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In Low-Income Food Deficit Countries (LIFDCs), there is a growing demand for 
ruminant livestock products due to population growth, urbanization, and rising 
incomes. However, smallholder farmers in these regions face constant challenges 
in securing reliable year-round feed supply, which affects animal performance and 
the ability to meet increasing demand for animal products. This comprehensive 
review thus explores the potential of fruit by-products, specifically cashew apples, 
papayas, and mangoes, which are often discarded and contribute to environmental 
pollution but can be valuable resources for livestock farmers. The review examines 
the current state of small ruminant livestock production in LIFDCs, particularly 
in Sub-Saharan Africa and adopts a systems thinking approach to consider using 
cashew apple, papaya, and mango by-products as a potential feed source. Small 
ruminant livestock production is highlighted for efficiently converting nutrient-rich 
food waste from fruits like cashew apples, papayas, and mangoes into valuable 
milk and meat products. The review also addresses the environmental aspect, 
pointing out potential greenhouse gas emissions resulting from improper disposal 
of fruit wastes and the urgent need to convert them into animal feeds. It provides 
data on processing, preservation techniques, chemical composition, and the 
limited available information on the impact of these fruit by-products on feed 
intake, growth, carcass quality, methane emissions, and overall well-being of small 
ruminants. Challenges related to the storage and feeding of these by-products 
are also discussed. Despite limited data and conflicting evidence, the review 
strongly advocates using cashew apples, papaya, and mango by-products as vital 
feed resources for small ruminants. It emphasizes the need for further research 
to determine their nutritional value in local contexts, establish optimal inclusion 
levels, and devise strategies for prolonging shelf life. This effort holds promise 
for addressing food deficits and enhancing food security in LIFDCs where these 
challenges are most acute.
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1 Introduction

Small ruminants play a crucial role in African food systems, 
providing high-quality protein, generating income, and serving as 
economic assets for rural communities. Additionally, they contribute 
to environmental sustainability by transforming crop residues and 
food waste, unfit for human consumption, into valuable products like 
milk and meat (Pulina et al., 2017; Wadhwa et al., 2015; Thornton, 
2010). Demand for small ruminant products in Low-Income Food 
Deficit Countries (LIFDCs) in Sub-Saharan Africa (SSA) is rising 
rapidly, driven by population growth, urbanization, and increasing 
incomes (Pulina et al., 2017; Thornton, 2010). Meeting this demand 
is critical to addressing widespread protein and iron deficiencies 
prevalent in SSA, as well as supporting rural economies through 
income generation and job creation. However, projections indicate 
that ruminant product output must increase by 60–70% by 2050 to 
meet this demand, particularly in LIFDCs (Pulina et  al., 2017; 
Thornton, 2010).

In semi-arid regions, small ruminants are better adapted to harsh 
climatic conditions, such as drought, high temperatures, and limited 
rainfall, making them integral to local livelihoods. Despite their 
resilience, their productivity is constrained by year-round feed 
shortages, which limit the quality and quantity of available feed. This 
prevents small ruminants from reaching their full genetic potential 
(Adzitey, 2013; Arowolo and He, 2018; Ates et al., 2018), undermining 
their contributions to food security and rural livelihoods. Addressing 
these feed shortages requires cost-effective, environmentally 
sustainable feed options that safeguard animal health 
and productivity.

The integration of agro-industrial by-products (AIBPs) into 
livestock diets offers a promising solution (Romelle Jones et al., 2023; 
Yafetto et  al., 2023). By-products from mango, cashew apple, and 
papaya processing are particularly promising due to their abundance 
in SSA, where high fruit processing volumes and significant post-
harvest losses generate millions of tonnes of waste annually (Aluko 
et al., 2023; Owino and Ambuko, 2021; Evans and Ballen, 2012; Barve 
et al., 2020; Millogo et al., 2024; Tesfaye, 2017; Magama et al., 2022; 
Tapsoba et al., 2022; Van Walraven and Stark, 2023). While some 
organic matter could be reintegrated into soils to improve soil health, 
excessive volumes pose environmental challenges, such as soil and 
water pollution, and require alternative solutions (Richard et al., 2018; 
Zahid and Khedkar, 2021).

Valorizing these by-products as livestock feed provides a dual 
solution: addressing feed scarcity and managing waste sustainably. 
Although preventing food losses through improved handling, storage, 
and distribution remains essential, some level of waste is unavoidable, 
particularly the inedible portions of fruits such as peels, seeds, and 
pomace. These by-products are rich in nutrients and bioactive 
compounds, making them suitable for inclusion in small ruminant 
diets. Studies show that mango peels, cashew apple pomace, and 
papaya seeds can enhance feed value and productivity, particularly in 
regions where traditional feed options are limited (Mirzaei-Aghsaghali 
and Maheri-Sis, 2008; Gupta et al., 2022; Jahurul et al., 2015).

This review explores the potential of mango, cashew apple, and 
papaya by-products as sustainable feed resources for small ruminants 
in semi-arid regions of LIFDCs, focusing on their role in improving 
food and nutrition security in vulnerable communities. To advance 
this field, the review moves beyond summarizing existing studies to 

propose inferences and hypotheses and guide future research, 
including:

 1. Optimizing feed efficiency through the incorporation of fruit 
by-products to improve rumen fermentation dynamics and 
nutrient utilization.

 2. Exploring the potential of bioactive compounds in reducing 
methane emissions, contributing to environmental 
sustainability by altering ruminal fermentation pathways.

 3. Assessing the economic benefits valorization strategies for 
smallholder farmers, including reduced feed costs, improved 
productivity, and income stability.

By adopting a systems-thinking approach, this review provides a 
comprehensive framework for leveraging fruit by-products as 
sustainable feed resources, addressing the interconnected challenges 
of feed scarcity, environmental sustainability, and economic 
development in LIFDCs.

2 Methodology

This review draws upon peer-reviewed journal articles, books, and 
other published materials sourced from databases such as Google 
Scholar, PubMed Central, and Scopus. It synthesizes the literature 
using a systems-thinking approach, with a focus on fruit by-product 
valorization, feed scarcity, and livestock productivity in LIFDCs. The 
review prioritizes studies relevant to Sub-Saharan Africa, particularly 
those addressing small ruminant production, nutrient composition, 
and environmental implications.

3 The context of livestock production 
in LIFDCs and its relevance in 
Sub-Saharan Africa

In LIFDCs, particularly in SSA, livestock production is a 
cornerstone of agricultural systems, primarily driven by smallholder 
farmers (Amejo et al., 2018; Erdaw, 2023). These farmers play a critical 
role in meeting the region’s growing demand for meat and dairy while 
providing income, sustenance, and nutrition for rural households 
(Erdaw, 2023; Fraval et al., 2019; Ransom and Stagner, 2020). Livestock 
serves as an economic asset, diversifying income sources and 
improving livelihoods (Neudert et al., 2020). However, the sector faces 
significant challenges, particularly due to the region’s heavy reliance 
on rain-fed agriculture (Descheemaeker et al., 2016; Thornton et al., 
1934). Climate change-induced shifts in rainfall patterns and rising 
temperatures threaten forage availability and water resources, 
increasing the vulnerability of livestock systems and exacerbating food 
insecurity (Hidosa and Guyo, 2017; Amwata et al., 2016; Assan, 2022; 
Omotoso et al., 2023).

Smallholder farmers also grapple with limited access to essential 
resources and services. Constraints in acquiring quality feed, 
veterinary care, and improved livestock breeds, coupled with restricted 
access to credit and financial services, hinder investments and the 
adoption of improved practices (Kongolo and Dlamini, 2012; 
Langyintuo, 2020; Okpeku et al., 2019). Poor infrastructure, such as 
inadequate road networks, limits market access for livestock products 
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(Chekol, 2021; Merkel, 2019; Sehar and Oyekale, 2022). Additionally, 
livestock diseases, including Foot-and-Mouth Disease (FMD) and 
African Swine Fever, cause significant economic losses, with FMD 
alone costing Zambia over $1.6 billion in export revenue (Armson 
et al., 2020; Campbell et al., 2021; Sinkala et al., 2014).

Despite these challenges, SSA holds considerable potential for 
improving livestock production. The region is endowed with extensive 
grazing lands and diverse livestock genetic resources (Seré, 2020). 
Sustainable intensification through improved feeding, breeding, and 
animal husbandry practices can significantly enhance productivity 
and resilience (Erdaw, 2023; Herrero et al., 2013; Rao et al., 2005). 
Integrating crop-livestock systems, such as agroforestry and mixed 
farming, provides additional pathways for climate-resilient agriculture 
(Rao et al., 2005; Sekaran et al., 2021; Powell et al., 2004; Brewer and 
Gaudin, 2020; Baiyeri et al., 2019). Moreover, rising domestic and 
international demand for animal-source foods driven by urbanization 
and income growth offers new market opportunities for smallholder 
farmers, fostering economic empowerment and poverty reduction 
(Erdaw, 2023; Steinfeld, 2003).

In summary, livestock production in SSA operates within a 
complex interplay of challenges and opportunities, including climate 
change, resource limitations, inadequate veterinary services, and 
market constraints. Addressing these barriers and leveraging the 
sector’s potential can drive poverty reduction, food security, and 
sustainable development in the region.

3.1 The problem of inadequate feed supply 
and its implication for small ruminant 
production

Feed scarcity is a major challenge in LIFDCs, significantly 
affecting livestock productivity, health, and the livelihoods of 
smallholder farmers (Adzitey, 2013; Arowolo and He, 2018; Ates et al., 
2018). This issue is particularly acute in SSA, home to nearly 50% of 
LIFDCs, where seasonal feed shortages during the dry season 
exacerbate undernutrition and reduce livestock performance (Desta 
and Oba, 2004). Natural pastures and crop residues, the primary feed 
resources, decline sharply in quantity and quality during this period, 
creating a “Nutritional Feed Gap” that threatens food security and 
livelihoods (Cooke et al., 2024; Duguma and Janssens, 2021; Tolera 
et al., 2000). Contributing factors include limited availability and high 
costs of nutritious feed ingredients, such as grains and forages, 
compounded by droughts that often result in substantial livestock 
losses (Cooke et al., 2024; Lamidi and Ologbose, 2014).

Farmers adopt coping strategies such as adjusting feed resources, 
purchasing in bulk, or reducing herd sizes, but these measures often 
strain household productivity, especially for women and children 
(Duguma and Janssens, 2021; Tangka and Jabbar, 2005). Feed scarcity 
also drives seasonal price fluctuations in feed markets, further 
burdening smallholder farmers (Ayantunde et al., 2022).

Climate change exacerbates this challenge by reducing forage 
availability and quality, threatening livestock productivity and 
essential protein sources like meat, milk, and eggs, thereby intensifying 
malnutrition and poverty (Hidosa and Guyo, 2017; Abebe, 2017; 
Thompson et al., 2010; Balehegn et al., 2020; Smith et al., 2013).

Addressing feed scarcity requires sustainable feed production 
methods (Musundire et  al., 2021), increased farmer knowledge 

(Balehegn et al., 2020), investment in research and development, and 
strengthening veterinary services (Duguma and Janssens, 2021). One 
promising solution is the valorization of fruit by-products as ruminant 
feed in LIFDCs. These by-products, generated during fruit 
processing—such as mango peels and pomace from juice production, 
cashew apples from nut harvesting, and papaya peels and seeds from 
fresh consumption or puree processing—are rich in nutrients and 
bioactive compounds. Incorporating these by-products into ruminant 
diets can enhance livestock productivity, reduce reliance on 
conventional feed ingredients, and address waste management 
challenges. This approach not only tackles feed scarcity but also 
improves food security, poverty reduction, and sustainable 
development in LIFDCs.

3.2 Environmental impact of disposing 
cashew apple, papaya, and mango wastes 
in landfills and their contribution to 
greenhouse gas emissions

When fruit by-products such as cashew apple, papaya, and mango 
are not repurposed as livestock feed and are instead disposed of in 
landfills, they present significant environmental challenges. These 
wastes, rich in organic matter and moisture, decompose anaerobically 
in landfills, releasing methane (CH₄)—a potent greenhouse gas with 
a global warming potential 27.9 times greater than that of carbon 
dioxide (CO₂) (Williams, 2008; Sunil and Tapan, 2008). This process 
contributes to greenhouse gas emissions, soil and water contamination 
and, ultimately, climate change (Richard et  al., 2018; Zahid and 
Khedkar, 2021). Methane emissions from landfills play a considerable 
role in global warming, accounting for approximately one-fifth of 
anthropogenic climate impact (Groffman et al., 2010).

Globally, landfills emit an estimated 30–70 million tons of CH₄ 
annually, representing 6–18% of global methane emissions, with levels 
expected to rise in developing countries due to increasing waste 
generation (Rena et al., 2020; Robinson et al., 2003; Bingemer and 
Crutzen, 1987). Beyond methane, the high moisture content in cashew 
apple, papaya, and mango wastes may contribute to the production of 
leachate—a toxic liquid by-product of landfill decomposition (Venna 
et al., 2021; Chinwendu et al., 2019; Sharma et al., 2020). Leachate can 
contain heavy metals and pathogens, posing serious risks to soil, 
groundwater, and surrounding ecosystems (Iravanian and Ravari, 
2020; Baderna et al., 2019). The presence of high concentrations of N 
and P in leachate can contribute to eutrophication if it enters water 
bodies, potentially causing algal blooms that disrupt aquatic 
ecosystems. Due to their rapid decomposition and high moisture 
content, these fruit wastes contribute disproportionately to methane 
emissions and leachate production, making them particularly 
problematic in landfills.

Repurposing fruit wastes within a circular economy framework 
provides a sustainable alternative that reduces the environmental 
footprint and enables productive reuse (Leong and Chang, 2022). By 
diverting these by-products as livestock feed, the demand for 
conventional feed is lowered while providing additional nutritional 
benefits (Leong and Chang, 2022; Tayengwa and Mapiye, 2018). 
Cashew, papaya, and mango by-products are rich in cellulose, 
polyunsaturated fatty acids, and phytochemicals, all of which can 
improve animal nutrition and productivity (Tayengwa and Mapiye, 

https://doi.org/10.3389/fsufs.2025.1529837
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Anim-Jnr et al. 10.3389/fsufs.2025.1529837

Frontiers in Sustainable Food Systems 04 frontiersin.org

2018; Jalal et  al., 2023). Studies show that incorporating fruit 
by-products in ruminant diets improves digestibility, milk yield, and 
antioxidant levels in meat (Jalal et  al., 2023; Sahoo et  al., 2021). 
Transforming these fruit wastes into valuable feed resources aligns 
with circular economy principles, promoting sustainable agriculture, 
decreasing landfill dependency, and mitigating environmental impacts.

3.3 Systems thinking perspective of using 
fruit by-products as a sustainable solution 
to inadequate small ruminant feeds in 
LIFDCs

A systems thinking approach provides a holistic framework for 
addressing feed scarcity for small ruminants in LIFDCs. The 

integration of fruit by-products into livestock systems (Figure  1) 
provides a sustainable solution to seasonal feed shortages caused by 
dry seasons and erratic rainfall, which limit conventional feed 
availability and reduce livestock productivity.

Valorizing fruit by-products—transforming waste into nutrient-
rich feed—presents an efficient way to address feed scarcity and 
manage agricultural waste. By-products like mango peels, cashew 
apple pomace, and papaya seeds, which are often discarded, can 
be  repurposed as valuable feed resources rich in nutrients and 
bioactive compounds. This process supports consistent feed 
availability during periods of scarcity, as shown in Balancing Loop 
(B1) in Figure  1. Improved feed access enhances small ruminant 
productivity and health, resulting in higher meat quality and 
availability (Mayberry et  al., 2018). This increase helps meet the 
growing demand for animal-sourced foods, driven by efforts to 

FIGURE 1

A causal loop diagram depicting the beneficial role of fruit by-products in the meat industry value chain. The arrows represent causality, whereas the 
polarity indicators, + and −, represent positive and negative correlation. B stands for balancing system loops, and R stands for reinforcing loops.
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address protein and iron deficiencies in LIFDCs (Fairweather-
Tait, 2023).

Integrating fruit by-products also creates a positive feedback loop, 
as depicted in Reinforcing Loop (R2) in Figure  1. This loop 
demonstrates how reduced waste and improved livestock productivity 
contribute to both economic and environmental sustainability. 
However, barriers such as limited processing infrastructure and low 
farmer awareness hinder widespread adoption. Policies that promote 
fruit by-product use—through subsidies, farmer education programs, 
and investments in preservation infrastructure—are critical for scaling 
up these practices.

The valorization of fruit by-products addresses feed scarcity, 
enhances meat quality, and improves household incomes while 
supporting environmental sustainability. Figure 1 encapsulates this 
interconnected system, illustrating how integrating fruit by-products 
into small ruminant production fosters mutual benefits for farmers, 
livestock, and the environment.

4 Overview of mango, cashew, and 
papaya by-products

Mango, cashew, and papaya by-products are particularly 
promising options for alternative livestock feed due to their 
abundance, nutrient content, and environmental benefits. These 
examples are drawn from their economic importance and substantial 
production volumes in tropical regions, especially in Low-Income 
Food-Deficit Countries (LIFDCs), where they contribute significantly 
to agricultural outputs. For instance, mango production generates 
35–55% by-products as waste (Tesfaye, 2017), with potential quantities 
reaching 16,180 tons in some areas of sub-Saharan Africa (Millogo 
et al., 2024). Similarly, cashew nut production produces 36.9 million 
tons of cashew apple waste annually (Van Walraven and Stark, 2023), 
and papaya processing generates up to 20% of the fruit’s weight as 
by-products (Shaheen et  al., 2023). These by-products—such as 
mango peels and seeds, cashew apple pomace, and papaya peels—offer 
a practical solution to feed scarcity faced by smallholder farmers in 
these regions. Rich in fiber, antioxidants, and essential nutrients, these 
by-products can enhance ruminant diets, with potential to improve 
animal performance and product quality. However, studies on their 
use in ruminant feed, particularly for small ruminants, remain limited, 
leaving gaps in understanding their effects on animal health and 
production. Incorporating such by-products into livestock diets also 
aligns with environmental goals, as it reduces landfill waste and 
supports a circular economy by transforming agricultural waste into 
a valuable resource.

4.1 Mango by-product

Mango (Mangifera indica) is the second most traded tropical fruit 
globally (Mwaurah et  al., 2020). However, mango processing for 
juices, jams, and desserts utilizes only the pulp, leaving the seed and 
peel as major by-products. The seed, comprising the seed coat and 
kernel, accounts for 24–60% of the fruit mass, while the peel (exocarp) 
constitutes 7–24% (Mwaurah et al., 2020; Marçal and Pintado, 2021). 
Mango seed kernels contain approximately 15% oil, comparable to 
cottonseed and soybean oil (18–20%) (Mwaurah et al., 2020). The 

extracted oil has low free fatty acid and peroxide values, requiring 
minimal processing for use (Owino and Ambuko, 2021).

Mango peels, on the other hand, are rich in energy, dietary fibre, 
carbohydrates, protein, and lipids (Garcia-Amezquita et  al., 2018; 
Marcillo-Parra et al., 2021). They are also a concentrated source of 
bioactive compounds, including anthocyanins, carotenoids, 
flavonoids, and polyphenols, which are known for their antioxidant 
activity and therapeutic properties (Ranganath et al., 2018; López-
Cobo et al., 2017; Barreto et al., 2008; Serna-Cock et al., 2016; Asif 
et al., 2016; Dorta et al., 2012). Notably, mango peels contain higher 
polyphenol levels than mango pulp, making them a valuable feed 
resource for enhancing the nutritional quality of low-quality fodder, 
forage, and pastures fed to small ruminants.

4.2 Cashew by-product

Cashew (Anacardium occidentale) is a pseudocarp (false fruit) 
non-climacteric fruit grown in parts of South America, Asia, and most 
West African countries. Primarily cultivated for its nut, cashew ranks 
third globally after almonds and walnuts (Rajkumar and Ganesan, 
2021; Preethi et al., 2021). The nut represents only about 10% of the 
fruit, leaving approximately 3 million tonnes of cashew apples 
discarded annually in sub-Saharan Africa after nut harvesting (Ahaotu 
and Ihekoronye, 2019; Aidoo et al., 2022; Deenanath et al., 2015). In 
Ghana, the cashew harvest season aligns with the dry season, a period 
of low forage availability and high feed costs, making cashew apples a 
valuable but underutilized feed resource for addressing seasonal feed 
shortages. However, their strong astringency, perishability, and limited 
processing infrastructure often lead to disposal (Akyereko et al., 2022).

Nutritionally, cashew apples are rich in sugars (fructose, glucose, 
and sucrose) ranging from 7.28 to 9.41%, providing a readily available 
energy source for livestock (Rithy et al., 2022). They are also high in 
vitamin C (200–300 mg/100 g), which is about five times that of citrus 
fruits and ten times that of pineapples (Preethi et al., 2019; Lowor and 
Agyente-Badu, 2009). This high vitamin C content, combined with 
phenolic compounds (221–325 mg GAE/100 mL), contributes to their 
strong antioxidant capacity (Rithy et al., 2022; Figueroa-Valencia et al., 
2019). Notably, as the fruit ripens, phenolic content decreases while 
vitamin C levels and antioxidant capacity increase, potentially 
enhancing the health benefits for livestock (Gordon et al., 2012).

The primary flavonoids in cashew apples are myricetin and 
quercetin derivatives, known for their antioxidant properties (Gordon 
et al., 2012). Beyond antioxidants, cashew apples and their residues 
(pomace or bagasse) contain cellulose, hemicellulose, pectin, protein, 
carbohydrates, and essential minerals like calcium, phosphorus, and 
iron. For this review, “cashew by-product” refers to discarded cashew 
apple, pomace, or bagasse.

4.3 Papaya by-products

Papaya (Carica papaya) is a perennial herbaceous plant belonging 
to the family Caricaceae. The fruit, commonly called papua or 
pawpaw, is popular in almost all tropical countries. The global papaya 
production reached 13 million tonnes in 2017, with Nigeria being the 
leading producer in SSA countries (Altendorf, 2019). Papaya is most 
often consumed in the raw state or processed into jams, candy and 
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other value-added products. The papaya plant is interesting because 
nearly every part of it, including the roots, leaves, peels, latex, flowers, 
fruits, and seeds, has nutritional and therapeutic value; thus, it earned 
the names “tree of health” and “fruit of long life” (Ali et al., 2011). Two 
important by-products of papaya are the seeds and peels, which 
represent up to 8.5 and 12%, respectively, of the total papaya fruit 
weight (Abdel-Hay et al., 2022).

5 Nutrient and bioactive profiles of 
mango, cashew apple, papaya 
by-products

5.1 Nutrient composition of cashew 
pomace, mango, and papaya peels

The crude protein (CP) content of mango peels ranges from 
26.5–91 g/kg dry matter (DM), while cashew pomace ranges from 
54.5–187 g/kg DM and up to 128–240 g/kg DM in certain varieties 
(Table 1). Papaya peels contain higher CP levels, exceeding 110–130 g/
kg DM, sufficient for maintenance and moderate growth in small 
ruminants (Asaolu et al., 2011). However, mango peels and some 
varieties of cashew pomace require supplementation with other feed 
resources to meet the minimum CP requirement of 80 g/kg DM 
necessary for optimal rumen microbial activity (Asaolu et al., 2012). 
Insufficient protein reduces the efficiency with which growing animals 
utilize metabolizable energy (Ranjhan, 2001).

Mango peels have lower fat content than cashew pomace and 
papaya peels (Table 1), though all fall within the recommended range 
(<80 g/kg DM). Moderate dietary oil supplementation, up to 5% of 
dry matter intake, generally does not impair nutrient intake or 
digestibility, though higher levels can inhibit fiber digestion by 
suppressing cellulolytic bacteria (Cosgrove et al., 2008; Maia et al., 
2012; Ibrahim et al., 2021). It is critical to limit dietary oil as ether 
extract (EE) levels above 5% of total energy intake may negatively 
affect carbohydrate digestion in the rumen (Bauman et al., 2003).

Fiber analysis of these by-products is limited, as shown in Table 1. 
Ensiled cashew pomace generally exhibits higher neutral detergent 
fiber (NDF) and acid detergent fiber (ADF) values compared to 
mango and papaya peels, which fall within ranges of 118–237 g/kg 
DM and 60.2–205 g/kg DM, respectively. These differences underscore 
the importance of further research to characterize fiber content and 
optimize their use in ruminant diets.

While limited information is available on the mineral composition 
of cashew pomace, mango, and papaya peels (Table 2), their calcium, 
phosphorus, and magnesium content generally align with the 
recommended maintenance needs of ruminants. For example, these 
by-products can support daily intakes of 15.4 mg Ca/kg, 16 mg P/kg, 
and 12–16 mg Mg/kg body weight, respectively (NRC, 2007; Bakshi 
and Wadhwa, 2013). However, the bioavailability of these minerals 
varies depending on their form and concentration. Minerals bound in 
complexes such as oxalates, phytates, or tannin-mineral complexes 
may have reduced availability, impacting nutrient utilization in the 
rumen. While rumen microbes can release certain minerals, such as 
phosphate from phytate complexes, others, like oxalates, remain less 
bioavailable, limiting absorption and utilization.

Additionally, these by-products, while rich in minerals, may fall 
short in key amino acids such as methionine and cysteine, which are 

essential for maintenance in ruminants (NRC, 2016). Addressing this 
limitation requires further research into their amino acid profiles and 
strategies to balance diets accordingly. The nutritional composition of 
fruit by-products is highly variable, influenced by factors such as fruit 
cultivar, maturity stage, soil conditions, production site, and 
processing methods (Alañón et al., 2019; Dorta et al., 2014). These 
variations highlight the need for thorough characterization of fruit 
by-products to optimize their use in small ruminant diets, improving 
nutrient utilization and feed efficiency.

The addition of cashew apple, mango, and papaya by-products to 
ruminant diets enhances nutritional balance by improving key feed 
characteristics such as dry matter (DM) content, acidity, and nutrient 
availability in silages and total mixed rations (Table  3). These 
by-products help maintain feed quality and consistency, promoting 
better digestion and nutrient absorption, even when partially replacing 
traditional feed ingredients. They also contribute to higher crude 
protein (CP) levels, making them useful for protein supplementation. 
For instance, dehydrated cashew apple and bagasse increase CP, 
enhancing protein availability, while mango meal and peel silage 
elevate CP when used as corn substitutes in mixed rations (Araújo 
et al., 2022; Guerra-Rivas et al., 2017; Pereira et al., 2013; Aung et al., 
2024). However, these increases should be balanced to avoid excess 
nitrogen, which may reduce feed efficiency.

By-products also raise ether extract (EE) levels, increasing the 
diet’s energy density. Cashew and mango by-products, such as cashew 
bagasse and mango meal, provide an energy source that meets high-
demand requirements in ruminants, although excess fat should 
be avoided to prevent impaired fiber digestion (Pereira et al., 2013; 
Aragão et al., 2012; Bain et al., 2016). Effects on fiber fractions vary: 
cashew bagasse generally lowers neutral detergent fiber (NDF) and 
acid detergent fiber (ADF), improving digestibility, while mango meal 
may occasionally increase ADF, affecting fiber quality (Guerra-Rivas 
et al., 2017; Aung et al., 2024). Balancing fiber content is essential to 
support rumen function and digestion.

These by-products also influence rumen stability. Cashew apple 
silages combined with maize cobs and rice bran increase NH₃-N, 
enhancing microbial protein synthesis, while mango peel in multi-
nutrient blocks lowers pH and NH₃-N, creating a stable rumen 
environment (Aung et al., 2024; Ferreira et al., 2015). Their inclusion 
in ruminant diets enhances protein and energy content while 
stabilizing key parameters like DM and pH. By-products such as 
mango pulp-peel mixes and papaya-based silages improve feed 
stability, palatability, and nutrient consistency (Sanon and Kanwe, 
2010; Shwerab et al., 2023; Wimalasiri and Somasiri, 2021; Marcos 
et al., 2020; Tai et al., 2020).

Incorporating cashew, mango, and papaya by-products into 
ruminant diets offers a sustainable and cost-effective alternative to 
traditional feed resources. When balanced appropriately, these 
by-products optimize feed efficiency, maintain rumen health, and 
promote environmental sustainability in livestock systems.

5.2 Bioactive composition of mango peel, 
cashew apple, and papaya peel for 
potential use in small ruminant feed

The bioactive profiles of mango peel, cashew apple, and papaya 
peel present unique nutritional properties that could support the 
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TABLE 1 Proximate composition1of Mango, cashew apple and papaya by-products.

Nature of 
sample

Moisture, % Crude 
protein, %

Ether Extract, 
%

Ash, % Carb, % Crude fibre, 
%

NDF, % ADF, % Energy, MJ/
kg

References

Mango peels

Freeze-dried 4.90–5.80 2.65–4.04 1.48–2.01 2.18–3.05 91.1–93.2 – – – 16.53–16.78 Marcillo-Parra et al. (2021)

Cryogenic ground 7.48–9.80 5.39–6.06 2.35–2.74 3.82–4.75 66.77–72.52 6.43–11.80 – – – Kaur and Srivastav (2018)

Fresh2 86.26 9.1 2.49 3.60 84.68 – 14.97 12.18 – Araújo et al. (2022)

Sun-dried 81.9 6.6 2.7 4.2 – – 23.7 20.5 10.5 Negesse et al. (2009)

Cashew apple residue /bagasse/pomace

Oven-dried @ 60°C 4.00 5.45 3.00 2.25 – 6.65 – – 13.35 Boateng et al. (2021)§

Ensiled; Oven-dried @ 

60°C

74.2 14.36 4.72 10.38 19.34 – 51.20 34.28 – Dele et al. (2013)

Oven-dried @ 50°C 6.82 9.65 5.43 1.42 76.68 – – – – Andrade et al. (2015)

Sun-dried 3d; oven-

dried

18.7 2.4 5.4 – 8.4 Fanimo et al. (2003)

Sun-dried 10.0 8.60 9.96 3.80 – 11.6 – – 14.48 Armah (2008)

Sun-dried 13.4 8.60 9.96 4.24 – 3.8 20.68 12.17 – Oddoye et al. (2009)

Oven-dried @ 60°C 87.22 12.2 0.86 1.57 – 4.64 – – – Tai et al. (2020)

Sun-dried 14 18.26 – – – – 72.23 56.56 – Ferreira et al. (2015)

Papaya peel

Sun-dried – 12.8 0.82 12.1 4.01 – 11.8 20.8 12.8 Melesse et al. (2018)

Sun-dried 89 24.1 4.2 13.8 – – 20.3 20.3 9.9 Negesse et al. (2009)

Oven-dried 13.28–13.74 15.03–18.18 2.07–2.44 11.31–11.85 9.67–23.3 – – – – Santos et al. (2014)

Sun-dried 3d 3.71–4.15 3.50–10.30 3.05–22.30 13.30–15.03 27.00–52.22 26.20–27.10 – – 4.44–6.10 Akintunde et al. (2022)

Sun-dried – 13.86 – – – 49.7 13.04 18.61 –
Wimalasiri and Somasiri 

(2021)
Ensiled; Oven-dried @ 

55°C

88.34 1.15 2.65 8.62 – 15.40 18.72 24.32 2.08

Ensiled; Oven-dried @ 

65°C

93.00 11.5 1.5 – – – 22.2 21.2 – Yang et al. (2016)

Oven-dried @ 50°C for 

72 h

13.2 18.72 2.2 11.6 – – 40.65 24.50 – Jafari et al. (2020)

1Values are on dry matter basis unless otherwise stated.
2Material consists of peels, seeds and mangoes that did not meet export requirements.
§Values are on “As is” basis.
Carb, carbohydrates; NDF, neutral detergent fiber; ADF, acid detergent fiber.
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TABLE 2 Mineral composition of mango, cashew apple and papaya by-products.

Major, mg/g Trace, mg/g References

Nature of 
sample

Na Mg P K Ca Mn Fe Cu Zn

Mango peel

1.1 4.1–21.5 59.9–135.3 30.1–158.66 23.9–94.8 18.17–58.66 0.18 0.68–2.62 0.34–1.58 Kaur and Srivastav (2018)

0.26 1.16 0.92 11.20 2.77 0.03 0.02 - 0.001 Sancho et al. (2015)

1.07 1.17 - 4.44 0.60 0.003 0.03 0.002 0.01 Singh et al. (2016)

0.17–0.18 0.50–0.56 - 0.16–0.19 0.75–0.87 0.0003–0.0005 0.05–0.1 0.001 - Imran et al. (2013)

Cashew apple residue /bagasse/pomace

– 4.45 15.33 15.60 26.10 1.84 17.96 41.92 3.11 Preethi et al. (2021)

5.6 – 6.0 16.5 7.2 – – – – Oddoye et al. (2009)

0.25 1.03 1.28 4.92 0.34 0.02 0.02 - 0.01 Sancho et al. (2015)

Papaya peel

0.68 2.54 3.91 44.1 3.99 6.54 0.10 0.001 0.02 Melesse et al. (2018)

– 2.10–2.96 5.27–5.48 20.46–20.75 2.96–3.38 3.18–3.37 0.03 0.01 0.03 Santos et al. (2014)

0.30–0.90 1.70 0.01–0.02 2.30–4.0 3.20–3.90 0.02 0.57 – – Akintunde et al. (2022)

0.98 1.03 8.07 43.00 2.84 0.01 0.03 - 0.02 Sancho et al. (2015)
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TABLE 3 Effects of cashew, mango and papaya by-products containing phytonutrients on the chemical and physicochemical composition of ruminant diets.

Fruit 
by- 
product

Study 
intervention

Inclusion 
level

DM OM CP EE Ash NDF ADF Lig NDIN ADIN TC TDN pH NH3-N References

Cashew 

apple

Inclusion of 

dehydrated cashew 

apple in TMR at 

four different 

inclusion levels

Up to 33% = nd = = ↑ ↑ ↑ ↑ nd nd = ↓ nd nd Araújo et al. 

(2022)

Cashew 

apple

Silages made from 

100% cashew apple 

fruit (CAF); 75% 

CAF and 25% maize 

cobs;75% CAF, 

12.5% maize cobs, 

and 12.5% rice bran

75–100% ↓ nd ↑ nd nd nd nd nd nd nd nd nd ↑ ↑ Tai et al. (2020)

Cashew 

bagasse

Addition of 

dehydrated cashew 

bagasse to elephant 

grass silage at four 

varying levels

Up to 20% ↑ nd ↑ ↑ nd ↓ ↓ ↑ ↑ ↑ = = ↓ ↓ Guerra-Rivas 

et al. (2017)

Cashew 

fruit flour

Supplementation of 

soybean oil calcium 

soap (SOCS) and 

SOCS + cashew fruit 

flour (CFF) in 

rations

5% SOCS 

+10% CFF

= = = ↑ nd nd nd nd nd nd nd nd nd nd Bain et al. 

(2016)

Cashew 

processing 

product

Dried cashew 

processing product 

replaced corn at five 

different levels in a 

TMR

Up to 100% 

in TMR

= = = = = ↑ ↑ nd ↑ ↑ nd nd nd nd Souza et al. 

(2020)

Dried 

cashew 

apple

Inclusion of dried 

cashew bagasse (as 

fed) in elephant 

grass silage at four 

varying levels

Up to 14% ↑ ↑ nd nd nd nd ↑ ↑ ↑ nd nd nd nd Ferreira et al. 

(2015)

Mango 

meal

Inclusion of mango 

meal at four levels to 

replace corn in TMR

Up to 100% = nd ↑ ↑ nd = ↑ nd nd nd = nd nd nd Pereira et al. 

(2013)

(Continued)
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TABLE 3 (Continued)

Fruit 
by- 
product

Study 
intervention

Inclusion 
level

DM OM CP EE Ash NDF ADF Lig NDIN ADIN TC TDN pH NH3-N References

Mango 

meal

Replacement of corn 

meal with mango 

meal at four levels

Up to 100% = nd = ↑ nd = ↑ nd nd nd = nd nd nd Aragão et al. 

(2012)

Mango 

peel silage

Total mixed ration 

contained 30% 

ensiled mango peel 

silage

30% ↑ ↑ = nd nd ↓ ↓ nd nd nd nd = nd nd Aung et al. 

(2024)

Mango 

peels

Multi-nutrient 

blocks (MB) with 

either avocado or 

mango wastes (pulp-

peel) and of mixed 

diets including MB 

and alfalfa hay in a 

50:50 ratio

29% ↓ = ↓ ↑ nd ↑ ↑ ↑ nd nd nd nd ↓ nd Marcos et al. 

(2020)

Mango 

peels

Addition of 

increasing levels (0, 

5, 10, 15, and 20%) 

of mango by-

products to elephant 

grass silage.

Up to 20% ↑ nd ↑ = nd ↓ ↓ nd nd nd nd nd = ↓ Sá et al. (2007)

Mango 

peels and 

kernels

Different 

combinations of 

mango by-products 

(peels; seed kernels; 

peels-seed kernels 

mix) offered in 

addition to rice 

straw

N/A = nd ↑ ↑ ↑ ↓ nd nd nd nd nd nd nd nd Sanon and 

Kanwe (2010)

(Continued)
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TABLE 3 (Continued)

Fruit 
by- 
product

Study 
intervention

Inclusion 
level

DM OM CP EE Ash NDF ADF Lig NDIN ADIN TC TDN pH NH3-N References

Mango 

pulp-peel 

mix

A mixture of mango 

pulp and peels 

prepared in a ratio 

of 0.65:0.35 included 

at a rate of 290 g per 

kg (as fed) in a 

multi-nutrient block 

and compared to a 

concentrate

29% in 

Multi-

Nutrient 

Blocks

= = = ↓ nd ↑ ↓ ↑ nd nd nd nd nd nd de Evan et al. 

(2022)

Mango 

residue

Inclusion of four 

levels of mango 

residue in mixed 

silages of elephant 

grass and cassava 

peels

Up to 30% ↓ ↑ ↑ ↑ nd ↑ ↑ nd nd nd nd nd nd nd Mello et al. 

(2019)

Mango 

seed 

kernel

Inclusion of different 

levels of mango seed 

kernels (0, 5, 10, 

20%) in concentrate 

feed mixtures

Up to 20% = = = ↑ = = = = nd nd nd nd nd nd Shwerab et al. 

(2023)

Papaya 

pomace

Four different 

concentrate 

mixtures contained 

varying levels of 

papaya pomace (0, 

10, 20, and 30%).

Up to 30% in 

concentrate 

mix

nd nd = = = ↓ ↑ nd nd nd nd nd nd nd Babu et al. 

(2006)

Pineapple, 

papaya 

peels

Different 

combinations of 

fruit peels 

(pineapple and 

papaya) and grass 

were used to make 

the silage

25–100% 

papaya peels

↓ nd x ↑ ↓ ↑ ↑ nd nd nd nd ↑ ↑ nd Wimalasiri and 

Somasiri (2021)

(Continued)
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health and productivity of small ruminants, especially in feed-scarce 
regions. Cashew apple is particularly rich in phenolic compounds, 
ranging from 13.20 to 2070 mg GAE/g, as well as in flavonoids (up to 
109.03 mg CE/g) and ascorbic acid (up to 1,063 mg AAE/g) (Table 4). 
These high antioxidant levels could enhance immune function in 
small ruminants by protecting against oxidative stress, a common 
challenge in arid and nutrient-poor grazing environments (Chauhan 
et al., 2014; Paul and Dey, 2015). Additionally, cashew apple contains 
adequate levels of carotenoids, which may support immune health and 
reduce inflammation (Paul and Dey, 2015; Oh et al., 2017), and it has 
moderate tannin and anthocyanin contents that could offer 
antimicrobial benefits (Pathak, 2013; Huang et al., 2018; Min and 
Solaiman, 2018). This robust bioactive profile suggests that cashew 
apples could improve overall health and resilience in small ruminants, 
potentially reducing reliance on medical interventions.

Mango peel has promising bioactive properties, with moderate 
phenolic content (16.14–100 mg GAE/g) and flavonoids ranging from 
22.16 to 79.5 mg CE/g (Table  3). Its antioxidant activity, reported 
between 21.19 and 53.90 mM Trolox/100 g, is comparable to cashew 
apple, which could help mitigate oxidative stress in small ruminants. 
Additionally, mango peel provides ascorbic acid in the range of 
349–392 mg/kg, offering a reasonable source of vitamin C. Although 
its carotenoid content is lower than cashew apple and papaya peel, 
mango peel’s antioxidant and anti-inflammatory properties could still 
support animal health, particularly during dry seasons when access to 
high-quality forage is limited. Mango peels also contain tannins (3.8–
7.49 mg CE/g), which might contribute to gastrointestinal health by 
reducing parasite load, a common issue in small ruminants. 
Additionally, at appropriate concentrations, tannins can bind to 
dietary protein, protecting it from rumen microbial degradation and 
increasing the availability of protein for absorption in the animal’s 
lower digestive tract.

In contrast, papaya peel has a lower phenolic and flavonoid 
content but is exceptionally high in carotenoids (76.89–86.90 mg/g) 
(Table 4), making it a valuable source of vitamin A precursors. This 
high carotenoid concentration could enhance vision, immune 
function, and reproductive health in small ruminants. Papaya peel 
also exhibits substantial antioxidant activity, reaching up to 283.5 mg 
GAE/g, which may further protect against oxidative stress and support 
health in challenging environmental conditions. Although lower in 
ascorbic acid (13–252.62 mg/kg), papaya peel’s unique bioactive 
profile makes it a good supplement.

6 Influence of feeding mango, cashew 
apple, and papaya by-products on 
small ruminant nutrition

6.1 Influence on voluntary intake

Incorporating cashew, mango, and papaya by-products into 
ruminant diets presents promising opportunities to enhance 
nutrient intake while supporting sustainable agricultural practices. 
Given that nutrient intake, especially dry matter (DM), is crucial for 
ruminant growth and development (Weiss, 2015), these by-products 
are commonly used in total mixed rations (TMR) or silage, replacing 
conventional forages. Cashew apple pomace and mango 
by-products, in particular, have been included in ruminant diets at T
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TABLE 4 Bioactive composition of mango peel, cashew apple, and papaya peel.

Total 
phenolics, mg 
GAE/g

Total 
flavonoids, mg 

CE/g

Total carotenoids, 
mg/g

Antioxidant 
activity

Tannins Condensed 
tannins

Anthocyanin Ascorbic 
acid

References

Mango peel

30.95–60.48
51.91–13.50* – 21.19–49.75† – – – –

Kaur and Srivastav 

(2018)

29.31–66.24
50.2–79.5# 0.04–0.06 23.20–53.90‡ – – – –

Marcillo-Parra et al. 

(2021)

151¶ – – – 130¶ 3.8¶ – – Negesse et al. (2009)

42.30 – – 44.49 – – 7.49 36.58 Sancho et al. (2015)

16.14–100 22.16 194–3,337 – – 3.60–5.65 349–392 Serna-Cock et al. (2016)

Cashew apple

197.76# 109.03* 67.20¦ 313§ 36.05¥ 78.50š Andrade et al. (2015)

70.20š

38.75š 0.45 š 43.50‡ 0.51š – 4.70š 252.62 š
Rajkumar and Ganesan 

(2021)

2070# 45§ 1063Æ – – – 65.25š Preethi et al. (2019)

13.20 – – 17.80 – – 2.46 30.49 Sancho et al. (2015)

Papaya peel

22¶ – – – 13¶ 1.1¶ – – Negesse et al. (2009)

7.00¶ – – – 0.50¶ 0.30¶ – – Melesse et al. (2018)

– – – – 76.89–86.90 – – – Akintunde et al. (2022)

303.1 – – – 283.5 173.9 – – Jafari et al. (2020)

34.65 – – 25.03 – – 11.56 121.95 Sancho et al. (2015)

#Expressed in mg (RE)/g.
§Expressed in mg catechin equivalent (CE)/100 g.
†Expressed in μg/ml using IC50.
‡Expressed in mM Trolox/100 g.
¶Expressed in g/kg.
¦Expressed in μg ß-caroteno equivalent/g.
¥Expressed in mg cyanidine-3-glycosides equivalent/100 g.
šExpressed in mg/100 g.
ÆAscorbic Acid equivalent (AAE).
*Expressed in mg quercetin equivalent (QE)/100 g.
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levels ranging from 100 g/kg DM to 600 g/kg of feed, and their 
effects on intake vary depending on inclusion levels and specific 
by-product type.

Research indicates that including cashew apple pomace and 
mango by-products at lower levels (up to 300 g/kg DM) tends to 
improve DM, crude protein (CP), neutral detergent fiber (NDF), 
and acid detergent fiber (ADF) intake in ruminants (Ferreira 
et  al., 2015; Sanon and Kanwe, 2010; Table  5). The increased 
intake at these levels may result from enhanced silage 
fermentation, which reduces the moisture content and minimizes 
rumen distension, thus encouraging greater consumption. These 
by-products, when ensiled with forage, undergo a reduction in 
overall moisture content, supporting better fermentation and 
producing a more palatable, digestible feed that ruminants are 
more likely to consume. Ensiling fruit by-products alone may not 
achieve similar outcomes due to their high moisture content and 
limited structural fiber, which can negatively affect 
fermentation quality.

In Ghana, small ruminants primarily graze on Napier grass, 
Bracharia, and Elephant grass. However, during the dry season, 
pasture availability declines, leading to nutrient deficiencies and 
reduced growth performance. Cashew apples, abundant during this 
period, offer an underutilized feed resource that can be preserved 
through ensiling. Feeding trials show that incorporating ensiled 
cashew apple and grass at inclusion levels of 20–30% improves diet 
quality, supports growth performance, and alleviates seasonal 
feed shortages.

Ensiling cashew apple with grass at these inclusion levels yields 
crude protein (CP) values of 7.00–8.32% and crude fiber (CF) content 
of 19.49–26.68%, improving digestibility and supporting higher 
average daily gain (Tompkins and Adger, 2004) and feed conversion 
efficiency (FCE). This makes cashew apple silage an effective 
dry-season ration, enhancing protein intake, reducing fiber content, 
and optimizing rumen fermentation for better nutrient utilization.

Valorizing cashew apples for livestock feed enhances small 
ruminant productivity, reduces waste, and promotes sustainability. 
Integrating these seasonal by-products into livestock systems 
strengthens smallholder resilience and aligns with circular 
bioeconomy practices.

At higher inclusion levels of cashew apple pomace with grass 
silage (above 300 g/kg DM), a decrease in DM intake in ruminants 
has been reported (Souza et al., 2020; Table 5). This reduction can 
be attributed to the increased concentration of condensed tannins, 
or proanthocyanins, which are primary phenolic compounds found 
in cashew apple pomace (Michodjehoun-Mestres et  al., 2009). 
Tannins in high concentrations—exceeding 50 g/kg DM—may 
hinder feed intake by forming complexes with proteins (that do not 
dissociate in the abomasum), resulting in a dry, astringent mouth-
feel that animals find unpleasant (Naumann et  al., 2017). This 
astringency discourages consumption, but ruminants have 
developed adaptive strategies for tannin-rich feeds. Ruminants like 
sheep and goats produce proline-rich proteins in their saliva that 
bind to tannins, forming tannin-proline-rich-protein complexes that 
reduce astringency and facilitate higher feed intake (Huang et al., 
2018). Goats, for instance, consistently produce these proteins, while 
sheep do so specifically when consuming tannin-rich diets. These 
adaptive mechanisms underscore ruminants’ resilience and ability 
to manage diets with moderate tannin levels.

Furthermore, these by-products contain beneficial phytonutrients, 
including antioxidants, which offer additional health benefits and can 
improve the quality of animal products. The antioxidant properties 
may enhance the health status of the animals, providing an added 
advantage beyond mere nutrient intake.

As shown in Table 5, the effects of cashew, mango, and papaya 
by-products on nutrient intake vary depending on the inclusion level, 
species, and specific by-product type. Moderate incorporation of these 
by-products improves DM and, either directly or indirectly, CP intake, 
provided the inclusion levels are carefully managed. Excessive 
amounts may deter intake due to tannin-related astringency, but the 
inherent adaptive strategies in ruminants help mitigate these effects. 
By balancing inclusion rates, livestock farmers can leverage these 
by-products to enhance productivity, animal health, and sustainable 
feeding practices.

6.2 Influence on nutrient digestibility

The incorporation of cashew apples, mango, and papaya 
by-products in ruminant diets has garnered attention for its potential 
benefits in nutrient utilization. However, digestibility outcomes vary 
widely, with numerous studies indicating that increased inclusion of 
these by-products, particularly above certain levels, can lead to 
declines in dry matter (DM), crude protein (CP), and neutral 
detergent fiber (NDF) digestibility (Table 5). Cashew by-products 
exhibit mixed effects on digestibility. Studies show that moderate 
inclusion (e.g., up to 14% in TMR) can improve DM and CP 
digestibility in ruminants, as seen with dried cashew apples in sheep 
diets (Ferreira et al., 2015). However, digestibility often decreases at 
higher levels, especially above 110 g/kg of feed. For instance, Rêgo, 
Neiva (Rêgo et  al., 2010) and Souza, Moraes (Souza et  al., 2020) 
reported that when cashew apple pomace is included at high levels in 
cattle diets, DM, CP, and NDF digestibility decreases.

This decline is attributed mainly to the presence of condensed 
tannins and other polyphenols, which form hydrogen bonds with 
proteins, carbohydrates, and fats, creating complexes that resist 
degradation in the rumen’s typical pH range of 5.7–6.7 (Naumann 
et al., 2017). However, these same tannins and polyphenols also have 
antioxidant properties that could offer health benefits by reducing 
oxidative stress and supporting immune function in ruminants. The 
antioxidant effects may be particularly beneficial at moderate inclusion 
levels, where they can enhance animal health without significantly 
impairing digestibility. Only when the feed reaches the abomasum 
(pH < 3.5) or duodenum (pH ~6) do these nutrient complexes 
dissociate, meaning fewer nutrients are available for absorption in the 
rumen, thus reducing overall digestibility. Balancing inclusion levels 
is therefore critical to maximize the antioxidant benefits of these 
by-products while minimizing any negative effects on 
nutrient availability.

Mango by-products, like mango meal and peels, show variable 
digestibility. At moderate inclusion levels, mango peels can enhance 
DM, OM, and CP digestibility due to their fermentable sugars, which 
stimulate rumen microbes (Aung et al., 2024). However, higher levels 
(above 110 g/kg of feed) tend to reduce digestibility, especially of fiber 
fractions like NDF. This reduction is partly due to tannins in mango 
peels, which exert antimicrobial effects on cellulolytic bacteria and 
protozoa—key contributors to fiber and protein breakdown in the 
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TABLE 5 Effects of cashew, mango and papaya by-products containing phytonutrients on nutrient intake and digestibility in ruminants.

Intake Digestibility

Fruit 
by-
product

Species Study Level DM OM CP EE CF NDF ADF DM OM CP EE CF NDF ADF DE NB References

Dried 
cashew 
apple

Sheep Nutritional evaluation of 
elephant-grass silages 
with different levels of 
by-products from the 
cashew juice industry

Up to 14% in 
silage

↑ nd ↑ nd nd ↑ ↑ ↑ nd = nd = = = = = Ferreira et al. 
(2015)

Cashew 
fruit flour

Bali Cattle 
(meat; 
blood)

Performance, Nutrient 
Digestibility, and Meat 
Quality of Bali Cattle

5% SOCS 
+10% CFF in 
TMR

= = nd nd nd nd nd = ↑ ↑ ↑ = = = nd nd Bain et al. 
(2016)

Cashew 
apple

Sheep Dehydrated cashew 
apples in different 
grinding sizes for sheep

Up to 33% in 
TMR

= = = nd nd = ↑ ↓ ↓ = nd nd ↓ ↓ nd = Araújo et al. 
(2022)

Cashew 
apple

Cattle Use of cashew apple fruit 
silage in cattle fattening

75% CAF in 
silage

= nd ↑ nd nd nd nd nd nd nd nd nd nd nd nd nd Tai et al. 
(2020)

Cashew 
processing 
product

Beef Cattle Cashew processing 
product as alternative 
energy feedstuff

Up to 100% in 
TMR

↑ = ↑ nd nd ↑ nd ↓ ↓ ↓ nd nd ↑ nd nd nd Souza et al. 
(2020)

Mango meal Sheep Productive performance 
of confined sheep fed 
with mango meal

Up to 100% = nd = nd nd = = nd nd nd nd nd nd nd nd nd Pereira et al. 
(2013)

Mango peel 
silage

Male Dairy 
Calves

Diet containing mango 
peel silage for dairy 
calves

30% in TMR ↑ ↑ ↑ nd nd = ↓ = = = nd nd = = nd nd Aung et al. 
(2024)

Mango peels 
and plantain

Goats Nutrient utilization and 
growth performance of 
West African Dwarf 
goats

13–18% in 
concentrate

nd = nd ↓ ↓ ↓ ↓ nd nd nd nd nd nd nd ↑ ↑ Bolaji et al. 
(2016)

Mango meal Lambs Mango meal in the diet 
of confined lamb

Up to 100% in 
conc

= = = = nd = nd = = = = nd = nd nd nd Aragão et al. 
(2012)

Mango peels 
and kernels

Sheep Chemical composition 
and digestibility of 
mango residues

– = nd ↑ nd nd nd nd ↑ nd nd nd nd nd nd nd nd Sanon et al. 
(2012)

Mango peels 
and kernels

Sheep Valorisation of mango 
peels and seed kernels

Offered ad 
libitum

↑ nd nd nd nd nd nd = nd nd nd nd nd nd nd nd Sanon and 
Kanwe (2010)

Mango 
pulp-peel 
mix

Goats Feeding mango wastes 
to dairy goats: Effects on 
diet digestibility, 
ruminal fermentation, 
and milk yield and 
composition

29% in Multi-
Nutrient 
Blocks

= = = nd = = = = = = = nd = = = = de Evan et al. 
(2022)

(Continued)
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rumen (Vasta et al., 2019; Christensen et al., 2017). Reduced protozoa 
populations, though not primary rumen microbes, can negatively 
impact digestibility as they play a complementary role in 
macronutrient degradation (Choudhury et al., 2015). Additionally, 
tannins may form complexes with proteins and other macronutrients, 
further limiting their availability for microbial utilization. Balancing 
inclusion levels is critical to maximize the benefits of mango 
by-products while minimizing negative impacts on 
nutrient digestibility.

Papaya by-products, particularly peels and pomace, demonstrate 
more consistent digestibility than cashew apple and mango. At 
moderate inclusion levels (10–30%), papaya peels improve CP and EE 
digestibility due to their nutrient composition, which supports 
balanced rumen fermentation (Azevêdo et al., 2011). However, at 
levels exceeding 11% (110 g/kg DM), diminished DM, CP, and NDF 
digestibility may occur, potentially due to higher tannin 
concentrations forming stable protein-polyphenol complexes. 
Naumann, Tedeschi (Naumann et al., 2017) noted increased fecal 
nitrogen excretion at higher tannin levels as an indicator of inhibited 
protein digestibility.

Cashew apple, mango, and papaya by-products can enhance 
digestibility in ruminants at moderate inclusion levels, but higher 
inclusions often yield diminishing or adverse effects on digestibility. 
The threshold appears to be  around 110 g/kg, above which 
polyphenols and tannins exert pronounced effects on nutrient 
utilization, forming nutrient-binding complexes and reducing 
microbial populations essential for fiber and protein breakdown. This 
microbial reduction impacts cellulolytic bacteria and protozoa, 
subsequently lowering fiber, protein, and fat digestibility (Vasta et al., 
2019; Choudhury et al., 2015).

6.2.1 Recommended inclusion levels of fruit 
by-products in ruminant diets

Careful attention to inclusion levels is therefore critical in 
harnessing the digestibility benefits of these by-products in sustainable 
ruminant diets. Given the nutritional composition and digestibility 
characteristics of mango, cashew apple, and papaya by-products, their 
strategic incorporation into ruminant feeding systems presents a 
viable approach to enhancing animal performance while mitigating 
food waste and promoting circular economy principles.

To provide clearer guidance, the following recommended 
inclusion levels are proposed for different ruminant categories:

 i. Pre-weaned and Growing Ruminants: Diets can include up to 
20–30% mango peel silage in total mixed rations (TMR) to 
enhance dry matter intake (DMI), organic matter (OM) and 
crude protein (CP) digestibility in dairy calves (Aung et al., 
2024). Similarly, up to 30% papaya pomace in concentrate 
mixtures supports nutrient utilization in growing buffaloes 
(Babu et al., 2006). Higher inclusion levels should be managed 
carefully to avoid tannin-induced protein-binding effects, 
which could reduce protein availability.

 ii. Fattening and Finishing Ruminants: Up to 33% cashew apple 
residue in TMR has shown no adverse effects on digestibility 
while improving neutral detergent fiber (NDF) digestibility, 
which is crucial for efficient fiber utilization (Araújo et  al., 
2022). Papaya peels, included at levels between 10 and 30%, 
have been found to enhance CP and ether extract (EE) T
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digestibility in bovines (Azevêdo et al., 2011). Additionally, 
mango meal can replace maize meal entirely in lamb and sheep 
diets without compromising performance, making it a viable 
energy source (Pereira et al., 2013; Aragão et al., 2012).

 iii. Pregnant and Lactating Ruminants: Up to 30% mango peel or 
papaya pomace in multi-nutrient blocks has demonstrated 
improvements in digestibility without negatively affecting 
rumen fermentation, making them suitable dietary 
supplements for lactating animals (de Evan et al., 2022). Mango 
peels and kernels, when offered ad libitum, have also been 
reported to enhance nitrogen retention in sheep, optimizing 
protein utilization in dairy production systems (Sanon and 
Kanwe, 2010). Additionally, cashew apple silage at levels up to 
75% in TMR can support increased protein intake and energy 
balance in pregnant and lactating animals (Tai et al., 2020).

 iv. Mature Ruminants: These animals exhibit higher tolerance 
levels for fruit by-products, allowing mango meal to replace 
maize up to 100% in TMR (Pereira et al., 2013; Aragão et al., 
2012) and cashew processing products to be incorporated at 
similar levels (Souza et al., 2020). Such inclusion rates provide 
cost-effective energy sources while ensuring adequate 
fiber intake.

During periods of forage scarcity, particularly in dry seasons, 
high-fiber diets incorporating fruit by-products can serve as essential 
nutritional interventions. The use of cashew apple silage combined 
with maize cobs at inclusion levels of 75–100% has been shown to 
enhance crude protein and dry matter intake, providing a viable 
roughage alternative during seasonal feed shortages (Tai et al., 2020). 
Similarly, the inclusion of mango peel at up to 20% in elephant grass 
silage has been observed to maintain digestibility while offering a 
fiber-rich alternative to conventional forages (Sá et al., 2007).

The incorporation of mango, cashew apple, and papaya 
by-products presents a viable strategy for improving ruminant 
nutrition while promoting sustainability. To maximize their benefits, 
future research should focus on refining optimal inclusion levels, 
evaluating their interactions with conventional feed ingredients, and 
assessing their long-term effects on animal health and productivity. A 
well-balanced integration of these by-products into ruminant diets 
can enhance both nutritional efficiency and environmental  
sustainability.

6.3 Influence on rumen fermentation 
parameters

Limited research exists on the effects of cashew apple, mango, and 
papaya by-products in ruminant diets, particularly regarding rumen 
fermentation parameters (Table 6). However, existing studies show 
promising results, with rumen pH values generally within the optimal 
range of 5.5–6.9, supporting efficient fiber and protein breakdown by 
rumen microflora (Shwerab et al., 2023; Omer et al., 2019). Cashew 
by-products have minimal effects on fermentation, with high inclusion 
levels slightly increasing pH and ammonia but having little impact on 
other markers (Tai et al., 2020). Mango by-products, including peel 
and meal, boost total volatile fatty acids (TVFA) and reduce methane 
emissions in sheep and goats, improving nutrient utilization and 
environmental sustainability (Aung et al., 2024; de Evan et al., 2022; 

Jafari et al., 2020). Papaya by-products, particularly pomace, reduce 
ammonia levels and increase TVFA, enhancing nitrogen retention and 
fermentation efficiency without altering rumen pH (Babu et al., 2006). 
Replacing corn with ripe mango waste in lamb diets stabilized 
fermentation while lowering protozoal counts, suggesting benefits for 
microbial modulation (Espinoza-Sánchez et al., 2020).

Acetate and propionate, the primary volatile fatty acids (VFAs) 
produced in the rumen, play critical roles in energy utilization. 
Acetate supports fat synthesis, while propionate serves as the main 
glucose precursor, promoting growth and lactation. By-products 
rich in fermentable carbohydrates, such as mango pulp-peel mix, 
tend to increase propionate production relative to acetate 
(Table 5). For instance, mango pulp-peel mix at 290 g/kg in goat 
diets resulted in propionate levels of 12.8 mol/100 mol VFA and 
acetate levels of 68.6 mol/100 mol, lowering the acetate-to-
propionate ratio, which supports efficient glucose synthesis (de 
Evan et  al., 2022). This shift improves energy utilization and 
reduces hydrogen availability for methane synthesis, potentially 
lowering methane emissions (Wanapat et al., 2024; Van der Walt 
and Linington, 1989).

Butyrate production is generally enhanced by the inclusion of 
these by-products, supporting energy supply and rumen epithelial 
health, which benefits overall animal productivity. For example, 
mango pulp-peel mix in goats led to a butyrate concentration of 
14.0 mol/100 mol VFA, contributing to improved energy distribution 
and a potentially well-balanced VFA profile, depending on the relative 
concentrations of acetate and propionate (de Evan et  al., 2022). 
Cashew apple silage has also been associated with increased butyrate 
concentration in the rumen, where it aids in efficient microbial protein 
synthesis and nitrogen utilization in ruminants (Tai et al., 2020). The 
production of butyrate during the ensiling process may not directly 
affect microbial activity in the rumen but reflects fermentation quality, 
which influences the silage’s overall nutritional value.

Ammonia-nitrogen (NH3–N) is a critical parameter in rumen 
fermentation, as NH3–N levels directly influence microbial protein 
synthesis. Ideal NH₃–N concentrations for optimal microbial growth 
in the rumen typically range from 12 to 15  mg/100 mL, but this 
depends on the availability of fermentable organic matter (FOM) and 
the rate of its fermentation. These factors influence the energy 
available for microbes to convert NH₃–N into microbial protein 
(Shwerab et al., 2023). Mango by-products, particularly mango seed 
kernel, have been shown to support this range effectively. For instance, 
mango seed kernel included at levels of 50, 100, and 200 g/kg in sheep 
diets produced NH3–N concentrations of 13.23, 12.42, and 
12.81 mg/100 mL, respectively (Shwerab et al., 2023). Similarly, an 
inclusion level of 225 g/kg of mango seed kernel in sheep diets resulted 
in an NH3–N concentration of 15.74 mg/100 mL, within the optimal 
range to support microbial growth (Omer et al., 2019).

The effectiveness of mango-based diets in promoting nitrogen 
retention may be due to their moderate protein content combined 
with bioactive compounds that influence rumen function. Mango 
by-products, especially seed kernels, contain polyphenols that can 
reduce the rate of protein degradation in the rumen, leading to a more 
gradual release of ammonia. This slower degradation may help 
maintain NH₃–N within the ideal range, allowing for steady microbial 
protein synthesis without excessive nitrogen loss. Furthermore, 
low-protein diets have been shown to promote nitrogen retention 
efficiency through enhanced renal urea reabsorption and the 
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TABLE 6 Effects of cashew, mango and papaya by-products containing phytonutrients on growth performance, rumen fermentation end-products, and methane production.

Fruit by-
product

Species Study Level ADG FCR FCE pH NH3-N TVFA C2 C3 C4 CH4 References

Cashew fruit flour Bali Cattle Performance, nutrient digestibility, and meat 

qualBaliof bali cattle

5% SOCS +10% CFF = = nd nd nd nd nd nd nd Bain et al. (2016)

Cashew apple Cattle Use of cashew apple fruit silage in cattle fattening 75% CAF in silage = = ↑ ↑ nd = nd ↑ nd Tai et al. (2020)

Cashew processing 

product

Beef Cattle Cashew processing product as alternative energy 

feedstuff

Up to 100% in TMR nd nd nd nd ↓ nd nd nd nd nd Souza et al. (2020)

Mango meal Sheep (Santa Ines) Productive performance of confined sheep fed 

with mango meal

Up to 100% = = nd nd nd nd nd nd nd Pereira et al. (2013)

Mango peel silage Male Dairy Calves Diet containing mango peel silage for dairy 

calves

30% in TMR ↑ nd ↑ nd nd nd nd nd nd nd Aung et al. (2024)

Dried mango peel Sheep Comparison of fermentation kinetics (in vitro) of 

Napier grass and fruit peels for ruminants: the 

pattern of organic matter degradability, volatile 

fatty acids concentration, estimated methane and 

microbial biomass production

10% in concentrate nd nd nd nd nd ↑ ↓ ↑ ↑ ↓ Okoruwa and Igene 

(2014)

Mango peels Goats Nutrient utilization and growth performance of 

west African Dwarf goats

13–18% in 

concentrate

↑ ↑ nd nd nd nd nd nd nd nd Bolaji et al. (2016)

Mango peels Dairy cows Food waste valorization: mango peels enhance 

in vitro rumen microbial fermentation

Offered ad libitum nd nd nd = ↓ ↑ nd nd nd nd Garavaglia and Tedesco 

(2015)

Mango peels In vitro Influence of pectins, processed mango peels, and 

phenolic mango peel extract

N/A Geerkens et al. (2013)

Mango peels and 

kernels

Sheep Valorisation of mango peels and seed kernels Offered ad libitum nd ↑ nd nd nd nd nd nd nd nd Sanon and Kanwe 

(2010)

Mango seed kernel Sheep (Barki) Effects of including different levels of mango seed 

kernel in sheep diets on digestion, rumen 

fermentation, and methane emission.

Up to 20% nd nd nd = ↓ ↑ nd nd nd ↓ Shwerab et al. (2023)

Mango peels Goats Utilization of avocado and mango fruit wastes in 

multi-nutrient blocks for goat feeding:

In vitro evaluation

29% in Multi-

Nutrient Blocks

nd nd nd ↓ ↓ ↑ ↓ ↑ = ↑ Marcos et al. (2020)

Mango pulp and peels Dairy goats Feeding mango wastes to dairy goats: effects on 

diet digestibility, ruminal fermentation, and milk 

yield and composition

29% in Multi-

Nutrient Blocks

= nd = = = = ↓ ↑ = nd de Evan et al. (2022)

Papaya pomace Male buffaloes Nutrient utilization of concentrate mixtures with 

varying levels of papaya (Carica papaya) pomace 

by native male buffaloes

0, 10, 20, 30% in 

concentrate mix

nd nd nd = ↓ ↑ nd nd nd nd Babu et al. (2006)

SOCS, Supplementation of soybean oil calcium soap; CFF, cashew fruit flour; CAF, cashew apple fruit; TMR, total mixed ration; ADG, average daily gain; FCR, feed conversion ratio; FCE, feed conversion efficiency; NH3–N, ammonia-nitrogen; TVFA, total volatile fatty 
acids; C2, acetate; C3, propionate; C4, butyrate; CH4, methane. ↑, increase; ↓, decrease; = no effect; nd, not determined.
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utilization of hydrogen by rumen microbes for the synthesis of 
methane or microbial biomass in goats (Zhang et al., 2023), which 
complements the use of mango-based diets. This synergy suggests that 
mango-based diets which complements the use of mango-based diets. 
This synergy suggests that mango-based diets are particularly effective 
not only in maintaining NH3–N within optimal levels for microbial 
growth but also in enhancing nitrogen retention and microbial protein 
synthesis, ultimately reducing nitrogen waste (de Evan et al., 2022). 
The combination of mango seed kernel’s protein content and 
polyphenolic compounds supports these processes, making mango-
based diets a practical choice for optimizing nitrogen utilization and 
microbial efficiency in ruminants.

The sampling procedure significantly impacts fermentation 
measurements, affecting pH, VFA, and NH3–N concentrations. 
Rumen fluid collected through an oral stomach tube typically shows 
higher pH values (e.g., 7.19 in goats fed with mango pulp-peel mix) 
and lower VFA and NH3–N concentrations compared to rumen 
cannula sampling, although VFA proportions generally remain 
consistent (Ramos-Morales et al., 2014; Terré et al., 2013; de Assis 
Lage et al., 2020; Shen et al., 2012). Such differences emphasize the 
importance of standardized sampling to obtain accurate 
fermentation data.

6.4 Effects on methane production

Ruminant livestock are major contributors to global methane 
emissions, accounting for 35–40% of anthropogenic methane through 
enteric fermentation and manure. These emissions are a significant 
portion of agricultural methane output, alongside other major sources 
such as paddy rice production (IPCC, 2007; Aluwong et al., 2011; 
Charmley et  al., 2008). Methane from enteric fermentation in 
ruminants is a natural by-product of their digestion, with cattle being 
the largest emitters, followed by sheep and goats (Broucek, 2014; 
Gupta et al., 2018; Cottle et al., 2011). In South Africa, enteric methane 
emissions exceeded 1171.56 Gg annually from 1990 to 2014, primarily 
from non-dairy cattle, while small ruminants contributed 15.6% of 
total emissions (Du Toit et al., 2013; Moeletsi et al., 2017). Methane 
emissions in developing regions have surged, driven by increasing 
livestock numbers, with emissions from African cattle, goats, and 
sheep projected to grow from 7.8 million tons in 2000 to 11.1 million 
tons by 2030 (Aluwong et al., 2011).

Methane emissions in developing regions have surged, driven by 
increasing livestock numbers, with emissions from African cattle, 
goats, and sheep projected to grow from 7.8 million tons in 2000 to 
11.1 million tons by 2030 (Mitsumori and Sun, 2008; Morgavi et al., 
2010; Baker, 1999). This specialized group of microbes, present in 
various anaerobic environments, including the rumen, fills a crucial 
ecological niche by utilizing H2 and CO2 (Moss et al., 2000). Methane 
emissions from ruminants and other anaerobic settings are major 
contributors to global warming (Moss et  al., 2000). In rumen 
fermentation, acetate and butyrate promote methane production, 
whereas propionate formation competes for hydrogen, reducing 
methane output (Moss et al., 2000; Bica et al., 2022). Feed additives 
and diet composition can also influence rumen metabolite profiles, 
potentially altering methane emissions by modifying microbial 
activity within the rumen (Bica et al., 2022; Palangi and Lackner, 

2022). Feeds that increase acetate and carbon dioxide production, 
such as Napier grass, lead to higher methane emissions and a loss of 
feed energy, making them less efficient for animal production 
(McDonald et al., 2011). In contrast, by-products like mango and 
papaya peels show the potential to reduce methane emissions in 
ruminant diets due to their bioactive properties, which can inhibit 
methanogenic archaea and improve rumen fermentation efficiency 
(Jafari et al., 2020; Okoruwa and Igene, 2014; Geerkens et al., 2013).

Research supports the methane-reducing effects of fruit 
by-products (Table 5). Okoruwa and Igene (Okoruwa and Igene, 2014) 
observed lower methane production from mango and papaya peels 
than from Napier grass, likely due to their influence on volatile fatty 
acid (VFA) pathways, particularly by redirecting hydrogen toward 
propionate production rather than methane. Bioactive compounds in 
mango peels, including phenolics and tannins, have selective 
antimicrobial properties (Asif et  al., 2016), potentially targeting 
methane-producing archaea without significantly inhibiting other 
microbial populations. Similarly, papaya waste extracts and seeds 
contain bioactive compounds that may support fermentation 
efficiency by maintaining a balanced microbial ecosystem while 
reducing methane emissions (Sharma et  al., 2020). Geerkens, 
Schweiggert (Geerkens et al., 2013) found that phenolic extracts from 
mango peels reduced methane emissions by 9% in hay-based diets, 
and a 20% inclusion of mango seed kernel in a corn-based diet 
reduced emissions by up to 40% in sheep, likely due to its high tannin 
content (Shwerab et al., 2023).

Although cashew by-products have been less extensively studied, 
their bioactive composition suggests potential impacts on methane 
production, though results are mixed. Studies with cattle indicate that 
methane emissions remain primarily unchanged with cashew 
by-product inclusion, suggesting limited effects on methane 
mitigation in some contexts (Souza et al., 2020). However, additional 
research could clarify their role in methane reduction, particularly in 
combination with other dietary factors.

7 Influence of feeding mango, cashew, 
and papaya by-products on small 
ruminant growth performance and 
health

7.1 Effects on growth and feed conversion

The influence of mango and cashew by-products on the growth 
performance and carcass traits of sheep and goats is multifaceted and 
contingent upon the inclusion level and processing methods 
employed. Studies (Table 6) indicate that moderate inclusion levels 
(15–30%) of by-products, like dried mango pulp, can enhance or 
maintain average daily gain (Tompkins and Adger, 2004; Tompkins 
and Adger, 2004) and feed conversion ratio (FCR) in sheep, serving as 
effective partial substitutes for conventional concentrates without 
compromising growth performance, particularly when traditional 
feed sources are limiting (Aung et al., 2024). Additionally, moderate 
levels do not negatively impact carcass weight or dressing percentage, 
making them cost-effective feed alternatives under conditions of feed 
scarcity (Table 5). Mango by-products, particularly mango peel silage 
and meal, consistently improve ADG in dairy calves and goats at levels 
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up to 30% in total mixed rations, likely due to nutrient density and 
fiber that enhance rumen fermentation (Aung et al., 2024).

Cashew by-products, such as cashew fruit flour and apple silage, 
generally stabilize ADG without significant growth gains, while 
papaya by-products, like papaya pomace, support growth without 
notable improvement (Bain et al., 2016; Tai et al., 2020; Babu et al., 
2006). Mango by-products also enhance FCR, likely due to bioactive 
compounds that support rumen function, though high inclusion 
levels (>30%) or tannin-rich, unprocessed by-products like mango 
peels may reduce FCR and ADG by inhibiting nutrient absorption. 
Similarly, highly fibrous by-products like papaya peels may reduce 
digestibility, requiring higher feed intake and worsening FCR (Babu 
et al., 2006).

Mango by-products emerge as the most promising for improving 
ADG and FCR, likely due to their high carbohydrate and fiber content, 
along with bioactive compounds that enhance rumen microbial 
activity and fermentation efficiency. The sugars and easily fermentable 
carbohydrates in mango by-products provide a readily available 
energy source that supports optimal microbial growth and protein 
synthesis in the rumen, improving nutrient uptake and overall 
efficiency compared to conventional forage or low-energy by-products. 
In comparison, cashew and papaya by-products serve more as 
maintenance feeds, providing stable growth support without 
significant efficiency gains. This suggests mango by-products are 
particularly valuable in enhancing growth outcomes, while cashew 
apple and papaya are reliable for supporting stable performance.

7.2 Effects on health

The introduction of mango, cashew, and papaya by-products into 
the diets of small ruminants offers a spectrum of potential health 
benefits, though accompanying drawbacks necessitate consideration. 
Mango and papaya by-products have shown antiparasitic properties 
that benefit ruminants when ingested (Guil-Guerrero et al., 2016). For 
instance, mango peel extract has been found to effectively reduce fecal 
egg counts in goats, likely due to its antioxidant, anti-inflammatory, 
and antibacterial phytochemicals, which support rumen health and 
production parameters (Prasetyo et  al., 2024; Umamahesh et  al., 
2020). Mango peel powder has also been studied as a feed additive for 
promoting rumen health and reducing methane emissions, offering 
potential benefits for both livestock productivity and environmental 
sustainability (Okoruwa and Igene, 2014; Garavaglia and Tedesco, 
2015; Cañaveral-Martínez et  al., 2023). Papaya seeds and peels, 
similarly, exhibit potent effects against gastrointestinal nematodes 
such as Haemonchus contortus. This antiparasitic effect is primarily 
due to cysteine proteinases found in papaya latex, which disrupt 
parasite metabolism. Additionally, the carotenoids and polyphenols in 
papaya by-products enhance immune function and provide 
antioxidant benefits in dairy cows (Abouzed et al., 2019; Buttle et al., 
2011). Nutritionally, both ripe and unripe papaya peels offer essential 
vitamins, minerals, and energy, enriching livestock diets and 
supporting overall health (Akintunde et al., 2022).

Cashew apple fiber has also shown promise as an anthelmintic 
agent against Haemonchus contortus in sheep, likely due to its phenolic 
compounds exhibiting antiparasitic effects (Lopes et  al., 2018). 
Another possible explanation is the increased post-ruminal flow of 
protein, resulting from tannins complexing with dietary protein and 

protecting it from rumen degradation. This improved protein status 
may enable the animal to mount more effective immune responses. 
While these by-products have substantial benefits, caution is 
warranted with cashew apples, as they have been associated with 
toxicosis in ruminants, particularly cattle. This toxicity is likely linked 
to the presence of anacardic acid and related phenolic compounds, 
which are known to cause gastrointestinal irritation and other adverse 
effects in livestock when consumed in large quantities. Reports from 
Brazil document symptoms resembling alcoholic intoxication, such as 
lethargy and staggering, due to ethanol production during 
fermentation in the rumen (Assis et al., 2009; Filho and Soto-Blanco, 
2012). Although these effects are typically reversible and non-lethal, 
the risk suggests carefully managing cashew apple levels. High levels 
of tannins in unripe mango peels can reduce feed intake, nutrient 
absorption, and digestibility, which lowers feed conversion efficiency 
in ruminants (Falusi et  al., 2017; Frutos et  al., 2004). Excessively 
fibrous by-products, may also reduce digestibility, necessitating higher 
intake to meet nutrient requirements (Mirzaei-Aghsaghali and 
Maheri-Sis, 2008). Further research into optimal inclusion levels and 
processing methods will help maximize these benefits and mitigate 
associated risks.

7.3 Effects on meat quality

The quality of meat from small ruminants fed mango, cashew, and 
papaya by-products is crucial for consumer acceptance and market 
value. Nonetheless, research on the effects of mango, cashew, and 
papaya by-products on carcass and meat quality in ruminants is 
limited but promising. In ruminants, mango meal can replace corn in 
lamb diets without negatively impacting carcass traits, though it may 
affect specific cuts, such as brisket and hindquarter weights (Neto 
et  al., 2014). Cashew by-products, including dehydrated cashew 
bagasse (DCB), have also been tested in feedlot lambs, where replacing 
up to 24% of forage sorghum with DCB maintained the physical and 
chemical quality of the meat, with an 8% replacement yielding lower 
lipid content (Barreto et al., 2022). Similarly, sun-dried cashew pulp 
can be incorporated into West African Dwarf (WAD) goat diets at up 
to 30% without adverse effects on carcass characteristics or internal 
organs, providing a cost-effective feed alternative and helping reduce 
environmental waste (Okpanachi et al., 2016).

Research on alternative feed ingredients demonstrated promising 
outcomes for carcass quality and cost reduction in non-ruminants. For 
instance, mango-based diets produced leaner carcasses in pigs than 
traditional feeds (Kiendrebeogo et al., 2018). In poultry, papaya leaf 
powder did not negatively affect carcass quality (Laihad et al., 2019), 
and mango fruit waste was successfully incorporated up to 20% in 
broiler diets without impacting nutrient intake or growth performance 
(Emshaw et  al., 2012). Incorporation of cashew by-products into 
poultry diets yielded mixed results. Cashew apple waste slightly 
reduced broiler performance (Swain et al., 2007), possibly due to its 
high fiber and tannin content, which may limit nutrient digestibility 
and energy availability. However, it did not affect carcass traits, 
suggesting that the composition of cashew waste primarily influences 
growth efficiency rather than final body composition (Swain et al., 
2007). In contrast, dehydrated cashew apple meal, when included up 
to 25%, enhanced weight gain and meat-to-bone ratio, likely because 
dehydration reduces moisture content and concentrates nutrients, 
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improving energy intake and overall feed efficiency (Ramos et al., 
2006). For growing rabbits, dried cashew apple was included up to 
30% in diets without adverse effects on performance, as rabbits are 
generally more tolerant of high-fibre diets, which align well with their 
natural digestive physiology (Fanimo et al., 2003).

Fruit by-products rich in polyphenols, such as grape pomace 
and citrus pulp, have shown potential to enhance the fatty acid 
profile and antioxidant activity in ruminant meat and milk without 
significantly impacting production (Correddu et al., 2023; Correddu 
et al., 2020). These by-products can also reduce lipid oxidation in 
meat during storage (de Evan et al., 2022) and improve meat color 
stability (Priolo and Vasta, 2007). Although condensed tannins in 
these by-products are poorly bioavailable, they may exert 
antioxidant effects through both direct and indirect mechanisms 
(Soldado et al., 2021). Additionally, tannins can influence ruminal 
biohydrogenation, increasing beneficial fatty acids such as 
conjugated linoleic acid and omega-3 fatty acids in milk and meat 
(Frutos et al., 2020). However, the impact of tannins on fatty acid 
profiles may vary depending on factors like dosage and animal 
species (Ponnampalam et  al., 2024). Incorporating these 
by-products into ruminant diets presents a sustainable approach to 
enhancing product quality while reducing feed costs (Vastolo et al., 
2022). Mango and cashew by-products have shown potential for 
enhancing ruminant meat quality, particularly by improving lipid 
profiles and antioxidant properties due to their polyphenolic 
content (Guil-Guerrero et al., 2016; Ponnampalam et al., 2024). 
However, direct studies examining these effects in ruminants are 
still limited. Similarly, while papaya by-products are rich in 
carotenoids and phenolics, specific evidence of their impact when 
included in ruminant diets on meat quality remains unavailable 
(Guil-Guerrero et al., 2016; Da Silva et al., 2014). The potential 
benefits of all three by-products, especially regarding their impact 
on meat quality, lipid profiles, and antioxidant properties, warrant 
further research to confirm their effects in ruminant diets.

8 Methods or techniques for 
preserving fruit by-products for feed

The nutritional quality of fruit by-products (FBPs) can 
be preserved or enhanced through various physical, chemical, and 
biological treatments, making them more effective as livestock feed 
(Balehegn et  al., 2022). Physical treatments—such as chopping, 
pelleting, drying, and densification—reduce bulkiness, improving ease 
of handling and feed intake. Densification refers to the compaction of 
by-products into dense pellets or blocks to increase their bulk density, 
facilitating transport and storage. Chemical treatments use acids or 
alkalis to break down fibrous structures, enhancing digestibility and 
nutrient availability. Biological treatments, often involving specific 
microorganisms, promote beneficial fermentation that reduces anti-
nutritional compounds while increasing protein content. However, 
fermentation typically reduces gross energy content due to energy 
losses during microbial metabolism.

Due to their high moisture content and bulk (>800 g/kg), fruit 
by-products require preservation methods to extend shelf life (Zhang 
et al., 2017). The two primary techniques—drying and ensiling—are 
widely used. Sun-drying is common for reducing moisture and 
preventing microbial spoilage (Gan et  al., 2016) but can lead to 

nutrient losses, particularly in heat-sensitive vitamins and 
antioxidants, diminishing antioxidant and antimicrobial capacities 
(Chikwanha et  al., 2018; Klava et  al., 2018). Rapid drying to low 
moisture levels (~0.7 water activity) is essential to prevent mold and 
mycotoxin growth, particularly in humid conditions (Chiewchan 
et al., 2015; Chulze, 2010).

Ensiling, in contrast, preserves proteins and carbohydrates by 
promoting lactic acid fermentation under anaerobic conditions, 
creating an acidic environment that inhibits mould and mycotoxin 
growth. Although Tayengwa and Mapiye (Tayengwa and Mapiye, 
2018) speculated that ensiling could negatively impact FBP quality 
and the environment, their study did not directly investigate these 
effects. On the contrary, other research indicates that ensiling 
improves FBP nutritional profiles (Wimalasiri and Somasiri, 2021; 
Santos et al., 2019) and is particularly beneficial during wet seasons 
when sunlight is insufficient for effective drying.

8.1 Effect of preservation technique on the 
quality of by-product

The choice of preservation technique significantly affects the 
quality of mango, cashew, and papaya by-products. While 
sun-drying is a practical and accessible preservation method, it can 
reduce levels of heat-sensitive nutrients, particularly vitamins C and 
E and carotenoids (Nagle et  al., 2011; Kamiloglu et  al., 2016; 
Ndawula et al., 2004). Rapid drying prevents mould and mycotoxin 
contamination, especially in humid conditions (Chiewchan et al., 
2015). In contrast, ensiling has been shown to improve the quality 
of FBPs by preserving nutrients and enhancing palatability through 
fermentation, as demonstrated in studies on mango residues, 
persimmon peel, and grape pomace (Guzmán et al., 2010; Fitri et al., 
2020; Mousa et al., 2019). Additionally, ensiling effectively reduces 
anti-nutritional factors, such as tannins in mango peels, mainly 
when additives like molasses and urea are included. (Couto Filho 
et al., 2007; Guzmán et al., 2012; Sruamsiri and Silman, 2009). For 
instance, ensiling mango residues with maize stover, molasses, and 
urea produces a stable feed with favorable fermentative and chemical 
characteristics suitable for animal consumption (Guzmán et  al., 
2010, 2012).

Ensiling also offers environmental benefits by potentially reducing 
methane emissions from ruminants due to changes in fibrous fractions 
during fermentation (Mousa et al., 2019). For mango residues, the 
ensiling process stabilizes fermentative characteristics within 
14–21 days, after which fermentation activity slows significantly 
(Guzmán et  al., 2010, 2012). While ensiling can improve protein 
solubility, excessive solubility may lead to rapid rumen degradation 
and increased nitrogen loss. However, if proteins form complexes with 
tannins present in the ensiled crop, solubility decreases, slowing 
protein digestion in the rumen and improving nitrogen capture 
efficiency. Incorporating Lactobacillus plantarum can enhance 
nutrient utilization and reduce methane emissions from ruminants 
(Zhang et al., 2022; Chen et al., 2022). Combining hydrolysable and 
condensed tannins at low doses can improve nitrogen utilization 
efficiency and mitigate methane production without adversely 
affecting ruminal fermentation (Chen et al., 2022). These ensiling 
techniques offer potential environmental benefits by reducing 
methane emissions from ruminants while improving feed quality, 
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making them promising strategies for sustainable animal production 
(Zhang et al., 2022; Chen et al., 2022).

While dried by-products may have a coarser texture and reduced 
palatability, this can be mitigated by grinding or mixing with other 
feed ingredients. By understanding the impacts of different 
preservation techniques, producers can make informed decisions to 
optimize the nutritional value, safety, and palatability of these valuable 
feed resources, ensuring they meet quality standards and livestock 
dietary needs.

8.2 Problems associated with the storage 
and feeding of cashew, papaya and mango 
by-products

Using cashew, papaya, and mango by-products as feed offers 
benefits but comes with storage and feeding challenges. Their high 
moisture content can lead to rapid spoilage if not properly dried, 
increasing mold growth risks (Musundire et al., 2021). Inadequate 
storage may also cause unwanted secondary fermentation, reducing 
the nutritional value and making the feed less palatable due to 
odors. Proper storage, such as airtight containers, can mitigate these 
issues (Balehegn et  al., 2020). The high sugar content in these 
by-products attracts insects and rodents, making pest control 
essential (Musundire et  al., 2021). Nutritionally, while rich in 
certain nutrients, these by-products may lack others, requiring 
balanced rations to ensure animals receive complete nutrition 
(Balehegn et al., 2020). Livestock may initially reject these feeds due 
to unfamiliar tastes; gradual introduction can help (Musundire 
et al., 2021).

Additionally, some fruit by-products contain anti-nutritional 
factors, like tannins, which can interfere with nutrient absorption, 
necessitating further research and mitigation strategies (Balehegn 
et al., 2020). Seasonal variability in supply poses additional challenges, 
requiring farmers to plan and establish reliable sourcing networks 
(Musundire et  al., 2021). Quality control during storage and 
processing is essential to prevent contamination and ensure livestock 
health, requiring collaborative support from agricultural, livestock, 
and governmental sectors to optimize the use of fruit by-products in 
livestock production.

8.3 Co-feeding strategies and nutrient 
balancing

Strategies for optimizing mango, cashew, and papaya by-products 
in ruminant diets focus on improved feed intake, nutrient utilization, 
and animal performance. Co-feeding strategies show the benefits of 
ensiling these by-products with low-quality roughages and additives 
to enhance digestibility and nutrient content (Table 7). For instance, 
ensiling mango peels with rice straw and legumes boosts dry matter 
and fiber digestibility in cattle, while papaya peels ensiled with pangola 
grass show improved fermentation characteristics and nutritional 
quality (Sruamsiri and Silman, 2009; Sánchez-Santillán et al., 2021). 
Cashew by-products, when ensiled with cassava peels or incorporated 
into broiler diets, have demonstrated improved nutrient intake and 
growth in both ruminants and poultry (Ferreira et  al., 2015; 
Venkatramana et al., 2020).

Nutrient balancing is crucial for optimizing livestock productivity, 
especially in low-income food-deficit regions where by-products are 
often low in protein and minerals (Table 7). In these regions, limited 
access to diverse and high-quality feed resources exacerbates the 
challenge, making effective nutrient balancing essential to mitigate 
deficiencies and support livestock health and performance. 
Supplementation with protein-rich sources like legumes, oilseed 
cakes, or small amounts of urea can enhance protein intake, and 
mineral additions may address specific deficiencies (Abdelnour et al., 
2018; Leng, 2004). These practices improve livestock productivity and 
nutrient utilization efficiency, supporting sustainable production 
(Leng, 1990; Makkar, 2014).

Finally, maintaining a stable rumen environment is essential for 
effective digestion (Table 7). Gradually introducing these by-products 
helps rumen microbes adapt to dietary changes, minimizing digestive 
issues and supporting a stable rumen pH, which is crucial for 
microbial activity and fibre digestion (Fron et  al., 1996). Adding 
complementary by-products or feed additives, such as probiotics, 
supports microbial activity, improves nutrient breakdown, and can 
even reduce methane emissions (Ertl et al., 2015; Smith et al., 2020). 
Together, these co-feeding and nutrient-balancing strategies promote 
a more sustainable, efficient approach to livestock feeding in 
developing areas, maximizing the potential of fruit by-products as a 
valuable feed resource.

9 Policy implications for promoting 
the use of fruit by-products as 
livestock feed

To ensure the widespread adoption of fruit by-products as 
alternative feed resources in LIFDCs, targeted policies and 
interventions are needed at the policy, infrastructure, and community 
levels. These measures aim to increase the utilization of fruit 
by-products, enhance feed availability, reduce waste, and improve 
livestock productivity. Key strategies include:

 1. Incentivizing Valorization Through Subsidies: Governments can 
provide financial incentives or subsidies to fruit processors and 
farmers who engage in valorizing by-products into livestock 
feed. This could include grants for equipment used in drying, 
ensiling, or processing fruit by-products.

 2. Establishing Regulations for Waste Diversion: Legislation 
mandating the diversion of fruit processing waste from landfills 
to animal feed production could significantly reduce 
environmental pollution. These policies should include 
guidelines for the safe handling and processing of by-products 
to ensure their suitability for livestock consumption.

 3. Improving Infrastructure for Preservation and Distribution: 
Adequate storage and transport infrastructure are critical for 
ensuring that fruit by-products retain their nutritional quality 
and reach livestock farmers in remote areas. Governments and 
private stakeholders should invest in affordable preservation 
technologies, such as silos for ensiling and solar dryers for 
moisture removal.

 4. Strengthening Extension Services: Agricultural extension 
officers must be trained to educate smallholder farmers about 
the benefits of using fruit by-products as feed, along with 
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TABLE 7 Co-feeding strategies and nutrient balancing for ruminants using mango, cashew apple, and papaya by-products.

Aspect Details References

Mango by-products

Co-feeding 

strategies

Ensiling mango peels with rice straw and legume leaves improves dry matter and fibre digestibility in cattle. Sruamsiri and Silman (2009)

Mango peel silage combined with rice straw improves nutrient intake and digestibility in sheep. Sanon et al. (2012)

Adding maize stover to mango peel silage enhances fermentation characteristics. Guzmán et al. (2010)

Adding molasses to mango peel silage improves silage fermentation quality. Guzmán et al. (2012)

Including urea in mango peel, silage supports better fermentation and nutritional quality for ruminants. Aung et al. (2024)

Feeding mango peel silage to dairy calves increases feed intake and growth performance. Okoruwa et al. (2013)

Papaya by-products

Co-ensiling papaya waste with pangola grass exhibits good fermentation characteristics and nutritional quality. Gómez-Trinidad et al. (2023)

Papaya silage made from 75% papaya waste and 25% star grass enhances feed utilization in ruminants. Sánchez-Santillán et al. (2021)

Co-ensiling papaya peels with grasses improves protein content and reduces fibre fractions. Wimalasiri and Somasiri (2021)

Adding legume leaves to papaya peel silage boosts protein content and digestibility. Sruamsiri and Silman (2009)

Cashew by-products

Cashew apple waste (CAW) in broiler diets, with non-starch polysaccharide degrading enzymes, enhances nutrient digestibility and growth performance. Venkatramana et al. (2020)

Dried cashew by-products combined with elephant grass silage improve dry matter intake and nutrient utilization in ruminants. Ferreira et al. (2015)

Ensiling guinea grass with cassava peel and cashew apple waste produces silage of acceptable quality for ruminants. Dele et al. (2013)

Cashew by-products can improve animal nutrition and productivity while potentially reducing feed costs. Ojediran et al. (2024)

Nutrient 

balancing

By-products are generally low in protein and minerals; supplementing with protein sources like legume forages, oilseed cakes, or small amounts of urea ensures adequate protein intake. 

Mineral supplementation is essential in food-deficit areas.

Abdelnour et al. (2018)

Supplementation with oilseed cakes or urea supports adequate protein intake in diets high in by-products. Parisi et al. (2020)

Protein and mineral supplementation can address deficiencies in food-deficit areas, improving productivity. Leng (2004)

Mineral supplementation, along with protein sources, is critical in livestock feed strategies for sustainable production. Hegarty (2012)

Strategic supplementation with protein and minerals reduces feed requirements and increases nutrient utilization efficiency. Makkar (2014)

By-product supplementation in livestock feed enhances productivity and nutrient utilization efficiency. Leng (1990)

Rumen 

microbiome 

balancing

The gradual introduction of by-products allows the rumen microbiome to adapt, reducing digestive disturbances. Fron et al. (1996)

Combining by-products with complementary nutrient profiles balances the rumen environment, enhancing nutrient degradation and shifting fermentation toward propionate production. Ertl et al. (2015)

Balanced nutrient profiles in by-products reduce methane emissions and optimize fermentation. Matthews et al. (2019)

Probiotics, prebiotics, and plant-derived compounds in feed can optimize microbial activity and improve livestock performance without antibiotics. Michalak et al. (2021)

Rumen Simulation Technique (RUSITEC) allows for the comparison of microbial digestion and fermentation impacts from various by-products. Durand et al. (1988)

RUSITEC system showed that replacing extruded maize with dried citrus pulp in a mixed diet improved ruminal fermentation without negatively affecting microbial populations. García-Rodríguez et al. (2020)
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guidance on how to process and balance these by-products in 
livestock diets. Community-level demonstration projects can 
also build farmer confidence in adopting these methods.

 5. Encouraging Research and Innovation: Funding research to 
optimize preservation methods, assess regional variations in 
by-product composition, and determine optimal inclusion 
levels for livestock is essential. Policies should also promote 
collaborations between universities, research institutions, and 
industry stakeholders to create innovative solutions.

 6. Fostering Public-Private Partnerships (PPPs): Collaborations 
between governments, NGOs, and private companies can 
accelerate the adoption of fruit by-product valorization 
strategies. For instance, fruit processing industries could 
partner with cooperatives to supply by-products to livestock 
farmers, creating mutually beneficial value chains.

 7. Incorporating Circular Economy Principles: Policymakers 
should encourage integrating circular economy models, where 
fruit by-products are not only seen as waste but as valuable 
inputs in livestock systems. This could include public awareness 
campaigns on sustainable waste management practices and 
their environmental and economic benefits.

By addressing these areas, the adoption of fruit by-products as 
livestock feed can move from isolated case studies to widespread 
practice, contributing to food security, environmental sustainability, 
and rural economic growth in LIFDCs. Such policy interventions 
could serve as blueprints for other regions facing similar challenges.

10 Concluding remarks

Valorizing fruit by-products such as mango peels, cashew apple 
pomace, and papaya seeds offers a transformative solution to feed 
scarcity in small ruminant systems within LIFDCs. These 
by-products improve feed efficiency, enhance livestock productivity, 
and mitigate environmental waste, aligning with sustainability and 
circular bioeconomy goals. Integrating fruit by-products into 
livestock diets supports smallholder resilience by reducing feed costs 
and improving meat quality. Bioactive compounds such as tannins 
also offer potential for methane mitigation, further contributing to 
climate resilience.

Despite these benefits, challenges such as nutrient variability, 
inadequate preservation infrastructure, and limited farmer awareness 
must be addressed. Targeted investments, policy interventions, and 
research innovations are essential to scale up adoption and maximize 
impact. By addressing these interconnected challenges, this approach 
can contribute to sustainable livestock production, improved food 
security, and rural economic development in vulnerable regions.
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