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Given the multiple challenges agriculture faces today, approaches that ensure both 
food security and the sustainable use of agroecosystems are urgently needed. 
The concept of community supported agriculture (CSA) is a promising attempt to 
address all three sustainability dimensions, but empirical research is still limited. 
Energy efficiency of farming systems is one important aspect when describing 
their ecological sustainability. This case study compares three CSA farms with three 
conventional farms, all focusing on vegetable production. Life cycle assessment 
(LCA) methodology was used to incorporate all relevant energy flows related to 
vegetable production, including all upstream activities from cradle to farmgate. 
CSA-farms showed energy return of investment (EROI) factors of 0.13–0.44, while 
EROI of conventional farms was between 0.02 and 0.69. Energy inputs, particularly 
fuels, electricity and fertilizer were major determinants, and related to size and 
structure of farms, while high yield could partially compensate for high energy 
inputs. CSA farms thereby tended to show relatively low consumption of fossil 
energy sources, partly due to on-farm electricity production by photovoltaic. 
Therefore, the performance of CSA regarding EROI of non-renewable energy sources 
(NRE) was relatively higher (0.17–0.76 compared to 0.05–0.78 for conventional 
farms). To further improve the energy efficiency, CSA farms need to improve their 
balance of inputs and outputs (e. g. reduced consumption of fossil fuels without 
compromising yields). However, CSA reached high energy efficiency if lifecycle 
costs of distribution were included (EROI = 0.6–3.1), which is likely to be lower 
in conventional farms with long supply chains and heavy processing. Moreover, 
CSA also provides additional ecological (e.g., fostering biodiversity, reduction 
of food loss and waste), social (e.g., education, transparency) and economic 
benefits (e.g., guaranteed sales). These benefits, as well as a more comprehensive 
assessment of energy efficiency of different production systems including more 
farms, need to be considered to better understand the potential contribution of 
CSA to a transformation toward sustainable food systems.
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1 Introduction

Agriculture, responsible for emitting between 20 and 31% of all 
anthropogenic emissions, is a key driver of climate change (Tubiello 
et al., 2022). Agriculture is also relevant in the context of planetary 
boundaries, a concept used to measure the resilience of the Earth 
System. Several impact processes have already exceeded their limits, 
with agriculture being a major driver of this development (Caesar 
et al., 2024; Campbell et al., 2017). Agriculture plays a critical role in 
the processes of “land-system change” and “freshwater use” and has 
been particularly influential in the transgression of “biosphere 
integrity” and “biogeochemical flows” (Campbell et  al., 2017). 
Therefore, it is needed that agricultural politics balance food security 
and the sustainability of agroecosystems. European politics emphasize 
organic agriculture (OA) as a crucial component for promoting a 
more sustainable agricultural sector. Aligned with the common 
agricultural policy (CAP) and the European green deal, EU officials 
decided to increase the share of arable land under organic production 
to 25% by the year 2030 (European Commission, 2023).

Meanwhile, scientific research is multifarious when it comes to the 
question of how to balance production and ecology. Expressions like 
“ecological, sustainable, and agroecological intensification” are 
extensively discussed and the land sharing versus land sparing 
controversy is apparent (Loconto et al., 2020; Wezel et al., 2015). Some 
would promote intensive conventional farming that leaves separated 
areas to biodiversity conservation, while others would encourage the 
less naturalistic approach of more extensive farming which tries to 
preserve non-agricultural flora and fauna while sustaining a certain 
level of production. The conversion to OA under constant demand is 
seen as a threat toward food security that would increase land 
consumption (Meemken and Qaim, 2018). Indeed, the average yield 
gap between conventional and organic farming is reported to be about 
20%, while being less high for vegetables (Ponisio et al., 2015; De Ponti 
et al., 2012). But the relation of yield to arable land is only one aspect 
to be considered. To reveal more about the efficiency of farming, the 
required inputs of different production systems are assessed in this 
study. By doing so, the strengths and weaknesses as well as the 
potentials and limits of the respective approaches to farming are 
pointed out. This includes the approach of community supported 
agriculture. CSA is a promising concept to address ecological, social 
and economic sustainability aspects (Egli et al., 2023). While a fair 
amount of research has already been done on the sociopolitical 
dimensions of CSA, the level of its ecological and economic 
sustainability is still uncertain (Egli et al., 2023). In CSA, a group of 
people cover the entire production costs of a farm by upfront 
payments. The so-called “prosumers” thereby split both risks and 
harvest (Flieger, 2016; Saltmarsh et al., 2011). While CSA is still in a 
niche, the number of CSA farms has increased rapidly in many regions 
of the world. Agroecological approaches and voluntary manual labor, 
both widespread in CSA, offer the potential to reduce yield gap and 
increase energy efficiency.

This case study contributes to this sparsely explored research field. 
To date, several studies used the life cycle assessment (LCA) 
methodology to document the environmental impacts of on-farm 
vegetable production (Kashyap et al., 2023; Stone et al., 2021; Habibi 
et al., 2019; Jianyi et al., 2015; Markussen et al., 2014). Some LCAs are 
specifically focused on the comparison of organic versus conventional 
farming, predominantly indicating OA to have lower impacts on 

human health and the environment (Kumar et  al., 2023; Foppa 
Pedretti et al., 2021; Kowalczyk and Cupiał, 2020; Tasca et al., 2017). 
Further research has been done to compare the energy ratio of 
vegetable production in organic and conventional cropping systems 
(Ronga et al., 2019; He et al., 2016; Brodt et al., 2013; Bos et al., 2007; 
Williams et al., 2006; Röver et al., 2000). However, only two studies 
focused on CSA farming in comparison to other approaches. Pérez-
Neira and Grollmus-Venegas (2018) compared the energy efficiency 
of CSAs and conventional farms in Andalucía, describing CSA 
farming as an economically and energetically competitive alternative 
to conventional farming. Within the cradle-to-farm gate approach 
they detected an energy return of investment (EROI) of 0.57 for the 
CSA farm, which lies between 0.45 and 0.66 of the conventional farms. 
Second, Zhen et al. (2020) analyzed greenhouse vegetable production 
of conventional, organic and CSA farms in the Beijing area. They 
found CSA farms not only being more profitable and eco-efficient 
than organic and conventional farms, but also having the lowest 
environmental impact of the three systems. So far, no study has 
conducted a comparative energy efficiency analysis based on detailed 
CSA data and various conventional farms, each with its unique 
specialization in vegetable production. Moreover, to the best of our 
knowledge, no study has applied the LCA methodology to CSA farms 
in Germany, despite an exponential growth of CSA organizations in 
the last years (Schmidt et al., 2025). This study addressed this research 
gap and aimed at investigating the energy efficiency of CSA farms 
compared to conventional farms, practicing vegetable production with 
different intensity and in different regions. The goal thereby was to 
describe the energy and resource use efficiency of these different 
farming systems, to identify key factors determining the ecological 
sustainability potential, but also to identify major sources of energy 
consumption and trade-offs. Therefore, (i) detailed data from farms of 
different sizes and agricultural systems, covering all relevant on-farm 
activities, was collected. This included all production inputs as well as 
the production outputs, i.e., marketed products leaving the farm gate. 
This data was used to (ii) build an energy balance model using the 
LCA methodology to identify all energy flows embodied in the 
different farms and (iii) to compare CSA and conventional systems. 
The farms were located in Central East Germany. Three out of six 
farms follow the CSA concept. The remaining farms were conventional 
farms specialized on vegetable production. Furthermore, one out of 
these farms implemented so-called “regenerative agriculture,” 
representing a conventional and ecologically sustainable approach to 
farming, most notably in respect to soil conservation (Schreefel 
et al., 2020).

2 Materials and methods

2.1 Collection of data

In the first step, all farmers (CSA and conventional) have been 
interviewed in person to understand the scope of relevant inputs and 
outputs. Based on this, input categories were defined and a consistent 
questionnaire for all the farms was developed and filled in by farmers 
(for a detailed overview of collected data see 
Supplementary Appendixes 1–7). CSA farmers collected data based 
on a previous collaboration with Egli (2024). Conventional farmers 
only accounted for inputs and outputs related to vegetable production 
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(including green manure, if it was related to vegetable production) and 
neglected other forms of production, such as grain production.

2.2 Study farms

Six farms were included in this study (Table 1). Three of them 
followed the CSA approach, the other three produced conventionally. 
All the CSA farms produced vegetables organically, but only two of 
them were officially certified by the time of the study. The other three 
farms used conventional means of farming, although there were 
substantial differences observable between them. Farm 1 (F1) had a 
mixed production output and used only about 10% of their arable land 
for vegetables. Farm 2 (F2) also produced a mix of crops and used 
almost half of its land for vegetable production. Farm 3 (F3) produced 

vegetables as well as a few seedlings and horticultural products on a 
family property located in a residential neighborhood. In terms of size 
the CSA-farms were rather small, with an arable land between 3.5 ha 
and 10.5 ha. In contrast, the sizes of the conventional farm were wide-
ranging. Except F3 with less than 1 ha of arable land, the conventional 
farms were larger on average compared to CSA farms.

The farms were located in the central east of Germany (Figure 1). 
CSA1 was located in the urban area of Dresden, right at the floodplain 
area of the river Elbe (Figure 1). Like all CSAs portrayed here, CSA1 
produced vegetables and fruits exclusively for their registered 
prosumers. CSA2 was located in the north east of Chemnitz, Saxony. 
Their farm combined arable land for vegetable production, grasslands 
and forests. In contrast to the other farms, a lot of pre-production 
steps were done by the farmers themselves. This included the 
production of seedlings, organic fertilizers and pesticides. CSA3 was 

TABLE 1 Farm information.

Indicators CSA1 CSA2 CSA3 F1 F2 F3

Production system Organic, certified Organic Organic, certified Regenerative 

agriculture

Conventional Conventional, part-time

Year, est. 2014 2012 2012 1991 1992 1899

Entire farmland (ha) 3.5 7.2 10.5 56.0 474.0 < 1.0

Non-vegetable products – – – Crops, grains Crops, grains Seedlings and 

ornamentals

Soil texture1 Clay loam (Tl8) Sandy loam (Sl4) Silty clay (Ut2) Silty clay (Ut2) Silty clay (Ut4) Sandy loam (Sl3)

Irrigation (m3 ha−1) 1.096 520 1.908 629 335 n/a

1BGR (2013a) and Düwel et al. (2007).

FIGURE 1

Study area, including relevant soilscapes and rivers. Background data retrieved from ESTAT, 2024b; BGR, 2023; BKG, 2023; BGR, 2013b; Mueller et al., 
2007.
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located in the outskirts of Leipzig. At the time of the study, four other 
CSAs were located within 3 km of this CSA. F1 was located in East-
Saxony, close to the town of Görlitz and the border to Poland. The 
farm management described their farming activity as regenerative 
agriculture, which mainly focuses on sustainable soil-management, 
but also on further elements like the use of organic amendments 
instead of synthetic fertilizers and limited use of pesticides (Schreefel 
et al., 2020). F2 was by far the largest farm included in the study, 
representing a higher scaled and professionalized production of a few 
selected types of vegetables. F3, a rather small farm located in the 
Saxon-Thuringian border region, was maintained part time by 
mainly one person, who used the old infrastructure of the family 
property to produce fine vegetables, which were sold to nearby 
restaurants and more distant farmer markets.

2.3 Study area

The study area represents a region with predominantly 
temperate sub-oceanic to temperate sub continental climate (BGR, 
2005). Weather conditions in 2022 were hotter, drier and sunnier 
compared to the annual average between 1991 and 2020 (Table 2). 
The farms were affected relatively similarly, as temperature, 
precipitation and radiation deviated along the same lines from the 
multi-annual average. Average radiation was similar, while 
temperature was lower and precipitation higher in the cases of 
CSA2, F1 and F3.

The farms were located in the area of a loess belt, which marks the 
transition zone from lowlands to the low mountain ranges of the 
region (ESBN, 2005). According to the world reference base for soil 
resources (WRB), this zone is characterized by luvisols, albeluvisols, 
and gleysols (ESBN, 2005; BGR, 2005). It consequently belongs to one 
of the most fertile and productive cropland regions in Germany and 
Europe (ESTAT, 2024a). The study farms differed in their predominant 
soil textures and substrate (Table 2). While CSA3, F1, and F2 were 
located on a loess substrate with silty clay texture and CSA1 on loamy 
soil, CSA2 and F3 were located on a coarser sandy soil, and thereby 
less fertile location (Heinrich and Hergt, 2006).

2.4 Life cycle assessment

To analyze the energy flows that correspond with the input data, 
we used the LCA methodology. This framework provides a holistic 
approach to cover all environmental burdens of a product system 

(Guinée, 2006). LCAs are regulated under ISO 14040 and ISO 14044 
including the four stages (1) goal and scope definition, (2) life cycle 
inventory (LCI), (3) life cycle impact assessment (LCIA) and (4) 
interpretation (ISO, 2006a,b). The approach is well suited for studying 
food systems, even though they differ from classical industrial 
production systems when it comes to the definition of the functional 
unit, the system boundaries, and the environmental impact categories 
(Cucurachi et al., 2019; Audsley, 1997).

2.4.1 Goal and scope definition
An LCA of vegetable production on multi-structured farms 

over an entire year and in one specific region was conducted. The 
main goal was to establish a comparative energy balance. Therefore, 
values were harmonized by area (ha) of farmland and mass (kg) of 
farm produce as two functional units. The assessment was realized 
within the system boundary, cradle to farm gate (Figure 2). By 
allocating the processes relevant to the systems of production, an 
attributional approach was applied. The allocation factor of every 
product was determined at the point of its substitution (APOS), 
that is the moment where a product emerges for the first time in 
the respective supply chain. Farm energy output and farm energy 
input were defined as impact categories, the latter featuring 12 
sub-categories (see Inventory analysis).

All inputs were classified under the single issue LCIA method of 
the cumulative energy demand (CED), in accordance with the specific 
focus on energy (Chen et al., 2021). As there are limitations to other 
environmental impact categories when it comes to comparing 
different farming systems (especially tracing N-emissions), CED 
appears to be the most solid tool in this context (Meier et al., 2015).

2.4.2 Inventory analysis
The inventory of energy inputs in this study is composed of 12 

categories: seeds and seedlings, fertilizers, crop protection, fuels, 
lubricants, electricity, irrigation, labor, vehicles and machinery, 
greenhouses, services, and further inventory (Figure  2). Energy 
inputs of these categories were calculated based on energy 
equivalents (EEQ). Farm buildings, except for greenhouse buildings, 
were not considered. Nevertheless, the inventory of this study is 
more comprehensive than it is in similar studies investigating the 
ecological potential of CSA farming (Zhen et al., 2020; Pérez-Neira 
and Grollmus-Venegas, 2018).

Regarding non-synthetic fertilizers uncontested data was not 
available (Montemayor et al., 2022). As the actual NPK-contents were 
available for the majority of applied organic fertilizers, the approach 
by Hülsbergen et al. (2001) was used to calculate EEQs. Accordingly, 

TABLE 2 Climate data for farm locations in 2022 (and deviation from multi-annual average of 1991–2020)1.

Indicators CSA1 CSA2 CSA3 F1 F2 F3

Annual average of air 

temperature at 2 m above 

ground (°C)

10.932

(+1.23)

10.203

(+1.30)

11.214

(+1.11)

10.375

(+1.17)

10.976

(+1.17)

10.367

(+1.26)

Annual precipitation (mm) 433.78

(−173.9)

609.29

(−164.8)

462.110

(−174.8)

497.65

(−148.6)

420.911

(−177.1)

488.07

(−104.8)

Annual sum of sunshine 

duration (h)

20772

(+307)

20503

(+320)

205110

(+341)

20975

(+305)

20516

(+300)

19917

(+282)

1All data retrieved from DWD (2024); 2Station Dresden-Klotzsche; 3Station Chemnitz; 4Station Leipzig-Holzhausen; 5Station Görlitz; 6Station Oschatz; 7Station Gera-Leumnitz; 8Station 
Dresden-Gohlis; 9Station Frankenberg-Altenhain; 10Station Taucha; 11Station Hirschstein-Heyda.
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the mineral equivalent to the available NPK was ascertained. 
Equalizing organic and synthetic NPK can be problematic (Meier 
et al., 2015). However, it was preferred to use precise NPK-contents 
instead of even more uncertain proxies. Where possible, results still 
compared to proxies from Ecoinvent 3.3 (Ecoinvent, 2016) and values 
were similar.

Regarding electricity, consumption was leveled as medium voltage 
electricity for Germany. Consumption and production were directly 
balanced. In the case of surplus energy from electricity, 3.6 MJ were 
credited per extra kWh. The energy required for the production, 
installation, maintenance, and operation of PV-panels was added 
separately. Due to a lack of information on the specifics of the PV 
infrastructure, a scenario of single-crystalline silicon wafers with an 
estimated life span of 30 years as flat roof installation was adopted 
(Raugei et al., 2012).

For calculating the energy demand of labor, data from Pimentel 
et al. (1973) was updated by the average energy intake of a German 
citizen in 2018, including an appropriate holiday (FAO, 2024). 
Consequently, an EEQ of 2.8 MJ per working hour was used.

On the output side, the amount of each vegetable produced in 
2022 was set off against its energy-equivalent (EEQ) from the BLS 
database (Hartmann et al., 2014). As already mentioned before, the 
energy output by electricity production using photovoltaic (PV) was 
directly set off against the energy input from electricity consumption 
and therefore appears on the input side.

2.4.3 Impact assessment
The CED measured as higher heating value (HHV) was used as 

the LCIA method. It represents the primary energy consumption 
within the life cycle of a product (Frischknecht et al., 2015). The main 
dataset for measuring the CED of farm inputs was Ecoinvent 3.3 
(Ecoinvent, 2016). Additionally, few CED values were obtained from 
Aguilera et al. (2019). For all system processes, according to their 
availability, German data (e.g., electricity) was preferred over 
pan-European or single-European-country data (e.g., diesel and coal 
production, also polyethylene and polypropylene production) and 
over “rest of the world” data (e.g., some fertilizer production). For 
measuring the embodied energy of the output of farms, namely 
vegetables, the latest available version 3.02 of the German nutrient 
database (BLS) was used (Hartmann et al., 2014).

CED was measured in two ways, as total embedded energy and as 
NRE. NRE includes fossil, nuclear and nonrenewable biomass, while 
the total embedded energy also encompasses wind, solar, geothermal, 
water, renewable biomass and labor. For the specific case of electricity 
generation using photovoltaics, the solar energy that flows into the 
process was omitted, as the farmer has no control over the use or 
non-use of solar energy. Solar energy was therefore considered as an 
externality outside the system boundary.

We applied specific EEQs on both output and input factors, in 
accordance with the work of Pérez-Neira and Grollmus-Venegas 
(2018). For characterizing the output, the sum of the energy contents 

FIGURE 2

Processes and system boundaries of the life cycle assessment.
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of all vegetables sold in 2022 was multiplied with EEQs per farm, 
respectively, (Equation 1).

 ( ) ( ) ( ) ( )= ∑ quantity cu t x EEQ cu MJ ,Energy output  (1)

with the EEQs being related to raw vegetables and including fibers 
and cu representing individual cultures.

The input was analyzed by applying EEQs on all the energy inputs, 
whereby the overall input per farm was measured as CED and CED 
(NRE) (Equations 2 and 3).

 ( ) ( ) ( ) ( )= ∑CED quantity i f .u. x EEQ i MJ  (2)

 ( ) ( ) ( ) ( ) ( ) ( )= ∑CED NRE quantity i f .u. x EEQ NRE i MJ , (3)

with i representing the individual input categories and f. u. the 
functional unit ha of farmland or kg of farm produce.

For the interpretation of CED, we  offset output and input in 
multiple ways, such as EROI, NRE EROI, EROI without electricity 
production by PV and net energy. Regarding the functional unit of ha, 
areas used for green manure were included. Similarly, areas with crop 
failures have been included (Equations 4 and 5).

 ( ) ( )− −= 1 1EROI energy output MJ . . / CED MJ . .f u f u
 

(4)

 ( ) ( )− −= 1 1Net energy energy output MJ . . –CED MJ . .f u f u
 

(5)

2.5 Sensitivity analysis

We tested the sensitivity of the results by applying a local 
sensitivity analysis. This was useful in identifying the most volatile 
parameters and therefore the greatest sources of uncertainty 
(Markwardt and Wellenreuther, 2016; Saltelli et al., 2004).

The influence on the EROI by modifying the EEQs of both the 
output and the different input categories were measured per farm. For 
screening the output, the EEQ of any relevant type of vegetable with a 
share of at least 2% of sales was assumed to be 0, 50, 150, or 200% of 
its actual value. This same procedure was applied to the input EEQs to 
analyze their effect on the total CED (Figure 3). As the most crucial 
categories were identified, the procedure was repeated with the single 
input factors of those categories. Consequently, the most sensitive 
impacts toward the EROI were identified.

3 Results

3.1 Output of farms

In contrast to the conventional farms, CSA farms produced a 
diverse range of vegetables (Table 3). As all farms cultivated different 
sets of vegetables, single yields could not be compared in every case 

(Table 4). In cases which allowed comparison, broad ranges between 
the farms became visible. CSA3 and F1 showed largest yields for all 
crops compared, except rhubarb. Yields of CSA1 were high for 
tomatoes and average for potatoes and carrots. CSA2 typically showed 
lower yields, except for rhubarb. F2 and F3 had the lowest revenues 
per ha. In sum, there was no consistent difference between CSA and 
conventional farms regarding yields.

3.2 Input of farms

The categories fuels, electricity and fertilizers showed the highest 
impacts on the energy input of farms (Figure 4). The category of fuels 
thereby had the highest impact among all study farms. This included 
fuels for vehicles and machinery, as well as fuels for greenhouse 
heating. The exceptional share of fuels to the CED of F3 is noteworthy 
(Figure 4). Likewise, electricity consumption showed large effects on 
the six farms. The volume was partially reduced by PV electricity 
production, which in those cases (CSA1, CSA2, F2), was directly 
allocated to the input side. Simultaneously, fertilizers proved to be an 
important impact category, regardless of the farm’s preferences for 
synthetic or organic fertilizers. Aside from that, the categories of labor, 
vehicles and machinery and also inventory showed large impacts on 
the total energy input of different farms. While labor was mainly an 
important input for CSA-farms, inventory appeared to be the most 
crucial category for F2. Within inventory, boxes for storage and 
transport had by far the highest impact, as they consist of energy 
intensive materials, such as polyethylene and polypropylene. The 
categories of crop protection, lubricants and greenhouses had a minor 
impact. Within crop protection, CSA1 and CSA3 showed the lowest 
results, while CSA2 needed almost twice the energy intake of CSA3.

3.3 Indicators of energy balance

The most energy efficient farm was F2, with an EROI clearly ahead 
of any other farm (Table 5). F1, CSA3, and CSA1 followed, while 
CSA2 and F3 showed relatively low values. CSA3 got the highest EROI 
of all CSAs. F2 and CSA1 obviously benefited from low CED per ha, 
while very high CEDs strongly affected the EROI of CSA2 and F3. 
EROI without PV indicated the importance of electricity production 
to achieve a low CED for F2 and CSA1. In contrast, high energy 
outputs compensated moderate CED for F1 and CSA3. F2 instead 
showed the lowest of all energy outputs per ha, which nevertheless did 
not compromise the high EROI. F1 and F2 produced the crops with 
the highest energy contents (Supplementary Appendix 1).

Regarding NRE, F2 and CSA1 again showed the lowest CEDs and 
also the largest net energy ratios, even though F2 proved to be the 
farm with the highest share of fossil energies. This is due to F2’s high 
inputs from storage and transport boxes as well as from synthetic 
fertilizers. Consequently, CSA1 almost leveled with F2 regarding NRE 
EROI. In contrast, the high share in NRE and the relatively low results 
in NRE EROI of CSA2 and CSA3 illustrates the elevated amount of 
fossil energies they invested into vegetable production. This is mainly 
related to an extended usage of vehicles and machinery and the 
corresponding diesel. The differences between NRE EROI and NRE 
EROI without PV again underlines the importance of PV production 
for the energy efficiency.
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3.4 Comparison of CSA and conventional 
farms

Focusing on NRE, CSA farms are capable of achieving a similar 
energy efficiency as conventional enterprises. This is mainly due to 
high energy outputs and the implementation of PV energy 
production. Two of three CSA farms showed high inputs in the 
fields of fertilizers, fuels and labor. On the contrary, the larger and 
more specialized F2 achieved clearly lower energy inputs per ha of 
farmland in those categories.

Looking at the three CSA farms in greater detail, their large 
crop diversity becomes apparent. About half of the respective 
produces showed an elevated energy content, with potatoes as the 
vegetable produced in the greatest amount. Yields of single crops 
did fluctuate between the CSA-farms, with CSA1 and CSA3 

showing higher values than CSA2 in most cases (Table 4). On the 
input side, CSA3 had an increased consumption of fuels. Electricity 
appeared to be the most important impact category for CSA2 and 
the second most important for CSA3. Conversely, electricity 
production at CSA1 exceeded its consumption and therefore 
remarkably diminished the acquired input energy. Organic 
fertilizers generally appeared to have a high impact. All CSA farms 
showed higher values than F1 and F2. Similar results were observed 
in the category of labor.

Production of F1 was characterized by a less complex and more 
energy-rich mix of crops. About 80% of their produce showed an 
elevated energy content. Therefore, it is not surprising that F1 showed 
the highest output by ha and by kg. Electricity had the main impact 
on their CED. The effect of fertilizers was instead very low, as this farm 
showed the lowest of all demands for fertilizers per ha. At the same 

FIGURE 3

Results of the sensitivity analysis regarding output and relevant input categories.
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time their results were above average toward crop protection and quite 
low toward labor.

F2’s vegetable production encompassed only three different 
types of vegetables, two of which showed high energy contents, 
while the third was a perennial. Even though F2 got comparatively 
low yields and therefore low output per ha, they showed the second 
highest value at energy output per kg. On the other side, their 
energy inputs per ha were always among the lowest values of all 
farms. The most relevant input factor for F2 was its inventory of 
storage and transport boxes. Input by electricity was also notably 
low. A reduction of about 50% was achieved through PV electricity 
production. Synthetic fertilizers were also a relevant impact factor 
for F2, even though the respective energy input per ha was 
relatively low. Furthermore, F2 also showed the lowest of all results 
in the input categories of fuels, vehicles and machinery, labor 
and lubricants.

Compared to the other farms, F3 showed a high share of fine 
vegetables, such as tomato, cucumber and paprika. Indeed, less than 

10% of their produce showed an elevated energy content. Despite the 
farm’s high average yield per ha, its output per kg was remarkably low. 
In combination with an extraordinarily high energy input caused by 
greenhouse heating, the energy efficiency of F3 turned out to be close 
to zero. But even without greenhouse heating the results would not 
improve significantly, as their energy inputs are among the highest of 
any category (Table 6).

3.5 Sensitivity analysis

The sensitivity analysis was used to identify the most important 
influencing factors per farm. On the output side, potatoes, peas and 
carrots were the crops with the greatest overall impact (Figure 3a). 
These crops were cultivated in large quantities and hold an elevated 
EEQ of 3,170, 3,820, and 1,630 MJ t−1, respectively.

On the input side, manipulating the EEQs of fertilizers would 
mainly affect F2 and CSA1 (Figure 3b). Regarding electricity, F1 

TABLE 3 Energy output by vegetable production.

Farms Area used for 
vegetable 
cultivation 

(ha)

Included 
area where 

green 
manure was 
applied (ha)

Yield 
(t ha−1)

Variety of 
vegetables

Main produce (%)

CSA1 5.15 3.65 9.09 63 Potato, carrot, pumpkin, tomato, zucchini, lettuce, onion, 

beetroot, leek, cucumber, chard, kohlrabi, kale, and others 

(17.85, 9.91, 8.11, 6.38, 4.28, 4.17, 4.15, 3.98, 3.88, 3.87, 

2.74, 2.65, 2.09, and 25.94%)

CSA2 1.37 0.65 8.66 46 Potato, zucchini, pumpkin, tomato, cucumber, lettuce, 

Claytonia perfoliata, spinach, beetroot, chard, carrot, 

beans, leek, and others (26.25, 8.87, 8.27, 5.80, 5.12, 3.68, 

3.49, 3.30, 3.17, 3.02, 2.83, 2.37, 2.29, and 21.56%)

CSA3 4.51 1.66 20.34 55 Potato, carrot, pumpkin, white cabbage, beetroot, zucchini, 

red cabbage, cauliflower, lettuce, tomato, leek, parsnip, 

pointed cabbage, chard, and others (16.04, 12.26, 5.66, 

5.28, 5.19, 4.53, 3.23, 3.13, 3.08, 2.82, 2.76, 2.46, 2.39, 2.08, 

and 29.09%)

F1 4.56 2.24 24.00 14 Carrot, potato, white cabbage, tomato, cucumber, red 

cabbage, and others (36.55, 27.41, 15.53, 7.57, 3.29, 2.1, 

and 7.55%)

F2 213.08 58.00 5.93 3 Rhubarb, pea, pole bean (54.76, 31.49, and 13.75%)

F3 0.29 0.00 21.00 10 Onion, tomato, cucumber, red cabbage, celery, paprika, 

and others (28.82, 26.67, 20.44, 10.32, 5.85, 5.29, and 2.6%)

TABLE 4 Yield for selected vegetables, per farm.

Crop yield (in t ha−1) CSA1 CSA2 CSA3 F1 F2 F3

Potato 21 7 30 30 – –

Carrot 45 17 53 77 – –

Beans 18 30 43 – 5 –

Red cabbage 17 9 49 33 – 9

Tomato 123 36 117 207 – 27

Cucumber 95 68 206 180 – 41

Rhubarb 28 35 26 – 18 –
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showed volatility when changes were made in the respective EEQ 
(Figure 3c). Farms producing electricity by PV generally appeared 
less susceptible to changes in EEQs. For F2, the EROI would 
increase significantly more by reducing the EEQ than it would 
decrease by elevating it. The categories fuels and vehicles and 
machinery were grouped together (Figure 3d). Changes in EEQs 
would affect CSA3 and F3 the most, as a 25% reduction would 
already increase the EROI of CSA3 to 0.50. The exclusion of 
greenhouse heating would have a notable influence on the EROIs 
of F1 and F3 (Figure 3e). Finally, only CSA farms were sensitive 
to changes in the category of labor (Figure 3f). Increasing the EEQ 

of labor would thereby have slightly less influence than 
decreasing it.

4 Discussion

In our case study approach, we  found that the CSA farms 
considered tendentially showed a lower performance than the 
conventional farms, if mass was the functional unit (Table 5). While 
this has also been observed in studies comparing organic and 
conventional production of single vegetable crops (Hashemi et al., 

FIGURE 4

Share of input factors (%), per farm, with miscellaneous describing all input categories of a farm with a share of less than 10 % as listed in Table 5.

TABLE 5 Energy indicators.

Indicators Unit CSA1 CSA2 CSA3 F1 F2 F3

Energy output MJ ha−1 15,016 15,152 32,861 44,933 11,037 22,208

MJ kg−1 1.65 1.75 1.62 1.87 1.86 1.06

CED MJ ha−1 35,065 117,528 74,122 83,529 15,986 1,012.395

MJ kg−1 3.84 13.57 3.64 3.48 2.70 48.22

NRE CED MJ ha−1 19,691 90,351 60,573 62,581 14,068 415,212

MJ kg−1 2.16 10.43 2.98 2.61 2.37 19.78

Share of NRE % 56 77 82 75 88 41

EROI – 0.43 0.13 0.44 0.54 0.69 0.02

EROI w/o PV – 0.32 0.11 0.44 0.54 0.59 0.02

NRE EROI – 0.76 0.17 0.54 0.72 0.78 0.05

NRE EROI w/o PV – 0.46 0.14 0.54 0.72 0.67 0.05

NRE Net energy MJ ha−1 −4,675 −75,199 −27,712 −17,649 −3,031 −393,004
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2024; Ronga et al., 2019; He et al., 2016; Bos et al., 2007; Williams 
et al., 2006; Röver et al., 2000), it is in contrast with the study of Pérez-
Neira and Grollmus-Venegas (2018), who found CSA farming more 
energy efficient regarding both area and mass. Also, Zhen et al. (2020) 
measured the lowest energy depletion for CSA farming compared 
with organic and conventional cropping systems. However, in our 
study as well as in Pérez-Neira and Grollmus-Venegas (2018) CSA 
farming seems to more competitive when NRE is considered.

To sufficiently explore the specific and detailed setup of this 
research, farm characteristics and CSA performance will be discussed 
here in depth. To unravel the ecological sustainability potentials and 
the performance of different agricultural production systems, key 
factors influencing the balance between inputs and outputs will 
be highlighted.

4.1 Farm characteristics

Energy input had the greatest impact on the energy efficiency of 
farms. F2, for example, showed rather low output per ha of farmland, 
but achieved the highest EROI because of its low energy input. On the 
contrary, F3 showed a decent output per ha of farmland, which was 
compromised by a very high energy input. Thereby, fuels, electricity 
and fertilizers were the most influential impact categories (Figure 3). 
While fuels for running vehicles and machinery affected especially 
CSA farms, materials for greenhouse heating had a serious impact on 
two of the conventional farms. Heating strategies including regional 
accessible forest waste as burning material and up to date heating 
infrastructure were thereby energetically most efficient. Electricity 
proved to be a major input to all vegetable production systems. This is 
mainly related to irrigation (Temizyurek-Arslan and Karacetin, 2022). 
According to own calculations, electric power supply refers to 82.1–
97.7% of the energy that farms spend on irrigation. With minor effects 
on efficiency, electric power was also used for cooling and young plant 
nurseries. More importantly, the on-farm production of electricity 
from solar radiation proved to be a crucial element for achieving 
higher energy efficiency. Since PV electricity production notably 

reduces the demand for fossil energies, the integration of solar power 
as an agricultural standard will help to reduce its global warming 
potential and therefore to respect the planetary boundaries 
(Stranddorf et al., 2023).

The farms also showed considerable differences among their 
cropping systems. This had notable influences on their outputs. 
First, the selection of crops had a relevant impact on energy 
efficiency, as farms largely producing fine vegetables like tomatoes 
and cucumbers were less energy-efficient compared with those 
producing legumes or potatoes. This indicates that energy efficiency 
tends to increase with the selection of vegetables that are rich in 
calories. Secondly, the farms differed remarkably in the range of 
cultivated vegetables. The CSA farms engaged in “multi-cropping,” 
with a total of between 46 and 63 different production goods, while 
F1 cultivated only 14, F2 three and F3 at least 10 different kinds of 
vegetables (Petrie and Bates, 2017). Interestingly, extreme multi-
cropping as practiced by the CSA farms did not negatively affect 
yields (Table 4). On the contrary, several positive effects have been 
reported elsewhere. For example, Li et al. (2018) reported lower 
global warming, eutrophication, and acidification potentials of such 
multi-cropping systems, while Trinchera et al. (2022) found various 
positive effects on soil parameters. Furthermore, a wide variety of 
crops is likely to increase the resilience of the respective farms 
against single crop failures (Egli et  al., 2021; Renard and 
Tilman, 2019).

On the contrary, a partially strong do it yourself ethos in CSA 
proved to be rather energetically inefficient. The approach of being 
self-sufficient by nursing young plants or producing their own 
pesticides and fertilizers tie up precious capacities, while the 
energetical impact of buying seedlings or pesticides from the market 
is relatively low (Table 6).

Furthermore, scaling effects were observable for the input 
categories fuels, vehicles and machinery, labor, and lubricants. 
Thereby, the biggest farm (F2) exhibited low input values, while the 
smallest farm overall (F3) and the farm with the second smallest area 
under cultivation (CSA2) showed predominantly high numbers. 
Larger farms are likely to have specialized machinery that will also 

TABLE 6 Inputs of farms, including subcategories of relevant indicators.

Inputs (in MJ ha−1) CSA1 CSA2 CSA3 F1 F2 F3 Reference Trust in data

1. Seeds and seedlings 5,529.37 99.69 1,451.70 8,436.60 1,366.27 3,488.15 1 Quite high

2. Fertilizers 8,144.71 22,498.75 6,326.90 2,998.13 4,179.53 11,339.32 1, 2, 3 Medium

3. Crop protection 693.12 1,033.51 594.05 2,158.40 848.57 3,719.31 1, 2, 4, 5 Medium

4. Fuels 4,465.52 11,249.66 19,611.48 11,646.28 1,582.13 849,430.00 1, 6 Medium

5. Lubricants 892.14 39.90 863.08 331.52 40.03 3,886.93 1 Quite high

6. Electricity 3,722.53 48,128.78 17,089.75 31,349.35 1,452.33 44,909.19 1 Medium

7. Irrigation infrastructure 294.48 376.02 540.51 285.65 357.27 1,710.97 2 Medium

8. Labor 5,075.64 17,411.85 7,450.86 1,948.58 210.35 10,134.38 7 High

9. Vehicles and machinery 2,861.49 9,543.76 12,343.60 9,170.59 315.51 43,341.09 1, 2 Quite low

10. Greenhouses 675.15 2,951.88 1,024.67 887.89 0.00 33,986.11 2 Medium

11. Services 0.00 0.00 0.00 8,002.50 0.00 0.00 1 Quite high

12. Inventory 2,711.18 4,193.75 6,825.42 6,313.78 5,633.99 6,449.66 1 Medium

Total 35,065.34 117,527.55 74,122.02 83,529.28 15,985.98 1,012,395.11

1Ecoinvent (2016); 2Aguilera et al. (2019); 3Breuer et al. (2014); 4Fritsche (2000); 5Tajane et al. (2017); 6Wittkopf et al. (2003); 7Approach by Pimentel et al. (1973) (own adjustment).
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gain the efficiency of planting and applying fertilizers and pesticides 
at scale. In this study, the order of farm sizes was identical with the 
order of their respective EROI. This finding affirms a correlation 
between scale and the energy efficiency of farms, as already pointed 
out by Schlich and Fleissner (2005). Hence, upscaling must 
be considered as a means to elevate the energy efficiency of farms. In 
this context, investigating the energy efficiency of larger CSA farms 
focusing on vegetables (>30 ha) would provide additional insights. 
Scaling effects could also be achieved by collaboration of several farms 
that are all specialized on the production of certain groups 
of vegetables.

Soil and climate conditions also play an important role for 
farms’ energy efficiency. In this study, farms on loess soils showed 
the best results, while those on less favorable sandy soils were less 
energy efficient. Productivity is also influenced by the local 
weather. As Rempelos et  al. (2023) showed radiation and 
temperature to be the most important impact factors for the yield 
of cabbage crops, output variations between CSA2 and CSA3 might 
also be  related to differing climate conditions (Tables 2, 4). As 
energy efficiency also relates to resource efficiency, the placement 
of agricultural ventures must always recognize the impending 
threats of water scarcity and soil degradation. To respect the 
planetary boundaries of freshwater use and land-system change, 
competing forms of land use need to be mitigated, e.g., by policies 
(Campbell et al., 2017; Pfister et al., 2011).

4.2 Energetic performance of CSA farms

By comparing the energy balances of the six farms, the CSA 
farms showed the tendency to be  slightly less energy efficient 
compared to the conventional farms considering a cradle to farm 
gate approach (see EROI’s at Table  5). The categories of fuels, 
electricity, fertilizers, and labor had the most impact on these 
results. This precisely confirms the results of several reference 
studies (Cristiano, 2021; Pérez-Neira and Grollmus-Venegas, 2018; 
Christensen et al., 2017). To meet the characteristics of the CSA 
farms within the scope of our case study approach and to learn 
about potential trade-off effects, these four major impact categories 
need to be  unraveled in more detail. Energy efficiency of CSA 
farms increased when focusing on non-renewable energy. CSA1 
was even able to achieve almost the same NRE EROI as F2, 
although CSA1 is 40 times smaller in terms of farm size. This is 
certainly related to the high amount of electricity produced by PV, 
as CSA1 got only the fourth highest NRE EROI without PV 
considered. Moreover, CSA farms showed a tendency to consume 
fewer fossil fuels (Table 5).

The extended machinery use of CSA farms is related to the 
replacement of chemical weed control by mechanical weed control 
in OA. Nevertheless, all three CSAs showed notable differences in 
their consumption of fuels to run vehicles and machinery (Table 6). 
However, the farm with the highest input related to machinery 
usage (CSA3) also achieved higher outputs than the others, 
indicating trade-off effects.

In the case of electricity, CSA farms producing power from solar 
radiation performed better. Moreover, all CSAs saved electric energy 
by using simple underground storage pits instead of modern cooling 
rooms. CSA farms dropped their electricity consumption, but 

simultaneously compromised the quality and durability of their 
produce. However, this trade-off is reduced by a short and immediate 
supply chain that reduces the need for cooling and the reduction of 
food losses due to no standards regarding size and shape of the 
produce (Voge et al., 2023).

The relatively high impact through usage of organic fertilizers 
on CSA farms was surprising, as mineral fertilizers are usually 
reported to be very energy-intensive (Aguilera et al., 2019). The 
share of fertilizers from animal origin was 36% for CSA1, 82% for 
CSA2 and 98% for CSA3, and the main source of the respective 
amounts was horse manure from neighboring farms. Eventually, 
CSA3 was the farm with the highest total demand of external 
fertilizers from animal origin and with the highest EROI. However, 
these outcomes might be compromised by the approach of applying 
mineral fertilizer equivalents to calculate the impact of organic 
compounds. With no primary data at hand the precise impact of 
those fertilizers remains uncertain (Montemayor et  al., 2022). 
Consequently, the EROIs of the CSA farms are likely to change, if 
more accurate information on organic fertilizers were provided. In 
contrast, no tremendous changes should be  expected, if green 
manure were to be considered. As all farms but F3 applied relevant 
amounts of green manure, the relative deviation is not expected to 
be extremely high. The same was the case with potting soil, which 
was predominantly used by CSA farms. Own estimations did not 
indicate substantial effects on the results of this study, if potting 
soil would have been included, although its energetic importance 
should not be underestimated (Dorr et al., 2017; Reyhani et al., 
2022). This differs from the self-production of fertilizers by 
on-farm materials, as done by CSA2. Without this practice, the 
farm’s EROI would have dropped to 0.10.

In terms of labor, CSA farms showed notably high impacts 
compared to the conventional farms. Organic agriculture practices 
clearly increase labor inputs (Zhen et al., 2020; Pimentel et al., 1983). 
This is mainly due to the abandonment of chemical pesticides and 
therefore higher demands of labor-intensive mechanical weed control. 
In addition, managing large varieties of crops is likely to be more time-
consuming. Therefore, the high proportion of voluntary work needs to 
be  considered. CSAs ask their prosumers to support the working 
processes of the farm and furthermore offer internships. This additional 
workforce is obviously less efficient compared to professional farm 
workers, but it is still an important feature not only to connect city 
dwellers with farming practices, but also to reduce labor costs and to 
increase vegetable output. If the voluntary working hours would have 
been reduced by half to simulate the replacement of unskilled work, 
CSAs would still show high labor costs. On the contrary, an increase in 
working hours would have little effect on the energy efficiency 
indicators compared to other relevant impact categories. Consequently, 
if CSAs could find the capacity to employ a well-trained workforce to 
enhance the quality and quantity of the output, energy efficiency would 
likely improve. This also corresponds to the notion that the success of 
organic agriculture depends on farmers’ talents in applying the 
necessary techniques (Meemken and Qaim, 2018).

To sum up, CSA farms show a number of special features, such as 
low-tech infrastructure, an unconventional mix of organic fertilizers 
and a high amount of voluntary workforce. Although low input energy 
was stated as the determinant factor for high energy efficiency, 
increasing or reducing specific inputs can cause trade-off effects and 
are not necessarily advantageous.
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4.3 Methodological reflection

Due to the small sample size, this study does not allow any 
general conclusions about the performance of different production 
systems and CSA in particular. However, given the limited research 
regarding the energy efficiency of CSA, this case study offers 
additional important insights regarding potential benefits (e.g., 
related to yields per area) and challenges (e.g., related to high labor 
requirements), as well as leverage points to improve performance 
(e.g., renewable energy sources). Due to the detailed understanding 
of the farms considered, the study also allows to derive practical 
implications (e.g., collaboration or outsourcing of seed and 
seedling production). Finally, it also allows to refine hypotheses 
and to derive research priorities.

Furthermore, the significance of the system boundaries needs 
to be considered. If they would be modified, the performance of 
CSA farms compared to conventional farms is likely to change, for 
example by using a cradle to consumer approach (e.g., in Bosona 
and Gebrensenbet, 2018; Pérez-Neira and Grollmus-Venegas, 2018; 
Tasca et al., 2017). A fair share of the vegetables produced by the 
CSAs, F1 and F3 were not stored for long and did not pass-through 
long distribution channels. In contrast, all vegetables of F2 
underwent processing or traveled long distances before reaching 
consumers. A farmgate to consumer approach was not applied 
because the distribution channels of the conventional farms could 
not be adequately depicted. For CSA farms, the energy ratio from 
farm gate to supply station could be calculated. The EROI was 1.8 
for CSA1, 0.6 for CSA3 and 3.1 for CSA3. All these values exceed 
the reference EROI for an Andalusian CSA of 0.54 to 0.47 
calculated by Pérez-Neira and Grollmus-Venegas (2018). Even 
though the reference study additionally included the last kilometer 
from distribution point to consumer, values of CSA1 and CSA3 are 
likely to be  comparatively high, as most people pick up their 
vegetables by bike or foot (Egli, 2024). In contrast, the reference 
EROI for conventional farms is 0.35–0.23 (Pérez-Neira and 
Grollmus-Venegas, 2018). This indicates how results would have 
been affected, if the system boundaries were expanded beyond the 
farm gates.

While assessing the sustainability of agroecosystems 
holistically, one also needs to consider ecological and social 
indicators. This includes soil degradation, water scarcity, 
biodiversity loss, and health impacts from pesticide application 
(Naeem et al., 2021; van der Werf et al., 2020). For example, the 
average biodiversity gap between organic and conventional 
agriculture is reported to be  about 34% (Tuck et  al., 2014). 
Consequently, CSA farms again have great potential to 
compensate for energy- and yield efficiency gaps with other 
ecosystem services.

Likewise, the recognition of social and cultural embeddedness 
of farms would probably favor the CSA methodology. Accordingly, 
CSA was described as a resilient food system, where new spaces of 
trust can manifest (Zoll et al., 2022; Gugerell et al., 2021; White, 
2021; Menzel, 2017). Furthermore, CSA reportedly strengthens 
food sovereignty and food security, even though the access for 
lower classes remains limited (Parot et al., 2023; Verfuerth et al., 
2023; Naylor, 2019). Notions of trust and security are hard to 
quantify, but must be  considered to gain a more holistic 
understanding of farming systems in the future.

4.4 Further outlook

Several aspects of the environmental potential of CSA farming 
have been explored, but its capacity to make agriculture more 
sustainable remains uncertain. A widely discussed framework for 
assessing the resilience of the planet is the concept of planetary 
boundaries (Rockström et al., 2009). Several impact processes are 
directly or indirectly affected by agriculture. Many of them have 
already exceeded the “safe operating space” or are nearing the limit 
(Caesar et  al., 2024; Campbell et  al., 2017). The alteration of 
biogeochemical flows, particularly nitrogen and phosphorus cycles, 
has significantly impacted freshwater reservoirs. Livestock farming 
contributes to aerosol emissions and exacerbates climate change. 
Additionally, the use of pesticides and ongoing soil degradation 
threaten biosphere integrity. Agriculture also drives land-system 
changes and is recognized as a primary cause of deforestation.

In general, OA appears to show lower environmental impacts per 
area unit than conventional farming (Hashemi et  al., 2024). 
Nevertheless, CSA should be compared with regular OA in different 
environmental impact categories to learn about their differences. This 
is the case with the eutrophication potential of nitrogen and 
phosphorus flows. Therefore, better ways must be found, to compare 
different cropping systems on that level (Meier et al., 2015). The same 
applies to the assessment of biodiversity, where CSAs could play an 
important role due to a high crop diversity and the provision of 
natural habitats (Egli, 2024). In contrast, conventional farming is often 
reported to consume less land than OA overall, because of generally 
lower yields (Hashemi et  al., 2024). However, reducing the 
consumption of animal products and waste could help to feed the 
world organically (Muller et  al., 2017). In the context of food 
production, the agency of the consumers is also relevant. CSAs have 
the potential to integrate consumers into the farming business and 
raise awareness for the environmental challenges agriculture faces 
today. One of today’s main challenges is to balance the social, 
economic, and ecological needs of our planet and our societies and 
transmit this knowledge into smart ways of production management 
and transparency (Latino et al., 2024; Almasi et al., 2021). So far, 
consumers are only receiving limited information regarding the 
sustainability of the foods they are buying. The transparency in CSA 
farming may work as a great example for the food industry. 
Furthermore, LCA studies on innovative food systems like CSA 
farming can help to inform customer friendly product declarations 
that go beyond the simple dichotomy of organic versus conventional 
(Latino et al., 2022; Schau and Fet, 2008). Comprehensive assessments 
including a wide range of ecological, social, and economic aspects are 
needed to better understand the potential of CSA to support a 
transformation toward sustainable agri-food systems.

5 Conclusion

In this case study approach CSA farms needed more input energy 
than a range of different sized and specialized conventional farms to 
produce an equivalent amount of vegetable incorporated energy within 
the system boundaries from cradle to farm gate. Results deviated, 
however, if only fossil fuel resources were considered, where one CSA 
farm even reached the second highest energy efficiency. However, 
these differences did not systematically differ between CSA and 
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conventional farms. Moreover, CSA reached high energy efficiency 
when system boundaries were extended from the farmgate to the 
consumer, which is likely to be higher compared to farms with long 
supply chains and heavy processing. Cumulative energy demand was 
shown to be the dominant impact factor, with fuels, electricity and 
fertilizers being the most crucial inputs across all farms. Farm size was 
also an important factor, with larger farms performing better by 
decreasing inputs per area. Electricity production by PV and the 
optimization of greenhouse heating showed great extra potential for 
improving energy efficiency and for reducing the consumption of fossil 
fuels. This partly helped CSA production to achieve remarkable energy 
efficiency in terms of NRE. Moreover, increasing outputs efficiently, for 
example by adapted management (e.g., adjustments regarding selection 
of crops, sowing dates, and the management of soil organic matter), 
can also be a way to enhance the energetic performance of farms. This 
study also reveals trade-offs between different input categories. 
Replacing fertilizers of animal origin with plant-based compounds 
does not necessarily increase the energy efficiency, if the output is 
simultaneously compromised. Lower usage of machinery and fuels 
might cause similar results, and a self-sufficient nursery for young 
plants can elevate the energy input from electricity. Accordingly, it is 
worth the effort to consider possible trade-offs and to optimize them.

To improve the quality of output data, more precise and detailed 
(e.g., variety) EEQs in the context of small-scale and organic agriculture 
are urgently needed. Also including the energy demand of farm 
buildings would foster a more comprehensive assessment. To gain a 
more complete understanding of the potentials of different approaches, 
sample sizes for both CSA and conventional farms, the evaluation period 
and the system boundaries should be extended. Further research should 
also focus on the potential benefits of farm collaboration to achieve 
scaling effects in smallholder agriculture, as well as aspects that go 
beyond energy, including global warming potential, water footprint, soil 
degradation and biodiversity loss. Likewise, the capability of conventional 
systems to become more sustainable, e.g., through implementation of 
regenerative agriculture approaches should be further investigated.
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