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Both climate change and human activities play critical roles in shaping the spatial 
distribution of cotton cultivation, particularly in arid and semi-arid environments. 
However, existing studies have not sufficiently quantified their synergistic effects, 
and regional-scale applications remain limited. This study selected key variables 
from 31 environmental factors—including climate, soil, topography, and human 
footprint—and employed an optimized MaxEnt model to project cotton distribution 
across three Shared Socioeconomic Pathways (SSP126, SSP245, and SSP585). 
We developed models based on (i) current climate conditions, (ii) an integrated 
model incorporating both current climate conditions and human footprint, and (iii) 
future climate projections for the 2030s, 2050s, and 2070s. The results indicate 
that human footprint, mean diurnal temperature range (bio2), mean temperature 
of the coldest quarter (bio11), precipitation of the coldest quarter (bio19), and 
solar radiation intensity are the primary factors influencing cotton distribution. 
Under prevailing climate conditions, suitable cotton habitats are mainly located in 
Aksu, Kashgar, Tacheng, Bayingolin Mongol Autonomous Prefecture, and Changji, 
where human activities have significantly expanded the cultivation range. Future 
climate projections indicate a decrease in the extent of suitable cotton habitats, 
with its distribution center shifting toward lower-altitude areas. This study offers 
key empirical evidence and conceptual understanding to address climate-induced 
risks to cotton farming, forming a basis for informed strategies in sustainable 
cultivation and habitat conservation.
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1 Introduction

Climate change and human activities are the principal forces driving the evolution of 
global agricultural ecosystems, profoundly shaping agricultural production patterns through 
their impacts on crop phenology, yield stability, and the boundaries of cultivation zones (Yue 
et al., 2019; Onuegbu et al., 2024; Zafar et al., 2024). Climate factors such as solar radiation, 
temperature, and precipitation have a significant impact on crop growth (Sun et al., 2017; Jiang 
et al., 2021). Solar radiation is fundamental to photosynthesis, while moderate diurnal 
temperature fluctuations enhance cotton growth. As a tropical crop, cotton is highly sensitive 
to low temperatures, with frost potentially causing damage that disrupts the interaction 
between cotton roots, soil, and microbial communities, thus inhibiting seed germination (Li 
et al., 2023b; Li et al., 2024). Particularly in arid and semi-arid regions, the synergistic effects 
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of climate change and human activities have significantly increased 
the vulnerability of agricultural ecosystems, leading to more complex 
environmental changes (Zain-ul-Hudda et al., 2024; Nazarova et al., 
2025). Studies from South Asia and Africa show that the increased 
frequency of droughts and the reduction of water resources caused by 
climate change have directly impacted the distribution of cotton 
cultivation areas (Gérardeaux et al., 2018; Ullah et al., 2022). 
Furthermore, human activities such as land-use changes and 
infrastructure development further influence the spatial distribution 
of cotton cultivation (Chen et al., 2022). Soil properties, such as 
organic carbon content and soil texture, provide the necessary 
environmental conditions for cotton growth, while natural factors like 
topography play a crucial role in regulating water and nutrient supply 
(Malode et al., 2021; Wu et al., 2024). Therefore, the distribution of 
cotton is influenced not only by climate change but also by the 
combined effects of human activities, soil properties, and 
topographical features.

Xinjiang is one of the largest cotton-producing regions in China 
(Kuang et al., 2024; Zahra et al., 2025). However, as climate change 
intensifies, challenges such as water scarcity, temperature fluctuations, 
and precipitation uncertainty are significantly altering the cotton-
growing environment, profoundly impacting the boundaries of 
suitable cultivation areas (Li et al., 2023a). Similar trends have been 
observed in major cotton-growing regions, including the United States, 
India, and Australia (Hebbar et al., 2013; Williams et al., 2015; Nouri 
et  al., 2021). The effects of climate change on cotton production 
manifest in different patterns across these regions, with some 
variations influenced by local water management strategies. 
Nevertheless, many of these regional studies often overlook the 
combined impact of human activities and climate change.

Globally, considerable research has been conducted on crop 
distribution modeling (Benito Garzón et al., 2019). Existing studies 
have demonstrated that ecological niche models (ENMs) and species 
distribution models (SDMs) are effective tools for assessing the 
potential impacts of climate change on agricultural ecosystems (Roy 
et al., 2022). The MaxEnt (Maximum Entropy) approach has gained 
recognition for its superior predictive accuracy, owing to its 
computational efficiency, resilience to missing data, and capacity to 
deliver accurate predictions from limited occurrence records (Elith 
et al., 2011; Merow et al., 2013) Consequently, the MaxEnt model has 
been extensively utilized in agricultural and ecological studies (Xu 
et al., 2019; He et al., 2023).

Recent studies on cotton have widely adopted MaxEnt to examine 
how climate variability influences its geographic distribution (Shi et al., 
2021; Li et al., 2023a; Mai and Liu, 2023). These studies investigate how 
shifts in climate conditions may alter suitable cultivation zones by 
analyzing differences between current and projected cotton distributions, 
thereby supporting adaptation strategies in cotton farming. While the 
influence of climate change on cotton distribution has been widely 
acknowledged, it is equally important to recognize that cotton growth and 
distribution are substantially influenced by anthropogenic activities, 
particularly through water resource management, land-use changes, and 
genetic advancements (Wu et al., 2022; Lang et al., 2023; Shi et al., 2023). 
Although previous studies have delineated climate suitability zones for 
cotton across various provinces and regions, there remains a significant 
gap in research integrating both climate change and anthropogenic 
activities in the evaluation of cotton’s climate suitability (Li et al., 2020b). 
Most existing studies have primarily concentrated on evaluating climatic 

influences on cotton suitability, largely overlooking the roles of human 
activities. Nonetheless, the synergistic impacts of climate change and 
anthropogenic activities on cotton distribution patterns constitute a 
critical yet underexplored research domain.

To assess the combined influence of climate dynamics and 
anthropogenic factors (as indicated by the human footprint), this study 
examines their interactive effects on cotton distribution patterns. 
Accordingly, key variables influencing cotton growth in Xinjiang—
including bioclimatic conditions, soil characteristics, topography, and 
human activities—were selected and analyzed using the MaxEnt model. 
The objectives of this study are: (1) to compare cotton habitat distributions 
in Xinjiang under scenarios with and without human intervention; (2) to 
evaluate changes in cotton habitat distribution patterns under multiple 
future climate scenarios; and (3) to examine the spatial dynamics and 
development trends of cotton cultivation in Xinjiang. The results enhance 
the understanding of how climate variability and human activities jointly 
influence cotton distribution in Xinjiang, thereby informing more 
effective cultivation strategies, rational resource use, and long-term 
agricultural sustainability in the region.

2 Materials and methods

2.1 Study area

Located in the northwestern part of China, Xinjiang (73°40′–
96°18′E, 34°25′–48°10′N) represents the country’s most extensive 
provincial-level region and experiences a typical temperate continental 
climate. As China’s primary cotton production base, Xinjiang plays a 
critical role in national cotton yield and quality, owing to its extensive 
land resources and favorable thermal and solar conditions (Li et al., 
2020b). However, situated within an arid and semi-arid region, 
Xinjiang experiences scarce natural precipitation, rendering cotton 
growth highly dependent on artificial irrigation. Therefore, Xinjiang 
serves as an ideal region for studying the suitability distribution of 
economic crops in arid and semi-arid environments.

2.2 Data sources

2.2.1 Species occurrence data
This study utilized field survey data collected from agricultural 

regions of Xinjiang between 2015 and 2020. GPS was used to record 
the latitude, longitude, and elevation of cotton planting sites, thereby 
generating occurrence data for cotton distribution across Xinjiang. To 
reduce redundancy and avoid overfitting, ENMTools.pl. was applied 
to preprocess the dataset, allowing a single valid record per spatial 
grid. After this refinement, 1,195 unique cotton presence points 
remained and were used in the modeling phase (Figure 1).

2.2.2 Environmental variables
In order to estimate how cotton may be  distributed across 

Xinjiang in projected climate conditions, this study adopted the 
BCC-CMS2-MR global climate model (GCM), as recommended in 
the IPCC’s Sixth Assessment Report. This model, optimized from 
earlier versions, demonstrates strong predictive capabilities for future 
climate scenarios. The analysis incorporated three Shared 
Socioeconomic Pathways (SSPs)—SSP126, SSP245, and SSP585—to 
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develop predictive models of cotton suitability distribution in Xinjiang 
under future climate scenarios.

Additionally, 31 environmental variables potentially affecting 
cotton distribution were collected, encompassing soil, topography, 
solar radiation, bioclimatic characteristics, and human activities to 
build an integrated analytical framework. Specifically, soil data were 
sourced from the HWSD database to assess soil characteristics. 
Topographic data were acquired from the Geographic Space Data 
Cloud Platform and processed with ArcGIS 10.8 to derive slope and 
aspect features. Solar radiation data, representing both current and 
future scenarios, were sourced from WorldClim and the NASA 
NEX-GDDP-CMIP6 high-resolution datasets (Table 1).

Research has shown a close relationship between the severity, 
extent, and spread of the human footprint and the suitability of land 

for agriculture. Human footprint data were retrieved from the Global 
Human Impact Dataset (Venter et  al., 2016), which integrates 
information on land use, population density, and infrastructure to 
quantify the intensity of human activities. These components serve as 
indirect proxies for agricultural activities, such as infrastructure 
development and land conversion, especially in arid regions where 
direct irrigation data is often lacking. Previous studies have 
demonstrated significant correlations between the human footprint 
index and changes in hydrological systems, agricultural expansion, 
and ecological pressure (Jaramillo and Destouni, 2015; Grill et al., 
2019; Lines et al., 2021; Grill et al., 2019; Jaramillo and Destouni, 
2015). Therefore, in this study, we incorporate the human footprint 
index as a continuous variable into the MaxEnt model to represent the 
combined effects of human activity on the suitability distribution of 
cotton. The relationship between human footprint intensity and 
agricultural suitability highlights the critical role of human-induced 
land use and infrastructure development in shaping crop growth 
potential, particularly in areas with limited natural climate resources.

These data reflect both natural and human-driven factors 
influencing cotton distribution in Xinjiang. Future scenario predictions 
for the 2030s, 2050s, and 2070s were generated under the assumption 
that topography and soil characteristics would remain constant, offering 
a robust basis for assessing potential suitable regions for cotton 
cultivation in Xinjiang (Egli et  al., 2018). These analyses lay the 
groundwork for investigating how climate variability and human 
interventions affect cotton distribution and for optimizing planting 
strategies. This study integrates multiple climate scenarios for the 2030s, 
2050s, and 2070s, resulting in nine distinct future scenarios: SSP126-30s, 
SSP126-50s, SSP126-70s, SSP245-30s, SSP245-50s, SSP245-70s, 
SSP585-30s, SSP585-50s, and SSP585-70s. To reduce multicollinearity 
among variables, a correlation analysis module in ENMTools.pl. was 
employed to remove those with a correlation coefficient greater than 0.8 

FIGURE 1

Cotton occurrence data in Xinjiang.

TABLE 1 Data sources and descriptions.

Data type Resolution Data source

Soil 30 arcsec http://www.iiasa.ac.at/

DEM 1 km https://www.gscloud.cn/

Human Footprint 1 km
http://www.ciesin.columbia.edu/

wild_areas

Current Bioclimatic 30 arcsec https://worldclim.org/

Future Bioclimatic 30 arcsec https://worldclim.org/

Current solar radiation 30 arcsec https://worldclim.org/

Future solar radiation 0.25°

https://nex-gddp-cmip6.s3.

us-west-2.amazonaws.com/

index.html#NEX-GDDP-

CMIP6/

Administrative boundary 

data of Xinjiang
- https://www.resdc.cn/
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(Warren et al., 2021) (Figure 2). Through a stepwise backward selection 
process, 17 environmental variables were ultimately selected for model 
analysis (Rodriguez-Caballero et al., 2018) (Table 2).

2.3 Principle of the MaxEnt Model

The MaxEnt model is a machine learning technique grounded 
in the principle of maximum entropy, widely used for species 
distribution modeling (SDM) (Elith et al., 2011). The fundamental 
concept is to identify a probability distribution that maximizes 
entropy, meaning it is the least biased and most uniform given 
partial environmental data. According to the principle of 
maximum entropy, when no additional information is available, 
the most uniform distribution should be chosen (Guiasu and 
Shenitzer, 1985; Brummer and Newman, 2019). In the MaxEnt 
framework, a species’ potential habitat distribution is represented 
by a probability distribution, where various environmental 
variables are introduced as feature functions (e.g., linear, 
quadratic, hinge features) to capture the relationship between 

environmental conditions and species distribution. The objective 
of the MaxEnt model is to find the optimal predictive model by 
maximizing the entropy of this distribution. The model’s 
optimization goal is expressed as follows:
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Where p (x) is the probability of the species occurring at location x. 
fi(x) is the feature function for the environmental variable at location x, 
which describes the relationship between environmental factors and 
species distribution. λi is the weight associated with each feature function, 
representing the impact of various environmental variables on 
species distribution.

Through adjusting these weights λi, the MaxEnt model maximizes the 
entropy of the species distribution to predict the most suitable habitats for 
the species under different environmental conditions.

FIGURE 2

Correlation of 31 environmental variables.
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2.4 Model analysis

The environmental dataset was processed through bilinear-
based interpolation and harmonized to a consistent 
250 × 250-meter grid resolution (Xu et al., 2024). To evaluate the 
combined effects of environmental changes and human activities 
on the cotton cultivation potential in Xinjiang, three predictive 
models were developed: Model A: Simulates the potential 
distribution of cotton under natural conditions using 
environmental variables representing the current climate, 
including bioclimatic, soil, topographic, and solar radiation data. 
Model B: Expands upon Model A by incorporating human 
footprint data to evaluate the role of human activities in shaping 
cotton habitat suitability. Model C: Evaluates how climate change 
may affect cotton distribution by utilizing environmental 
variables under future climate scenarios, including bioclimatic, 
soil, topographic, and solar radiation data.

To optimize model parameters and mitigate overfitting, 75% of the 
data were used for training and 25% for testing. The ENMeval package 
was employed to optimize the regularization multiplier (RM, ranging 
from 0.5 to 4 in increments of 0.5) and feature combinations (FC, 
consisting of six types: L, LQ, H, LQH, LQHP, and LQHPT) in the 
MaxEnt model. A total of 48 parameter combinations (8 regularization 
multipliers × 6 feature combinations) were systematically evaluated, 
and model complexity was assessed (Kass et al., 2021; Huang et al., 
2024). The final selection of parameter combinations, based on a 
balance between model complexity and predictive performance, 
prioritized lower complexity and stronger ecological interpretability, 
thus ensuring a balance between predictive accuracy and the risk 
of overfitting.

The influence of each environmental factor on model predictions 
was evaluated through the jackknife method, with response curves 
visualized to demonstrate their impact on cotton suitability. The 
suitability threshold was determined based on expert knowledge and 
the Maximum Training Sensitivity plus Specificity (MTSS) criterion 
within the MaxEnt model. Suitability levels were classified into four 
categories: unsuitable (<MTSS), low suitability (MTSS–0.3), moderate 
suitability (0.3–0.4), and high suitability (0.4–0.8) (Shabani et  al., 
2018; Wang et al., 2019). To ensure comparability across different 
models and climate scenarios, all predictions were based on the same 
threshold classification. Comparing Model A and Model B reveals the 
impact of human activities on cotton suitability, whereas comparing 
Model A and Model C highlights the potential effects of climate 
change on cotton distribution and agricultural potential, thus guiding 
the development of adaptive agricultural management strategies.

2.5 Model evaluation and validation

This study utilized ROC curves and the Area Under the Curve (AUC) 
metric to evaluate model performance, where AUC values range from 0 
to 1. AUC values closer to 1 indicate higher predictive accuracy. According 
to AUC grading standards, model performance ranges from poor 
(0 < AUC ≤ 0.6) to excellent (0.9 < AUC ≤ 1) (Zhao et al., 2021). The 
True Skill Statistic (TSS) was introduced as a supplementary evaluation 
metric. TSS is calculated by summing sensitivity and specificity and 
subtracting 1, with values ranging from −1 to 1 (Allouche et al., 2006). 
Based on evaluation standards, TSS scores are categorized as poor (−1 to 
−0.4), fair (0.4–0.7), very good (0.7–0.85), and perfect (0.9–1) (Préau 
et al., 2018). By integrating AUC and TSS, the models’ performance in 
predicting suitable cotton habitats in Xinjiang was assessed 
comprehensively. AUC emphasizes overall predictive capacity, whereas 
TSS refines the accuracy in distinguishing species presence and absence. 
Together, these two metrics offer a more comprehensive framework for 
model evaluation (Kabir et al., 2017).

3 Results

3.1 Model parameter optimization results

In this study, simulation prediction results were evaluated using a 
combination of AUC and TSS metrics. Under the MaxEnt model, the 
average training AUC was 0.947, the average testing AUC was 0.941, 
and the average TSS was 0.840, indicating a high level of predictive 
accuracy and model reliability (Table  3). When the regularization 
multiplier (RM) was set to 1 and the feature combination (FC) to 
LQHPT, the MaxEnt model achieved optimal performance. In this 
configuration, the training AUC reached 0.946, the testing AUC reached 
0.943, and the TSS was 0.837 (Table 3). Under environmental conditions 
(Model A), the variables influencing cotton distribution were: slope 
(36.2%), DEM (15.5%), bio2 (13.5%), bio11 (7.4%), solar radiation 
(6.2%), t_CaCO3 (5.1%), and t_sand (4.5%), with a cumulative 
contribution rate of 88.4%. Under human activity influences (Model B), 
the variables influencing cotton distribution were: HF (43.7%), slope 
(27.5%), DEM (9.8%), bio2 (3.7%), and bio19 (3.3%), with a cumulative 
contribution rate of 88%. As the human footprint increased, 
environmental variables such as slope, DEM, and bio2, each initially 

TABLE 2 Modeling variables.

Variables Description Unit

Bio2 Mean Diurnal Range °C

Bio3 Isothermality unitless

Bio11
Mean temperature of coldest 

quarter
°C

Bio15 Precipitation seasonality unitless

Bio18
Precipitation of warmest 

quarter
mm

Bio19
Precipitation of coldest 

quarter
mm

Dem DEM m

Aspect Aspect °

Slope Slope °

t_ph_h2o Topsoil PH(H2O) unitless

t_oc Topsoil organic carbon % weight

t_texture Topsoil texture code

t_sand Topsoil sand fraction % wt

t_caco3 Topsoil calcium carbonate % weight

t_cec_soil Topsoil CEC (soil) cmol(+)kg

Solar radiation Solar radiation kJ/m2/day

HF Human footprint unitless
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contributing more than 6%, exhibited decreases compared to Model A 
(with reductions of 8.7, 5.7, 9.8, and 4.7%, respectively). Conversely, in 
Model B, the contribution rate of bio19 increased by 0.7% (Figure 3).

3.2 Distribution of cotton planting areas 
under current climate and human 
interference

The MaxEnt model was used to simulate cotton suitability habitats 
under scenarios both with and without human activity interference, 
followed by classification analysis and area calculations for each suitability 

level (Table 4). Under the current climate model, when only environmental 
variables were considered, the total suitable habitat area for cotton in 
Xinjiang was 7.97 × 104 km2. Of this, 4.56 × 104 km2 was classified as 
highly suitable, 1.84 × 104 km2 as moderately suitable, and 1.57 × 104 km2 
as poorly suitable. The suitable habitats were primarily distributed in 
regions such as Aksu, Kashgar, Tacheng, Bayingolin Mongol Autonomous 
Prefecture, and Changji (Figure 4A). When human activity interference 
was considered, the total suitable habitat area expanded to 9.50 × 104 km2, 
representing a 19% increase compared to the scenario based solely on 
environmental variables. The area corresponding to each suitability 
category also increased (Figure 4B). Specifically, the highly suitable habitat 
area expanded by 0.26 × 104 km2, with new regions primarily located in 

FIGURE 3

Contribution rates of environmental variables in the MaxEnt Model.

TABLE 3 Model accuracy evaluation.

Scenario AUCtrain AUCtest TSS

Current 0.946 0.943 0.837

Current_HF 0.947 0.938 0.843

SSP126 ~ 2030 0.948 0.940 0.844

SSP126 ~ 2050 0.948 0.934 0.839

SSP126 ~ 2070 0.947 0.943 0.840

SSP245 ~ 2030 0.947 0.945 0.839

SSP245 ~ 2050 0.946 0.943 0.841

SSP245 ~ 2070 0.947 0.943 0.840

SSP585 ~ 2030 0.945 0.938 0.833

SSP585 ~ 2050 0.946 0.943 0.842

SSP585 ~ 2070 0.946 0.944 0.837
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northern Kashgar, northern Bayingolin Mongol Autonomous Prefecture, 
southern Tacheng, and eastern and western Aksu. The moderately 
suitable habitat area increased by 0.64 × 104 km2, with new regions mainly 
in southern Tacheng, eastern and western Aksu, northern Kashgar, and 
northern Bayingolin Mongol Autonomous Prefecture. The poorly suitable 
habitat area increased by 0.63 × 104 km2, primarily concentrated in 
northern Bayingolin Mongol Autonomous Prefecture, with scattered 
patches in Changji.

3.3 Changes in cotton spatial distribution 
under different climate change scenarios

Predicted suitable habitat ranges for cotton show significant 
variation across different future climate scenarios (Figure 5). Under 
the SSP126 scenario, suitable cotton habitats are predominantly 
concentrated in the southern part of Tacheng, northern Kashgar, 
central and western Shihezi, Kuitun, and northern Bayingolin Mongol 
Autonomous Prefecture. Cotton habitats are projected to contract 
primarily in Bayingolin Mongol Autonomous Prefecture and Aksu 
(Figure 6). Under the SSP245 scenario, the contraction trend is most 
pronounced during the 2030s. Suitable habitats are concentrated in 
the southern part of Tacheng, central and western Shihezi, Kuitun, and 
northern Bayingolin Mongol Autonomous Prefecture. By the 2050s, 
the cotton distribution pattern remains largely stable, with suitable 
habitats primarily located in the northern part of Kashgar, southern 
Tacheng, northern Bayingolin Mongol Autonomous Prefecture, 

western Shihezi, and Kuitun, with minor contraction observed.Under 
the SSP585 scenario, distribution patterns in the 2050s and 2070s 
remain similar to current patterns, whereas the 2030s exhibit a notably 
greater contraction trend. Suitable habitats are projected to 
be predominantly located in northern Kashgar, central and western 
Shihezi, northern Bayingolin Mongol Autonomous Prefecture, 
southern Tacheng, and Kuitun.

The predicted suitable habitat area for cotton shows substantial 
differences compared to the current climate scenario (Figure 7). 
Under the current climate scenario, the total suitable habitat area 
for cotton is 7.97 × 104 km2, accounting for 5.1% of Xinjiang’s total 
area. Under the SSP126 scenario, the suitable habitat area is 
projected to range between 2.37 × 104 km2 and 3.37 × 104 km2, 
representing 1.52 to 2.15% of Xinjiang’s area, with the highly 
suitable habitat area peaking at 0.57 × 104 km2 in the 2030s, 
accounting for 17% of the total suitable area. In the SSP245 
scenario, the suitable habitat area is projected to range between 
2.06 × 104 km2 and 8.09 × 104 km2, corresponding to 1.32 to 5.17% 
of the total area. By the 2050s, the suitable habitat area is expected 
to exceed the current extent, with highly suitable habitats reaching 
a maximum of 3.35 × 104 km2, representing 41% of the total. Under 
the SSP585 scenario, suitable habitat areas are expected to range 
between 2.12 × 104 km2 and 6.96 × 104 km2, accounting for 1.36 to 
4.45% of Xinjiang’s total area, with the highly suitable habitat area 
peaking at 2.23 × 104 km2, or 32% of the total, in the 2070s. Area 
percentage analysis indicates that under the SSP126 scenario, 
cotton’s suitable habitat continuously contracts over time 

TABLE 4 The area of suitable habitat of a cotton with and without human activity interference (×104km2).

Human activity High suitability zone Moderate suitability 
zone

Low suitability zone Unsuitable zone

With human activity (HF) 4.82 2.48 2.20 146.94

Without human activity 

(History)
4.56 1.84 1.57 148.47

FIGURE 4

The suitable habitats of cotton under the current climate pattern (A) and under the interference of human activities (B).
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(Figure 8), while under the SSP245 scenario, the habitat follows a 
contraction–expansion–contraction pattern. In contrast, under the 
SSP585 scenario, an initial contraction is followed by expansion. 
Overall, changes are most pronounced under the SSP245 scenario, 
followed by SSP585, with relatively stable conditions observed 
under SSP126.

3.4 Potential shift of cotton distribution 
center in Xinjiang

The “Centroid Shift (Line)” tool in SDMToolbox was employed to 
analyze the changes in the centroid of suitable cotton habitats under 
three Shared Socioeconomic Pathways (SSP126, SSP245, and SSP585) 
for the 2030s, 2050s, and 2070s, relative to the current centroid. These 
changes include shifts in latitude, longitude, and elevation (Figure 9). 

The current centroid of suitable cotton habitats in Xinjiang is situated 
in the northwest of Bayingolin Mongol Autonomous Prefecture 
(42.57°N, 83.86°E), at an elevation of 4,082 m. In the SSP126 scenario, 
the centroid of cotton distribution shifts northeastward along a 
horizontal gradient. In the SSP245 and SSP585 scenarios, the centroid 
shifts southwestward along a horizontal gradient, with a vertical shift 
toward lower altitudes.

The centroid shifts under different climate scenarios are 
summarized as follows: Under the SSP126 scenario, the centroid in 
the 2030s is located at 41.69°N latitude, 81.26°E longitude, and 1,518 
meters elevation; by the 2050s, it shifts to 42.58°N latitude, 82.75°E 
longitude, and 3,087 meters elevation; and by the 2070s, it moves to 
43.05°N latitude, 83.48°E longitude, and 3,451 meters elevation. 
Under the SSP245 scenario, the centroid in the 2030s is located at 
43.89°N latitude, 84.89°E longitude, and 3,060 meters elevation; by the 
2050s, it shifts to 41.84°N latitude, 82.60°E longitude, and 1,520 

FIGURE 5

Habitat potential prediction of cotton under the SSP126, SSP245, and SSP585 climate scenarios for the 2030s(C1,C4,C7), 2050s(C2,C5,C8) and 
2070s(C3,C6,C9).
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meters elevation; and by the 2070s, it moves to 42.29°N latitude, 
82.40°E longitude, and 2,306 meters elevation. Under the SSP585 
scenario, the centroid in the 2030s is located at 41.79°N latitude, 
81.98°E longitude, and 1,231 meters elevation; by the 2050s, it moves 
to 41.51°N latitude, 81.53°E longitude, and 1,379 meters elevation; 
and by the 2070s, the centroid is located at 42.10°N latitude, 83.13°E 
longitude, and 1,620 meters elevation.

4 Discussion

4.1 Analysis of major impact factors

Optimal MaxEnt model predictions reveal that, under the 
combined influences of climate change and human activities, the 
primary factors influencing cotton growth in Xinjiang are the Human 

Footprint (HF), solar radiation, the mean diurnal range (bio2), the 
mean temperature of the coldest quarter (bio11), and the precipitation 
of the coldest quarter (bio19). The response curves for each 
environmental variable demonstrate the range of cotton’s adaptability 
to these factors. At the Maximum Training Sensitivity Specificity 
(MTSS) threshold, the probability response curves reveal the 
relationship between cotton occurrence probability and the 
environmental variables. Specifically, the suitable range for human 
footprint is between 5.82 and 41.80, solar radiation ranges from 
14,866.70 to 16,138.84 KJ, the optimal range for bio2 is from 8.68 to 
11.99°C and 12.77 to 15.29°C, for bio11, it is from −13.59 to −9.66°C 
and −5.46 to 0.45°C, and for bio19, it is from 2.41 to 23.98 mm 
(Figure 10).

Cotton cultivation in Xinjiang is predominantly concentrated in 
oasis plain regions, characterized by flat terrain and controllable water 
resources, making them typical artificial agricultural ecosystems. The 

FIGURE 6

Changes in the potential cotton habitats under the SSP126, SSP245, and SSP585 climate scenarios for the 2030s(C1,C4,C7), 2050s(C2,C5,C8) and 
2070s(C3,C6,C9).
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simulation results of this study indicate that the inclusion of the 
human footprint (HF) variable significantly increased the area of 
suitable cotton habitat, with an approximate 19% expansion compared 
to the no-disturbance scenario. This finding quantitatively highlights 
the positive influence of human activities on shaping the spatial 
distribution of cotton, particularly in regions where natural climatic 
resources are limited. Through the construction of irrigation systems, 
improvements in farmland infrastructure, soil preparation, and 
fertilizer management, human interventions have effectively enhanced 
the ecological suitability for cotton cultivation (Duan et al., 2021; 
Onuegbu et al., 2024; Zhang et al., 2024). For example, certain areas 
in the lower reaches of the Tarim River were not suitable for cotton 
cultivation under natural climatic conditions; however, following the 
establishment of canal irrigation systems, habitat suitability for cotton 
significantly improved. These findings align with previous research 
highlighting the reliance of agricultural expansion in arid regions on 
artificial irrigation (Abou Zaki et al., 2022; Ahmed et al., 2023).

Previous studies have highlighted the crucial role of solar radiation in 
the growth and development of cotton (Pinnamaneni et al., 2022). While 
various experimental methods have explored its relationship with cotton 
growth, a systematic quantitative analysis of the role of solar radiation in 
regional suitability assessments remains lacking (Lin et al., 2023). This 
study utilizes the MaxEnt model to quantitatively characterize the impact 
of solar radiation on the distribution of suitable areas for cotton. 
Furthermore, adequate precipitation contributes to increased soil moisture, 
thereby providing a favorable growth environment for cotton. However, 
excessive precipitation may impair cotton’s photosynthetic capacity, hinder 

growth, and ultimately affect its final yield (Jans et al., 2021). In this study, 
we found that the suitable range for cotton in relation to bio2 is between 
8.68°C and 15.29°C, effectively supporting its growth. Additionally, cotton 
is particularly sensitive to low temperatures, and the suitable range for 
bio11 is from −13.59°C to −9.66°C and from −5.46°C to 0.45°C, which 
helps prevent frost damage and supports regenerative growth. Similarly, 
bio19, with a range of 2.41 mm to 23.98 mm, ensures the accumulation of 
soil moisture, satisfying cotton’s drought tolerance requirements. These 
findings are consistent with previous research, where temperature and 
precipitation are key drivers of cotton growth, with similar trends in 
suitable ranges and influence mechanisms observed across different 
regions (Chen et al., 2019; Sun et al., 2024; Khan et al., 2025).

4.2 Geographical distribution of suitable 
habitats for cotton in Xinjiang under future 
climate scenarios

Future climate change scenarios suggest substantial 
uncertainty regarding the trends in suitable habitats for cotton 
cultivation in Xinjiang. Compared to the current distribution, the 
total area of suitable habitats is projected to decline under both 
the SSP126 and SSP585 scenarios. Rising temperatures, changes 
in precipitation patterns, and an increased frequency of drought 
events are expected to reduce suitable planting areas under both 
low-emission (SSP126) and high-emission (SSP585) scenarios, 
consistent with previous studies on the negative impacts of 

FIGURE 7

Percentage and area of each suitable habitat for cotton under different climate change scenarios.
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climate change on crop production in arid regions (Feng et al., 
2024; Nazarova et al., 2025). Temperature plays a crucial role in 
cotton growth, and yields decline significantly when temperatures 
exceed 32°C. If global temperatures rise by 1.5–2.0°C, cotton 
yields could decrease by up to 40% by 2,100 (Schlenker and 
Roberts, 2009). Historical evidence also indicates that cotton 

yields in the southwestern United  States have declined by 
approximately 26% due to heat stress (Elias et al., 2018). In the 
low desert region of Arizona, cotton seed yields are projected to 
decrease by 40% by mid-century (2036–2065) and by 51% by the 
end of the century (2066–2095), compared to the baseline period 
of 1980–2005 (Ayankojo et al., 2020). These findings are broadly 

FIGURE 8

3D histogram of the percentage of suitable habitat for cotton under different climate scenarios.

FIGURE 9

Shift of the center point between the current climate scenario and the 2030s, 2050s and 2070s climate scenarios. (a) Cotton Distribution Center 
Migration in Xinjiang. (b) Shift of the centre point in SSP126 scenario. (c) Shift of the centre point in SSP245 scenario. (d) Shift of the centre point in 
SSP585 scenario.
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consistent with the trends of habitat suitability changes for cotton 
cultivation identified in this study.

In contrast, under the SSP245 scenario, predictions for the 
2050s indicate an expansion trend, whereas the 2030s and 2070s 
are projected to experience continued contraction. Under the 
moderate emission scenario (SSP245), moderate warming, 
combined with improved precipitation patterns and optimized 
irrigation systems, is likely to provide relatively favorable growing 
conditions for cotton. This result further emphasizes the key role 
of human activity management in shaping cotton suitability. 
Additionally, advancements in cotton adaptive breeding 
technologies, such as the promotion of drought-resistant 
varieties, could further facilitate the expansion of suitable 
habitats (Wang et al., 2023). Relevant studies suggest that with 
appropriate climate adaptation strategies, crops like cotton can 
adjust to environmental changes induced by climate change, 
expanding their suitable habitats even under rising temperatures 
and shifting precipitation patterns (Li et al., 2021).

4.3 Migration of the cotton centroid in 
Xinjiang

This study shows that under the SSP126, SSP245, and SSP585 climate 
scenarios, the center of suitable cotton habitats in Xinjiang generally 
migrates from higher to lower altitudes. This shift is mainly driven by a 
combination of rising temperatures, changing precipitation patterns, and 
human water resource management (Wang et al., 2021; Zhou et al., 2022). 
As temperatures rise and precipitation patterns shift, droughts intensify, 
and water shortages become more severe in high-altitude regions, thus 
restricting cotton growth. In contrast, low-altitude areas, with richer water 
resources and well-developed irrigation infrastructure, are becoming 
increasingly suitable for cotton cultivation (Li et al., 2020a). Recently, 
Xinjiang has strengthened water security for agriculture in low-altitude 
regions by promoting efficient water-saving irrigation technologies and 
implementing integrated regional water resource management strategies 
(Liang et  al., 2019). Therefore, future efforts to address the spatial 
reorganization of cotton cultivation areas under climate change should 

FIGURE 10

Response curves for dominant environmental variables.
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integrate water resource management with agricultural adaptation  
strategies.

4.4 Limitations and future research

This study utilized the MaxEnt model to assess the impacts 
of climate change and human activities on the suitability of 
cotton habitats in Xinjiang. However, several limitations should 
be  acknowledged. First, the temporal and spatial scales 
considered in this study were relatively limited; future research 
should consider incorporating longer temporal spans and a 
broader range of climate scenarios to enhance the robustness and 
comprehensiveness of projections. Second, although the Human 
Footprint (HF) index was used to represent human activities, it 
primarily reflects pressures such as population density and 
infrastructure development and does not directly account for 
agricultural irrigation systems or water resource availability. 
Given the significant reliance of cotton cultivation in Xinjiang on 
irrigation, future studies should consider integrating irrigation-
related datasets or conducting sensitivity analyses to more 
accurately assess potential impacts. Furthermore, this study did 
not fully consider factors such as pest and disease outbreaks, 
genetic modification, and policy interventions. Future research 
should aim to include a broader set of driving forces, thus 
enabling the development of more targeted adaptation and 
management strategies to support the sustainable development 
of the cotton industry in Xinjiang (Khan et  al., 2023; Farooq 
et al., 2024; Zafar et al., 2024).

5 Conclusion

This study employed the ecological niche model (MaxEnt) to 
establish a comprehensive analytical framework integrating 
multi-source data—including bioclimatic variables, soil 
properties, topographic conditions, solar radiation, and human 
activity footprints—to systematically assess the impacts of 
climate change and human activities on the spatiotemporal 
distribution of cotton in Xinjiang. The findings indicate that the 
human footprint, bio2, bio11, bio19, and solar radiation intensity 
are key factors influencing cotton distribution. Human activities 
have considerably expanded the suitable habitat for cotton, 
especially in northern Bayingolin Mongol Autonomous 
Prefecture, underscoring their positive role in optimizing cotton 
cultivation areas. However, climate change has led to an overall 
decline in suitable habitats, especially in eastern and western 
Aksu, northern Kashgar, and northern Bayingolin Mongol 
Autonomous Prefecture, which should be  prioritized as 
vulnerable regions. Future increases in temperature and shifts in 
precipitation are projected to drive the migration of the centroid 
of suitable cotton habitats toward lower-altitude areas, resulting 
in substantial changes in its distribution dynamics. Therefore, 
future efforts should focus on improving mechanization, 
irrigation infrastructure, and agricultural coverage in low-altitude 
areas, as well as strengthening agricultural technology training 
for farmers. This study deepens the understanding of the dynamic 

nature of cotton’s suitable habitats in Xinjiang and provides 
scientific guidance for climate adaptation strategies and regional 
cultivation optimization.
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