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The current study aims to develop and conduct a techno-environmental evaluation 
of a new sustainable forced convection solar dryer (SFCSD). Where the developed 
SFCSD was integrated with a unique electronic circuit that enables it to operate 
in two different modes: 1. forced air circulation (active mode) and 2. natural air 
circulation (passive mode), based on the air temperature (AT) inside the drying room 
and the ambient light intensity (Li). Furthermore, the SFCSD is equipped with an 
early warning system (SOS) that can send a warning message (SMS) to the operator 
in case of system failure. The Aswan region of Egypt uses the developed SFCSD to 
dry the most famous five date fruit varieties (Shamia, Bartamuda, Sakkoti, Malkabii, 
and Gondaila). The speed sensor of air suction fan, Li sensor, relative humidity (RH) 
sensor and AT sensor were calibrated against standard devices before used. The 
results showed a strong correlation between the measured and reference values. 
Despite the slight underestimation of the values, the sensors’ response remains 
consistent and predictable. The R2 values for the speed sensor, the Li sensor, the 
AT sensor, and the RH sensor were, in that order, 0.9904, 0.987, and 0.9863. The 
average daily solar radiation, ambient AT, and RH during field tests were 494.78 W/
m2, 29.46°C, and 23.68%, respectively. The initial moisture content (MC) of the 
different date fruit (DF) varieties used in the current study ranged between 10.32 
and 12.56%, and the DF samples reached equilibrium MC at 9 days. The effective 
moisture diffusivity (EMD) ranged between 3.5569 × 10−7 m2/s and 3.9489 × 10−7 m2/s. 
The maximum efficiency of the photovoltaic (PV) system and the solar collector 
was 25.28 and 69.52%, respectively. The analysis of environmental impact revealed 
that the energy payback time (EPP) for the developed SFCSD is 7.15 years, which 
represented only 23.83% of the system’s lifetime. The developed SFCSD has a CO2 
mitigation value of 93.2 tons and earned carbon credit (ECC) valued of 6757.02 
USD throughout its estimated lifetime of 30 years. The environmental impact 
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analysis demonstrates that the developed SFCSD is an appropriate alternative for 
preserving agricultural products while maintaining environmental sustainability.

KEYWORDS

earned carbon credit, effective moisture diffusivity, sustainable agriculture, energy 
payback period, PV system, carbon footprint, solar drying, internet of things

1 Introduction

Date fruit (DF) is regarded as a symbol of life in the desert 
because it is the most significant crop used for subsistence in hot, 
dry climates (Ben-Amor et al., 2016; Arielli, 2025; Banadka et al., 
2025). Globally, 7.6 million tons of DF were produced in 2017 
(Seerangurayar et al., 2019). Aswan Governorate is recognized as the 
largest governorate in Egypt, renowned for its production of dried 
dates, with the most notable kinds being Sakkoti, Bartamuda, 
Gondaila, Malkabi, and Shimia. In Aswan, the sun-drying procedure 
for date fruit in the open air often requires 1–2 months. The 
prevailing drying technique in Aswan Governorate is direct solar 
exposure outdoors, contaminating dates with dust, insects, rodents, 
animals, and other substances that may occasionally induce 
poisoning. This contamination might jeopardize the dates’ safety and 
quality, rendering them less appealing for consumption. 
Consequently, better-regulated drying methods could alleviate the 
considerable health hazards linked to sun drying (Elghazali et al., 
2020a). DF is an excellent source of minerals, some vitamins, dietary 
fibers, and carbs (Alu’datt et al., 2025; Eid et al., 2025). Furthermore, 
because of its high vitamin and bioactive chemical content, DF is 
well-liked for its health advantages in addition to its delightfully 
sweet flavor. DF is often harvested and sold during the khalal, rutab, 
and tamr ripening periods (Amira et al., 2012; Al-Mssallem et al., 
2024). Dates have a short shelf life because of their high MC, which 
makes them vulnerable to biological deterioration after they are ripe 
(Seerangurayar et al., 2019; Arielli, 2025; Zhao et al., 2025). In this 
case, the DF can be  used more economically and its shelf life 
extended by using the crucial and necessary technique of drying (Jia 
et al., 2019; Li et al., 2019; Kayacan et al., 2020).

Unfortunately, there are some drawbacks to OSD, such as 
increased drying times, a greater need for open space, and a higher 
risk of contamination, which leads to lower-quality products (Tunde-
Akintunde, 2011; Samimi-Akhijahani and Arabhosseini, 2018). 
Therefore, solar dryers (SD) could be a promising method of applying 
solar energy as a substitute for OSD in order to avoid these drawbacks 
(Fudholi et  al., 2014). Numerous studies on the SD for different 
agricultural products have been published, such as grapes (Kontaxakis 
et  al., 2024), turmeric (Mahajan et  al., 2024), stevia (Kumar and 
Tripathy, 2024), sweet basil (Akbar et al., 2024), chili pepper (Getahun 
et al., 2024), tomatoes (Elwakeel et al., 2024a), DF (Seerangurayar 
et al., 2024), potato (Vyas et al., 2024), banana (Suherman et al., 2024), 
and red pepper (Admass et al., 2024; Getahun et al., 2024).

The SDs are classified into three types, namely, direct solar dryers 
(DSD), indirect solar dryers (ISD), and hybrid solar dryers (HSD) (Hii 
et al., 2012; Tham et al., 2017; Rizal and Muhammad, 2018; Elwakeel 
et al., 2024b). The DSD comprises a drying room (DR) coated in 
plastic or glass, which is where fresh fruit or vegetable is placed, heated 
directly by the sun’s rays (Hii et al., 2012; VijayaVenkataRaman et al., 
2012; Jain and Tewari, 2015). The ISD consists of an opaque DR 
integrated with a solar collector (SC). Convective heat transfer occurs 

during this drying process between the produce and hot air (Hii et al., 
2012; Tibebu, 2015; Kumar et al., 2016; Yassen and Al-Kayiem, 2016). 
The HSD merged with both DSD and ISD to enhance the drying 
process (Hii et al., 2012; Tibebu, 2015; Kumar et al., 2016; Wang et al., 
2018). But based on the operation mode, SDs are further classified 
into natural convection SDs (passive mode) and forced convection 
SDs (active mode) (Hii et al., 2012; VijayaVenkataRaman et al., 2012; 
Navale et al., 2015; Kumar et al., 2016; Lingayat et al., 2017). The 
forced convection SD (active mode) used motorized fans to circulate 
the hot air inside the DR, while the natural convection SD (passive 
mode) depends on the natural circulation of the hot air based on the 
density difference between the hot air inside the DR and ambient air 
(Belessiotis and Delyannis, 2011).

There are researchers across the globe who have dedicated their 
efforts to the study of the drying process of DF. Falade and Abbo 
(2007) conducted a study on the drying and rehydration properties 
of DF. In their investigation, they employed an oven to dry the DF 
within the temperature range of 50–80°C. The authors applied Fick’s 
diffusion model to calculate the effective diffusivities and activation 
energies. Ertekin and İpek (2020) investigated the drying process of 
date palm fruits and the microbiological properties of fresh and 
dried dates. The results revealed that the drying time decreased as 
the temperature increased; however, the color of the dried date palm 
fruit became increasingly darker at higher temperatures. The 
chemical structure of the fruit, however, remained unaffected. 
Almuhanna (2012) conducted a study to investigate the possibility 
of using a solar greenhouse as a SD for drying DF by taking 
advantage of solar energy as a source of heat to speed up the drying 
process. The study reported an overall thermal efficiency of 57.2% 
for the solar greenhouse. According to Mennouche et al. (2017), the 
quality of Algerian Deglet-Nour dates can be improved through the 
use of an indirect SD. The study found that the SD was effective with 
a control temperature of 50°C and an air velocity of 1.2 m/s. The 
indirect SD method is an innovative and sustainable solution for 
improving the quality and shelf life of Deglet-Nour dates. This 
approach is of particular interest to the agricultural sector, which is 
continuously looking for ways to reduce waste and improve the 
quality of their products. These results highlight the potential of the 
ASD as an efficient and sustainable method for drying DF. The 
integration of a PV system and a FPSC enhances the performance of 
the ASD, resulting in a higher drying rate than that of OSD. Moreover, 
the reduced drying time and lower MC achieved by the ASD can 
lead to improved quality of the dried DF. These findings have 
important implications for the DF industry, as they suggest that ASD 
is a promising alternative to traditional drying methods.

The present study aims to: 1. Develop a PV operated SFCSD, 2. 
Evaluate the developed system in the field for drying different varieties 
of date fruit, and measuring parameters such as, moisture content, and 
effective moisture diffusivity, 3. Calibrate the different electronic 
circuits, 4. Evaluate the efficiency of the solar collector and PV system, 
5. Analyze the environmental impact of the developed system and 
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measure some important parameters, such as, EPP, CO2 Emission, 
CO2 mitigation, and earns carbon credits. The developed SFCSD was 
integrated with a unique electronic circuit that enables it to operate in 
two different modes: forced air circulation (active mode) or natural 
air circulation (passive mode). The system automatically switches 
between these modes based on the hot AT inside the DR and the 
ambient light intensity. Data such as AT, RH, and Li can 
be automatically transmitted to the operator through a GSM module. 
This data can also be displayed on an integrated LCD. Furthermore, 
the SFCSD is equipped with a novel early warning system (SOS) that 
can send a warning message (SMS) to the operator in case of 
system failure.

2 Materials and methods

2.1 Description of the SFCSD

This study presents an innovative design for a hot-air indirect 
SFCSD that operates using a PV system. Figure 1 shows the SFCSD 
used in the current study, which is integrated with the PV system. The 
SFCSD was manufactured in Aswan, Egypt, using locally 
available materials.

Galvanized corrugated sheets painted matte black with a 
thickness of 3 mm were used for absorbing the solar rays. The main 
frame of the SC was made of angle steel (L) 3 * 3 cm, measuring 
300 cm in length and 100 cm in width. The sawdust was used to 
reduce heat loss, and it was layered between corrugated sheets and 
the main frame. A glass cover, 3.0 mm thick, is strategically placed 
15 cm from the absorbent plate. The SC is inclined at a 20° with the 
horizontal, facing north south. The SFCSD is made up of two 
sections, the SC and the DR, to enable easy installation, 
transportation, maintenance, and repair. The DR is 98 cm high, 
45 cm wide, and 100 cm long, with a primary structure constructed 
from 3.0 cm by 3.0 cm square metal bars. An AC suction fan was 
used to circulate the hot air inside the DR. The DR contains nine 

drying trays with 11 cm spacing between each one; the surface area 
of each tray is 95 * 45 cm2. Figure 2 shows the main components of 
the SFCSD.

2.2 Preparing of DF samples

In order to evaluate the efficacy of the developed SFCSD, DF was 
utilized as biological material in a field test conducted at Aswan 
University. A total of 20 kg of five distinct DF varieties, which were 
cultivated in the Aswan region, were collected in October 2023. 
Figure 3 illustrates the most popular DF varieties grown in the Aswan 
region, where 3.0 kg of each date variety was loaded onto a separate 
tray, as depicted in Figure 4.

2.3 The PV system

The PV system consists of a solar panel module type universal-
TPS-P6U (72)-320 W. This panel is strategically installed with a tilt 
angle of 30° and oriented towards the north–south direction. As part 
of the system, there is a battery charger rated at 12/24 V and 20 A, in 
addition to a 12 V/60 Ah battery. To ensure adequate air circulation 
within the SFCSD, an AC suction fan rated at 220 V and 50 W is also 
integrated into the system.

2.4 Performance analysis of the SFCSD

2.4.1 Moisture content (MC)
The determination of MC in DF samples was carried out through 

a heating process at 105°C for a duration of 10 h in an electrical 
oven. This method is in accordance with the procedure outlined 
by AOAC (2005). The initial and final MC of the DF samples 
were calculated using Equation 1, as elucidated by Eke and 
Simonyan (2014),

FIGURE 1

The SFCSD used in the current study is integrated with the PV system.
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where: wµ  is the MC on a wet basis, %; wW  is the wet weight of 
the DF samples, gm; dW  is dry weight of the DF samples, gm.

2.4.2 Weight loss
To estimate weight loss during drying of different DF samples, the 

following steps are followed: First, the fresh DF samples (Wt) are 
weighed a precision balance, then spread evenly on the drying trays 
and placed inside the solar dryer. At regular intervals, the different DF 
samples are removed, and their weight (Wt + 1) is recorded. Drying is 
continued until the weight stabilizes (constant weight, W₃). Weight 

loss is calculated using Equation 2 (ES et  al., 2023; Metwally 
et al., 2024).

 ( ) 1 t tWeight loss g W W += −  (2)

2.4.3 Moisture ratio (MR)
Moisture ratio is a dimensionless parameter and is evaluated by 

dividing the actual moisture content and the initial moisture content of 
the different DF samples. The drying rate refers to the velocity at which 
interior moisture dissipates into the environment (Elwakeel et al., 2023; 
Elmessery et al., 2024; Khater et al., 2024; El-Mesery et al., 2025). The 
moisture ratio of the dried different DF samples under was calculated 
according to Equation 3, as mentioned by Rabha et al. (2017).

FIGURE 2

Main components of the SFCSD.

FIGURE 3

The most popular date varieties cultivated in Aswan, Egypt. (a) bartamuda; (b) sakkoti; (c) shamia; (d) malkabii; (e) gondaila.
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where: 0M  is the initial moisture content in %, eM  is the EMC in 
%, and tM  is the moisture content at any time in %.

Consequently, as per (Doymaz, 2004), the moisture ratio of 
different DF samples can be expressed as depicted in Equation 4.

 0

tMMR
M

=
 

(4)

2.4.4 Drying rate
The drying rate of different DF samples were calculated using 

Equation 5, as described by (Etim et al., 2019).

 
( ) ( )

( )
 

 / .water dry matter
Weight loss g

Drying rate g g h
t h

=
∆

 
(5)

2.4.5 Thermal balance of PV system
The determination of the PV system’s efficiency is a critical aspect 

of its performance evaluation, which requires a comprehensive 
analysis of the energy generation associated with its AC suction fans, 
control circuit, and measurement electronic circuit (Elwakeel et al., 
2021). According to previous research by Shen et  al. (2020), this 
energy generation ( outputP ) can be  calculated using Equation 6. 
Therefore, to ensure an accurate assessment of the PV system’s 
efficiency, it is crucial to consider these factors and incorporate them 
into the overall analysis.

 output oc scP V I= ×  (6)

where: ocV  is the open circuit voltage, V; scI  is the short current 
voltage, A.

The fill factor (FF) of a PV system is defined as the ratio of the 
maximum output power ( outputP ), denoted as maxP , to the output 
power (Qi and Wang, 2013; Mahmoud et al., 2022). The fill factor is a 

key performance metric of such systems and is calculated using 
Equation 7,

 
max

oc sc

PFF
V I

=
×  

(7)

From the above equations, the PV conversion efficiency PV( ,%)η  
can be calculated according to Equation 8,

 

max max max OC SC
PV

in PV PV in

P V I V I FF100 100
P Ins A P

× × ×
η = = × = ×

×  
(8)

where, inP  is the input power, watt, PVIns  is the solar intensity, 
Watt/m2, PVA is the total surface area of the PV system, m2.

2.4.6 Thermal analysis of the SCs
The efficiency of the SC can be defined as the ratio of input power 

( input.collE ,Watt) absorbed from the solar radiation (SR), and output 
power ( output.collE ,Watt) consumed to raise the AT (Bala and Janjai, 
2005; Usub et al., 2008). Energy input from the SC was calculated 
according to Equation 9.

 
( )

t

input.coll coll coll
0

E A Ins t dt= ∫
 

(9)

where, collA is the total surface area of the SC, m2, Inscoll  is the 
solar intensity, watt/m2.

Energy output from the SC was calculated according to 
Equations 10, 11.

 
( ) ( )

t

output.coll a p,a a,in a,out
0

E m t C T T dt= × × −∫
 

(10)

 a a a a a collm V u A= ρ × = ρ × ×  (11)

where, am is the air mass flowrate, Kg/s, p,aC  is the specific heat 
of air, kJ/kg.k, ( )a,in a,outT T− is the air temperature difference 
between ambient air and output air form the SC, k, ρa is the air 
density, kg/m3, Va is the volumetric air flowrate, m3/s, ua is the air 
speed, m/s.

As demonstrated in the above equation, the SC efficiency (ηcoll, %) 
was calculated based on Equation 12.

 

output.coll
coll

input.coll

E
100

E
η = ×

 
(12)

2.5 Experimental procedure

In the current study, we used five DF varieties, which presented 
the most widely grown DF variety in Aswan, Egypt. All tests associated 
with the drying process were carried out at Aswan University, during 
October 2023. The drying process and recorded data started at 7 a.m. 

FIGURE 4

Distribution of different varieties of dates in the dryer.
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and ended at 5 p.m. for 10 h per day. AT and RH were measured at 
three positions (1. outside the drying room, 2. the lower points of the 
DR and 3. The upper points of the DR), as shown in Figure 5. The 
sample’s weight for each variety was measured and recorded at 5 p.m. 
each day. All experiments related to the determination of the MC of 
fresh date samples were carried out at Aswan University. Table 1 shows 
the accuracy, range, and resolution of the devices and sensors used in 
the current study.

2.6 Effective moisture diffusivity (EMD)

The moisture ratio (MR ) of the dried DF samples was calculated 
using Equation 13, as stated by (Crank, 1975; Doymaz, 2011; Coşkun 
et  al., 2017; Samimi-Akhijahani and Arabhosseini, 2018; Badaoui 
et al., 2019),

 

2 2
eff

2 2 20 n 1

M 6 1 n D tMR exp
M n R

∞

=

 × π × ×
= = × − 

π   
∑

 
(13)

where: M is the final MC, %; 0M  is the initial MC, %; n is the 
number of terms; effD  is the effective moisture diffusivity, m2/s; t is 
the time in s; 2R  is the determination of coefficient.

Neglecting the higher terms of Equation 14 due to longer drying 
times, the moisture ratio can be  evaluated using Equation 14 or 
Equation 15.

 

2
eff

2 2
6 D tMR exp

R

 π × ×
= − 
π     

(14)

OR

 
( )

2
eff

2 2
6 D tln MR ln

R

 π × × = −   π      
(15)

The diffusion coefficient ( 0k ) was obtained by plotting 
experimental drying data in terms of ( )ln MR  versus time (s). The 
slope (k0) was calculated by plotting ( )ln MR  versus time, as follows:

 

2
eff

0 2
Dk

R
π ×

=
 

(16)

2.7 Environmental analysis

Every constructed facility requires a significant amount of 
energy during its life cycle, including building, operation, and 
disposal stages. Energy consumption can be  divided into 
embodied energy (EE) and operating energy. Embodied energy 
(EE) refers to the overall energy consumption involved in 
extracting raw materials, transporting them, producing, 
constructing, using (including maintenance and restoration), and 
disposing of them (Vijayan et al., 2020). Operating energy refers 
to the amount of energy needed to support the functioning or 
implementation of a system during specific periods. The operating 
energy of a system constitutes a significant proportion of the 
overall energy consumption. Nevertheless, in the design of 
energy-efficient structures, embodied energy constitutes a 
growing part of overall energy consumption throughout the 
whole lifespan.

Recently, there has been a growing focus among researchers on 
reducing the overall energy consumption (including electrical energy 
and oil energy) in constructed buildings, with the aim of decreasing 

TABLE 1 The accuracy, range, and resolution of the measuring devices and sensors.

Parameters Device Accuracy Range Resolution

AT DHT-22 sensor ±1°C –10 – 80°C 0.1°C

RH DHT-22 sensor ±2% 0–100% 0.1%

SR Spectral pyranometers ±10 W/m2 0.1 W/m2

Weight of SF samples Electronic digital balance ±0.020 0.0–50 kg 5 g

Voltage and current (PV system) Digital multi-meter -- 0.2–1,000 V

20 μA-20A

0.01 V

0.01 A

Air speed A digital anemometer ±0.1 m/s 0.0–30 m/s 0.1 m/s

Li LDR sensor ±1 Lux 0.0–1,000 Lux 0.1 Lux

FIGURE 5

The relation between operated speed and observes speed of the 
speed sensor integrated with the air suction fan.
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reliance on traditional energy sources. Solar dryers are energy-efficient 
structures that operate using freely accessible solar energy, which is 
eco-friendly and a clean renewable energy source. The energy 
efficiency of the system may be  analyzed by considering its total 
energy consumption. Additionally, the environmental impact of the 
system can be evaluated by examining indicators such as EE, EPP, and 
greenhouse gas emissions during its life cycle.

Table 2 provides the EE of the various materials utilized in the 
manufacturing of the developed SFCSD. The developed SFCSD 
consists of several materials, with a total mass of 85.5 kg (without 
PV system).

2.7.1 Energy payback period (EPP)
The EPP refers to the duration required to compensate for the 

amount of energy invested in the manufacturing of the SFCSD. The 
EPP is calculated using Equations 17–19 (Vijayan et al., 2020).

 ( )
in

out

E ,kWEPP, years
Yearly energy output E ,kW / year

=
 

(17)

 
outE ,kW Daily energy output,kW / day

Total number sunshine days in a year
= ×

 
(18)

6

Total evaporative moisture,kg
Latent heat of evaporation,J / kgDaily energy outut,kWh

3.6 10

×

=
×  

(19)

2.7.2 CO2 emission
The average CO2 emission for energy generated by coal is around 

0.98 kg of CO2 per kilowatt-hour (kWh), additionally, if the 
transmission losses are assumed as Lt, and La are equal 40 and 20%, 

respectively, due to old appliances. The annual CO2 emissions can 
be determined by utilizing Equation 20 (Prakash and Kumar, 2014a).

 ( )

in
2

E 2.042Annual CO emissions,kg
Life time of the 
SFCSD L , years

×
=

 

(20)

2.7.3 CO2 mitigation
The CO2 mitigation of the developed SFCSD can be estimated 

using Equation 21, according to (Nayak et al., 2012).

 [ ]2 out inAnnual CO mitigation,kg E L E 2.042= × − ×  (21)

2.7.4 Earned carbon credit (ECC)
Each ECC corresponds to the reduction of one metric ton 

(1,000 kg) of CO2 emissions, and the credit obtained from the 
developed SFCSD was determined using Equation 22 (Vijayan 
et al., 2020).

 
2

2

ECC Net mitigation of CO in life time
Price per ton of CO mitigation

= ×

 
(22)

The calculations and input parameter values are illustrated in 
Table 3.

2.8 Statistical analysis

It is usual practice to evaluate the level of correlation between 
measured data using a variety of measures. The coefficient of 
determination, or R2, is one example of such a statistic. To determine 
the R2 value in the current study, Excel 365 from Microsoft Office was 

TABLE 2 EE calculation data for manufacturing of the developed SFCSD (Grazieschi et al., 2021; Aubin et al., 2022; Wikoff et al., 2022).

S. No. Component Material EE, kWh/kg Quantity, kg Total EE, kWh

1 Metal frame (SD + SC + PV) Metal 8.89 50 444.5

2 Glass cover Glass 7.28 10 72.8

3 Insulation Wood dust 2.0 4.0 8.0

4 Coating Paint 25.11 2.0 50.22

5 Absorber plate Galvanized iron sheet 9.636 10.5 101.178

6 Hinges Metal 8.89 0.1 0.889

7 Handel Metal 8.89 0.1 0.889

8 Drying trays Metal 8.89 8.0 71.12

9 PV system -- -- -- 734.89

10 Battery -- -- -- 46.00

11 Battery charger -- -- -- 33.00

12 Air circulation fan

(i) Copper wire Copper 19.61 0.2 3.922

(ii) Casings, fan, shaft etc Steel 8.89 0.2 1.778

Total EE, kWh 1569.186
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used. This software program was selected since it is widely used for 
data analysis in both business and academic settings.

3 Results and discussion

3.1 Calibration of different sensors

In order to validate sensor data prior to its utilization, it is 
imperative to apply sensor calibrations that are influenced by the 
aforementioned elements. To ensure the accuracy of data acquisition, 
it is necessary to calibrate the output signals generated by the sensors 
against the reference standard instrument, thereby creating calibration 
curves that illustrate the sensors’ responses to the reference instrument 
data. This calibration process is vital as it provides a framework for the 
development of accurate and reliable sensor data output (Cold and 
Facilities, 2022).

3.1.1 Calibration of speed sensor
The speed sensor serves an integral function in ensuring the safety 

and optimal performance of the suction fan as it forms a crucial 
component of the automatic warning system that measures the fan’s 
speed. By incorporating this sensor into the fan’s system, an operator 
can be confident that the equipment is being continuously monitored, 
and any possible malfunctions will be detected in a timely fashion. As 
a result, it is imperative that the suction fan is equipped with a reliable 
speed sensor to guarantee the smooth running of the entire system 
without any potential risks.

Figure 5 illustrates the relationship between the speed values of 
the sensor as observed and operated. The y-axis displays the observed 
speed measured by the speed sensor (model: LM393IC), while the 
x-axis denotes the operated speed measured by the Uni-T Tachometer 
(model: UT371). Ideally, both values should be identical, indicating a 
perfect calibration. However, a slight difference exists between them, 
and this disparity is mathematically represented by the equation 
y = 0.9858x + 0.2062, which demonstrates a linear relationship 
between the two values. The gradient of the line is 0.9858, and the 
y-intercept is 0.2062, which implies that the sensor underestimates the 
speed by a small amount. The value of R2, which is 0.9904, indicates a 
strong correlation between the observed and operated speeds.

3.1.2 Calibration of Li sensor
The integration of a Li sensor with the automatic control circuit 

has enabled the facilitation of the drying process. The system is 
designed to activate the drying process during the day while 
preventing it from operating during the night to avoid the possibility 
of remoisturizing the date samples. This approach ensures that the 
drying process is carried out efficiently and that the quality of the 
samples is maintained.

Figure 6 shows the calibration of a Li sensor (model: GL5506). The 
y-axis, labeled “measured Li (Lux),” represents the sensor’s output 
voltage converted to Li in lux. The x-axis, labeled “reference Li (Lux),” 
represents the actual Li measured by a calibrated reference device 
(model: UT383s). The ideal scenario would be a straight line at a 
45-degree angle, indicating perfect calibration where the measured 
intensity perfectly matches the reference intensity. However, the line 
in the graph slants slightly upward, indicating that the sensor 
underestimating the actual light intensity. The equation 
y = 0.9966x + 0.9525 represents the linear relationship between the 
measured and reference light intensities. The slope of 0.9966 is very 
close to 1.0, indicating a nearly proportional relationship. The 
y-intercept of 0.9525 indicates a small systematic bias. The R2 value of 
0.987 indicates a very strong correlation between the measured and 
reference intensities, meaning the sensor’s response is consistent and 
predictable, despite the slight underestimation.

3.1.3 Calibration of the AT sensor
The AT sensor is an indispensable component of the automatic 

control circuit. It is responsible for regulating the air suction fan, a key 
element in the drying process, by detecting and responding to changes 
in ambient AT. Specifically, the AT sensor initiates the forced 
convection system when the AT inside the DR exceeds the 
predetermined value. Conversely, it deactivates the forced convection 
system and activates the natural convection system when the AT 
inside the DR falls below the set value. As such, the AT sensor plays a 
crucial role in optimizing the drying process and ensuring that it is 
efficient, effective, and consistent.

The AT sensor calibration (model: DHT-22) is displayed in 
Figure 7 in comparison to the reference digital AT meter (model: 
UT333s). Plotting the measured AT values against the calibration 

FIGURE 6

Relation between reference and measured Li of the Li sensor 
integrated with the automatic control circuit.

TABLE 3 Calculations and input parameter value of the developed 
SFCSD.

Surface area of the solar collector 3 m2

Inclination angle of the solar collector 20 °

Specific heat of air 1,008 J/kg.K

Latent heat of vaporization of water 2,430 kJ/kg

Drying time per patch 9 days

No. of sunny days in a year 350

Expected lifetime of the SFCSD 30 years

Quantity of dried date fruit per patch 100 kg

Average ambient AT 29.46°C

Average ambient RH 23.68%

Average solar radiation 494.78 W/m2

Average initial moisture content, % (w.b.) 10.32–12.56%

Average final moisture content, % (w.b.) 3.89–4.57%
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bath’s reference AT data was done. Along with the R2 value, which 
indicates how well the data fits the linear model, the line of best fit is 
also displayed. The AT sensor’s excellent calibration is further 
demonstrated by Figure 7, which displays an R2 value of 0.9863. This 
indicates that 98.63% of the variation in the data can be explained by 

the linear model. This suggests that the calibration bath’s AT is being 
precisely measured by the AT sensor.

3.2 Estimation of weather conditions

The SR, ambient AT, and RH were acquired from the weather 
station located within Aswan University. Figure 8 shows variation in 
SR, ambient AT, and RH during the drying test period from October 
10, 2023, to October 18, 2023, from 7 a.m. to 5 p.m.

During the drying tests the maximum and minimum daily ambient 
AT were 34.4°C and 21°C, respectively, whereas the average ambient AT 
was 29.46°C. Moreover, the maximum and minimum daily ambient air 
humidities were recorded as 39.4 and 15% respectively, with the average 
ambient RH being 23.68% during the drying tests. Lastly, the maximum 
and minimum daily SR intensities were recorded at 862 W/m2 and 
43 W/m2, respectively, with the average SR intensity during the drying 
tests being 494.78 W/m2. It is evident that the ambient AT and RH, 
along with the SR intensity, play a crucial role in the drying process. 
These factors are essential to consider while designing and optimizing 
drying systems, especially for heat-sensitive materials. Where the results 
of the drying test are heavily contingent on the variation of SR, ambient 
AT, and RH. As such, it is imperative that these variables are 
meticulously monitored and controlled throughout the test to ensure 

FIGURE 7

Relation between reference and measured AT by AT sensor 
integrated with the automatic control circuit.

FIGURE 8

Variation on SR, ambient AT, and RH during the drying test. (a) Ambient AT; (b) RH of ambient air; (c) SR.
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precise and reliable outcomes. Meticulous management of these 
variables can lead to accurate results and informed decision-making 
based on the outcomes of the test.

3.3 Moisture content (MC)

The initial and final MC (w.b.) of the DF samples were 12.08 and 
4.57% for shamia, 10.32 and 3.89% for bartamuda, 11.21 and 4.15% 
for sakkoti, 12.56 and 4.41% for malkabii, and 10.75 and 3.98% for 
gondaila, on a dry basis (Elwakeel et al., 2023) reported that the MC 
(w.b.) of fresh and dried DF varieties sakkoti, gondaila, and malkabii 
were 17.64 and 6.06%, 15.68 and 6.58%, and 14.89 and 5.56%, 
respectively. Elghazali et al. (2020a, 2020b) stated that the MC (w.b.) 
of fresh and dried date varieties sakkoti, bartamuda, gondaila, 
malkabii, and shamia were 18.28 and 4.16%, 19.49 and 3.25%, 14.38 
and 3.35%, 13.47 and 3.48%, 17.20 and 4.93%, respectively. The drying 
curves for five different DF varieties are shown in Figure 9, where MC 
was shown to gradually decline over time. The drying process of the 
different DF varieties required nearly 90 h (9 days) to reach EMC, the 
initial MC that is 12.08% for shamia, 10.32% for bartamuda, 11.21% 
for sakkoti, 12.56% for malkabii, and 10.75% for gondaila, on a dry 
basis, to reach the final MC that is 4.57% for shamia, 3.89% for 
bartamuda, 4.15% for sakkoti, 4.41% for malkabii, and 3.98% for 
gondaila, on a dry basis. Figure 9 demonstrated that major moisture 
loss occurred during the falling rate period, which come in agreement 
with previous studies reported by many researchers (Stephen, 2014; 
Navale et al., 2015; Farag et al., 2016; Téllez et al., 2018; Babar et al., 
2020; Etim et al., 2020; Tesfaye and Habtu, 2022).

3.4 Weight loss

Some agricultural products lose a lot of weight, which hurts their 
quality and makes them less profitable. For example, they might lose 
shape or texture, or the color might turn bad (Wang et al., 2018). The 
primary cause of weight loss is the process of leaching and diffusion 
when water-soluble elements are released from tissue into the 

surroundings (Mukherjee and Chattopadhyay, 2007). Figure 10 shows 
weight losses of different DF samples as a function of drying time. The 
illustrated data in the same figure showed that the weight loss of 
different DF varieties did not significantly differ with increasing the 
drying time. The previous study conducted by Elghazali et al. (2020b), 
Elghazali et al. (2020a), and Elghazali et al. (2020b), showed that the 
Aswan date varieties reached the EMC after 14 days using passive ISD 
integrated with FPSC and 25 days in OSD. In this study it was 
demonstrated that a shorter drying time of 90 h (9 days) was necessary 
to reach the EMC for all DF varieties. In addition, (Elwakeel et al., 
2023), stated that the DF samples reached the EMC on the ASD 
connected with FPSC after 8 days for both Malkabi and Gondaila and 
9 days for Sakkoti, while it took 14 to 15 days on OSD.

3.5 Moisture ratio

The moisture ratio of DF is a critical parameter in drying processes, 
indicating the reduction in moisture content over time. Using a solar 
dryer, dates are dehydrated efficiently by harnessing solar energy, 
which evaporates moisture while preserving nutrients. The moisture 
ratio decreases as drying progresses, ensuring optimal texture and shelf 
life (Elghazali et al., 2020a; Elwakeel et al., 2022). Figure 11 illustrates 
the variation of moisture ratio relative to drying time for different DF 
varieties. After reaching the equilibrium MC, the moisture ratio was 
0.38, and it was observed in DF varieties of shamia and bartamuda, 
while the lowest moisture ratio was 0.35 in DF of malikabi.

3.6 Drying rate

In Figure 12 the drying rates are reported as a function of time for 
all DT varieties, while in Figure 13 the moisture content of dates is 
reported as a function of the drying rate. The drying rates of the 
different DF varieties dried using the SFCSD ranged was 7.0 kgwater/
kgdry matter/h, 6.5 kgwater/kgdry matter/h, 6.0 kgwater/kgdry matter/h, 5.8 kgwater/
kgdry matter/h, and 4.0  kgwater/kgdry matter/h for DT variety of shamia, 
sakkoti, bartamuda, malikabi and gondila, respectively. The drying 

FIGURE 9

Moisture content during solar drying of five different DF varieties.
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rate is significantly influenced by both drying temperature and layer 
thickness. Higher drying temperatures inside the SFCSD accelerate 
the drying rate by providing more thermal energy, which enhances 
moisture evaporation and internal diffusion. Conversely, thicker dried 
materials, such as DF, slow down the drying process because heat 
penetration and moisture diffusion to the surface become less efficient. 
Balancing these factors is crucial for optimizing drying efficiency: too 
high temperature may damage heat-sensitive materials, while 
excessive layer thickness can lead to uneven drying and prolonged 
drying times (Elshehawy and Mosad, 2022).

3.7 Effective moisture diffusivity (EMD)

The values of EMC for various DF varieties, including shamia, 
bartamuda, sakkoti, malkabii, and gondaila, were calculated using Eq. 11. 
(Touil et al., 2014), demonstrated that that the EMD value is influenced 
by the reduced distance moisture must traverse prior to evaporating into 

the ambient atmosphere. Moisture gradients generated within the meal 
during drying induce strains in the cellular structure. According to Mayor 
and Sereno (Mayor and Sereno, 2004), this may result in structural failure, 
causing alterations in the material’s volume, shape, or dimensions. The 
duration of moisture diffusion from the interior of the meal to its exterior 
is influenced by the rupture of cell walls. Touil et al. (2014), assert that this 
feature must be  incorporated into mathematical models to ensure 
accurate predictions of sample moisture content during drying or to 
choose the suitable EMD. Various aspects, such as the pre-treatment 
solution, AT, and the properties of the dried materials, influenced the 
EMD (Doymaz and İsmail, 2011; Elwakeel et al., 2024b). The values of Deff 
found were in the range between 3.5569 × 10−7  m2/s and 
3.9489 × 10−7 m2/s. The EMD was affected by many factors, such as the 
pre-treatment solution, AT, and properties of the dried materials (Doymaz 
and İsmail, 2011). It can be seen that the EMD values for the malkabi date 
variety are greater than those obtained for the other DF varieties under 
the same drying conditions. Table 4 shows some previous studies that 
examined the Deff of dried products.

FIGURE 10

Weight loss verses drying time for different DF samples.

FIGURE 11

Moisture ratio verses drying time for different DF samples.
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TABLE 4 Some studies are examining the Deff of dried products.

Reference Publisher Dried product Deff, m2/s

Lee and Hsieh (2008) ASABE Strawberry 2.4 × 10−9 – 12.1 × 10−9

Akpinar and Bicer (2006) Science Direct Strawberry 4.52 × 10−10 – 9.63 × 10−10

Kaya et al. (2007) Elsevier Quince 0.65 × 10−10 – 6.92 × 10−10

Doymaz (2004) Science Direct Apricot 6.76 × 10−10 – 12.6 × 10−10

Aghbashlo and Samimi-Akhijahani (2008) Science Direct Berberis 3.32 × 10−10 – 90 × 10−10

Ruiz-Cabrera et al. (2008) Taylor and Francis Cactus pears 1.51 × 10−10 – 5.32 × 10−10

Pahlavanzadeh et al. (2001) Taylor and Francis Grapes 2.4 × 10−10–6.22 × 10−10

Current study ---- Date fruit 3.5569 × 10−7 - 3.9489 × 10−7

FIGURE 12

Drying rate verses drying time for different DF samples.

FIGURE 13

Drying rate verses moisture content for different DF samples.
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3.8 Thermal balance of PV system

The PV system was employed to supply electricity to the various 
electronic and control systems. Additionally, the system powered an air 
suction fan and a SFCSD in rural areas that lacked access to conventional 
power sources. The PV system has been demonstrated to be a viable and 
sustainable alternative for powering essential equipment in remote 
locations. Its implementation has led to a significant reduction in 
greenhouse gas emissions, thus contributing to a cleaner and more 
sustainable environment. Throughout the drying process, the open-
circuit voltage and short-circuit current of the PV system were carefully 
measured on an hourly basis. Subsequently, the PV system’s efficiency 
was computed based on the daily SR while assuming a fill factor of 0.8. 
Figure 14 demonstrates the efficiency of the PV system versus SR. The 
maximum and minimum efficiency of the PV system were 25.28 and 
9.14%, respectively. Jaiganesh and Duraiswamy (2013) reported that the 
efficiency of the PV panel ranged from 9.52 to 14.5%. Yamamoto et al. 
(2018), and Haschke et al. (2018) reported that the PV efficiency ranged 
between 24 and 27%. Ho et al. (2018) and (Müller et al. (2017) stated that 
PV systems currently commercially produced have an efficiency of 
between 14 and 19%.

3.9 The average efficiency of the SC

The present study aimed to assess the efficiency of a SC during the 
test period. To this end, both input and output energy were taken into 
account while calculating the SC’s efficiency. The input energy is 
derived from SR, whereas the output energy is determined by the 
difference between the AT of the heated air inside the collector and 
the ambient air. The input energy, in turn, is directly proportional to 
the SR that strikes the SC and its surface area in an hour. The results 
of this study are presented in Figure 15, which shows the average 
efficiency of the SC during the test period. These findings provide 
valuable insights into the performance of the SC and could inform 
future research and development in this area. The data shown in 

Figure 15 indicates that during the drying period, the SC’s efficiency 
progressively rises throughout the day. Additionally, the data shows 
that around 1 p.m., the SC’s highest efficiency was 69.52%. 
Furthermore, at 7 a.m. and 5 p.m., the SC’s minimum efficiency was 
24.2 and 26.62%, respectively. Table 5 shows some earlier studies that 
estimated the efficiency of traditional FPSC.

3.10 Environmental analysis

Figure  16 displays the mass percentages of the materials. The 
majority of the weight, amounting to 59% (50 kg), is occupied by the 
metal frame for the drying room, SC, and PV. Following that, the glass 
cover and absorber plate of the SC account for 12% (10 kg) of the total 
weight. The remaining weight percentages are distributed among 
other components, including the insulation material, coating, hinges, 
handel, drying trays, and air circulation fan.

Figure 17 displays a comprehensive breakdown of the distribution 
of EE among various components utilized in the manufacturing of the 
developed SFCSD. The cumulative energy required for the established 
system is 1569.186 kW.h. The PV system (including PV panel, battery, 
and converter) represented the major value of the EE, amounting to 47% 
of total EE (734.89 kW.h). The metal frame and supporting structures are 
constructed using mild steel, which accounts for approximately 28% of 
the total EE. Approximately 6% of the total EE is attributed to the 
absorber plate, primarily due to their composition of metal material.

The developed SFCSD removes about 1 kg of moisture in 10 h per 
day, which is the time when the dryer was operating (from 07:00 to 
17:00). Nevertheless, the operational duration may fluctuate based on 
the season. The average dryer’s evaporative capacity is estimated to 
be 1 kg per day. The value assigned to the latent heat of vaporization 
of water is 2,257 kJ/kg. The EPP for the developed SFCSD is 
determined to be 7.15 years. The current duration is significantly less 
in comparison to the lifespan of the established solar dryer (30 years). 
The annual CO2 emission quantity was calculated using Equation 22 
for a duration of 5–30 years, and the findings are presented in Table 6.

FIGURE 14

The thermal efficiency of the PV system during the test period.
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TABLE 5 Some studies are examining the efficiency of traditional FPSC.

Reference Publisher SC type Average efficiency, %

Fudholi and Sopian (2019) Elsevier Natural and forced FPSC 28–62%

Elwakeel et al. (2023) Willy & Hindawi Automatic FPSC 32.27–72.76%

Luan and Phu (2021) Hindawi Multi-pass FPSC 52.1%

Rezaei et al. (2022) Elsevier Flat absorber plate without phase change material 28.5–52.1%

Rezaei et al. (2022) Elsevier Bobbin absorber plate without phase change material 26.4–36.3%

Rezaei et al. (2022) Elsevier Flat absorber plate with phase change material 12.2–12.9%

Lingayat et al. (2017) Elsevier Solar flat plate air collector with V-corrugated absorption plates 31.50%

Hegde et al. (2015) Springer Top and bottom flow FPSC 38.07–50.0%

Lingayat et al. (2019) Taylor & Francis FPSC 7.4–45.32%

Current study ---- FPSC integrated with smart automatic control circuit 69.52%

FIGURE 15

The average efficiency of the SC during the test period.

FIGURE 16

Break-up of mass of different materials used for manufacturing the developed SFCSD.
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Table 6 shows the environmental parameters for different stages 
of the drying system’s lifetime (5, 10, 15, 20, 25, and 30 years). This 
structured presentation allows readers to easily compare the 
environmental impact and benefits of the drying system over time. By 
highlighting CO2 mitigation and carbon credits at regular intervals, it 
emphasizes the long-term advantages of sustainable practices. These 
insights not only serve as a valuable resource for decision-makers but 
also promote awareness of the importance of adopting environmentally 
friendly technologies. As stakeholders review this information, they 
can better understand the potential for reducing their carbon footprint 
while simultaneously benefiting from economic incentives. The ECC 
of USD 72.50 per metric ton of CO2 (Charoentanaworakun 
et al., 2024).

4 Conclusion and future work

In today’s world, where sustainability and energy efficiency are 
paramount, the importance of the development of a sustainable forced 
convection solar dryer (SFCSD) cannot be  overstated. These 
innovations have revolutionized the drying process by incorporating 
cutting-edge technology and smart controls, offering numerous 
advantages over traditional SDs. The EMC for all DF varieties was 
reached after a residence time in the SFCSD 9 days. The EMD ranged 
between 3.5569 × 10−7 m2/s and 3.9489 × 10−7 m2/s. The calibration of 
the different electronic circuits showed that the R2 values for the speed 
sensor, the Li sensor, the AT sensor, and the RH sensor were higher 
than 0.98. Furthermore, the thermal analysis of both the SC and PV 
systems showed that the maximum efficiency was 25.28 and 69.52%, 
respectively. Finally, the environmental impact data showed that the 

EPP for the developed SFCSD is only 0.24% of the system lifetime, and 
the CO2 mitigation value of 93.2 tons and earning carbon credits is 
6757.02 USD throughout its estimated lifetime of 30 years. Further 
development of SD can include the use of machine learning and 
artificial intelligence to design and manufacture an intelligent 
automatic SD as well as remotely monitor the dryer’s performance and 
product quality.
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FIGURE 17

Break-up of EE of different materials used for manufacturing the developed SFCSD.

TABLE 6 CO2 emission, CO2 mitigation, and ECC for developed SFCSD for different stages of the drying system’s lifetime.

Date varieties 5 years 10 years 15 years 20 years 25 years 30 years

CO2 emission (Kg/year) 307.56 153.78 102.52 76.89 61.51 51.26

CO2 mitigation (Tons) 15.5 31.1 46.6 62.1 77.7 93.2

ECC, USD 1126.17 2252.34 3378.51 4504.68 5630.85 6757.02
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Glossary

EPP - Energy payback period

SFCSD - sustainable forced convection solar dryer

PV - Photovoltaic

GSM - Global system for mobile communication

DF - Date fruit

OSD - Open sun drying

DR - Drying room

SD - Solar dryer

DSD - Direct solar dryer

ISD - Indirect solar dryer

HSD - Hybrid solar dryer

TGA - Thermogravimetric analysis

FPSC - Flat plate solar collector

ASD - Automatic solar dryer

AT - Air temperature

MC - Moisture content

RH - Relative humidity

SC - Solar collector

AC - Alternating current

Li - Light intensity

SMS - Short Message Service

SOS - Save our souls

EPP - Energy payback period

EE - Embodied energy

n - Number of terms

2R  - Determination of coefficient

L - Lifetime of the SFCSD, years

R2 - R-squared correlation

𝜇w - Moisture content on wet basis, %

𝑊w - Wet weight, gm

𝑊d - Dry weight, gm

𝑉oc - Open circuit voltage, V

Isc - Short circuit current, A

𝑃max - Maximum power, W

𝐹𝐹 - Fill factor

𝐼𝑛𝑠PV - Intensity of the solar radiation, W/m2

M - Final MC, gm

𝑀0 - Initial MC, gm

𝑛 - Total number of data points

𝐴PV - Surface area of the PV system, m2

𝐸input.coll - Input power to the SC, W

𝐸input.coll - Output power to the SC, W

𝜂PV - Efficiency of the PV system, %

𝑚a - Air mass flowrate, Kg/s

𝐶p,a - Specific heat of air, kJ/kg.k

𝑇a,in − 𝑇a,out - Air temperature difference between ambient air and 
output air form the SC, k

𝑌 - Measured or observed value measured by the sensors

ρa - Air density, kg/m3

Va - Volumetric air flowrate, m3/s

ua - Air speed, m/s

Acoll - Total surface area of the SC, m2

𝜂coll - Efficiency of the SC, %

𝑈F - Uncertainty, %

𝐷eff - Diffusion coefficient, m2/s

𝑀𝑅 - Moisture ratio, %

Inscoll - Solar intensity, watt/m2

M - Final moisture content, %

0M  - Initial moisture content, %
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