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Heterogeneity, transient, and
persistent technical e�ciency:
implications for African agrifood
systems
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This study departs from conventional estimation of technical e�ciency by

distinguishing between transient and persistent technical e�ciency while

accounting for heterogeneity to gain insights for transforming agri-food systems

in Africa. A four-error component stochastic frontier model with a translog

specification, assuming a half-normal distribution, is applied to panel data

comprising 980 observations from 49 countries between 2000 and 2019.

Our results show that output is significantly explained by land, labor, and

capital. In addition, technological innovation, represented by log (t), consistently

emerges as a significant driver of output. The heterogeneity analysis reveals

that Cameroon, Ghana, South Africa, Egypt, Cote d’Ivoire, Nigeria, Malawi, and

Benin exhibit significantly higher output levels. Persistent technical ine�ciency

is dominant, with significant heterogeneity in agricultural output. Specific

interventions to address persistent technical ine�ciency in the agrifood system

should include strengthening value chains and farm credit markets, stabilizing

land reform policies, promoting the adoption of modern technology, and

improving governance. Human capital development through training and

education could help mitigate transient technical ine�ciency. We conclude

that a viable strategy for the transformation of agrifood systems in Africa is to

clearly di�erentiate between short-term (transient) and long-term (persistent)

policies, tailored to the unique characteristics (heterogeneity) of each country or

region. Therefore, the results are crucial given the ongoing implementation of the

Comprehensive Africa Agriculture Development Programme and Agenda 2063.

KEYWORDS

technical e�ciency, transient ine�ciency, persistent e�ciency, stochastic frontier

analysis, changing the agrifood system, Africa, data panel

1 Introduction

Agrifood systems (AFS) are defined as coordinated actors and activities involved in the

food value chain from field to fork (Govaerts et al., 2021). In a broader sense, these include

knowledge, institutions, practices, infrastructure, production, transportation, processing,

distribution, marketing, disposal, and consumption. Recently, AFS have received growing

research interest throughout the world. For example, the theme for the 32nd International

Conference of Agricultural Economists held in India was “transformation toward

sustainable agrifood systems.” A year prior to this, the African Association of Agricultural

Economists, along with the Agricultural Economics Association of South Africa, held a

joint conference in Durban under the theme “Through Crisis: Building Resilient Agrifood
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Systems in Africa.” The main reason for the growing attention on

AFS is that traditional ways of food production and consumption

have produced the climate change crisis, while poverty, hunger, and

food and nutrition insecurity continue to grow unabated.

The concept of efficiency was first introduced in the early 1950s

by Debreu (1951) and Koopmans (1951). It was further refined

by Farrell (1957), who described efficiency as the degree to which

the decision-making unit uses input to produce output. Using

the non-parametric data envelopment analysis (DEA) approach,

which permits multiple inputs and outputs, this researcher also

identified two types of efficiency, namely, technical and allocative

efficiencies. The former refers to the ability of a firm to obtain

maximum output from a given set of inputs, while the latter reflects

the ability of a firm to use the inputs in optimal proportions,

given their respective prices and the production technology (Coelli

et al., 2005). The combination of technical efficiency (TE) and

allocative efficiency (AE) yields economic efficiency (EE). After a

decade, Aigner et al. (1977) developed a regression-based stochastic

frontier analysis (SFA) to estimate efficiency, and these two

methods have remained the most commonly used for efficiency

analysis. However, the main concern in efficiency analysis within

the context of transforming the AFS revolves around a strong

emphasis on mix efficiency, short-term (transient) and long-

term (persistent) efficiencies (O’Donnell, 2012; Bokusheva et al.,

2023). But the study pays attention to transient and persistent

technical efficiency.

Extensive literature has been published on the analysis of

efficiency in agriculture on a global scale. This includes several

reviews (Batiese, 1992; Bravo-Ureta and Pinheiro, 1993; Thiam

et al., 2001) and meta-analyses (Bravo-Ureta et al., 2007; Iliyasu

et al., 2014; Ogundari and Brümmer, 2011). Within the context

of Africa, Thiam et al. (2001) relies on only two studies from the

continent, while Bravo-Ureta et al. (2007) considers 14 studies

but fails to shed light on agricultural efficiency for the different

regions. Ogundari and Brümmer (2011) is restricted to a single

African nation. Notwithstanding these drawbacks, the review by

Ogundari (2014) remains the most comprehensive examination

of agricultural efficiency in Africa and its regions. One of the

main findings of this study is that agricultural efficiency estimates

derived in different parts of the continent vary according to

the methodology applied, type of dataset, geographic location,

and study timeframe. Although these reviews have laid a solid

foundation for efficiency analysis, they remain silent on transient

and persistent technical efficiency and the determinants thereof.

However, Berisso and Heshmati (2020) and Adom and Adams

(2020) are the few existing studies on transient and persistent

technical efficiency. Although both apply SFA on a panel dataset,

they are different in terms of study area and remain silent on

implications for the transformation of AFS. Our study aims to

examine transient and persistent technical efficiency in African

agriculture using the four-error component stochastic model,

famously known as the Generalized True Random-Effects (GTRE)

model, applied to panel data from 49 countries over 19 years.

Although we cover the same number of African nations as Adom

and Adams (2020), our study extends the time frame by 3 years,

providing more recent estimates and allowing the identification

of variables that were not previously explored. In addition, this

study applies the Bayesian Generalized True Random-Effects

(BGTRE) model, incorporating African regional dummy variables

as shifters of the production frontier, to draw implications for

the transformation of AFS. Classifying technical efficiency into

transient and persistent allows for the development of more

targeted policies aimed at improving agricultural productivity

as part of the broader effort to transform AFS in Africa. The

study has one main research question: Is the agriculture sector

in Africa transiently or persistently inefficient? The remaining

sections are organized as follows. The method, which includes

an estimation procedure and data, is discussed in Section 2. The

results are presented in Section 3, followed by the conclusion

and policy implications in Section 4, and the bibliography in

Section 5.

2 Methodology

2.1 Data information and model

The study considers panel data of 49 countries in Africa

from 2000 to 2019. The minute details of data sources, variable

information, individual countries, and regions are discussed in

Myeki et al. (2022, 2023). However, the overall summary of

variables is presented in Table 1 below. It is clear from the table

that the study consisted of a single output, the gross value of

agricultural output from crops, livestock, and aquaculture, $1,000

at constant 2015 prices. Three input variables were considered:

land, labor, and capital. Land is the quality of adjusted agricultural

area measured per 1,000 hectares of “rainfed equivalent cropland.”

Labor is the number of economically active adults (male and

female) who are employed in agriculture, measured per 1,000

persons. While capital is the net capital stock measured in $1,000,

taking 2015 as the base. Compared to 2000 to 2004, output grew

by an average of 19% in 2005 to 2009, followed by 41% and 61%

in subsequent periods. Land grew at an average of 9%, 21%, and

34% over the reported periods, respectively. For labor, the average

growth was 11%, 17% and 24% while capital had 19%, 47%, and

83%, respectively. Much of the growth in both output and inputs

happened during 2015 to 2019. As can be seen in Table 1, the

gross output averaged $5,274,339 (Std. dev = 9,676,909), ranging

from 30 024 in Sao Tome and Principe in 2015 to 5,930,633

in Nigeria in 2019. The summary of inputs shows that land

averaged 5,808 hectares (8,740) with a range from 37.39 ha in

Djibouti in 2006 to 62,459 ha in Nigeria in 2019. On average,

3,241 people were employed in agriculture, ranging from 11.33

TABLE 1 The summary of input-output variables for the study.

Variables Unit of
measurement

Label Mean Std. Dev

Output $ y 5,274,339 8,676,909

Land ha x1 5,804 8,740

Labor n x2 3,241 4,272

Capital $ x3 5,971 17,604
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in Sao Tome and Principe in 2002 to 21,298 in Nigeria in 2011.

On the other hand, capital had an average of 5,971 (17,604) with

a range from 4.83 in Djibouti in 2000 to 188,491 in Nigeria

in 2019.

It employs the GTRE model by Colombi et al. (2014),

Kumbhakar et al. (2014), and Tsionas and Kumbhakar (2014) to

estimate transient and persistent inefficiency in the agricultural

sector for the continent. The model is expressed as follows:

yit = α0 + f (xit , t;β) + µi − ηi + vit − uit , (1)

where yit is the dependent variable defined as the logarithm

for agricultural output of nation i in period t, α0 is the intercept,

f (xit , t;β) is the production technology, including a time trend

t to account for technological change, xit is a vector of inputs

(in logs), and β is a vector of unknown parameters to be

estimated. Additionally, the µi represents time-invariant firm-

specific latent (unobserved) heterogeneity, ηi denotes the persistent

(time-invariant) technical inefficiency, uit captures transient (time-

varying) technical inefficiency, and vit is a random noise term. The

composite error term for the model described in Equation (1) is

εit = µi − hi + vit − uit with µi ∼ N
(

0, σ 2
µ

)

; vit ∼ N
(

0, σ 2
v

)

;

ηi ∼ N+
(

0, σ 2
η

)

, and; uit ∼ N+
(

0, σ 2
u

)

. Numerous stochastic

frontier models are embedded in the GTRE model defined in

Equation (1). For instance, dropping both µi and ηi leads to

a “pooled” model proposed by Aigner et al. (1977), described

as follows:

yit = α0 + f (xit , t;β) + vit − uit (2)

The vit is a random variable assumed to be identically

and independently distributed iid with zero mean and variance

σ 2
v

(

vit ∼ N
(

0, σ 2
v

))

, assumed to capture the effect of randomnoise;

and uit is the time-varying non-negative half-normal inefficiency

random variable, which is assumed to be iid with zero mean

and variance σ 2
u

(

uit ∼ N+
(

0, σ 2
u

))

. Discarding ηi and uit from

the same model, described by Equation (1), yields the standard

panel stochastic frontier model with random effects (RE) developed

by Pitt and Lee (1981), expressed in Equation (3). The error

specification of this equation is εit = vit − hi, distributed as vit ∼

N
(

0, σ 2
v

)

and µi ∼ N+
(

0, σ 2
µ

)

yit = α0 + f (xit , t;β) + µit − vit (3)

On the other hand, removing ηi alone from Equation (1)

leads to Greene (2005a,b)’s true random effect (TRE) model in

Equation 4, depending on whether µi is correlated with the error

term (µi ∼ N+
(

0, σ 2
µ

)

, vit ∼ N
(

0, σ 2
v

)

and; uit ∼ N+
(

0, σ 2
u

)

yit = α0 + f (xit , t;β) + µi + vit − uit (4)

The study adopted an approach of Filippini and Hunt (2015)

and Alberini and Filippini (2018) where the GTRE model and

three traditional models described in Equations (2–4) are estimated

separately and compared to each other for robustness. Moreover,

we also employed the translog functional form based on log-

likelihood ratio test results (see Table 2), leading to rejection of the

Cobb-Douglass functional form. Thus, the final model is expressed

as follows:

ln yit = α+

3
∑

j=1

βj ln xjt+
1

2

3
∑

j=1

3
∑

k=1

βjk ln xjt ln xkt+µi−ηi+vit−uit ,

(5)

where ln yit represents the agricultural output of individual

nation i in period t while α0 is the intercept. xjt represents the

three key inputs used to derive agricultural output, and they

include land, labor, and capital. βjt is a vector of unknown

parameters to be estimated. The µi represents time-invariant firm-

specific latent (unobserved) heterogeneity, ηi denotes the persistent

(time-invariant) technical inefficiency, uit captures transient (time-

varying) technical inefficiency, and vit is a random noise term.

Models described in Equations (1–5) were implemented using

STATA 17 software.

For confirmatory purposes, we also estimated the GTRE

model using Bayesian SFA analysis, where the different sub-

regions of Africa were used as shifters of efficiency. Although

extended to include panel data analysis by Koop (1994),

the Bayesian framework is novel to Van den Broeck et al.

(1994). The advantages of the framework include the ability to

minimize the loss associated with an estimation error; permit

probability statements about unknown parameters, hypotheses,

and models; provide exact finite-sample results for most estimation

problems; and allow for the ease of incorporating restrictions

that allow for a formal treatment of parameters and model

uncertainty. Let θ = (θ1, . . . , θk) denote the unknown

parameters of the GTRE model to be estimates p(θ) ≡

p (β , σw, σh, σv, σu) denotes the probability density function (pdf)

of prior information for parameters while L(y,X | θ) is the

likelihood function. The posterior distribution follows from Bayes’s

theorem as follows:

p(θ | y,X) ∝ L(y,X | θ)p(θ), (6)

where p(θ | y,X) is the posterior pdf and ∝ denotes “is

proportional to.” Put simply, the posterior pdf is proportional

to the likelihood function multiplied by the prior pdf. Thus,

the posterior distribution includes all the information on the

parameters contained in the prior and the data. The prior pdf

p(θ) can be non-informative or informative. The complex models

that do not allow inference by analytical methods, implementing

the Bayesian approach, require the use of iterative Markov

Chain Monte Carlo (MCMC) algorithms such as the Metropolis-

Hastings and Gibbs Sampling, which focus on sampling from

the conditional distribution for blocks of the parameter vector.

The Gibbs Sampler algorithm used by Koop et al. (1992) is

particularly useful for problems involving latent variables, such

as SFA models, and is commonly used in the literature. The

researcher can write their own MCMC algorithms or just specify

the model but use the Bayesian inference using Gibbs Sampling

(BUGS) software, such as WinBUGS or JAGS, to handle the
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MCMC sampling. In our study, we used JAGS in R through the

“APEAR” package to implement the final BGTRE model, which is

expressed below.

ln yit = α +

3
∑

j=1

βj ln xjt +
1

2

3
∑

j=1

3
∑

k=1

βjk ln xjt ln xkt

+

4
∑

i=1

βlDl + µi − ηi + vit − uit , (7)

where i = 1,...., n denotes the i-th country, and t = 1.

xjt is a vector of j-th used inputs normalized by the means.

The three inputs used in agricultural output are land, labor,

and capital. Dl(l = 1, 2, 3) are regional dummy variables,

denoting East Africa, North Africa, West Africa, and Southern

Africa, all of which were included for the comparisons for

regional performance in terms of transient and persistent technical

inefficiency. The α and β are unknown parameters to be

estimated. Again, the µi represents time-invariant firm-specific

latent (unobserved) heterogeneity, ηi denotes the persistent (time-

invariant) technical inefficiency, uit captures transient (time-

varying) technical inefficiency, and vit is a random noise term. We

also computed partial output elasticities with respect to inputs with

the purpose of examining the sensitivity of output change when a

change in inputs occurs. The equation to derive partial elasticities is

as follows:

Ej =
∂ ln yit

∂ ln xjt
= β̂j + β̂jj ln xjt +

3
∑

k=1

β̂jk ln xkt , (8)

where β̂j, β̂jj and β̂jk are the parameters of the BGTRE model

estimated in Equation (7). The returns to scale for this model

are computed by summing up the partial output elasticities with

respect to inputs, as follows:

RTS =

3
∑

j=1

Ej (9)

3 Empirical findings

3.1 Summary of diagnostic tests

A series of diagnostic tests were performed to ascertain the

most appropriate models, and the results are shown in Table 2. Our

first null hypothesis was concerned with testing for the presence

of multicollinearity. Since the Variance Inflation Factor (VIF) for

the three variables is <10, the null hypothesis is rejected, implying

that the independent variables are independent of one another.

Using the log-likelihood ratio (LR) test, the findings (test statistic

= 959.96; critical = 9.50 and df = 1) show that the null hypothesis

stating that inefficiency is not present was rejected, thus indicating

the presence of inefficiency and the fact that we cannot use the

ordinary least squares. Additionally, the panel effect was found

to be significant across the dataset, indicating that heterogeneity

is significant. This also suggests that we cannot use the pooled

model. The assumption of truncated normal distribution for the

inefficiency term was rejected using the Breusch-Pagan (BP) test,

which suggests that a half-normal distribution is appropriate. This

result implies that we could not test if inefficiency varies over time

because such a test requires a truncated normal distribution.

Moreover, testing between fixed and random effects models

using the Hausman test showed a p-value of zero, indicating that

random effects were appropriate. The results in Table 2 further

reveal that the translog stochastic frontier model is preferred over

TABLE 2 The summary of diagnostic test for the study.

Hypothesis Variable Test Estimates Conclusion

(1) Null Variables VIF 1/VIF Decision

H0: Multicollinearity is present Land 5.24 0.19 Reject H0

Labor 1.93 0.52 Reject H0

Capital 3.74 0.26 Reject H0

(2) Null LR test Critical value Decision

H0: No technical inefficiency 959.56 9.50 Reject H0

(3) Null BP-test P-value Decision

H0: No panel effect 7696.45 0.00 Reject H0

(4) Null LR test P-value Decision

H0: Truncated normal distribution 17.42 0.00 Reject H0

(5) Null Hausman test P-value Decision

H0: Fixed effect is appropriate 38.60 0.00 Reject H0

(6) Null Test statistics Critical value Decision

H0: Cobb-Douglass is appropriate 214.77 12.59 Reject H0
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TABLE 3 Summary of translog stochastic production models (N = 980).

Variable Pooled RE TRE GTRE

Coef T-stat Coef T-stat Coef T-stat Coef T-stat

Intercept 15.89∗∗∗ 547.10 16.03∗∗∗ 349.06 15.35∗∗∗ 923.34 15.32∗∗∗ 236.31

lnx1 0.61∗∗∗ 20.43 0.81∗∗∗ 25.77 0.84∗∗∗ 55.73 0.83∗∗∗ 26.91

lnx2 0.15∗∗∗ 7.81 0.08∗∗∗ 3.01 0.16∗∗∗ 15.56 0.07∗∗ 2.52

lnx3 0.24∗∗∗ 10.56 −0.02 −0.74 −0.06∗∗∗ −4.89 −0.01 −0.36

lnt 0.11∗∗∗ 4.19 0.15∗∗∗ 14.18 0.16∗∗∗ 18.98 0.15∗∗∗ 13.83

0.5lnx1
2 −0.29∗∗∗ 0.07 0.10∗∗∗ 2.68 0.11∗∗∗ 4.50 0.09∗∗ 2.40

lnx1lnx2 0.42∗∗∗ 5.37 −0.09∗ −2.00 −0.19∗∗ −5.78 −0.09 −1.89

lnx1lnx3 0.24∗∗∗ 3.92 0.06 1.47 0.11∗∗∗ 4.35 0.08∗∗ −1.87

lnx1lnt −0.11 −0.26 0.05∗∗∗ 3.72 0.06∗∗∗ 4.66 0.05∗∗∗ 3.46

0.5lnx2
2 −0.00 −0.13 0.05 1.78 0.07∗∗∗ 4.94 0.04 1.56

lnx2lnx3 0.42∗∗∗ −10.71 −0.04 −1.52 −0.03 −1.66 0.06∗∗ −2.27

lnx2lnt 0.05∗ 1.79 −0.01 −0.94 −0.02∗∗∗ −2.64 −0.01∗∗∗ −0.74

0.5lnx3
2 0.08∗∗∗ 3.06 −0.04∗ −2.39 −0.06∗∗∗ −6.00 −0.04∗∗ −2.31

lnx3lnt 0.01 0.34 0.01 1.03 0.01 0.87 0.01 1.23

0.5lnt2 0.04 1.34 0.05∗∗∗ 5.55 0.07∗∗∗ 7.12 0.05∗∗∗ 5.18

Model properties

λ 2.49∗∗∗ 49.50 9.26∗∗∗ 91.83 1.90∗∗∗ 114.79 1.04∗∗∗ 68.75

σuit 0.48∗∗∗ 15.28 – – 0.12∗∗∗ 11.38 0.07∗∗∗ 7.10

σvit 0.19∗∗∗ 9.50 0.09∗∗∗ 21.47 0.07∗∗∗ 10.40 −0.09∗ 1.86

µi – – – – 0.42∗∗∗ 63.63 −0.11∗∗∗ 19.10

ηi – – 0.89∗∗∗ 8.87 – – 0.35∗∗∗ 7.28

LR −338.55 750.07 749.65 924.86

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

the Cobb-Douglas functional form. Although not presented in the

table, we also found that variables were stationary while using

the Hadri-LM test. Next, we present the results for the translog

stochastic frontier models.

3.2 Estimates of translog stochastic
frontier model

Table 3 presents the parameter estimates for pooled, RE, TRE,

and GTRE models. The first three models are nested in the latter.

Nonetheless, the coefficient lnt is positive for all estimated models,

indicating that agriculture in Africa has experienced technological

progress over the study period. The findings suggest that Africa

is on the right track in terms of adopting technology to improve

agricultural efficiency and productivity. The variables land, labor,

and capital are all significant at the 1% level for the pooled and

TRE models. This finding was expected because improvement on:

(i) land through the application of better fertilizer, (ii) labor through

training and education, and (iii) capital through investment in farm

machinery and equipment are all highly likely to improve efficiency.

Surprisingly, the coefficient for variable capital for RE and GTRE is

negative and insignificant, indicating a lack of empirical evidence

for the relationship between output and capital for the two

models. The coefficient for η is 0.35% and significant in GTRE,

suggesting that persistent inefficiency is dominant compared to

transient inefficiency (0.07%). This implies that over the study

period, agriculture in Africa had an average persistent technical

efficiency of 65% and a transient technical efficiency of 93%. The

heterogeneity and persistent inefficiency are significant, indicating

that the GTRE model is appropriate.

3.3 Estimates of Bayesian stochastic
frontier model

The estimates for the Bayesian stochastic frontier model with

translog specification are shown in Table 4. The Gibbs sampler was

run for one chain, with a burn-in of 200,000 iterations, 10,000

retained draws, and a thinning to every 40th draw in order to

reduce the level of autocorrelation of the chain. This table clearly

shows that a percentage increase in any of the inputs leads to

an increase in agricultural productivity in Africa. For instance,

with each unit increase in agricultural land allocated in Africa,
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output increases by 0.67%, and this increase falls within the 95%

posterior probability interval (0.60%, 0.74%). A unit increase in

labor leads to a 0.14% increase in output. In addition, this increase

falls in a 0.09% to 0.20% interval with 95% posterior probability.

On the other hand, the coefficient for t is 0.02 and positive,

indicating technological progress over the study period. These

findings are significant, as shown by the same sign for the values

of the confidence interval. However, the agricultural output has

been more responsive to changes in land compared to labor. On

the other hand, a unit increase in capital is associated with a

0.04% increase in output, and this falls in the 0.02% to 0.07%

interval with 95% posterior probability. These findings correspond

to those discussed earlier in Table 2 and suggest that production

behaves well and meets the monotonicity assumption. The results

also imply that countries can continue to increase their input

levels until any increase in input yields no additional output. The

results further reveal that the Monte Carlo (MC) error is lower

than the corresponding posterior standard deviation, suggesting

convergence of the model and accuracy of estimates. However,

if evidence of significance was present, the result would suggest

that East Africa is 0.47% more productive compared to Central

Africa, while North Africa, Southern Africa, and West Africa are

more productive by 0.29%, 0.26%, and 0.10%, respectively. The

coefficient for gamma (γ ) is significant and positive, indicating

that 0.81% of the variation in agricultural output among the

African nations is attributed to the variations in technical efficiency.

The value of lambda (λ), gives information about the inefficiency

level of the agriculture sector. Put in simple terms, it shows

by how much an African country has fallen short of the total

output. Similarly to Table 2, the persistent technical inefficiency

(σui) is dominant at 0.10%, while transient inefficiency (σuit) was

at 0.08%.

With respect to the results of Equation (9), the value of returns

to scale for BGTRE is 0.86, indicating that agricultural production

in Africa achieved a decreasing return to scale over the study

period. This value is slightly higher by 0.07 compared to that of the

GTREmodel at 0.79. It suggests that the proportion of output is less

than the desired increased inputs during the production process.

We found that agricultural output is more responsive to land and

labor use. More details of elasticity estimates for each country are

presented in Appendix Table 6.

3.4 Estimates of ine�ciency and
heterogeneity

In this section, we present the results for various efficiencies,

beginning with those models discussed in Table 3. The pooled

model yielded an average efficiency (transient efficiency) score

of 0.69%, ranging from 0.22% to 0.93%, while RE had an

average (persistent efficiency) score of 0.50% with a range

from 0.17% to 0.98%. The TRE model produced an average

efficiency score of 0.89, implying room for improving efficiency

by 11% without changing the input and current technology.

The main model (GTRE) yielded averages of 0.73% and 0.93%

for persistent and transient efficiencies, respectively, leading to

TABLE 4 Bayesian estimates of translog stochastic frontier (N = 980).

Variable Coe� SD MCerr [95% C.I]

Intercept –0.47 0.27 0.07 −1.11 0.02

lnx1 0.67s 0.04 0.00 0.59 0.74

lnx2 0.14s 0.03 0.00 0.09 0.20

lnx3 0.05s 0.01 0.00 0.02 0.07

lnxt 0.02s 0.00 0.00 0.01 0.02

0.5lnx1
2 0.12s 0.03 0.00 0.07 0.17

lnx1lnx2 –0.04 0.02 0.00 −0.06 0.00

lnx1lnx3 0.01 0.01 0.00 −0.01 0.03

lnx1lnt 0.00 0.00 0.00 0.00 0.01

0.5lnx2
2 0.03 0.02 0.00 −0.01 0.06

lnx2lnx3 –0.01 0.01 0.00 −0.03 0.00

lnx2lnt –0.00 0.00 0.00 −0.00 0.00

0.5lnx3
2 –0.01 0.01 0.00 −0.02 0.01

lnx3lnt 0.00 0.00 0.00 −0.00 0.00

0.5lnt2 0.00 0.00 0.00 0.00 0.00

Ine�ciency determinants

East Africa 0.48 0.39 0.06 −0.31 1.34

North Africa 0.29 0.39 0.05 −0.55 0.99

Southern Africa 0.26 0.29 0.04 −0.35 0.83

West Africa 0.09 0.27 0.04 −0.36 0.76

Model properties

λ 2.37s 0.92 0.06 1.12 4.22

γ 0.81s 0.09 0.01 0.66 0.97

σe 0.15s 0.05 0.00 0.09 0.24

σv 0.06s 0.01 0.00 0.05 0.07

σu 0.13s 0.05 0.00 0.08 0.23

σui 0.09s 0.06 0.01 0.02 0.22

σuit 0.08s 0.01 0.00 0.07 0.09

σwit 0.66s 0.08 0.00 0.51 0.83

Central Africa is used as a base for regional dummy comparisons. s stands for significant.

an overall average efficiency score of 0.68%. This suggests that

persistent efficiency has less contribution to the overall efficiency

of the agricultural sector in Africa over the study period (see

Figure 1). The efficiency estimates of the Bayesian stochastic

frontier reveal an overall average efficiency of 0.84%, ranging from

0.52% to 0.91%. However, there is a slight difference between

transient and persistent efficiency, showing that transient efficiency

dominates by 1%. Nonetheless, further details of efficiency scores

obtained from BGTRE for each sampled African nation over

the study period are presented in Appendix Table 5. The results

for heterogeneity in Appendix Table 7 show that Cameroon,

Ghana, South Africa, Egypt, Cote d’Ivoire, Nigeria, Malawi,

and Benin have significantly large agricultural outputs. On the
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FIGURE 1

E�ciency score from GTRE model depicted in four panels. (A–C) Depict persistent, transient and overall e�ciency for the continent while (D) shows

persistent e�ciency for African regions.

other hand, Libya, Niger, Cape Verde, Sao Tome, and Principe,

Comoros, Equatorial Guinea and Djibouti had significantly low

agricultural output.

4 Discussion and implications for
African agrifood systems

The study aimed to examine heterogeneity and transient

and persistent technical inefficiency to draw lessons for the

transformation of AFS in Africa. The main finding to emerge

from the study is that persistent inefficiency was dominant

in agriculture on the continent. This was also evident for

most of the sampled countries. These findings correspond to

Adom and Adams (2020) reporting that persistent technical

inefficiency constrained the overall efficiency of the sector on the

continent for 49 nations from 1990 to 2016. It suggests that the

remaining inefficiency is driven by short-term (transient) agrifood

system inefficiency. Moreover, country or regional characteristics

(such as resource endowments, infrastructure, value chains, and

institutions) appear to influence the transformation and efficiency

of AFS.

Another important finding is that both GTRE and BGTRE

have consistently shown progress in resolving transient technical

inefficiency for the continent over the study period. These findings

corroborate Myeki et al. (2022), who established that short-term

(transient) technical efficiency was the main driver of productivity

in Africa for the first 16 years of the 21st century while using

the DEA method on panel data from 49 countries to derive Fare-

Primont TFP estimates. The finding implies that investment in

education and training in conjunction with technology innovation

could increase the resilience and sustainability of agrifood systems

in the face of shocks such as COVID-19, pest infestations, trade

restrictions, changing diets and customer preferences, wars, and

extreme weather events.

The results for the coefficient on both land and labor for the

same models (GTRE and BGTRE) match those of Singvejsakul

et al. (2021), who employ the Bayesian stochastic frontier to analyze

agriculture productivity and efficiency in four Asian countries

over a period of 29 years. However, this finding suggests that

part of the effort to transform AFS should involve a coordinated

reform, prioritizing the relationship between land, labor, and food

systems. Nonetheless, the returns to scale of 0.79 in Table 2 and

0.86 in Table 3 are contrary to the value obtained by Pisulewski

and Marzec (2019) at 1.16, exhibiting increasing returns to scale

in Polish farmers. However, they are almost similar to Berisso

(2019) who report a value of 0.71 while studying heterogeneity,

persistent and transient efficiency for cereal farms in Ethiopia.

A possible explanation for this result could be the law of

diminishing returns. However, taken together, these have serious

implications for the transformation of agrifood systems in the

African continent.

5 Conclusion

In view of the ongoing effort to transform AFS in Africa

by increasing productive efficiency in agriculture as one possible

strategy, the study was designed to estimate both transient

and persistent technical efficiency for policy guidance. Balanced

panel data from 49 countries were applied using a four-error

component stochastic frontier model with a translog specification.

The heterogeneity results show that Cameroon, Ghana, South

Africa, Egypt, Cote d’Ivoire, Nigeria, Malawi, and Benin have
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significantly large agricultural outputs. Regarding the nature

of technical inefficiency in African agriculture, our findings

demonstrate the predominance of long-term (persistent), which

appears to stem from country- or region-specific structural

challenges. This leads to our first policy recommendation: the

continent must develop a long-term strategy for comprehensive

agricultural transformation that takes into account country-specific

characteristics to improve persistent efficiency. This plan could

include, among other things, vertical integration, agro-processing,

and infrastructure development. The study also discovered a

small room for improvement in transient efficiency, which

can be addressed by focusing on managerial issues, extension

service programs, and training to enhance the adoption of

modern technologies.

Given that land and labor are more responsive to increases

in output, a comprehensive and stable land reform policy,

along with adherence to decent work standards, is crucial for

the transformation of AFS in Africa. These policy measures

are likely to enhance productivity, promote economic growth,

and strengthen food security across the continent. Future

studies should expand the time frame of our study and focus

on/(in)efficiency.
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