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Introduction: Most farmers in Nigeria lack knowledge of their farmland’s nutrient 
content, often relying on intuition for crop cultivation. Even when aware, they 
struggle to interpret soil information, leading to improper fertilizer application, 
which can degrade soil and ground water quality. Traditional soil nutrient analysis 
requires field sample collection and laboratory analysis; a tedious and time-
consuming process. Digital Soil Mapping (DSM) leverages Machine Learning 
(ML) to create detailed soil maps, helping mitigate nutrient depletion. Despite 
its growing use, existing DSM-based ML methods face challenges in prediction 
accuracy and data representation.

Aim: This study presents GeaGrow, an innovative mobile app that enhances 
agricultural productivity by predicting soil properties and providing tailored 
fertilizer recommendations for yam, maize, cassava, upland rice, and lowland 
rice in southwest Nigeria using Artificial Neural Networks (ANN).

Materials and methods: The presented method involved the collection of soil 
samples from six states in southwest Nigeria which were analysed in the laboratory 
to compile the primary dataset mapped to the coordinates. A secondary dataset 
was compiled using iSDAsoil’s API for data augmentation and validation. The two 
sets of data were pre-processed and normalized using Python, and an ANN was 
employed to predict soil properties such as NPK, Organic Carbon, Soil Textural 
Composition and pH levels through regressive analysis while building a composite 
model for Soil Texture Classification based on the predicted soil composition. 
The model’s performance yielded a Mean Absolute Error (MAE) of 1.9750 for NPK 
and Organic Carbon prediction, 3.5461 for Soil Textural Composition prediction, 
and 0.1029 for pH prediction. For the classification of the soil texture, the results 
showed a high accuracy value of 99.9585%.

Results: The results highlight the effectiveness of combining soil texture with 
water retention, NPK, and Organic Carbon to predict pH and optimize fertilizer 
application. The GeaGrow app provides farmers with accessible, location-based 
soil insights and personalized crop recommendations, marking a significant 
advancement in agricultural technology. The GeaGrow app also provides 
smallholder farmers with scalable, ease of adoption and use of the developed 
mobile application.

Conclusion: This research demonstrates the potential of ML to transform soil 
nutrient management and improve crop yields, contributing to sustainable 
farming practices in Nigeria.
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1 Introduction

Digital Soil Mapping (DSM) is a recent method that leverages 
Machine Learning (ML) algorithms to produce detailed maps of soil 
features over extensive land areas, offering accurate spatial information 
on soil properties such as nutrient concentrations (Buthelezi et al., 
2024; Araujo-Carrillo et  al., 2021). By integrating various ML 
techniques, statistical models, and data sources—including satellite 
imagery, topographic features, and soil samples—DSM provides a 
data-driven solution to soil nutrient depletion, a pressing issue in 
agriculture (Esmaeilizad et al., 2024). The adoption of DSM, enhanced 
by ML algorithms, has revolutionized soil analysis, enabling precise 
predictions of nutrient status through trained models that incorporate 
environmental factors (Barathkumar et al., 2024; Júnior et al., 2024). 
This aligns with broader findings that highlight the importance of 
advanced modeling tools in mitigating climate variability and 
improving resource management in farming systems (Mkuhlani et al., 
2024). One subset of ML, Artificial Neural Networks (ANN), models 
interconnected inputs through weighted connections, producing 
highly accurate predictions (Ibrahim et al., 2024; Kurani et al., 2023). 
In developing nations, farmers struggle with declining soil nutrients 
due to continuous cultivation, exacerbated by limited access to reliable 
laboratory soil testing. Although advanced practices such as water-
fertilizer coupling improve soil health, smallholder farmers often lack 
the technological resources for comprehensive soil nutrient analysis, 
relying instead on observational methods that can lead to suboptimal 
fertilization (Xing et al., 2024). Given the labor-intensive and costly 
nature of traditional soil analysis, new approaches such as DSM and 
ANN-based models have become essential for efficient soil mapping 
and nutrient management.

Data on land suitability for agricultural production, soil nutrients, 
trace elements, moisture content, soil classifications, soil color, soil 
maturity, soil texture, and meteorological information are all included 
in soil databases. The most common soil nutrients, trace elements, and 
their descriptions are shown in Table 1. Establishing relationships 
between different environmental elements and soil qualities is made 
easier by using covariate environmental data. The formation of soil 
and its properties can be attributed to different factors some of which 
are but not limited to parent material’s nature, topographical features, 
vegetation cover, land use, and climate. To have a detailed insight into 
the relationship between soil and its environment, the inclusion of 
covariate data can boost the effectiveness of the soil prediction model 
which is important when predicting soil as it improves our 
understanding of the correlations between soil and its environment, 
capture spatial heterogeneity, provide insights into basic mechanisms, 
enable data fusion, and help make well-informed land management 
decisions. The application of Covariate data increases the accuracy of 
forecasting the accuracy of soil models and their use in different 
industries like land use management, environmental governance and 
agriculture (Tziachris et al., 2020; Zeraatpisheh et al., 2022).

In the process of trying to improve on difficult challenges in the field 
of agricultural and environmental management, the use of machine 
learning and Data Analytics are on the rise as both technologies offer 

creative solutions for enhancing productivity, resource efficiency, and 
sustainable practices. When it comes to predicting soil and crop health, 
mapping vulnerabilities, and optimizing management strategies, 
machine learning and Data analytics are great tools for smart farming. 
Also, in mapping soil vulnerabilities and predicting environmental risks 
machine learning serves as a great tool. This major difference is further 
exemplified in studies that have developed models to assess soil erosion 
risks (Sarkar and Mishra, 2018), while other research has used ML 
techniques to map areas prone to gully erosion (Garosi et al., 2019). 
Different satellite imagery, GPS and soil sensors have been combined 
using this model to help have a better understanding of specific 
measures such as erosion control and soil health improvements. ML 
plays a pivotal role in the management and prediction of crop disease 
outbreaks and it also helps in predicting crop real-time nutrient needs. 
An example is found in the study of Qiu et  al. (2021) where ML 
algorithms and drone imagery were used to assess nitrogen levels in rice 
fields quickly, enabling data-driven fertilization decisions. The study 
produces high computational complexity and lacks interpretability. 
Another study by Akhter and Sofi (2022) made use of ML and IoT 
sensors to help farmers improve yield production and manage Apple 
diseases in Kashmir’s orchards. The study also discusses the difficulty 
faced in the deployment of the proposed technology into traditional 
farming activities. The study did not cover a wide range of parameters 
that can enhance Apple disease prediction and management. The studies 
of Landeta-Escamilla et al. (2023) and Ahmad et al. (2024) developed 
predictive models to assist in allocating resources like fertilizers and 
water more efficiently by identifying the most crucial factors affecting 
crop health and productivity. The study in Landeta-Escamilla et al. 
(2023) applied machine learning methods to predict the soil parameters 
that will be suitable for sugarcane higher productivity but did not cover 
a wide range of parameters that can enhance the prediction of soil 

TABLE 1 Soil nutrients and trace elements (Hudson, 1992).

Symbol Meaning Unit Soil property 
type

N Nitrogen % Soil nutrient

P Phosphorus mg kg-1 Soil nutrient

K Potassium cmol kg-1 Soil nutrient

Ca Calcium cmol kg-1 Soil nutrient

Mg Magnesium cmol kg-1 Soil nutrient

S Sulfur ppm Soil nutrient

Fe Iron ppm Trace element

Mn Manganese ppm Trace element

Cu Copper ppm Trace element

Zn Zinc ppm Trace element

B Boron ppm Trace element

Mo Molybdenum ppm Trace element

ESP Exchangeable sodium percentage % Soil nutrient

CEC Cation exchange capacity cmol kg-1 Soil nutrient
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suitability for sugarcane production. Similarly, the study in Ahmad et al. 
(2024) applied machine learning to predict the relationship between soil 
features and pathogen occurrences and classification but the limitation 
is that the size of their dataset is limited. Guo et al. (2024) developed a 
machine learning model to analyse the pollution features and health 
risks of cadmium in paddy soils across Hainan Island based on multiple 
environmental data. The study demonstrated how ML models could 
identify pollution hotspots and assess potential health impacts, guiding 
regulatory actions and remediation efforts. Machine learning is 
improving farming activities day by day by providing data-driven 
information that guides farmers’ decisions. This approach of digital 
farming helps improve agricultural efficiency and sustainability in the 
process tackling environmental challenges like soil degradation, 
pollution, and climate change. In all, digital farming improves food 
security and land management sustainability.

In the process of assessing environmental pollutants like cadmium 
in paddy soils and their related health risk blending the use of ML 
with geospatial data and advanced statistical methods helps improve 
the assessment of environmental pollutants. The work used fewer soil 
properties and environmental variables leading to less accurate 
predictions. Makungwe et al. (2021) proposed linear mixed models 
and random forests for the prediction of soil pH for rice production 
using environmental variables. The study used machine learning 
methods in the field of soil quality assessment, environmental 
monitoring and agricultural forecasting relating to soil pH predictions 
for optimal agricultural productivity. The limitation of the study is 
related to the selection of the environmental variables and the 
predictive models which lead to an overfitting problem. Martinho 
(2024) proposed predictive machine learning models for the 
prediction of agricultural outputs. The research highlights the 
potential of machine learning to provide innovative solutions to 
critical issues in agriculture and environmental management, 
ultimately contributing to more informed and effective strategies for 
ensuring food security and environmental sustainability. The research 
identified the most suitable model for the prediction of agricultural 
outputs using farm environmental data. The validation of the 
proposed models was limited to the availability of a few farm datasets. 
Kumar et al. (2023) presented an artificial intelligence solution for 
optimizing irrigation and nutrient management in Agriculture. The 
study examined different studies involving the broad applications of 
AI for optimal nutrient and irrigation management that enhances 
agricultural productivity. The study also discusses the bad and good 
associated with the application of AI in agriculture which include 
model interpretability, data quality and adoption of AI technologies 
by farmers. Reddy et al. (2024) presented machine learning algorithms 
for real-time analysis and recommendation of optimal soil nutrients 
for higher agricultural productivity. The study provided a user-
friendly mobile app that provided timely accessibility to environmental 
parameters for the prediction of insufficient soil nutrients and 
recommendations for best alternatives. The presented method can 
suffer from high complexity and computational time. Khanna et al. 
(2024) presented a theory on the application of machine learning 
algorithms on environmental parameters for the prediction of 
medicinal plant cultivation. The study presented a machine learning 
method for the recommendation of the right amount of soil nutrients 
required for the cultivation of optimal medicinal plants. The presented 
theory was validated against three different cases to prove its 
effectiveness for the production of high-quality medicinal plants. 

However, the study only provided a hypothesis without any real 
implementation. Purohit et  al. (2024) proposed a stack regressor 
learning algorithm for balancing soil nutrients in the right proportions 
for enhancing crop production. The proposed algorithm takes into 
consideration the joint effect of some environmental factors to predict 
the optimal nutrient requirements for a particular type of crop and 
agricultural soil. The results showed that the proposed stack regressor 
learning algorithm performed better in prediction accuracy than 
similar methods for improved crop productivity. However, a broad 
comparative analysis showed that the accuracy of the proposed 
method is slightly lower than that of the decision tree and random 
forest models. The simulation results of the proposed method also 
showed higher complexity and computational time. Padhiary et al. 
(2025) presented a smart recommender farming system using artificial 
intelligence for automated decision-making for farm operations to 
enhance productivity and sustainability in farming practices. The 
study only adopted real-world case studies for the validation of the 
presented method and discusses drawbacks in the application of smart 
agriculture but lacks actual implementation results for the evaluation 
of the presented method.

Recent years have seen increasing research interest in applying 
ML to DSM, yet current approaches still face challenges related to 
prediction accuracy and data representation (Esmaeilizad et al., 2024; 
Lamichhane et al., 2019; Wadoux et al., 2020). Additionally, there is a 
lack of mobile technology solutions in countries like Nigeria for real-
time soil nutrient prediction, particularly for nitrogen, phosphorus, 
and potassium. In response, this study introduces GeaGrow, an 
innovative mobile application developed by the SmartSoil Team, 
which provides precise soil property predictions, including organic 
carbon, nitrogen, phosphorus, potassium, and pH levels. GeaGrow 
also recommends suitable crops—such as yam, maize, cassava, and 
rice—and offers tailored fertilizer advice to improve agricultural 
productivity. The application integrates ML for soil nutrient prediction 
and farm management, bridging the technological gap for smallholder 
farmers. This study developed a mobile DSM application that 
dynamically predicts soil properties and optimizes fertilizer 
applications using ANN, improving upon traditional DSM methods 
that provide static soil maps. The methodology involved data 
collection from six Nigerian states and the iSDAsoil API, preprocessing 
with max-min normalization, and ANN-based prediction of soil 
texture class. By integrating ML into soil nutrient mapping, this 
research advances precision agriculture and supports sustainable 
farming practices. Despite challenges related to static datasets and 
real-time data integration, GeaGrow represents a significant step in 
empowering smallholder farmers and enhancing soil fertility 
management through AI-driven insights.

The study aims to answer the following research questions: (1) 
How to develop a friendly application that enhances agricultural 
productivity by predicting soil properties; (2) How to provide tailored 
fertilizer recommendations for crops through the application of 
artificial intelligence; (3) Can the developed application provide 
farmers with accessible, location-based soil insights and personalized 
crop recommendations; and (4) Can the developed application 
provides smallholder farmers with scalable, ease of adoption and use. 
The rest of this study is designed as follows: Section 2 presents related 
work. Materials and methods are presented in Section 3. The results 
and discussion are presented in Section 4. Section 5 presents the 
conclusion and future directions for the study.
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2 Materials and methods

This research employed an Artificial Neural Network to develop 
a mobile digital soil mapping application for assessing soil nutrients 
and optimizing fertilizer application for specific crops. The approach 
involved data collection, feature extraction, prediction, and 
recommendation. A total of 710 soil samples were collected from six 
states in southwest Nigeria, supplemented by a secondary dataset of 
over 2,500 samples from the iSDAsoil API, using a 5 km sampling 
interval to prevent data redundancy. Preprocessing in Python included 
handling missing values, eliminating incomplete rows, and random 
sampling to mitigate class imbalance. Feature extraction used a 
sequential model, and values were normalized via max-min scaling. 
The ANN model predicted soil texture class, forming the basis for a 
recommendation system that suggests optimal fertilizer quantities to 
enhance soil conditions for specific crops. Figure 1 shows the flow 
diagram of the developed mobile digital soil mapping application. This 
study significantly advances agricultural science by integrating 
machine learning into soil nutrient mapping and precision farming.

2.1 Study area and sampling design

The study area is located in the Southwest of Nigeria covering 
Oyo, Osun, Ekiti, Ogun, Ondo and Lagos states. Figure 2 shows the 
map of the study area. The justification for the choice of the Southwest 
regions is based on their economic contribution, popularity, and 
ecological and agricultural diversity to the Nation. Lagos and Ibadan 
are recognized as one of the largest economic contributors to Nigeria. 
The South-west zone alone accounts for over 50 million people, which 
is more than 22% of the total population of the country. Lagos is the 
largest urban centre in the Southwest and is the largest city in Nigeria 
and among the largest in Africa.

The study used both secondary and primary datasets. The primary 
datasets were derived from six (6) states in southwest, Nigeria with 
710 samples to predict the soil properties (NPK, Organic Carbon) and 
soil composition (Sand, Silt, Clay) by analysing soil samples in the 

laboratory with an Atomic Absorption Spectrometry (AAS) machine 
and other standard laboratory procedures for soil composition 
analysis. The sampling frequency for the primary include Ekiti (41%), 
Ondo (116%), Osun (70%), Oyo (321%), Lagos (21%) and Ogun 
(141%). Similarly, all six states were covered in the secondary dataset. 
The secondary dataset utilized data obtained from the iSDAsoil 
website in predicting soil texture. The ISDASoil data was used to 
develop the initial model and the implementation was transferred to 
the training of the primary dataset to validate the iSDAsoil’s API data 
against the primary datasets. The iSDAsoil is the first field-level soil 
map for Africa, offering predictions on over 20 soil properties at a 
30 m resolution across the continent. The data driving their soil map 
was collected by analysing over 130,000 soil samples across Africa. 
This wealth of data, accessible via an open-source API, supports 
advanced agricultural and environmental analysis, underscoring its 
utility for precise, localized soil health and nutrient assessments. This 
study extracted data for over 20 different soil properties at 2 different 
depths (0–20 and 20-50 cm) within the Southwest region of Nigeria. 
Utilizing coordinates to interface with the iSDAsoil’s API, the study 
collaborated with a GIS expert who employed Aeronautical 
Reconnaissance Coverage Geographic Information System (ArcGIS) 
software to map out 2,762 specific locations in the southwest every 
5 km, avoiding aquatic and built-up areas to ensure the integrity of the 
extracted data. Initially, the extracted data was obtained in JSON 
format and later converted into a CSV file for streamlined analysis and 
incorporation into the developed model. The extracted data consists 
of 2,761 rows and 21 columns, the columns include geographical 
coordinates, land and crop cover types, and slope metrics. These soil 
properties encompass vital macronutrients such as NPK, along with 
organic carbon content and texture. Further information on the 
dataset can be found at https://www.isda-africa.com/isdasoil/.

2.2 Soil sampling method and analysis

In this study, for effective soil sampling method and analysis, a 
30 m resolution land use and land cover map of the study area from 

FIGURE 1

Flow diagram of the developed mobile digital soil mapping application.
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1st January 2022 to 31st January 2023 was downloaded from the 
USGS website. The download was classified by supervised learning 
using a maximum likelihood algorithm. The stratified sampling 
method at a 10 km sampling interval within each stratum was 
adopted. Soil sample points were geo-referenced using ArcGIS and the 
samples were taken at 0–20 cm and 20–50 cm soil depth. The soil 
samples were properly labeled and transferred to the laboratory for 
processing. In the laboratory, the samples were air-dried and passed 
through a 2.0 mm sieve. Particle size analysis was carried out using the 
hydrometer method (Bouyoucos, 1962). The pH (in water) was 
determined using a glass electrode pH meter in a soil: water ratio of 
1:1. Organic carbon content of the soils was determined by the 
Walkley-Black chromic acid wet oxidation method (Nelson and 
Sommers, 1982). Soil Total N was determined using the micro 
Kjeldhal method (Bremmer and Mulvaney, 1982). Available 
phosphorus (Avail P.) was analysed using Bray-1 P extractant and 
determined colorimetrically by the molybdenum blue procedure. 
Exchangeable cations were extracted using 1 M Ammonium Acetate 
pH 7.0 and the potassium and calcium in the extract were determined 
using an atomic absorption spectrophotometer (AAS).

2.3 Data preprocessing

The CSV format of the dataset was pre-processed using Python. The 
pandas’ package was used with the “drop” function to remove rows that 
match the “No data” value. Preprocessing entails changing the “No data” 
value to a “0” value, dropping rows where at least one column is not 
available and random sampling of the entire dataset to prevent class 
imbalance problems. The dropout layer was used in the developed ANN 
model to reduce overfitting by setting a few neurons to 0 and reducing 
computation in the training process. Furthermore, the features that exist 
in both the primary and secondary data were standardized to ensure 
consistency across the board. The units of the primary dataset were 
converted to the units of the secondary dataset and vice-versa.

2.4 Feature selection

The SCORPAN model which is a conceptual framework for 
predicting soil properties and mapping soil classes was used to extract 

predictors that are possibly predictive of the outcome of this study 
from the primary dataset. It integrates various environmental 
covariates to understand and predict soil variability. The acronym 
SCORPAN stands for:

 • S: Soil properties (existing soil data)
 • C: Climate (temperature, precipitation, etc.)
 • O: Organisms (vegetation, fauna, human activity)
 • R: Relief (topography, slope)
 • P: Parent material (geological material from which soil develops)
 • A: Age (time, soil formation processes)
 • N: Spatial position (geographic location, longitude, latitude)

The parameters extracted for this study were derived from terrain 
attributes, climate and hydrology variables, soil and geological 
characteristics, and additional land-use factors. Terrain attributes such 
as elevation, slope, aspect, curvature, and wetness indices were 
generated from digital elevation models. Climate and hydrology 
variables, including temperature, precipitation, evapotranspiration, 
and soil moisture, were sourced from global climate datasets. Soil 
properties and geological information were obtained from existing 
soil maps and surveys, providing insight into soil type, texture, and 
underlying rock formations. Additionally, land-use patterns and 
proximity to water bodies were analyzed to assess environmental 
influences on soil properties. By integrating these diverse parameters, 
the study effectively applied SCORPAN for digital soil mapping, 
improving soil property predictions and supporting more precise 
agricultural decision-making. Table  2 describes the SCORPAN 
parameters used in this study.

All SCORPAN factors are inherently tied to a specific spatial 
position (n), making longitude and latitude effective covariates. The 
neural network clustering approach further ensures coverage for 
unmapped areas, justifying the decision to use only spatial position.

These parameters are then used as inputs for the SCORPAN 
model to predict soil properties, such as soil type, texture, and fertility, 
and to generate digital soil maps. Furthermore, feature extraction was 
performed on the dataset in CSV format, the feature extraction 
process used a sequential model in Python to extract needed columns 
from the pre-processed datasets. The value obtained from the features 
was then normalized to a common scale using the max-min 
normalization method as in Equation 1:

FIGURE 2

Map of the study area.
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min

max min

x xX
x x

−
=

−  
(1)

where maxx  and minx  are the feature’s maximum and minimum 
values, respectively. The numerator will be zero and X  will be zero 
when the value of x  is the lowest in the column. In contrast, the value 
of X  equals 1 when it is the largest value in the column since the 
numerator and denominator are equal. The value of X  is between 0 
and 1 if it falls between the lowest and maximum values.

2.5 Model development

The ANN model was used purely for regressive and predictive 
analysis of both primary and secondary data. The developed ANN 
model for prediction is based on the sequential model object in 
Keras which allows easy creation of a linear stack of layers. The 
rationale for selecting the sequential ANN model in Keras is to 
allow for the easy addition of a linear stack of layers for different 
distinct functions and the choice of the ReLU activation function is 
to increase the learning rate of the network to overcome the 
vanishing gradient problem of ANN models. The hyperparameter 
tuning of the ANN model was done on the results from each 
iteration of the network. The developed sequential model consists 
of ANN with a combination of dense layer, Rectified Linear Unit 
(ReLU) activation functions, and downsampling layer to train 
the dataset.

Dense layer: a dense layer is a regular neural network layer that 
links every neuron in the previous layer to every neuron in the defined 
layer. The dense layer is also based on the ReLU activation function 
for the final prediction task. In this study, the customization ability of 
the Keras API to specify any given number of layers was utilized. The 
developed ANN with the sequential model was used to specify the 
number of neurons for the layers, the activation type, the type 
initialization for kernel and bias, and the training method. This study 
used the number of neurons for the layers and activation function 

parameters while keeping other parameters at default settings for 
simplicity. The output y is computed using the ReLU activation 
function. The ANN-based model combines an input x in the training 
data and some randomly generated weights w to get the output y as in 
Equation 2.

 1
.

n

i
y x weights

=
= ∑

 
(2)

Where n is the number of instances.
Dropout layer: the dropout layer was used in the developed ANN 

based on the sequential model to reduce overfitting by setting a few 
neurons to 0 and reducing computation in the training process. The 
justification for this is based on the fact that randomly dropping 
neurons can greatly reduce overfitting for the prediction task.

Loss function: when trying to evaluate the learning process of a 
network, a loss function is used which measures the deviation from 
the target. This is then used to measure the performance level of ANN 
for predicting the soil nutrient properties and optimizing fertilizer 
application for specific crops. This loss function serves as the error rate 
that the network can use to adjust its weights and become more 
intelligent. In this research, the Mean Absolute Error (MAE) loss 
function was used to compute the average absolute error between 
actual and predicted values (Equation 3). In this study, Stochastic 
Gradient Descent (SGD) was used as the training method to calculate 
the loss and update the weight of the network (Equation 4).

 1

n

i
MAE actual predicted

=
= −∑

 
(3)

where actual is the target value, predicted is the network 
predictions, and n is the total number of instances.

  Weights Weights learning rate MAE= − ∗  (4)

TABLE 2 SCORPAN parameters.

SCORPAN factor Description Relevance to analysis Consideration in model

S (Soil properties) Soil texture and composition derived 

from parent material, organisms, and 

climate.

Directly assessed through recent soil samples. Accounted for via actual soil data.

C (Climate) Collective weather conditions over 

5–10 years. Soil supports specific 

organisms based on climate.

Climate effects on soil are acknowledged but 

not the primary focus.

Implicit in spatial position (n), since climate is 

location-dependent.

O (Organisms) Organisms in soil are influenced by 

climate and soil properties.

Indirectly factored through soil conditions. Not explicitly modeled but linked to soil 

characteristics.

R (Relief/Topography) Elevation, slope, and aspect affect soil 

formation and distribution.

May play a role but not directly measured. Assumed to be indirectly captured in spatial 

trends.

P (Parent Material) Rocks break down into soil, influenced 

by climate and organisms.

Soil texture derives from this, but not directly 

modeled.

Captured in soil sample analysis.

A (Age) Time series changes in soil properties. Not significant within a two-year span based 

on soil analysis department validation.

Considered stable; no time-based factor needed.

N (Spatial Position) Geographic location (longitude, 

latitude).

Serves as a proxy for climate, organisms, and 

other covariates.

Chosen as the primary input due to its 

correlation with other factors and ability to 

generalize using neural network clustering.
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Where the learning rate is a defined parameter in the 
network architecture.

Optimizer: the Stochastic Gradient Descent-based optimization 
referred to as Adams helps define momentum and variance of the 
gradient of the loss and leverage a combined effect to update the 
weight parameters as in Equation 5. In the course of this research, the 
Adaptive Moment Estimation (Adam) was used as the optimization 
technique to compute an adaptive learning rate for each parameter in 
the network. The momentum and variance together help to effectively 
improve the learning process.

 ( )Weights Weights Momentum Variance= − +  (5)

Where momentum and variance are used to enhance the 
convergence rate of the Stochastic Gradient Descent-
based optimization.

2.6 Recommendation

A recommendation system was then developed to suggest the 
amount of fertilizer needed to put the soil in the perfect condition for 
optimal crop yield. Based on the results obtained from the prediction 
stage on the available nutrients in the soil for the specific crops being 
considered in this paper; Yam, Maize, cassava, Upland and Lowland 
rice, the amount of fertilizer needed to put the soil in the perfect 
condition for optimal crop yield is then recommended for that 
location using a developed recommendation system. The knowledge 
of experts in the form of recommendation rules was used in the 
development of the recommendation system.

2.7 Algorithm

This section presents the overall algorithm for the developed 
mobile digital soil mapping application for predicting soil nutrient 
properties and optimizing fertilizer applications for specific crops 
using artificial neural networks. The algorithm takes as input the 
secondary and the primary datasets. The data preprocessing steps 
were then executed to remove any anomalies in the datasets. The 
preprocessing involves changing the “No data” value to a “0” value, 
dropping rows where at least one column is not available and random 
sampling of the entire dataset to prevent class imbalance problems. In 
addition, the features in both the primary and secondary datasets were 
standardized to the same units to ensure consistency. The secondary 
dataset was converted to the units of the primary dataset. The feature 
extraction was carried out in Python using the CSV format of the 
dataset. The feature extraction used the sequential model in Python to 
extract the needed columns from the pre-processed datasets. This 
study developed an ANN model with fully connected dense layers 
stacked together. The value of the features was normalized to a 
common scale using the max-min normalization. The ANN model 
was used purely for regressive and predictive analysis of both primary 
and secondary data. The developed ANN model for prediction is 
based on the sequential model object in Keras which allows easy 
creation of a linear stack of layers. The developed sequential model 
consists of ANN with a combination of dense layers, Rectified Linear 

Unit (ReLU) activation functions, and a down-sampling layer to train 
the dataset (Algorithm 1).

3 Results and discussion

The dataset size did not change during the preprocessing, however, 
to predict the soil texture from the sand, silt, and clay composition, 
the data was oversampled having 1,956 values for each texture class. 
Null values were also removed and the primary and secondary 
datasets were combined. This combination resulted in a final dataset 
with 3,241 rows and 7 columns. The modeling process was conducted 
in stages, splitting the dataset into an 80–20 train-test split, with 80% 
used for training and 20% for testing using the neural networks model.

Table 3 presents the training and validation loss results across four 
stages of soil property prediction using the developed model. For 
predicting nitrogen, phosphorus, potassium, and organic carbon, the 
model attained a training loss of 1.98 and a validation loss of 2.14, with 
standard deviations of 3.52and 4.06, respectively. These results indicate 
minimal error between target and predicted values, confirming 
effective learning and minimal overfitting. Similarly, for soil 
composition (sand, clay, and silt), the training loss was 3.55, and 
validation loss was 4.14, with standard deviations of 5.53 and 4.23, 
respectively, showing a slight increase compared to stage I  but 
maintaining strong predictive accuracy. The prediction of soil texture 
yielded a significantly lower training loss of 0.04 and validation loss of 
0.05, with respective standard deviations of 0.03 and 0.04, indicating 
improved model efficiency. For soil pH prediction, the training loss 
was 0.10, while validation loss was 0.28, with standard deviations of 
0.12 and 0.46, reflecting a slight increase compared to stage III but still 
within acceptable margins. Across all stages, the small differences 
between training and validation loss confirm the model’s robustness, 
demonstrating its ability to generalize well without overfitting.

The training and validation accuracy were also investigated. For 
the prediction of nitrogen, phosphorus, potassium, and organic 
carbon, the model achieved a training accuracy of 98.02% and a 
validation accuracy of 97.86%, indicating minimal misclassification 
and effective learning. Similarly, for soil composition (sand, clay, and 
silt), the model attained 96.45% training accuracy and 95.86% 
validation accuracy, demonstrating robust generalization. In 
predicting soil texture, training accuracy reached 99.95% with 
validation accuracy at 99.95%, showing negligible overfitting. The 
prediction of soil pH yielded 99.90% training accuracy and 99.72% 
validation accuracy, confirming strong model performance. 
Figures  4A–D illustrate the training and validation loss trends, 
showing consistent reductions in loss across epochs and stabilization 
over time, further affirming the model’s reliability. Minimal 
fluctuations and close alignment between training and validation 
losses suggest that the model effectively mitigates overfitting and 
generalizes well across soil property predictions. While minor 
inconsistencies in validation accuracy trends for soil texture prediction 
suggest slight overfitting, the overall results confirm the model’s 
precision, stability, and suitability for digital soil mapping applications.

Table  4 shows the comparison of the developed GeaGrow’s 
performance with other existing ML methods using the same dataset. 
Most of the ML algorithms on soil texture class prediction obtained 
an F1-score of at least 80% classification rates. The F1-score of the 
developed GeaGrow is better at 98.60% compared to AdaboostM1 
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with the closest score of 97.60%. The results suggest LibSVM as the 
least ML algorithm for the prediction of soil texture class with an 
F1-score of 80.20%. The outcomes demonstrated that the optimum 

predictor for soil texture class is the developed GeaGrow while the 
worst predictor for soil texture class is LibSVM across the evaluation 
metrics. The results showed that the developed GeaGrow using the 

ALGORITHM 1

Proposed algorithm.

TABLE 3 Results of the training and validation loss.

Stage Output Mean absolute 
error (Train)

Mean absolute 
error (Validation)

Standard 
deviation (Train)

Standard deviation 
(Validation)

I Nitrogen, Phosphorus, Potassium, and 

Organic Carbon properties

1.98 2.14 3.52 4.06

II Sand, clay, and silt composition 3.55 4.14 5.53 4.23

III Soil texture 0.04 0.05 0.03 0.04

IV pH level prediction 0.10 0.28 0.12 0.46
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same dataset is an improvement over the traditional Multilayer 
Perceptron with accuracy, error rate, precision, recall, and F1-score of 
98.35, 1.65, 98.50, 97.45, and 98.60%, respectively, when compared to 
the traditional Multilayer Perceptron with 95.11, 4.89, 97.10, 96.90, 
and 97.00%, respectively. The results of the developed GeaGrow are a 
justification that the method can provide better results than the 
traditional ML algorithms. Generally, the results demonstrated that 
most of the ML methods on the same dataset performed in a well-
balanced manner.

3.1 Soil nutrient availability and variability in 
the study area

The larger part of the study area (northern part) has soil native 
total nitrogen below 0.10 gkg−1 while some parts within western and 
eastern part had total nitrogen between 0.20 and 0.30 gkg−1. The 

remaining land area had the nutrient considerably between 0.10 and 
0.20 gkg−1 (Figure  5A). Most portions of Southwest Nigeria had 
extractable phosphorus between 23 and 28 mgkg−1 while some areas 
toward the west and east of the study area had values above 30 mgkg−1 
(Figure 5B) while extractable potassium ranged between 0.29 and 0.33 
gkg−1 (Figure 5C). The soil organic carbon in most parts of the study 
areas were <1%, though some areas had organic carbon between 1 and 
2% (Figure 5D). The soil pH (H2O) in the southern part of the study 
area had pH less than or equals 5.50 with the part toward the mid-belt 
having values of pH between 5.50 and 6.20, while the northern part 
had values between 6.50 and 7.40 (Figure 5E).

3.2 Recommendation system

Based on the results obtained from the modeling stage on the 
available nutrients in the soil for the specific crops being considered 

FIGURE 4

(A) Results of the stage I training and validation loss for the prediction of Nitrogen, Phosphorus, Potassium, and Organic Carbon properties of the soil 
(B) results of the stage II training and validation loss for the prediction of Sand, clay, and silt composition of the soil (C) results of the stage IV training 
and validation loss for the prediction of pH level of the soil (D) results of the stage III training and validation accuracy for the prediction of soil texture.
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in this paper; Yam, Maize, cassava, Upland and Lowland rice, the 
amount of fertilizer needed to put the soil in the perfect condition 
for optimal crop yield is then recommended for that location. The 
information being used in the system was obtained from the soil 
experts and it is displayed in Tables 5, 6. To utilize the information 
in Tables 5, 6, a retrieval system called the GeaGrow mobile 
application was set up.

3.3 GeaGrow mobile application

GeaGrow, a cutting-edge agritech application, derives its name 
from “Gea,” an alternative form of “Geo,” symbolizing the Earth’s 
essential role in agriculture, and “grow,” representing the 
development enabled by fertile soil. The app provides farmers, 
researchers, and extension agents with detailed soil property 
predictions, including nitrogen, phosphorus, potassium, and pH 
levels, directly on their mobile devices. By leveraging advanced 
predictive analysis, it offers personalized crop recommendations for 
yam, maize, cassava, upland rice, and lowland rice, alongside tailored 
fertilizer application advice to optimize soil conditions for each crop. 
Designed with cross-platform compatibility using Google’s Flutter 
SDK, the app incorporates Google Maps SDK for spatial 
functionality, allowing users to analyze individual locations through 
the “Point Scan” feature or multiple sites via the “Multi Scan” 
function. Additionally, user-centric features such as reminders, 
collections, and history enhance efficiency in farm management by 
synchronizing across devices, providing an adaptable platform for 
both technologically advanced and traditional farmers. Localization 
features, including Yoruba language support, further improve 
accessibility, ensuring broader usability in Nigeria’s Southwest region.

The user interface of GeaGrow (Figure  6) is designed for 
intuitive navigation, beginning with a login page where existing 
users can sign in while new users must register before accessing the 
app’s features. The homepage includes “My Farms,” which displays a 
list of registered farms and allows users to add new ones by entering 
farm details such as name, location, crop type, and estimated yield, 

either manually or through Google Maps integration. The app then 
provides insights into soil chemical properties and crop suitability, 
offering recommendations for optimized fertilizer application. 
Beyond individual farm management, the scalability of GeaGrow 
ensures the potential for expansion to other regions through the 
integration of additional environmental data, made possible by the 
Google Maps SDK and contributions from the SmartSoil Team 
project. However, adoption challenges remain, particularly due to 
limited technological literacy and poor internet access in rural areas, 
which may hinder smallholder farmers’ ability to fully utilize the 
app. Despite these limitations, GeaGrow presents a transformative 
tool for precision agriculture, capable of influencing agricultural 
policy and enhancing farming practices through AI-driven soil 
analysis and optimization.

4 Conclusion

In this study, a mobile digital soil mapping application for 
predicting soil nutrient properties and optimizing fertilizer 
applications for specific crops using artificial neural networks was 
developed. The developed method included data collection, data 
preprocessing, feature extraction, prediction and recommendation. 
The data collection was done through coordinates interfacing with 
the iSDAsoil’s API and primary datasets derived from six (6) states 
in southwest, Nigeria. The preprocessing and feature extraction were 
carried out in Python using the CSV format of the dataset. The 
preprocessing involves changing the “No data” value to a “0” value, 
dropping rows where at least one column is not available and 
random sampling of the entire dataset to prevent class imbalance 
problems. The feature extraction used the sequential model to 
extract the needed columns from the datasets. The value of the 
features was normalized to a common scale using the max-min 
normalization method. The prediction phase used an ANN method 
for predicting soil nutrient properties. A recommendation system 
called the GeaGrow mobile application was then developed based 
on the results obtained from the prediction stage on the available 

TABLE 4 Performance comparison of GeaGrow with similar methods.

Method Accuracy (%) Error (%) Precision (%) Recall (%) F1-score (%)

J48 tree 95.80 4.20 97.80 96.80 97.30

kNN 87.25 12.75 90.50 92.30 91.40

Gradient boosting 91.92 8.08 91.70 95.30 93.47

k-means 89.00 11.00 90.70 91.20 90.95

Random forests 95.43 4.56 98.10 96.30 97.20

Multilayer Perceptron 95.11 4.89 97.10 96.90 97.00

Naïve Bayes 79.67 20.33 94.70 76.30 84.50

Bagging 96.23 3.77 97.00 97.10 97.50

Stacking 67.07 32.93 67.10 67.20 80.30

Logistic 95.25 4.75 95.70 95.30 95.40

AdaboostM1 96.01 3.99 97.90 95.40 97.60

LibSVM 66.99 33.01 67.10 67.00 80.20

GeaGrow 98.35 1.65 98.50 97.45 98.60
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nutrients in the soil for the specific crops being considered in this 
paper. The amount of fertilizer needed to put the soil in the perfect 
condition for optimal crop yield is recommended for that location 
using the developed recommendation system. The results showed 

that by combining soil texture with its water retention properties, 
NPK values, and Organic Carbon content, the model predicts the 
pH level of the soil. Upon testing, the Neural Network model 
achieved an MAE of 2.1388 and an accuracy of 97.86% in the first 

FIGURE 5

Soil native nutrients generated by multiple linear regression on environmental covariates. (A) Soil total nitrogen (g kg−1); (B) Extractable phosphorus 
(mg kg−1); (C) Extractable potassium; (D) Organic carbon (g kg−1); E: Soil pH (H2O).

TABLE 5 Rating for soil fertility classes.

Fertility class Strongly acid Moderately acid Slightly acid Neutral Slightly alkaline

pH (water) 5.00–5.50 5.60–6.00 6.10–6.50 6.60–7.20 7.30–7.80

Very low Low Moderately low Medium Moderately High

Nitrogen (Total N) 0.30–0.50 0.60–1.00 1.10–1.50 1.60–2.00 2.10–2.40

Very low Low Moderate/Medium High Very high

Phosphorus (mg kg−1) < 3.00 3.00–7.00 7.00–20.00 > 20.00 N/A

Potassium (cmol kg−1) 0.12–0.20 0.21–0.30 0.31–0.60 0.61–0.73 N/A

Organic matter (g kg−1) < 4.00 4.00–10.00 10.00–14.00 14.00–20.00 > 20.00

Calcium (Exc. cmol kg−1) N/A < 2.00 2.00–5.00 > 5.00 N/A

Exc., Exchangeable; Cmol, Centimoles.

https://doi.org/10.3389/fsufs.2025.1533423
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Folorunso et al. 10.3389/fsufs.2025.1533423

Frontiers in Sustainable Food Systems 12 frontiersin.org

stage, an MAE of 4.1354 and an accuracy of 95.86% in the second 
stage, an MAE of 0.0478 and an accuracy of 99.95% in the third 
stage, and MAE of 0.2785 and accuracy of 99.72% in the fourth 
stage. This study makes substantial contributions to the field of 
agricultural science by integrating machine learning into soil 
nutrient mapping and optimizing fertilizer application for specific 
crops, marking a significant leap in the use of advanced technologies 
in agriculture. The developed method allows smallholder farmers to 
solve soil nutrient mapping and optimal fertilizer application 
problems; making it a broader application for precision agriculture. 
The limitations of the study include reliance on static datasets and 
challenges with real-time data integration for effective model 
validations. As a next step in the SmartSoil team project, the study 
suggests integrating real-time weather data and expanding 
crop coverage.
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TABLE 6 Rating for crops.

Crop Soil pH 
range

Nitrogen (N) (kg N ha−1) Phosphorus (P2O5) 
(kg P2O5 ha−1)

Potassium (K2O) (kg K2O 
ha−1)

High Medium Low High Medium Low High Medium Low

Yam 5.50–6.50 30 50 70 ** 50 50 20 50 90

Cassava 5.50–6.50 ** 60 100 20 20 30 ** 60 90

Maize 5.60–7.80 30 60 120 ** 30 60 ** 30 60

Rice Upland (Tall) 5.60–7.80 10 20 40 ** 15 30 ** 15 30

Rice Upland (Short) 5.60–7.80 20 40 70 ** 15 30 ** 15 40

ha, hectare, ** for “no fertilizer needed”.

FIGURE 6

GeaGrow user interface overview.
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