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Circular economy concepts are inspiring the global community by creating new 
business opportunities that transform waste into wealth and energy. Processing 
industries generate significant quantities of vegetable waste (VW) in the form 
of peels, seeds, and pomace. Improper disposal of this waste poses significant 
challenges to the environment, ecology, economy, and food security. However, 
these by-products are rich in valuable biomolecules. In recent years, research 
has increasingly focused on converting these low-value agricultural residues 
into high-value functional ingredients. These biomolecules can be  extracted 
and utilized in various applications, including food, feed, nutraceuticals, dietary 
supplements, and energy. While most previous work has focused on food waste 
from a holistic perspective, studies on VW valorization are relatively limited, primarily 
concentrating on biomass conversion and the extraction of bioactive compounds. 
However, several niche areas remain unexplored due to a lack of research in the 
global arena. This review explores the most promising methods for valorizing VW 
across both food and non-food sectors while also addressing the challenges in 
implementing these approaches. Such sustainable valorization contributes to 
meeting the Sustainable Development Goals (SDGs) of the United Nations (UN).
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1 Introduction

Food waste is a global issue that undermines our sustainable food system, causing 
environmental, social, and economic losses. The Food and Agriculture Organization 
(FAO) estimated that approximately one-third of the edible portions from food intended 
for human consumption, is discarded globally (Gustavsson et al., 2011). The European 
Union (EU) solely contributes 88.2 MT of food waste equivalent to 173 kg per capita 
production (Stenmarck et al., 2016). This waste can be distributed as follows: 53.2% from 
households, 19.27% from processing, 11.9% from catering, 10.31% from primary 
production, and 4.6% from distribution (Benucci et al., 2022). Food waste can occur at 
all stages of the food supply chain, from production to consumption. In high-income 
countries, 46% of waste happens at the retail and consumer levels, while in low- and 
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middle-income countries, 50% occurs during harvesting, 
processing, and storage (Voge et al., 2023). FW leads to socio-
economic losses in developing countries while it raises issue 
regarding waste management, climate change, and environmental 
concerns in developed countries (Esparza et al., 2020). In the US, 
$27 billion worth of food is waste predominantly from meat and 
fish (30%), vegetables (19%), and dairy products (19%) (Peira 
et al., 2018). A significant portion of this waste comes from unsold 
produce, which often gets discarded before it can be  utilized 
(Lombardelli et  al., 2022). Piirsalu et  al. (2022) reported that 
nearly half (49%) of these unsold products were fruits and 
vegetables (27% fruits and 22% vegetables). These unsold goods 
not only cause economic loss to farmers/ retailers but also have 
significant environmental and ethical implications. While 
donating them to food banks is a viable option, perishability and 
national regulations often limits this practices. Besides, unsold 
produce processing industries generate huge amount of waste 
(25–30%) mostly in the form of peels, seeds, pomace, rinds, pods, 
cores, stones, vines and wastewater (Sarker et al., 2024). Proper 
disposal of these waste is a critical challenge in these sectors as it 
escalates the production costs. Improper disposal of waste may 
lead to adverse environmental impact, public health concerns, 
ecosystem damage, resource depletion and reduced quality of life. 
Many countries, such as the EU, enforced stringent regulations on 
waste disposal to safeguard the environment and public health 
(Teshome et al., 2024).

Existing studies have significantly advanced our understanding 
and management of food waste. However, there remains a notable 
gap in literature focusing specifically on vegetable waste (VW) 
valorization. Most of the studies primarily focus on bioactive 
compounds from VW, covering their extraction, utilization, and 
applications (Rifna et al., 2023; Pereira et al., 2022). There are 
several niche areas that remain underexplored but possess 
economic viability and feasibility (Figure 1). One such approach 
is the utilization of VW as substrate to promote the growth of 
beneficial microorganisms. These beneficial microorganisms can 
be  utilized directly or can be  harnessed to produce secondary 
metabolites. Other benefits are production of beneficial fungus, 
biotechnological media, single cell protein (SCP), and microalgae 
production. The phytochemicals present in VW can support the 
growth and proliferation of this microorganism while enhancing 
effectiveness and productivity.

Considering the above scenario, this review highlights vegetable 
processing waste as a reservoir of phytochemicals. It illuminates how 
the byproducts, typically discarded can be repurposed into valuable 
resources with diverse applications not only in food but also beyond. 
From bioactive compounds enhancing food and medical applications 
to fostering eco-friendly practices, it’s a game-changer for industries 
and researchers aiming to unlock sustainable innovations. Each topic 
within this review covers the pros, cons, and future recommendations, 
ensuring a comprehensive exploration. Embracing the circular 
economy approach and sustainable practices this review is expected 

FIGURE 1

Multifaceted application of VW across various food and non food sectors.
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to yield benefits far beyond waste reduction, shaping a brighter future 
for all stakeholders involved.

2 Literature collection and selection

Recently, the focus on turning food waste into valuable resources 
has gained momentum, aligning with key Sustainable Development 
Goals (SDGs) such as Zero Hunger, Affordable and Clean Energy, 
Responsible Consumption, and Climate Action. This shift aims to 
reduce waste while promoting sustainability. To gain a deeper 
understanding of progress in this area, a bibliometric analysis was 
conducted. This method offers both quantitative and qualitative 
insights into the research landscape, examining contributions from 
key players—journals, authors, countries, and institutions—while 
mapping the relationships between them. In this review, mapping was 
done using co-occurrence, co-authorship, and bibliographic coupling 
analyses with SCOPUS index database for the period from 2004 to 
2024 using VOSviewer 1.6.20 software. The keywords like “vegetable 
waste” combined with “utilization” or “transformation” or 
“valorization” as subject areas.

The keyword co-occurrence map (Figure 2) revealed the major 
themes dominating this field, are circular economy, recycling, 
nutraceuticals, antioxidants, biogas, bioenergy, biofuels, and biochar. 
This clustering highlights that phytomolecules extracted from 

vegetable waste, are being repurposed across both food and non-food 
sectors. The co-authorship map (Figure 3) provided an interesting 
glimpse into global collaboration on vegetable waste valorization. 
India followed by China and United states has greater interaction 
network positioning these countries as central nodes in the research 
ecosystem. The bibliometric coupling map (Figure 4) highlighted the 
sharing of research output over the last two decades, revealing strong 
connections between countries involved in vegetable waste 
valorization. Notable contributors included India, Turkey, Pakistan, 
Egypt, France, the United Kingdom, Canada, China, Germany, the 
Netherlands, and Switzerland. These nations have been instrumental 
in advancing knowledge and driving innovation in sustainable 
practices, strengthening the global push toward a circular economy.

3 Current scenario

Food loss and waste have far-reaching consequences on the 
environment, depleting natural resources like land and water, and 
disrupting ecosystems. One of the most alarming effects is the 
significant emission of greenhouse gasses. According to the Food and 
Agriculture Organization (FAO, 2017), over 1.3 billion tonnes of food, 
valued at $750 billion, are wasted annually worldwide. In 2019, nearly 
14% of food produced was lost or wasted globally at post-harvest level 
(FAO, 2019). This waste contributes to the release of 3.3 billion tonnes 

FIGURE 2

Author keyword co-occurrence network map of publications in volarisation of vegetable waste.
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of CO2 equivalents into the atmosphere each year, amounting to 
8–10% of global greenhouse gas emissions.

Food wastage is more pronounced in the United States and Asia. 
In the United States alone, 40% of food production is wasted, while in 
Asia, food wastage is particularly significant, with China and India 

leading in terms of volume (Gunders and Bloom, 2017). For instance, 
India, the second-largest producer of fruits and vegetables, sees 40% 
of its produce wasted–equivalent to a staggering ₹92,000 crores 
annually, or 1% of the country’s GDP. Each Indian, on average, wastes 
55 kg of food per year, as reported by United Nations Environment 

FIGURE 3

Co-authorship network map of countries collaboration in bibliography of volarisation of vegetable waste.

FIGURE 4

Bibliographic coupling network map among countries in publications of volarisation of vegetable waste.
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Program (UNEP) in 2021. Despite this abundance, 14.3% of the 
population in India remains undernourished. The country ranks 
111th out of 125 on the Global Hunger Index (Von Grebmer et al., 
2019). The primary contributors to this waste are spoilage and 
insufficient cold storage during transportation, which result in loss 
ranging from 18 to 40% (Ghosh et al., 2017).

China faces a similar challenge due to a 23.3% increase in the area 
designated for vegetable production in 2020. This rise in production 
has led to more stringent quality screening, contributing to greater 
food waste and environmental constrain (Li, 2022). In response to 
these issues, governments and private sectors are seeking innovative 
solutions to recycle and repurpose food waste into valuable products. 
For example, a Chennai-based firm, established in 2019, introduced 
active packaging sachets designed to protect fruits and vegetables 
from spoilage and prolong their freshness, with the goal of reducing 
post-harvest losses in India. Such initiatives are vital in addressing the 
critical issue of food waste, enhancing food security, and mitigating 
the environmental impacts associated with discarded food.

4 Applications of vegetable processing 
waste

4.1 Food applications

4.1.1 VW as livestock feed
Vegetable waste (VW) is rich in bioactive compounds known to 

promote health of livestock (Čolović et al., 2019). Utilizing VW as 
livestock feed converts energy and nutrients into animal feed, 
recovering resources and reducing environmental impact. Bidura et al. 
(2021) observed that feeding laying hens with fermented carrot leaves 
upto 4–6% can elevate the β-carotene levels in their yolks. Ghosh et al. 
(2023) found that by incorporating pea pod powder from pea 
processing industries into the diet of Pekin ducks enhances their 
hypoglycemic and hypolipidemic activity. Adugna et  al. (2024) 
observed sheep fattening by using a mixture comprising 50% pea hull, 
33% Niger seed cake, 16% wheat bran, and 1% salt. Ayyat et al. (2024) 
noticed improved body composition and blood metabolite levels in 
diet of Nile tilapia (Oreochromis niloticus) when incorporating carrot 
and sugar beet leaf waste. Utilizing VW as animal feed is frequently 
linked with biological hazards, toxic substances, pesticide residues, 
and anti-nutritional factors (ANF). For instance, Allyl propyl disulfide 
in onion peel can trigger haemolytic anemia combined with Heinz 
bodies (HzB) in animal erythrocytes. VW with low sugar is preferred 
for cattle feed. Excess carrot and sugar beet pulp in diet of dairy 
animals may lead to acidosis, laminitis, and scouring owing excess 
fermentable sugars. Feeding cassava to animals requires careful 
attention and pretreatment such as cooking or heating due to the 
presence of linamarin, a cyanogenic glucoside that can cause 
poisoning. Another important consideration is the regulations 
governing the use of waste as livestock feed which may vary by 
country. Japan, South Korea, and Taiwan actively encourage FW in 
animal feed, while the US and Europe enforce strict restrictions. To 
address VW’s seasonal availability, incorporating multinutrient blocks 
into animal diets offers a practical solution. While current research 
focuses on adding fruit waste to these blocks, the use of vegetable 
waste remains limited. So far, moringa molasses is the only vegetable 
extract used in blocks (Syarifuddin et al., 2022). Future studies could 

explore the inclusion of other vegetables rich in bioactive compounds 
and their effects on meat quality and shelf life.

4.1.2 VW as a substrate for mushroom production
The most common edible mushroom species whose cultivation 

has been tested on food waste residues include Agaricus subrufescens, 
Agaricus bitorquis, Agaricus arvensis, Lentinula edodes, and Pleurotus 
ostreatus (Girotto and Piazza, 2022). Mushroom species utilize these 
Lignocellulosic materials (peels, seeds, pods, stems, stalks, core, husks, 
straw) as growth substrate. Sawdust is the universal substrate in 
mushroom production. The drawback in this material is the limited 
availability of nutrients. VW based substrates can overcome this 
problem. Behera and Gupta (2015) reported that vegetable peel waste 
mediums derived from moringa, potato, carrot, bottle gourd, pointed 
gourd, little gourd, pumpkin, and ridge gourd could be utilized for 
mushroom production, although synthetic media were found to 
be more effective. Moringa leaf powder substrate can supply minerals, 
protein, nitrogen, carbohydrate, folic acid and, total sugar content in 
addition to reduction of spawn running time in P. eryngii (Sardar 
et al., 2022). Use of cassava peel and stem as substrate can reduce the 
need for expensive sterilization process, making it a cost-effective 
substrate for successful cultivation of oyster mushroom (Sonnenberg 
et al., 2015). But the primary challenge in using cassava waste is the 
low nitrogen content. VW can also be used to extend the shelf life of 
mushroom. Bernaś and Jaworska (2015) examined the shelf life of 
frozen Agaricus bisporus using onion extract. They found that soaking 
the mushrooms in onion extract reduced enzymatic browning, by 
preventing L-Dopa oxidation. As a result, shelf life can be extended to 
8 months compared to typical duration of 4 months. Subsequent 
studies might explore the selection of vegetable waste with high 
nutrient content, low ANFs, and minimal pesticide toxicity. 
Parameters like substrate pH, temperature, humidity, and nutrient 
composition, particularly the carbon to nitrogen (C/N) ratio, is also 
need to be considered. Higher C/N ratio tends to promote mycelium 
growth, while a lower C/N ratio is more conducive to fruiting body 
development. Moreover, fungi contain a unique polymer called 
(1 → 3)-α-d-glucans, which can bind heavy metals due to its –OH 
groups (Nowak et  al., 2019). This characteristic can be  used for 
decontamination, but it is not recommended for consumption. So, 
when selecting vegetable substrates for mushroom production, it is 
essential to estimate the hazardous quotient, daily intake, and total 
target hazard quotient. Several studies indicated the utilization of 
spent mushrooms as livestock feed and agricultural production 
promoting circular economy.

4.1.3 VW for leaf white protein extraction
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), an 

enzyme constituting 30–65% of total protein, has the potential to 
replace plant and animal proteins in the market due to its complete 
and balanced amino acid profile (Grácio et al., 2023). While typically 
allergen-free, a rare case of asphyxia and angioedema was reported 
after consumption (Foti et al., 2012). RuBisCO is widely recognized 
for its high bioavailability due to easy proteolytic degradation, aiding 
intestinal absorption (Monteiro et al., 2015). Traditionally, RuBisCO 
has been extracted from vegetable wastes like sugar beet, spinach, kale, 
and broccoli leaves. Recently, researchers from Wageningen University 
successfully isolated RuBisCO from tomato leaves, eliminating toxins 
such as tomatine and dehydrotomatine to enhance its suitability for 
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consumption (Liese et  al., 2023). Unlike protein extraction from 
pulses, extraction and purification of RuBisCO is more complex and 
difficult (Pearce and Brunke, 2023). Besides, RuBisCO only constitutes 
around 3% of the total dry leaf weight and vary by species (Onoda 
et  al., 2017). Once extraction and purification is standardized, 
RuBisCO could serve as a valuable protein supplement. RuBisCO 
offers potential health benefits, including anti-hypertensive properties 
(Udenigwe and Aluko, 2012), memory improvement (Yang et  al., 
2003), anxiety reduction (Hirata et  al., 2007), antioxidant activity 
(Kobbi et al., 2015), and antimicrobial effects (Trovaslet et al., 2007). 
It also enhances dough binding better than gluten or pea protein 
(Ducrocq et al., 2020). Identifying new vegetable waste sources and 
refining extraction methods will support sustainability efforts like the 
European ‘Green Protein’ project, which aims to isolate proteins from 
sugar beet leaves for food industries.

4.1.4 VW role in activating gut microbiome for 
promoting human health

The gut microbiome, densely populated with microorganisms in 
our intestines, plays a key role in human health by interacting with 
host cells, dietary components, and other microbes. These interactions 
influence nutrition, immunity, and disease resistance, and disruptions 
in microbial balance can harm health (Qin et al., 2010). Numerous 
studies are conducted to uncover new prebiotic carbohydrates that 
could be sourced from agro-industrial waste (Campos et al., 2020). 
These oligosaccharides, primarily found in non-edible or discarded 
portions during processing, hold potential as functional food 
ingredients. Pectic oligosaccharide can be commercially extracted 
from citrus and apple waste. But waste from vegetables such as sugar 
beet, pumpkin and onions can also be utilized successfully. Aisara 
et al. (2021) discovered a new sugar called neokestose in red onion. 
This sugar has the potential to promote the growth of the 
Bifidobacterium breve strain, which is otherwise typically found in the 
guts of breastfed infants. Firrman et al. (2024) discovered that tomato 
seed extract could function as a gut microbial modulator and enhance 
the prebiotic potential. The extract increased the level of 
Bifidobacteriaceae taxa from 18 to 52% with the strain response 
differing among individuals when tested ex vivo conditions. Han et al. 
(2023) found postbiotics from melon peel extract and whey, combined 
with Lentilactobacillus kefiri DH5 strain, could suppress sarcopenia by 
modulating gut dysbiosis. The gut microbiota communicates with the 
brain via the brain–gut–microbiome (BGM) axis, and unlike drugs, 
long-term prebiotic consumption does not impair neurogenesis. 
Szewczyk et  al. (2023) demonstrated that Jerusalem artichoke 
prebiotics combined with inulin enhanced gut diversity and supported 
neurogenesis in mice. This highlights the potential of VW -derived 
prebiotics for improving microbiota diversity, benefiting cognitive 
functions and the BGM axis. Computational, structural, functional, 
and genomic tools can validate these interactions, paving the way to 
identify substrates that selectively stimulate beneficial gut microbes 
(Table 1).

4.1.5 VW as substrate for microbial protein 
production

Interest in SCP production is rising as demand for protein grows 
due to lifestyle changes. While traditional proteins come from plants 
and animals, SCP, derived from algae, fungi, yeasts, and bacteria, 
offers an alternative solution. Its protein content varies: fungi and 

yeast-based SCP contains 50–55% protein with low methionine and 
cysteine, while bacterial SCP has 60–80% protein with high 
methionine and lysine levels (Patelski et al., 2015). SCP production 
mainly uses substrates like liquor waste, manure, cane molasses, whey, 
and pulp wastewater, though limited research has explored on 
VW. Search for cost effective substrates like potato, sweet potato, 
cassava bagasse is in trend among the researchers for SCP 
commercialisation. Sweet potato baggase utilizing Saccharomyces sp., 
Candida utilis, Endomycopsis fibuligera, and Pichia burtonii is the most 
studied area (Panda et al., 2018). Khan et al. (2022) investigated SCP 
production from unconventional sources such as potato peel, carrot 
pomace, and banana peel, finding that potato peel (82.32% 
carbohydrates), yielded the highest SCP. An innovative circular 
economy approach proposed by Anupong et al. (2022), suggested that 
Streptomyces tritici D5, a bacterium tolerant to cyanide (with a 
degradation potential of 100 mM), could potentially produce SCP 
following bioremediation of sago wastewater. Other microorganisms 
such as Fusarium solani, F. oxysporum, Scytalidium thermophilum, 
Penicillium miczynski, Trichoderma polysporum, Bacillus sp., Klebsiella 
sp., and Pseudomonas sp. have also shown promise in their ability to 
tolerate and degrade cyanide into ammonia and nitrate along with 
SCP. The main challenge in SCP production is the high nucleic acid 
content (6–10%), especially SCP produced by yeasts and fungi. The 
safe human consumption of this nucleic acid should fall below 2% to 
avoid health risks like gout, kidney stones, and elevated uric acid 
(Panda et al., 2018). Vegetable waste, rich in lignocellulosic material, 
requires pretreatment before utilization. Patelski et al. (2015) extracted 
4.17 g/L of arabinose from sugar beet leaves using enzymatic and 
chemical treatments. Further progress in SCP production will depend 
on selecting efficient microbial strains and developing eco-friendly 
downstream processes to remove nucleic acids. SCP, with its strong 
nutritional profile, could replace traditional proteins in animal feed, 
such as fishmeal and soymeal (Figure 5).

4.1.6 VW as a source of essential oil
With increasing consumer preference for natural ingredients, 

essential oils (EOs) have emerged as a viable and health-conscious 
alternative to less favored synthetic antioxidants for preserving food 
(Mandal et al., 2021). Traditionally, EOs have been extracted from 
asafoetida, cardamom, clove, coriander, cassia bark, celery, black jeera, 
black pepper, black mustard, bay leaves, guggal, kokum, poppy, 
nutmeg, turmeric, saffron, star anise, and sweet flag. EOs can also 
be extracted from various vegetable-based peels and seeds such as 
onion, moringa, chili, pumpkin, watermelon, bitter gourd, ridge 
gourd, bottle gourd, sponge gourd, tomato, amaranthus, and red 
cabbage. Among vegetables, Alliaceae is the rich source of EO 
especially Allium cepa (82.36%), Allium sativum (94.63%), Allium 
porrum (86.90%), Allium ascalonicum (70.29%), Allium tuberosum 
(85.79%), and Allium schoenoprasum (76.36%). These EO exhibit 
antimicrobial activities when tested against Staphylococcus aureus, 
Listeria monocytogenes, Salmonella Typhimurium, Escherichia coli, 
and Campylobacter jejuni (Mnayer et al., 2014). The alkyl cysteine 
sulfoxides and phenolic content in this family impart properties such 
as antifungal (Kocić-Tanackov et al., 2017), antibrowning (Vazquez-
Armenta et al., 2014), and antioxidant effects (Ye et al., 2013) when 
tested in various meat products. These characteristics make them 
effective for protecting food from microbial contamination and 
potentially useful in food processing to counteract thermal effects. The 
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TABLE 1 Utilization of VW as high value functional ingredient across food and non food sector.

S. no Applications Crop waste Biomolecules present Specific role Findings Reference

Food applications

1 Livestock feed Pea Pods Fiber, Protein, Lipids, ash, minerals like 

K, Mg, Ca, Na, Fe, Zn, and Cu.

low-cost, nutrient-rich diet, 

hypoglycaemicand hypolipidemic 

action

5% of Pea pod powder could serve as a protein supplement in 

diet of White peckins duck with increased body weight.

Ghosh et al. (2023)

Moringa leaves Ascorbic acid, γ/α-tocopherol, iso-

quercetin, astragalin, glucosinolates.

Cost-effective, improve antioxidant 

capability,immune response and 

disease resistance.

Fermented Moringa Leaves (FML) regulate the expression of 

immune-related genes and increase disease resistance against 

A. hydrophila via TLR2 pathway in Gibel carp (10 g FMLs 

per 100 g diet)

Zhang et al. (2020)

2 Mushroom 

substrate

Moringa leaf powder 

(MLP)

Vitamin C, Vitamin A, Niacin phenolic 

compounds, antioxidants, protein and 

minerals (Fe, Ca, Zn, Mg, Mn, P, and 

K).

Increase total yield, 

biologicalefficiency andnutritional 

quality.

Supplementing cotton waste with 6% moringa leaf powder 

improved yield, nutritional quality (Vitamin C and Folic 

acid), levels of phenols and antioxidants in Pleurotus eryngii.

Sardar et al. (2022)

Vegetable waste Cellulose, hemicellulose and lignin High biological efficiency, increase 

protein content and yield.

Pleurotus sapidus grew well on vegetable waste when mixed 

with Paddy straw (30:70/20:80) and give high yield and 

efficacy with increased amino acid levels (Leu, Ile, Val, Thr, 

Met and Phe) by decreasing sugars.

Singh and Singh (2012)

3 White protein 

extraction

Endive leaves Vitamins, minerals, folate and Intibin. Foaming capacity, good solubility, 

form gels atlow concentrations and 

low temperatures

RuBisCo protein from Cichorium endivia on fortification 

with wheat dough exhibits higher protein and lysine levels 

with improved SDS availability.

Ducrocq et al. (2020)

4 Prebiotics Red onion extract Inulin-FOSs (Inulin fructo-

oligosaccharides), flavonoids, alkaloids, 

phenolic acids.

Exhibit prebiotic properties, 

boosting human gut microbiota.

Inulin-FOSs extracted from red onions indicate a unique 

sugar neokestose on in vitro fermentation, which boosts 

Bifidobacterium breve and have bifidogenic effect.

Aisara et al. (2021)

Tomato seeds 32% protein, 27% fat, and 18% fiber, 

and rich in phytochemicals and 

phenolic acids, and other bioactive 

compounds.

Prebiotic potential, increase 

Bifidobacteriaceae, exhibit 

antibacterial and antioxidant 

properties

Tomato seed extract from pomace boosted Bifidobacteriaceae 

levels in gut microbiota from 18 to 52%, thereby promoting 

human health.

Firrman et al. (2024)

5 Animal protein 

production

Potato peel Carbohydrates, vitamins, minerals, and 

other elements such as phosphorus and 

potassium.

Organoleptic properties, total 

protein content vary with microbial 

source.

High Single-cell protein (SCP) can be produced from potato 

peel than banana peel, citrus peel, and carrot pomace which 

improves both the protein content and the non-essential 

amino acids profile in bread when applied at 4%.

Khan et al. (2022)

Tapioca wastes Mainly starch and enriched with 

several essential elements such as 

carbohydrate, iron, manganese, calcium

Neutral taste and outstanding 

thickening traits, high paste clarity.

The Streptomyces tritici D5 strain, extracted from soil had 

high cyanide resistance and degradation potential which can 

degrade Sago effluents substrate into single-cell protein 

(SCP) in 30 days with 100 mM of KCN at 35°C

Anupong et al. (2022)

(Continued)
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TABLE 1 (Continued)

S. no Applications Crop waste Biomolecules present Specific role Findings Reference

6 Essential oil Onion organosulfur-containing compounds 

(dipropyl disulfide and dipropyl 

trisulphide, etc)

Used as flavoring agent, and had 

antioxidant and antibacterial 

activity.

Onion EO emulsified with 7% (w/w) sodium caseinate is 

stable, making it suitable for food applications despite 

environmental stress, and it also exhibits antibacterial 

activity against Salmonella typhimurium and Listeria 

monocytogenes.

Taghavi et al. (2022)

Carrot and fennel green 

tops

Sesquiterpenes (carrot) and 

Phenylpropanoids (fennel)

Natural antimicrobial, particularly 

effective against Gram-negative 

bacteria, highantioxidant and anti-

inflammatory activity.

EOs of carrot and fennel were significantly more effective 

against Gram-negative bacteria, and that obtained from 

Foeniculumvulgare subsp. Vulgare var. azoricum was more 

active against the yeast Candida albicans.

Chiboub et al. (2019)

7 Bioactive 

compounds

Beetroot pomace Betacyanin, Betaxanthin High antioxidant activity, 

antimicrobial and cytotoxic activity.

Beetroot powder enrich fiber content with positive effects on 

the farinographic and physical properties, and reduced 

caloric density in bakery products.

Kushwaha et al. (2018)

Carrot Peel α-carotene, β-carotene, lutein and 

α-tocopherol.

Have anti-inflammatory and 

antioxidant effects, antimutagenic 

and antitumor activity.

Carrot enriched with Vitamin A and its metabolite, retinoic 

acid which are vital in reproduction, lung function, good for 

immunity when used as Eos.

Hufnagl and Jensen-Jarolim 

(2019)

8 Encapsulating 

agent

Sugar beet Pectin Potent natural encapsulator for 

hydrophobic nutraceuticals, food 

and even clear beverage enrichment.

Curcumin, when encapsulated with sugar beet pectin at a 

140:1 ratio, enhance encapsulation capacity to 127 mg CUR/g 

SBP, reduced particle size to 0.5 μm, extended shelf life to 

5 days, and lowered decay rate by sevenfold.

Zagury et al. (2021)

9 Food additives Malabar spinach Chlorophyll, Carotenoids, flavonoids 

(anthocyanins and betalains)

Natural food colorant, enhancing 

food safety and quality

Gomphrenin I in Basella rubra when used as a natural 

colorant in ice cream, preserved 86.63% of its color after six 

months of storage at −20°C, without affecting the sensory 

quality.

Kumar et al. (2015)

Onion Flavonol quercetin, 

frutooligosaccharides and sulfur 

compounds

Prevention of browning caused by 

PPO and have high anti-oxidant 

activity.

Onion by-products such as juice, paste, and bagasse can offer 

an antibrowning effect and also reduce enzyme activity by 

86%.

Roldán et al. (2008)

10 Edible films and 

coating

Zucchini Pectin Had potential antimicrobial and 

antioxidant properties, and used as 

an edible coating.

Tomato fruits coated with 5% zucchini pectin exhibit 

antimicrobial activity against Staphylococcus aureus, 

Escherichia coli, and Aspergillus niger, and enhance 

antioxidant levels by 34.32% at a 1 mg/mL coating 

concentration.

Jhanani et al. (2024)

Arrow root Starch Used for biodegradable films 

preparation with better mechanical 

and thermal properties.

Coating plums with 2% arrowroot starch extended shelf life 

by reducing respiration during storage at 5°C.

Nogueira et al. (2021)

(Continued)
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TABLE 1 (Continued)

S. no Applications Crop waste Biomolecules present Specific role Findings Reference

Non-food applications

1 Biosorbants Moringa seeds Carboxyl, Phosphate, amino acids Natural coagulant, low-cost, high 

adsorption capacity with fast 

adsorption kinetics.

The biosorption capacity of Moringa oleifera seed husk and 

pulp for the synthetic dye Acid Blue 9 (AB9) was tested at 

55°C, seed pulp exhibiting the highest biosorption level of 

694.2 mg/g while seed husk has the biosorption of 

329.5 mg/g.

Dos Santos Escobar et al. (2021)

Biomass Cellulose, hemicellulose and lignin, 

hydroxyl, carbonyl and carboxyl groups 

as the main functional groups

High sorbent capacity, able to bind 

molecular and/or ionic pollutant 

species.

Vegetable wastes are a potentially useful biosorbent for 

removing metal ions Cu (II) metal ions and organic pigments 

(Orange 16 dye) from aqueous media.

Tanasa and Suteu (2022)

2 Bioindicator films Sweet potato Anthocyanin Film forming property with pH 

indicator.

Incorporation of anthocyanin to purple-fleshed sweet potato 

films to monitor freshness of chicken show remarkable 

change in color in response to variations in pH from 1 to 12. 

These films remained thermally stable till 1.5% 

concentration.

Sohany et al. (2021)

Onion peel extract Anthocyanin Low-cost, pH indicator. Films infused with onion peel extracts were utilized to 

monitor milk freshness by significant color changes, shifting 

from light pink to colorless due to increase in acidity at pH 

6.5 to 5.

Devi et al. (2024)

3 Low-cost culture 

media

Vegetable waste Vitamins and minerals Low-cost, environmentally safe raw 

materials, high macro and micro 

nutrient content.

Cabbage, beetroot and onion waste powder after addition of 

coconut water (cytokinin) could be used as a cheap substitute 

for culture media which produces growth comparable to that 

of synthetic media.

Subbaiya et al. (2019)

4 Skin health Moringa seed oil α-tocopherol, plant sterols, and fatty 

acid

High antioxidant activity, increase 

skin hydration, reduce skin 

erythema.

Moringa seed oil cream containsantioxidant activity with 

IC50 of 121.9 mg/mL and evenstable upto 28 days at 45°C 

with increased in vivo skin hydration level.

Athikomkulchai et al. (2020)

5 Biofuel Vegetable waste – Low-cost and eco-friendly, source of 

alternative fuel production and also 

as biocatalyst in biodiesel 

production.

A 95% yield of biodiesel can be obtained from cooking oil 

waste using vegetable biowaste as catalysts generated from 

market, hotel and shops while bagasse, papaya stem, banana 

peduncle, and Moringa oleifera used as heterogenous 

catalysts.

Sathish et al. (2023)

Potato peel starch, (cellulose, hemicelluloses and 

lignin)

low cost, alternative, and renewable 

second-generation bioethanol

Pre-saccharification and simultaneous saccharification and 

fermentation (PSSF) process involving 2 h liquefaction and 

10 h saccharification with 80 U/g enzymatic loading at 34°C 

from potato peel waste yield 104.1 g/L ethanol.

Rodríguez-Martínez et al. 

(2023)

(Continued)
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TABLE 1 (Continued)

S. no Applications Crop waste Biomolecules present Specific role Findings Reference

6 Carbon dots Onion – Precursor and specific for detection 

of Fe3+ ions and coupling with 

quinoline derivative which detects 

Zn2+ ions.

Carbon quantum dots from onions extract detect Zn2+ ions 

in blood plasma by measuring fluorescence intensity, with a 

high sensitivity with detection upto 6.4 μM and 

quantification upto 21.3 than.

Dastidar et al. (2021)

7 Biochar Pepper straw Cellulose, lignin and starch with high 

C, H and O contents (70–90%).

Have porous structures with 

abundant surface functional groups

Biocharfrom pepper straw showed greater DBP (Dibutyl 

phthalate) and DMP (dimethyl phthalate) sorption capacity 

at 500°C.

Yao et al., 2019

8 Organic fertilizer Tomato pomace Protein, lipids, fiber, minerals and 

bioactive compounds.

It has high organic matter 

andlimited toxic elements, offers 

better aeration of soil.

Tomato pomace as organic fertilizer combined with organic 

manure to increase soil properties, root (root density, root 

surface, and symbiotic of arbuscular mycorrhizal fungi) and 

growth parameters when tested in sweet maize.

Kakabouki et al. (2020)

9 Pharma drug Jackfruit and Okra 

mucilage

Monosaccharides and their derivatives 

(Jackfruit), and Pectic polysaccharide 

(Okra)

Pharmacological activities, viz., 

antioxidant, anti-inflammatory, 

anti-helminthic, antidiabetic, anti-

ulcerative, anti-cancer properties 

with excellent mucoadhesive 

properties

Mucilage from jackfruit and okra was used as a 

mucoadhesive carrier for colon-specific delivery of curcumin 

(CMN) in a mucoadhesive tablet (CMT). This formulation 

achieved a 54.35% in vitro release of CMN over 12 h and 

demonstrated a shelf life of approximately 4.7 years when 

tested in rabbits.

Kurra et al. (2022)

10 Phytoinsecticide Vegetable waste Antioxidants such as polyphenols It activates baculovirus infections, as 

a pest control ingredient.

Extracts at 1% w/v from spent coffee, rosehip, asparagus 

waste, artichoke waste, beet stalks, and banana peel showed 

significantly higher potential against Spodoptera littoralisin 

2nd instar larvae, with 13.61 times reduction in LC50 

valuescompared to virus inoculation alone.

Martínez-Inda et al. (2023)

11 Biofilms Brassicaceae Phenolic compounds such as gallic 

acid, caffeic acid, and phenylethyl ITC

Anti-attachmentactivities against E. 

coli

Biofilms formed from extracts of young radish, radish sprout, 

red cabbage, and kale exhibit antimicrobial activity against 

Escherichia coli O157:H7. These extracts led to reduced 

viability between 5.83 and 51.5%.

Hu et al. (2019)
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Hexacosane (13.9%), Pentacosane (13.3%), Heptacosane (11.4%) in 
moringa seeds (92.3% EO), and high omega-3 and omega-6 fatty acids 
in Egusi seeds (Citrullus lanatus subsp. Mucosospermus) makes them 
promising candidate for application in food industries (Marrufo et al., 
2013; Olubi, 2018). The extended shelf life and antioxidant properties 
of garlic EOs make them ideal for developing various processed 
products and nutritional supplements (Verma et  al., 2023). Plant 
essential oils (EOs), recognized as generally recognized as safe (GRAS) 
by the Food and Drug Administration (FDA), show promise as 
flavoring agents. However, some EOs face limitations such as low 
water solubility and high volatility, which restrict their application in 
food technology. Encapsulated EOs demonstrate enhanced efficiency 
and effectiveness even at lower concentrations. Moreover, food 
products incorporating encapsulated essential oils remain stable even 
when exposed to environmental stresses like sunlight, heat, and 
freezing during storage and processing.

4.1.7 VW as a source of bioactive compounds
VW are abundant sources of phytochemicals such as dietary fibers 

(onion wastes, potato peels, cauliflower stems and florets, and tomato 
pomace), phenols (potato, cucumber, tomato, and watermelon peels), 
flavonoids (onion peel), enzymes (potato and cassava peels), proteins 
(carrot pomace, green pea pods, potato solid waste, tomato solid 
waste, cabbage leaves, and watermelon seeds), and organic acids, 
making them valuable in the pharmaceutical industry (Goswami 

et al., 2024). These bioactive compounds play a role in protecting 
against various chronic diseases. Lycopene, prevalent in peels, is a 
potent antioxidant, protects from eye disorders, heavy metal 
detoxification, Alzheimer’s disease, colorectal, prostate, and gastric 
cancers, Type II diabetes mellitus and brain inflammation (Caseiro 
et  al., 2020). Onion peels, skin, tops are rich source of bioactive 
components like quercetin and its derivatives, which are beneficial in 
biomedical and pharmaceutical applications (Kumar et  al., 2022). 
Extracts from onion waste exhibit anticancer, antimicrobial, anti-
obesity, neuroprotective, cardioprotective, antidiabetic, and erectile 
dysfunction properties (Chae et al., 2017). Pumpkin flesh, peel and 
seeds demonstrate potent cytotoxic activity against liver carcinoma 
and breast cancer cell lines (Badr et al., 2011). Pumpkin flowers and 
seed oil possess antifungal and antimicrobial properties, respectively, 
and these compounds helps lower blood pressure and chlorestrol 
levels (Ahmad and Khan, 2019). Further, the phytoestrogens and 
sterols in pumpkin seed oil have estrogen-like effects and can manage 
various diseases (Patel, 2013). Despite these benefits, challenges such 
as the heterogeneity, degradation, and perishable nature of vegetable 
waste hinder their pharmaceutical use. Addressing these challenges 
requires optimized storage conditions, effective preservation 
techniques to ensure product stability, and high-efficiency extraction 
methods for bioactive compounds. Establishing standardized 
protocols for quantifying and characterizing these compounds is also 
crucial. Overcoming these obstacles can create economic opportunities 

FIGURE 5

Schematic diagram of single cell protein production process utilizing sustainable vegetable waste as a feedstock.
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by transforming waste materials into valuable resources through 
sustainable practices. This could foster the development of 
combination products or synergistic blends of bioactive compounds. 
Efficient extraction techniques will further enable the use of these 
compounds in medicinal treatments and food research, paving the 
way for functional foods.

4.1.8 VW as encapsulating agent
Microencapsulation technology is a specialized method for 

preserving valuable bioactive compounds from degradation. This is 
achieved by encasing solid, liquid, or gaseous materials in a continuous 
film coating, forming capsules that range in size from micrometers to 
millimeters (Qin, 2016). Various encapsulating materials are employed 
in this process, including: 1. Polysaccharides such as Arabic gum, 
maltodextrin, modified starches, chitosan, and pectin 2. Proteins such 
as whey protein isolate and concentrate, gelatin, soy protein, casein, 
and milk serum 3. Lipids such as vegetable oil and hydrogenated fats. 
Pectic polysaccharides are the widely employed encapsulating agents, 
among other substances (Carbonaro et al., 2015). Pectin derived from 
sugar beet rich in homogalacturonan (HG), rhamnogalacturonan 
I  (RGI), and rhamnogalacturonan II (RGII) polysaccharides, has 
superior emulsification properties compared to citrus pectin. Studies 
by Zagury et al. (2021) showed effective encapsulation of curcumin 
[bis (4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione] with 
sugar beet pectin, resulting in extended half-life and no crystalline 
structures. Recently, the focus has shifted toward using vegetable 
proteins as encapsulating agents due to their biodegradability, 
biocompatibility, and amphiphilic nature (Islam et al., 2023). Plant-
based proteins, especially pea protein, have gained popularity in food 
systems due to their cost-effectiveness, abundance, and desirable 
functional properties (like foaming, stability, and emulsification), 
attributed to albumins, globulins, vicilins, and legumins (Hadidi et al., 
2022; Burger and Zhang, 2019). Pea protein isolate (PPI) is comparable 
to soy protein isolate (SPI) in amino acid content and digestibility, and 
its effectiveness can be  enhanced by coacervating with pectin to 
improve stability. Pea protein nanocarriers also protect cholecalciferol 
(vitamin D3) from UV radiation. Plant proteins and pectins are vegan, 
Kosher-Parve, Halal, and allergen-free, making them attractive for the 
global food industry, especially as consumers demand clean-label 
products with natural ingredients. The sustainability and health 
benefits of these encapsulants drive innovation in developing 
commercially viable processes that align with these principles.

4.1.9 VW as food additives
Food additives play a crucial role in improving food safety and 

quality by reducing perishability, preventing microbial spoilage, 
enhancing color and flavor, and adjusting acidity (Bearth et al., 2014). 
These functions help minimize food waste while increasing the variety 
of products available to consumers. Initially, “E numbers” were 
regarded as indicators of safety; however, they are now often met with 
skepticism due to the growing “clean label movement, “which 
emphasizes simple ingredient lists (Asioli et  al., 2017). While 
consumers generally prefer foods without additives, they tend to favor 
natural additives over synthetic ones, driven by concerns that synthetic 
additives may pose health risks, including carcinogenic, mutagenic, 
and allergenic effects (Ueda et  al., 2022). Natural food additives 
derived from plants, fruits, and spices are recognized for their 
beneficial properties and can be  categorized into antioxidants, 

antimicrobials, flavorings, and colorants (Novais et al., 2022). For 
example, fructo-oligosaccharides from onion, garlic, beetroot, tomato, 
Jerusalem artichokes, and cassava waste serve as natural sweeteners in 
functional foods, replacing synthetic options. Thiols from onion 
bagasse act as anti-browning agents for fresh-cut avocado, while 
natural food colors—including anthocyanins, betalains, chlorophylls, 
and carotenoids—can be extracted from vegetable peels and pomace 
to serve as sustainable alternatives to synthetic dyes. Roldán et al. 
(2008) demonstrated that onion bagasse significantly reduces 
enzymatic activity (by 86.06%), making it a promising natural anti-
browning alternative for the food industry. The extraction of natural 
pigments such as chlorophyll, carotenoids, anthocyanins, and 
xanthophylls has gained increasing attention in food science due to 
their bioactive properties. Traditional extraction methods, including 
maceration and Soxhlet extraction, often rely on organic or inorganic 
solvents, making them costly, environmentally unfriendly, and 
inefficient due to low extraction yields and prolonged processing 
times. To address these limitations, various green extraction 
techniques have been developed, including superfluid extraction, 
ultrasound-assisted extraction (UAE), microwave-assisted extraction 
(MAE), supercritical fluid extraction (SFE), pressurized liquid 
extraction (PLE), and enzyme-assisted extraction (EAE). Lombardelli 
et al. (2020) employed EAE using a mixture of polygalacturonase, 
pectin lyase, cellulase, and xylanase to enzymatically degrade plant cell 
walls, enhancing carotenoid release from unsold tomatoes. This 
method achieved high carotenoid recovery, yielding 4.30 ± 0.08 mg 
lycopene/kg tomato/U and 5.43 ± 0.04 mg lycopene/kg tomato/U of 
caroteniods and carotenoid contanining chromoplast, respectively. 
Similarly, high recovery yields of betalains from sugar beet and 
chlorophyll from spinach were demonstrated using enzymatic 
extraction by Lombardelli et al. (2021) and Mazzocchi et al. (2023). 
Despite their general safety, natural additives also require further 
studies to assess their toxicity, carcinogenicity, and overall health 
impacts. While natural biocolorants offer numerous advantages, 
several challenges remain, including stability under heat, pH 
variations, and light exposure. Additionally, natural additives often 
need to be used in larger quantities than synthetic ones, which may 
affect food appearance, taste, or texture, raising concerns about cost-
effectiveness. The absence of specific legislation for natural additives—
currently regulated similarly to synthetic ones—further complicates 
the approval process for new compounds. Nevertheless, natural 
additives are increasingly viewed as the future of food preservation, 
offering a promising avenue for extending shelf life and reducing 
food loss.

4.1.10 VW based edible coating to improve 
quality

Creating biodegradable edible films and coatings offers a 
sustainable and eco-friendly alternative to synthetic chemicals and 
petrochemical plastics. These films provide a thin protective layer on 
fruits and vegetables, effectively controlling moisture loss and 
regulating gas exchange to maintain produce integrity and freshness 
(Ju et al., 2019). A significant advantage of edible coatings is their 
consumability alongside the coated produce, helping to retain original 
nutrients (Cheng et al., 2023). Pectin, due to its natural abundance, 
low cost, and renewability, is a crucial component for developing 
edible coatings (Valdés et  al., 2015). Starch from various sources, 
including tapioca, corn, sweet potato, and rice, has also been employed 
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in producing edible films. For example, Jhanani et  al. (2024) 
demonstrated that a 5% pectin coating from zucchini exhibited 
antimicrobial properties against pathogens like Staphylococcus aureus, 
Escherichia coli, and Aspergillus niger. The coating also displayed 
antioxidant activity (34.32% at 1 mg/mL) and effectively delayed 
ripening, extending the shelf life of tomatoes without compromising 
their physicochemical properties, indicating its potential for 
commercial scalability. In another study, Nogueira et al. (2021) applied 
a 2% arrowroot starch coating to plums, which adhered well, reduced 
mass loss, and decreased respiratory rates at a storage temperature of 
5°C. Sweet potato starch, with a high starch content (58–76% on a dry 
basis), proves ideal for creating clear and flexible coatings (Issa et al., 
2018). Oyom et al. (2022) incorporated cumin oil into sweet potato 
starch to enhance pear preservation, effectively reducing rot lesions 
caused by Alternaria alternata and delaying changes in color, firmness, 
and chlorophyll degradation. This coating improved both the storage 
quality and sensory properties of the pears compared to uncoated 
samples, indicating its potential to address postharvest losses and 
promote agricultural sustainability. Additionally, Saberi et al. (2018) 
utilized a blend of pea starch and guar gum, combined with shellac 
and oleic acid, in a layer-by-layer approach to protect the postharvest 
quality of ‘Valencia’ oranges. This approach effectively reduced 
respiration rates, ethylene production, weight loss, firmness loss, peel 
pitting, and decay rate, thereby preserving the fruit’s overall flavor and 
freshness. Notably, bilayer coatings proved more effective than single-
layer coatings, although higher ethanol levels could lead to off-flavors. 
Edible films and coatings must comply with specific guidelines 
governing food additives, ensuring that all chemicals and additives 
used are recognized as Generally Recognized As Safe (GRAS) and 
incorporated at levels recommended by the FDA for safety. Each 
country has unique regulations regarding food packaging and 
approved ingredient levels. The intended function, dosage, and 
toxicity level of food additives in the edible matrix must be clearly 
indicated in the label. Further, Additives should not alter the food’s 
sensory appeal, physical attributes, or chemical characteristics. When 
protein-based edible films and coatings, such as those using gluten, 
whey, casein, soy protein, and peanut protein are used must be clearly 
mentioned in the label due to their potential to trigger allergic 
reactions (Carpena et al., 2021).

4.2 Non-food applications

4.2.1 VW as sorbents in decontaminating heavy 
metals

The lives of the people living near textile and paper manufacturing 
industries are at risk due to severe contamination of the environment 
with dyes, oils, and heavy metals (Chong et al., 2023). Researchers are 
currently seeking affordable, effective, and simple methods for heavy 
metal removal. One promising strategy is the use of agricultural waste, 
which can be converted into biosorbents. This technology adheres to 
the principles of green chemistry that utilizes renewable materials as 
feedstock. Sánchez-Ponce et  al. (2022) investigated the sorption 
capabilities of various agricultural wastes and discovered that broad 
bean pods are highly effective in absorbing metal ions, achieving 
91.5% efficiency for Pb (II), 61.7% for Cd (II), 40.7% for Co (II), and 
39.7% for Ni (II). Dos Santos Escobar et al. (2021) examined the use 
of moringa seed husk and pulp in removal of Acid Blue 9 (AB9) dye 

with maximum sorption capacities of 329.5 mg g–1 for the seed husk 
and 694.2 mg g–1 for the pulp at 55°C, by utilizing green synthesis 
method. In recent years, these biosorbents are employed in 
detoxification of human body. Vázquez-Durán et al. (2021) utilized 
waste from kale and lettuce to eliminate aflatoxin B1 (AFB1) from the 
digestive tract. The study achieved high removal efficiencies of 93.6 
and 83.7% with kale and lettuce respectively, through formation of 
AFB1-chlorophyll complexes. Biosorbents, due to their high efficacy 
and cost-effectiveness, could serve as a viable alternative for 
environmental remediation (Singh et al., 2020). Future research could 
explore the utilization of these sorbents for the remediation of 
pollutions caused by pesticides, fertilizers and nuclear waste.

4.2.2 Developing meat freshness indicating 
biofilms by incorporating VW based biopigments

Smart packaging integrates sensors and indicators within 
packaging systems to monitor food quality, with a focus on pH levels 
and freshness (Rahimah et al., 2020). This technology is commonly 
applied in packaging perishable goods like animal meat, susceptible 
to microbial growth leading to protein breakdown and amine 
production. As deterioration progresses, pH levels shift from 5.8 to 
7.4, a change detected by pH indicators that respond by changing 
color (Wang et al., 2017). These indicators are halochromic substances 
that interact with hydrogen and hydroxide ions, causing color 
alterations based on solution acidity or alkalinity. Unlike synthetic 
indicators that release harmful chemicals such as phthalic anhydride, 
the preference has shifted toward plant-based anthocyanin indicators. 
Anthocyanins exhibit a range of colors depending on pH: red 
predominates at pH values below 2 due to the flavylium cation, 
shifting toward a purple/blue hue at pH 2–4 (quinoidal base), colorless 
at slightly acidic/near-neutral conditions (carbinol pseudo-base) and 
a green-yellow hue at pH beyond 7 (Wahyuningsih et al., 2017). The 
color of anthocyanidins varies according to the number of hydroxyl 
groups in their molecules. Anthocyanins from purple yam extract, red 
cabbage extract, onion peel, purple sweet potato peel, roselle calyx, 
betalins from Basella stem, beetroot peel have the huge potential to 
be exploited as color sensitive indicator packaging materials (Chaari 
et al., 2024). Stability of anthocyanin pigments highly depend upon 
source material. Identifying stable pigment or improving the stability 
by incorporating nanomaterials or biopolymers into matrix can 
improve functionality and sustainability of films. Further 
advancements in sensor technologies and mobile connectivity, hold 
promise for future of anthocyanin-based smart packaging.

4.2.3 VW based low-cost culture media that 
substitute high-cost chemicals

Searching for components that substitute high-cost synthetic 
chemicals involved in the preparation of aseptic/microbial media is 
the need of the day. The microbial media can be utilized in either way: 
for supporting microbial growth or for synthesizing microbial 
compounds (Dos Santos Escobar et al., 2021). Waste from tomatoes, 
onions, carrots, pumpkins, cabbage, potatoes, drumsticks, and 
cauliflower can be utilized in microbial media formulations. These 
wastes are loaded with carbohydrates and proteins, making them 
valuable sources of carbon and nitrogen (Jadhav et al., 2018). Some 
waste for instance, onion peels in BCO (Beetroot, Cabbage and onion 
peel) can supply micronutrients essential for growth of plants in 
culture medium (Subbaiya et al., 2019). The outworks from this study 
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was comparable to those achieved with commercial media. This 
reinforces the idea that VW is a powerful substitute for commercial 
media. High value secondary metabolite (pigments, acids, enzymes) 
that have medical, textile, food applications can be produced from 
microbes with less cost VW media. Jeong et  al. (2023) cultured 
Lactobacillus plantarum using waste from kimchi, cabbage and onion. 
The results from this work clearly indicate that only the production of 
lactic acid increased and not the number of cells. Further, they noticed 
an increased antibacterial activity and anti-inflammatory response 
while using this waste as a substrate. Application of VW in microbial 
culture medium, though, many studies have been conducted, it is still 
in infancy stage. Not much literatures available in commercial 
standarisation of media and sources; secondary metabolite 
quantification and comparison with commercial media. Therefore, 
VW holds a significant potential as an ingredient in 
media formulations.

4.2.4 VW based phytochemicals in promoting 
skin health

Sun burn, skin darkening and cancer are the harmful 
dermatological effects resulting from exposure to ultra violet (UV) 
radiation. In order to prevent this, synthetic UV filters containing 
dangerous oxybenzone were used without much awareness. Organic 
filters synthesized by extracting phytochemicals from VW can be a 
remedy to this problem as they exhibit radical scavenging property 
(Valisakkagari et al., 2024). These phytochemicals after separation 
from waste can be encapsulated and tested for its sun protection factor 
(SPF). But this is not the same in most of the cases as findings by 
Messias et al. (2023) indicated that SPF in encapsulated onion peel 
extract (36.11 SPF) is much lower than the unencapsulated extract 
(60.24 SPF). The compound revesterol is the key ingredient here. 
Other waste from vegetables such as kale, beetroot, pumpkin, 
cauliflower also finds their place in cosmetic sector due to their high 
flavonoids and phenols. Another complication faced by young and 
adult people were early signs of aging triggered by oxidative stress. 
Collins et al. (2022) stated that oral consumption of tomato extract for 
8 consecutive weeks resulted in skin lightening and hydration. 
Focussing on hydrating creams, most of them utilize vegetable oil as 
functional ingredient for solving dehydration problems. 
Athikomkulchai et al. (2020) reported that moringa seed oil possess 
skin hydrating property and reduced inflammation of skin. Vegetable 
bioactive ingredients finds application in hair care also. It is interesting 
to note that oil from pumpkin seed stimulated hair growth when 
applied topically in male rats thereby reducing baldness (Hajhashemi 
et al., 2019). To conclude, sunscreens manifest major importance these 
days owing to increased global warming. Various VW can be screened 
for their SPF and can formulated into product through micro/nano 
encapsulation or molecular infusion techniques.

4.2.5 VW based biofuel generation as a substitute 
for fossil fuel

The declining global oil resources, fluctuating crude oil prices, 
and the environmental impact of fossil fuels have heightened 
interest in biofuel production and utilization. Biofuels are often 
viewed as a viable alternative to fossil fuels to mitigate climate 
change, enhance energy security, and reduce harmful emissions 
from transportation. VW are rich source of cellulose and 
hemicelluloses with C/N ratio over 30% can successfully converted 

into biomethane, bioethanol, and biobutanol. To produce biofuels, 
macromolecules like starch, protein, and lipids must be hydrolyzed 
into micromolecules such as glucose and amino acids, which 
microorganisms can use to generate biofuel. Hydrolysis followed 
by fermentation is a common process, with hydrolysis being 
quicker and easier for carbohydrate-rich substrates compared to 
proteins and lipids (Wei et  al., 2016). Various pretreatment 
methods are employed including physical size reduction (physical 
pretreatment, Han et  al., 2023), chemical depolymerization 
(chemical pretreatment, Van Ginkel and Logan, 2005), and 
enzymatic action (enzymatic pretreatment, Zhang and Lynd, 
2006). VW and waste water from carrot, beetroot, cassava, onion, 
sweetpotato, and potato possess significant biohydrogen potential 
(Zhang et al., 2022; Saidi et al., 2020). Used vegetable oil and waste 
such as cassava starch, corn stover, pineapple waste, papaya stem, 
banana peduncle, and Moringa oleifera are widely studied for 
biodiesel production (Sathish et al., 2023). Bioethanol, produced 
by fermenting the sugar and starch components of agricultural 
wastes, is the most widely consumed liquid biofuel globally. 
Commercial production of bioethanol often uses vegetable waste-
based sources such as potato peels, cassava peel, carrot pomace, 
spent sugar beet pulp, sweet potato peel and yam as renewable 
feedstock (Kitson-Hytey et  al., 2024). Anaerobic digestion of 
agricultural waste generates biomethane, with studies showing 
significant potential from cassava, arrowroot and sugar beet leaves 
(Lien et  al., 2018). While agricultural residues are favored for 
economic and environmental reasons, the debate continues 
overusing vegetable waste compared to municipal and wood 
waste. Optimizing production parameters through statistical and 
mathematical methods ensures lower energy consumption, 
shorter residence times, reduced material usage, and higher 
product yields (Figure 6).

4.2.6 VW derived green carbon dots in nano 
delivery systems

The photoluminescent properties of carbon dots (CDs) and 
their ability to emit multispectrumat various wavelengths make 
them highly valuable in the biomedical field for sensing, detection, 
and imaging. The most notable feature is that the spectrum can 
be  tuned according to wavelength (Molaei, 2020). CDs hold 
significant potential in cancer research by offering a targeted 
delivery system that could replace conventional radiotherapy 
(Badıllı et al., 2020). Green extraction methods are preferred over 
conventional methods to avoid metal toxicity. Various cost-
effective and eco-friendly strategies have been developed using 
non-edible food parts like peels, starch, and seeds from onion, 
pumpkin, watermelon, tapioca, potato, arrowroot, sweet potato 
and garlic (Raveendran et  al., 2022; Krishnaiah et  al., 2024). 
Extensive literature highlights the use of onion peel-derived CDs 
in the medical field. For instance, Dastidar et al. (2021) used onion 
peel CDs to estimate Zn2+ ions in blood plasma, which can prevent 
neurological disorders, diabetes, epilepsy, and Parkinson’s disease. 
Monte-Filho et al. (2019) used onion peel CDs to measure vitamin 
content in multivitamin tablets, while Shahraki et  al. (2019) 
demonstrated their anticancer activity against MCF-7 breast cancer 
cells. Majumder et al. (2021) developed functional carbon nano-
onions (CNOs) that deliver drugs directly to the brain through 
nasal, bypassing the blood–brain barrier. Dinç (2016) reported the 
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first CDs from sugar beet molasses for estimating vitamin and 
antibiotic properties. The benefits of quantum dots (QDs) for drug 
delivery include their large surface area, which facilitates easy 
crossing of cell membranes and provides multiple sites for drug 
attachment. However, challenges such as CD stability at higher pH 
levels, leakage testing before delivery, cytotoxicity assessment, and 
drug bioavailability must be addressed. Beyond drug delivery, CDs 
are useful in environmental monitoring for detecting heavy metal 
ions, phenol, pesticides, and nitroaromatic explosives. Advances in 
bioprobes have further enhanced the applications of CDs.

4.2.7 VW based activated carbon for soil 
amendments

Biochar, a renewable carbon produced from organic material 
through pyrolysis, is increasingly recognized for its potential to 
address climate change, enhance soil health, and boost agricultural 
productivity (Bolan et  al., 2022). Biochar contain functional 
groups  –COOH,  –OH,  –C=O, and  –CHO, which enhance the 
binding of inorganic contaminants, thereby improving soil fertility 
(Mandal et al., 2021). These functional groups, combined with the 
presence of alkali metals in the feedstock, enable their application 
in acidic soil environments by sequestering H+ ions from the soil 
solution (Yang et al., 2018). The porous structures in biochars 
provide habitats for microorganisms that can mitigate heavy metal 
and environmental pollution (Wang et al., 2023). Additionally, 
organic coatings on biochar surfaces reduce hydrophobicity and 

enhance nutrient retention, facilitating slow-release nutrient 
delivery (Edussuriya et al., 2023). Various types of feedstocks are 
utilized in biochar production, including agricultural and animal 
waste such as rice straw, corn cobs, wheat residues, animal waste, 
sewage sludge, municipal solid waste, and biogas residues (Kumar 
et al., 2023). Literatures on biochars from VW is scarce. Pradhan 
et  al. (2020) produced biochar of particle size <75 μm and 
75–125 μm from vegetable sources like cauliflower, cabbage, 
banana peels, and corn cob residues at 300°C to 600°C 
temperatures. They identified cauliflower and banana peels as 
optimal feedstocks though mixed vegetables also exhibited 
promising characteristics. Stylianou et al. (2023) suggested that 
biochar derived from tomato pomace, obtained at temperatures of 
350°C and 550°C, could serve as organic amendments/enhancers 
to enhance agricultural soil fertility. Studies by Ebrahimi et al. 
(2016) suggests the possibility of utilizing biochar to manage 
nematode populations. However, further investigation is required 
to determine the ideal dosage for effective nematode control. Most 
of the studies conducted on this subject has taken place in 
controlled environments such as laboratories and greenhouses, 
over brief periods. Keske et al. (2020) emphasized the importance 
of long-term studies to validate the results, to assess any negative 
impacts of biochar application in soil, to confirm the efficacy of 
vegetable waste biochar, to estimate cost analysis in future studies. 
Another limitation of biochar is the potential environmental 
hazards posed by the presence of heavy metals and Polycyclic 

FIGURE 6

Volarisation approach of vegetable waste-based biofuel as a sustainable alternative to fossil fuels toward the zero waste champaign.
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Aromatic Hydrocarbons (PAHs). Biochars have the potential to 
be utilized in aquatic vegetable cultivation as well as in root and 
tuber crops. Reviews by Edussuriya et al. (2023) and Wang et al. 
(2023) extensively discuss application of biochars on these 
contexts. Moreover, it is essential to investigate interaction of 
microorganisms, plants, and soil, through physiological, 
proteomic, and metabolomic approaches.

4.2.8 VW based organic fertilizers in substituting 
chemical fertilizers

The impact of chemical fertilizers on human health, animal 
welfare, and environmental sustainability has driven research toward 
minimizing their use without compromising agricultural yield. This 
pursuit seeks safe, cost-effective, and organic alternatives. Agricultural 
waste, particularly VW, which accounts for over 60% of waste 
generated, is rich in bioactive compounds, leading to increased 
interest in VW-based biofertilizers. The porosity of organic fertilizers 
enhances soil quality by providing a habitat for beneficial 
microorganisms. Combining organic and inorganic fertilizers can 
optimize nutrient release in the soil, ensuring that nutrients are 
available gradually and effectively. For instance, tomato pomace, 
containing high levels of carbohydrates (25–50%), has been explored 
as an organic fertilizer for crop plants (Kakabouki et al., 2020). Onion 
peel juice concentrate at 1 to 2% can act as stimulant and enhance the 
performance of Bermuda grass, lettuce, and bok choy. Fruit and 
vegetable waste (FVW) has the potential to function as eco-enzymes 
Fadlilla et al. (2023). These eco-enzymes support plant growth due to 
their functional enzymes—such as amylase, lipase, protease, cellulase, 
and caseinase—and secondary metabolites like flavonoids, quinones, 
saponins, alkaloids, and cardioglycosides. VW based biofertilizers can 
be effectively utilized in hydroponic system. Siddiqui et al. (2023) 
successfully utilized organic liquid fertilizers derived from fruit and 
vegetable waste on various crops, including lettuce, cucumber, and 
cherry tomatoes. Numerous patents have been registered for 
techniques that convert FVW into organic fertilizers, highlighting the 
innovative potential in this area. The use of VW for organic fertilizers 
opens new research horizons, providing opportunities to explore 
diverse microorganisms. Future studies could aim to establish 
standardized microbial consortia for producing VW-based 
biofertilizers. Standardization is critical and should encompass raw 
materials, digestate types, microbial sources, preparation methods, 
application modes, timing, and cultivation techniques, as emphasized 
by Sharma et al. (2023). Evaluating the efficacy of VW against soil-
borne pathogens and nematodes is essential, alongside conducting 
cost–benefit analyses to inform decision-making. Legislative 
constraints regarding the use of FVW-based fertilizers pose challenges 
to commercialization. However, the commercialization of VW-based 
fertilizers, similar to sewage sludge and animal manure, is 
recommended, provided that rigorous safety testing is conducted to 
meet regulatory standards. By addressing these considerations, the 
potential of VW as a sustainable alternative to chemical fertilizers can 
be  fully realized, contributing to a greener and more sustainable 
agricultural future.

4.2.9 VW as pharma drug
Utilizing VW polysaccharide as platform molecules over fossil-

based resources have significant advantage over health, environment 
and cost. They can serve as a starting material, reagents, and solvents, 

intermediates, APIs, or excipients while also enhancing the 
organoleptic properties, patient acceptance, performance of 
formulations (Choudhury et al., 2022). Starch from potato, cassava, 
yams, arrowroot finds application as bulking agent, binder, 
disintegrant, and film-forming agent. Cellulose from pomace such as 
tomato, cucumber, carrot as gel-forming agents and polymeric carriers 
for controlled drug release (Zhang et al., 2019). Hemicellulose from 
pulp can be utilized as hydrogel forming agent (Berglund et al., 2020). 
Konjac galactomannan from konjac tubers and xanthum gum can 
be  used forms a network of intermolecular hydrogen bonds that 
stabilize the gel phase and alter drug release characteristics. Pectin 
from green beans, carrot, tomato and potato peels, and okra pods can 
be used in tablets targeting colon, transdermal patches, ophthalmic 
preparations (Owusu et  al., 2021) Mucopolysaccharides from 
mucilage of unripe okra pods can be used as effective emulsifying 
agents, adhesives, binders, and disintegrating agents (Dantas et al., 
2021). Kurra et al. (2022) utilized mucilage blend of jackfruit and okra 
for colon specific delivery of active ingredient curcumin (CMN) as 
mucoadhesive tablet achieving 54.35% with in vitro release of CMN 
in 12 h as mucoadhesive tablet. Xyloglucan from tomato, cabbage, 
lettuce, eggplant can be used as stabilizer, thickening agent, and gelling 
agent (Kim et  al., 2020). Inulin obtained from peels and seeds of 
artichoke, onion, garlic, bitter gourd can be  used in diagnosis of 
glomerular filtration rates (Afinjuomo et al., 2021). Most of these 
vegetables are rich source of polysaccharides, around 40–67% cellulose 
in their composition. This cellulose after pretreatment yields high 
quality microcrystalline fibers a filler in tablet formulation (Kian et al., 
2020). The primary challenge in using VW as an excipient lies in 
meeting rigorous purity standards set by pharmacopeias. A prominent 
example illustrating this challenge occurred in the 1990s, when 
contaminated glycerol containing diethylene glycol led to the tragic 
deaths of at least 80 children in Haiti. Besides, natural excipients have 
the potential to interact with active ingredients and compromise their 
efficacy. Only a few authorities, such as the European Pharmacopeia, 
United States Pharmacopeia, and WHO’s International Pharmacopeia, 
have specified these impurities (Boonen et  al., 2014). Common 
impurities include heavy metals, PHAs, mycotoxins, and residual 
solvents, each requiring individual evaluation (EMA, 2009). Moreover, 
researchers must carefully consider the specific dosage and route of 
administration for drugs containing these impurities. Higher levels of 
impurities may be acceptable for topical applications compared to oral 
ingestion. Efforts should focus on creating a priority list of relevant 
impurities to ensure the safety of these excipients. Another significant 
challenge for pharmaceutical companies is ensuring compliance with 
labeling, composition, and marketing regulations, emphasizing 
efficacy, safety, and quality assurance. Additionally, it’s crucial for 
consumers to use supplements only under the guidance of 
healthcare professionals.

4.2.10 VW based phytopesticide as an alternative 
to synthetic pesticides

Chemical insecticides have significantly increased agricultural 
production by effectively deterring pests at a relatively low cost. 
However, their widespread and unregulated use has led to numerous 
issues, including environmental pollution, depletion of the ozone 
layer, resistance development in target pests, reduction in non-target 
species, and adverse health effects on humans (Serrão et al., 2022). 
Recent studies have explored the potential of waste materials—such 
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as spent coffee grounds, rosehip, asparagus waste, artichoke waste, 
beet stalks, and banana peels—to produce Spodoptera littoralis 
Nucleopolyhedrovirus (SpliNPV) baculovirus, which exhibits a 50% 
lethality rate against Spodoptera littoralis (Martínez-Inda et al., 2023). 
Additionally, VW extracts can be used to culture entomopathogens 
and baculoviruses, providing an eco-friendly alternative to 
conventional insecticides. For instance, Abiy and Tesfaye (2019) 
successfully cultured the entomopathogenic fungus Metarhizium 
anisopliae from vegetable waste. Phytopesticides extracted from 
vegetable waste function through various mechanisms, such as acting 
as repellents, disrupting protein structures, inducing metabolic 
disorders, causing paralysis, poisoning specific targets, exerting 
inhibitory actions at multiple sites, and releasing neuromuscular 
toxins and bioactive compounds (Ayilara et  al., 2023). Specific 
extracts, particularly from onion and garlic, are rich in organosulfur 
compounds like allicin, ajoene, diallyl sulfide (DAS), diallyl disulfide 
(DADS), diallyl trisulfide (DAT), and S-allylcysteine (SAC). These 
compounds can affect the insect nervous system, leading to altered 
locomotion, muscle contractions, and paralysis (Kovarovič et  al., 
2019). Similarly, capsaicinoids (including capsaicin, dihydrocapsaicin, 
and nordihydrocapsaicin) and glucosinolates (such as gluconasturtin, 
glucotropaeolin, and glucoaubrietin) have been found to cause larval 
intoxication and lethality (Claros Cuadrado et al., 2019). To maximize 
the effectiveness of these natural alternatives, efforts should focus on 
standardizing dosages, studying their mechanisms of action, 
conducting comprehensive toxicological studies, and examining the 
interactions among insects, plants, and humans. This type of research 
will be crucial for developing safe and effective biopesticide solutions 
that can help mitigate the environmental and health impacts 
associated with chemical insecticides.

4.2.11 VW as source of bioplastics
The excessive use of plastics has shifted attention from 

macroplastics to microplastics and nanoplastics, which contribute to 
environmental pollution in marine and terrestrial ecosystems, pose 
health risks to humans and animals, and drive climate change (Yin 
et al., 2013). In response, developed countries like the EU and the US 
have adopted circular economy policies to mitigate plastic usage and 
its impacts (Visco et al., 2022). Researchers are increasingly exploring 
renewable plastics as alternatives to conventional ones. Studies have 
shown that VW —including tomato pomace, onion peels, watermelon 
rinds, cassava peels, potato starch, arrowroot starch, carrot pomace, 
asparagus peels, artichoke leaves, and pea pods—can be utilized for 
this purpose. These wastes can be  categorized into starch-based 
materials for thermoplastic production and protein-based waste for 
plasticizer production. Additionally, they are used to produce 
microcrystalline cellulose, nanocrystalline cellulose, and nanofibers 
with enhanced mechanical properties. For example, microcrystalline 
cellulose films made from cassava starch exhibit similar properties to 
starch films but with increased hydrophobicity (Liu et  al., 2024). 
Non-lignocellulosic biomass, such as fruit peels and pomace extracts, 
is also gaining traction in active food packaging due to its antimicrobial 
and antioxidant properties. Hu et al. (2019) found that biofilms made 
from radish, kale, and cabbage extracts exhibited antimicrobial 
activity against E. coli O157: H7, attributed to phenolic compounds 
like gallic acid and caffeic acid. Fai et al. (2016) reported that coatings 
of fresh carrots with residual flavors from orange, watermelon, lettuce, 
and passion fruit peels inhibited microbial and yeast growth. 

Moreover, incorporating plant-based pigments can create indicator 
films to monitor freshness. Toro-Márquez et  al. (2018) produced 
pH-sensitive films using Hibiscus sabdariffa flower extract in a corn-
starch matrix. Merino et  al. (2022) developed highly stretchable 
biodegradable mulching films by plasticizing Polylactic Acid (PLA) 
with VW from spinach stems, tomato pomace, and cocoa shells, 
which increased the film’s biodegradability by up to 38 wt % for PLA 
composites after 6 months. Growing consumer awareness and 
preference for organic bio-packaging have driven the use of bioplastics. 
However, bioplastics face challenges, including product lifespan, 
biodegradability, availability of virgin biomass, the high volume of 
agro-waste, intensive purification, and elevated production costs, 
which hinder their potential to replace traditional petroleum-based 
plastics. Consumer confusion over bioplastic identification 
compounds these issues; for instance, Bio-PET indicates a vegetable 
source but is neither biodegradable nor compostable. To enhance the 
feasibility of cellulose/hemicellulose/lignin-based bioplastics, novel 
extraction and purification methods are needed to reduce costs. 
Significant efforts are underway to develop bacterial strains and 
improve fermentation and recovery processes to lower production 
expenses. Key prospects for making bioplastic production more 
industrially viable include utilizing less expensive substrates, 
optimizing microbial growth strategies, and simplifying downstream 
processing, all of which are crucial for reducing production costs.

5 Limitations in utilization of VW

The growing focus on sustainability has led to the exploration 
of vegetable waste as a valuable resource for various food and 
non-food applications. However, several challenges hinder its 
effective utilization. The primary challenge in utilizing VW is the 
risk of contamination, as its products may carry pesticide residues, 
heavy metals, or microbes, requiring proper processing to ensure 
safety (Hasan et al., 2024). However, extensive processing may 
lead to changes in color, odor, texture, odd mouth-feel affecting 
the overall acceptability and sensory quality. Furthermore, toxins 
(such as aflatoxins, mycotoxins, and fumonisins) and naturally 
occurring anti-nutritional compounds (including saponins, 
solasodine, tannins, phytates, oxalates, and alkaloids) present in 
VW pose significant safety concerns due to their ubiquity and 
potential adverse effects on human health (Kumar et al., 2022). 
The secondary feed stock used for volarisation often struggles to 
compete with traditional food production because it is perceived 
inferior, sparking consumer controversy. Processing companies 
can volarise food waste and its products by integrating them into 
innovative industrial products (Capanoglu et al., 2022). But strict 
food safety regulations, extensive testing of these products, strict 
quality standards, consistent availability of VW (Including 
logistical, seasonal, technical, economical), processing factors 
(Such as moisture, pH, C/N ratio, and bulking agents, processing 
steps and designs) often complicates industrial adoption (Jones 
et al., 2021). The inadequate characterization and segregation of 
VW from overall municipal waste severely hampers the effective 
utilization of VW in developing countries (Sarkar et al., 2023). To 
effectively transform VW research into real-world applications—
such as converting it into viable biobased feedstock for non-food 
uses—it is essential to achieve high efficiency, maintain superior 
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product quality, and ensure cost-effectiveness. Application of VW 
in non-food sectors—such as its conversion into energy—is still 
in its infancy, it is crucial to benchmark these emerging 
technologies against fossil-based alternatives. Comprehensive 
evaluations using tools like life cycle assessment (LCA), life cycle 
costing (LCC), and social life cycle assessment (s-LCA) are 
essential to fully capture their economic, environmental, and 
social impacts (Mak et al., 2020). High costs, financial constraints, 
and a lack of a robust demand-pull effect are hindering the 
commercialization of these technologies. Several key challenges 
affect VW management and the development of bio-based 
products. Kretschmer et al. (2013) identified five critical factors 
for FW management, which also apply to VW management. First, 
the variability in waste quality and volume makes it difficult to 
ensure a consistent and uniform feedstock supply. Second, the 
collection process lacks coordination due to the diverse sources of 
food waste. Third, inadequate infrastructure and limited storage 
facilities pose significant challenges, as food waste decomposes 
rapidly. Additionally, the demand for bio-based products is highly 
dependent on policy implementation, requiring strong legislative 
support and active public engagement. Lastly, limited public 
awareness remains a barrier to increasing demand for bio-based 
products, as they are often more expensive than conventional 
alternatives. Future research could begin with the fundamental 
aspects, such as collecting precise data on the quantity of specific 
vegetable waste generated, analyzing consumer behavior toward 
transformed or integrated products, and assessing the nutritional 
quality of compounds present in food waste.

6 SDG realization

Food loss and waste are extremely ineffective uses of resources 
from an environmental point of view. Research conducted by the 
UN Food and Agriculture Organization (FAO) estimates that 
greenhouse gas emissions from food loss and waste measures 
roughly up to 3.3 gigatonnes (Lipinski, 2015).

With the globe is in urgent need of a significantly sustainable 
strategy for future, the United Nations member states initiated an 
idea of forming goals to face those challenges and formally 
established in the name of Sustainable Development Goals in 
2015, spanning the years 2016 to 2030 (Fukuda-Parr, 2019). These 
Sustainable Development Goals (SDGs), also referred to as the 
Global Goals, are a set of objectives established by international 
agreement to protect the planet’s habitability in all its aspects, 
combat poverty, and guarantee that people live in peace and 
prosperity both now and in the future (Morton et  al., 2017). 
Basically, it was started with 17 SDGs with 169 targets. 
Environmental preservation, social inclusion, and economic 
prosperity are the three aspects of sustainable development that 
are covered by these goals (Manzoor et al., 2024). Among all the 
SDGs, SDG 2, SDG 12, SDG 13 and SDG 14 are related to 
mitigation of food waste and poverty while SDG 2 aims to 
eradicate hunger, SDG 12 promotes sustainable consumption and 
production (SCP) patterns, SDG 13 combats climate change, and 
SDG 14 conserves marine ecosystems. To support the SDGs, the 
US Department of Agriculture and the US Environmental 
Protection Agency set the ambitious target of halving food waste 

in the US by the year 2030. The United Kingdom reduced food 
waste by 21% in just 5 years, while Denmark accomplished a 
remarkable 25% reduction in the same period (Lipinski, 2015).

Implementing circular economy solutions to reduce vegetable 
waste and promote sustainable consumption can accelerate 
progress on SDGs 2 and 12 (Mokrane et al., 2023). Our objective 
to utilize vegetable waste for producing bioactive products, 
biofertilizers, biofilms, and biofuels aligns with these goals. 
Consuming by-products from vegetable waste, which retain 
similar nutritional value, has been linked to a lower risk of stroke, 
heart disease, and various cancers. For example, vegetable 
by-product flours are high in fiber and contain beneficial bioactive 
substances like carotenoids and phenolic acids (Acosta-Estrada 
et al., 2014). This aligns with the goal of promoting overall well-
being through preventive healthcare and healthy lifestyle choices, 
contributing to SDG 2. Food loss and waste lead to the indirect 
loss of vital resources such as land, water, and energy, while 
exacerbating environmental issues by releasing toxic greenhouse 
gasses during decomposition in landfills. Reducing food loss and 
waste supports Goal 12.3 on sustainable production and 
consumption (Augustin et  al., 2020). Goal 12.5 focuses on 
significantly reducing waste generation through prevention, 
recycling, and reuse (UNEP, 2021). The dumping of vegetable 
waste contributes to greenhouse gas emissions, with increased 
vegetable production leading to greater waste accumulation, 
further impacting the climate and disrupting natural cycles. 
Achieving SDG 13 requires minimizing waste production and 
repurposing materials to create valuable by-products, such as food 
additives and essential oils, to combat malnutrition. Although the 
marine ecosystem is larger than terrestrial ecosystems, waste 
release into oceans disrupts marine life and ecosystems. Thus, 
repurposing vegetable waste for by-product production can help 
achieve Sustainable Development Goal 14.

7 Conclusion

Agricultural production was once well-balanced with waste 
management. However, with the increasing global population, 
changing lifestyles, seasonal production, and globalization, there 
has been a shift toward higher consumption of processed 
products. This shift has resulted in the generation of significant 
waste during the processing, grading, and sorting of agricultural 
products worsened by market fluctuations. Given the presence of 
bioactive compounds in these residues, there is an opportunity to 
create value-added products from existing VW for applications in 
medicine, food, industry, and technology. Adopting novel and 
sustainable extraction techniques that are cost-effective and 
feasible for commercialization is crucial. Educating consumers 
about reducing food waste and promoting the potential uses of 
vegetable processing waste can stimulate demand for these 
products. Future initiatives should highlight the environmental 
and economic benefits of waste valorisation through targeted 
marketing campaigns and educational programs. Embracing 
concepts such as circular economy, waste-to-wealth, and waste-
to-energy offers sustainable solutions for creating a healthier 
planet and society. Furthermore, integrating VW into innovations 
like urban farming and vertical agriculture can capitalize on its 
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potential to benefit the environment, economy, and society 
at large.
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