serious risks to crop 
productivity. Climate change can increase the incidence of crop 
diseases, which may affect yield drastically (Richard et  al., 2022). 
Furthermore, changing climatic conditions alter pest, disease, and 
weed dynamics, making it challenging to adapt ICM strategies 
(Ahmed et al., 2019).
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Overcoming climatic barriers requires climate-resilient 
approaches that account for local climatic conditions, such as utilizing 
drought-tolerant crop varieties, implementing water management 
strategies, and adhering to adaptive ICM practices that consider the 
changing climate dynamics. Additionally, the integration of climate 
information and early warning systems can assist farmers in making 
informed decisions regarding the timing and implementation of ICM 
practices in cereal production (Bakar et al., 2020).

The above mentioned challenges pose serious hurdles to the 
widespread adoption of ICM practices in cereals at the global level. 
Overcoming them requires collaborative efforts, including training 
and extension services to enhance technical knowledge, innovative 
financing mechanisms, climate-resilient approaches, supportive 
policies, and socially inclusive approaches to empower farmers and 
foster sustainable agricultural practices (Pooniya et al., 2022).

9 Futuristic research priorities

As the field of ICM in cereal production continues to advance, 
there has been an immense potential for improving cereal yields 
through the adoption of these practices. However, despite its 
established importance, ICM has not received the required attention 
it deserves. Several factors contribute to this, including the 
prevalence of conventional agriculture paradigms, limited 
awareness and understanding of ICM among farmers and 
policymakers, and the lack of supportive policies and incentives for 
its widespread adoption. Addressing these challenges requires 
focused research and efforts to disseminate knowledge (Bagheri 
et  al., 2019). For successful implementation of ICM in cereal 
production and to achieve sustainable outcomes, it is crucial to 
address key knowledge gaps. Firstly, comprehensive studies are 
requisite to understand the interactions and synergies between 
different ICM practices in cereals. This includes investigating the 
combined effects of soil and nutrient management, water 
management, and pest and disease management on yield and 
sustainability. Additionally, further research is required to optimize 
the timing, dosage, and application methods of inputs, such as 
fertilizers, pesticides, and water, aiming to improve efficiency and 
minimize environmental impacts (Bradley et al., 2002). Moreover, 
there is a lack of knowledge regarding the long-term impacts of 
ICM practices on soil health, biodiversity, and ecosystem services. 
Therefore, comprehensive and multi-year studies are necessary to 
evaluate the long-term sustainability and resilience of ICM systems 
(Richard et al., 2008).

To prioritize the advancement of knowledge in this field, 
future research endeavors should focus on addressing key 
knowledge gaps and specific research needs to effectively 
implement ICM and achieve sustainable cereal production. Firstly, 
there is an urgent need for increased on-farm and participatory 
research to validate and adapt ICM practices according to local 
agro-ecological conditions and farming systems, ensuring their 
practicality and efficacy. This approach would help in tailoring 
ICM techniques to specific niches/contexts. Secondly, it is crucial 
to develop and evaluate innovative and context-specific ICM 
technologies and approaches, such as precision agriculture, digital 
platforms, and decision support systems. These advancements will 
enable real-time monitoring and data-driven decision-making in 

cereal production. Emphasizing the utilization of these tools can 
significantly enhance productivity and sustainability. 
Furthermore, interdisciplinary research is necessary to integrate 
agronomy, ecology, socio-economics, and policy analysis. This 
comprehensive approach will enable a deeper understanding of 
the barriers and incentives that influence farmer adoption of ICM 
practices. Such insights will inform the design of effective policies 
and strategies to promote ICM (Pooniya et al., 2022). It is essential 
to involve farmers and other stakeholders in the development of 
these practices to ensure their social acceptance and alignment 
with local community needs. Additionally, it is vital to develop 
practical methods that can deliver similar benefits across large 
areas without relying solely on site-specific modeling or extensive 
crop monitoring. By doing so, the scalability and widespread 
adoption of ICM practices can be  facilitated, to enhance crop 
yields, sustainability, and resilience in the face of changing 
climatic and environmental conditions. While addressing these 
research needs and knowledge gaps, future efforts can lay the 
foundation for the widespread adoption and effective 
implementation of ICM in cereal production. This, in turn, will 
lead to improved yields, and enhanced sustainability, ultimately 
contributing to the overall goal of meeting global food demand 
besides minimizing environmental impact.

10 Conclusion

This review has attempted to provide a comprehensive analysis 
of existing knowledge on ICM practices, identifies challenges, and 
proposes future research directions. It highlights the positive 
impacts of ICM practices and various models adopted in rice, 
wheat, and maize production across different countries. Notably, 
India and China serve as exemplary cases of effective ICM 
implementation, achieving significant increase in corn yields by 
13.5–30%. This success elucidates the potential of ICM in addressing 
challenges like the problem of RWCS in Asian countries through 
improved practices like DSR-ZTW and crop diversification. Beyond 
Asia, African nations have also benefited from ICM in maize 
production, with ICLS contributing to the sustainability of 
livelihoods. The United States has set an example by successfully 
adopting CA and diversification in wheat and maize production. 
Despite limited research on holistic approaches in cereal 
production, ICM holds tremendous potential for enhancing 
sustainability and climatic resilience. To effectively upscale ICM 
and realize its full potential, a clear “theory of change” is necessary. 
This includes addressing critical bottlenecks such as limited 
resource access, poor knowledge dissemination, and farmer 
resistance. Overcoming these challenges requires both technological 
and social interventions. Technologically, region-specific, cost-
effective innovations such as DSR, ZTW, and precision agriculture 
tools can improve the accessibility and efficiency of ICM. On the 
social front, strengthening community-level networks and 
agricultural extension services, offering training, financial 
incentives, and policy support, will encourage adoption. Social 
acceptance can further enhanced by incentivizing early adopters 
and fostering knowledge exchange. By integrating these strategies, 
ICM practices can promote sustainable cereal production, improved 
yields, environmental conservation, and better farmer livelihoods.
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