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This study evaluates the antimicrobial potential of thyme essential oil (EO) against 
fungal growth in high-risk conditions. It uses an integrative modeling approach, 
including logistic regression, survival analysis, and kinetic modeling. The goal is 
to understand the conditions that promote fungal growth and the growth rate 
over time, including pH, water activity (aw), and thyme EO concentration in solid-
model systems. The antimicrobial activity was tested against Aspergillus flavus and 
Penicillium citrinum, varying pH levels (3, 4, and 5), aw (0.90, 0.95, and 0.99), and 
EO concentrations (0, 25, 50, 100, and 500 ppm) in potato-dextrose agar. The 
mold growth responses under the different tested conditions were evaluated using 
complementary modeling techniques, binary logistic regression, regression with 
life data, and kinetic model using the Gompertz equation. Results showed that 
reducing aw or pH alone was insufficient to inhibit mold growth without thyme 
EO. Each tested model offers unique insights into mold growth. The binary logistic 
model assesses growth versus no-growth conditions and identifies threshold 
values. Time-to-growth regression analysis with failure data helps understand the 
delay in mold growth and evaluate the combined preservation factors’ efficacy. 
When combining stress factors, the kinetic model provides detailed insights into 
growth rates, maximum growth, and lag phases. Analyzing the data with the 
three models allows a comprehensive understanding of how the studied factors 
influence mold growth, which is crucial for food safety and shelf-life evaluation.
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1 Introduction

Fungal spoilage of food represents a significant challenge in the food industry despite 
centuries of preservation methods, as it adversely affects quality and safety. It still causes 
considerable economic losses today, with the food and beverage industries facing up to 50% 
annual losses (Houbraken and Samson, 2017; Rico-Munoz et al., 2019). Fungi like Aspergillus 
and Penicillium are concerning due to their presence in food and ability to produce mycotoxins. 
Penicillium citrinum is a widespread mold present in almost every kind of food or feed, capable 
of growing between 5°C and 40°C (30°C as the optimum) and above aw 0.80, it produces 
citrinin, a mycotoxin of the group polyketide with nephrotoxic activity (Pitt, 2006; Pleadin 
et al., 2019). P. citrinum typically occurs in small-grained cereals, maize and wheat flour, nuts 
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(peanuts, pecans, pistachios, and hazelnuts), fermented and cured 
meats (hams), soybeans, cocoa, and coffee beans (Pitt, 2006). On the 
other hand, Aspergillus flavus is a saprophytic soil fungus naturally 
occurring as a parasite contaminating food crops before and after 
harvest (Abd El-Hack et al., 2023). A. flavus is one of the dominant 
species found on stored products (primary grains) and possesses the 
capability to thrive in low- aw (0.78–0.84), high temperatures (up to 
55°C) and produce aflatoxin B (carcinogenic mycotoxin) under 
optimal conditions of 16–31°C and 0.95–0.99 aw whereas is almost 
unaffected by pH (2.1–11.2), its growth is slowed down at pH < 3.5 
(Dobson, 2011; Pitt and Hocking, 2022).

Factors such as aw, pH, and the presence of antimicrobial agents 
like EOs play a crucial role in fungal growth and mycotoxin 
production (Battilani et  al., 2016; Pitt and Hocking, 2022). Thus, 
understanding and controlling these factors is essential for minimizing 
fungal growth in foods (Odeyemi et  al., 2020; Rico-Munoz et  al., 
2019). The antimicrobial effect of reduced aw primarily stems from its 
impact on cellular turgor pressure. Lowering aw induces plasmolysis, 
reducing cytoplasmic volume and causing cellular stress (Wijnker 
et al., 2006). For instance, salting effectively slows food deterioration 
in meat, fish, and seafood (Amit et al., 2017; Wijnker et al., 2006). 
Similarly, the combination of aw reduction with other factors such as 
food composition, pH, and the presence of antimicrobials influences 
fungal survival (Tapia et al., 2020). pH is the main environmental 
factor that directly influences cell development, morphogenesis, cell 
membrane and cell wall stabilization, protein stability and function, 
and secondary metabolism; or indirectly through its effect on nutrient 
availability (Abubakar et al., 2013; Wang et al., 2013). Fungal growth 
is quite broad at acid/alkaline pH from 3.0 to >8.0 with an optimum 
pH of around 5.0 if nutrient requirements are satisfied (Pardo et al., 
2006). Penicillium is recognized as more acidic pH tolerant than 
Aspergillus (Wheeler et  al., 1991; Pitt and Hocking, 2022). 
Antimicrobials, including EOs, are gaining interest as natural 
preservation agents due to consumer demand for minimally processed 
foods without chemical additives (Carocho et al., 2014; Leistner and 
Gould, 2002; Suhr and Nielsen, 2003; Leyva Salas et al., 2017; Reyes-
Jurado et al., 2015). EOs derived from plants, such as thyme EO, are 
particularly promising due to their antifungal properties. Thyme EO 
efficacy in extending shelf life and enhancing food safety has been 
well-documented (Aljabeili et  al., 2018; Alagawany et  al., 2021; 
Escobar et al., 2020; Reyes-Jurado et al., 2015). Bioactive compounds 
like thymol and carvacrol in thyme EO disrupt microbial cell 
membranes, increasing permeability and causing cell death (Mandal 
and DebMandal, 2016).

On the other hand, predictive microbiology is now a remarkable 
tool to evaluate fungal responses in food systems, improving the 
assessment of microbial spoilage risks and food safety (Baert et al., 
2007; Tarlak, 2023). Models like the Gompertz equation estimate 
growth rate and lag time, while logistic regression models predict 
the likelihood of fungal growth under specific conditions (Zwietering 
et  al., 1990; Kosegarten et  al., 2017). Survival analysis provides 
additional insights by evaluating the time delay until fungal growth 
occurs, offering strategies to extend shelf life by suppressing fungal 
development (Tarlak, 2023; Taiwo et al., 2024). Therefore, logistic 
regression addresses growth probability, survival analysis evaluates 
the time to growth onset, and kinetic modeling using the Gompertz 
equation captures the rate and progression of fungal development. 
Combining these modeling approaches offers a multidimensional 

understanding of fungal growth. The integrated approach may 
enhance the understanding of fungal spoilage and support the 
design of effective control strategies to improve food preservation 
and safety (Taiwo et al., 2024). This approach has been previously 
reported for Aspergillus niger growth on yogurt (Gougouli and 
Koutsoumanis, 2017) and A. flavus growth in model systems 
formulated with different levels of fat, protein, pH, aw, and cinnamon 
EO incubated at three temperatures (Kosegarten et al., 2017). Based 
on previous information, the objective of this study is to 
comprehensively evaluate the growth dynamics of A. flavus and 
P. citrinum using an integrative modeling approach that combines 
logistic regression, survival analysis, and the Gompertz kinetic 
model in solid model systems. The research aims to describe and 
predict fungal growth responses to key variables, aw, pH, and thyme 
EO concentration, in potato-dextrose agar, evaluating the effects on 
a factorial design response surface framework. This approach 
enables the assessment of these factors’ individual and interaction 
effects on growth probability, lag time, and growth rate. Furthermore, 
the study explores the antifungal efficacy of thyme EO as a natural 
preservation agent, providing critical insights into its potential to 
inhibit fungal growth under varying environmental conditions. 
These findings aim to inform the development of effective food 
preservation strategies.

2 Materials and methods

2.1 Essential oil extraction

EO was extracted from thyme (Thymus vulgaris L.) leaves 
obtained from Condimentos Naturales Tres Villas, Puebla, Mexico. 
Microwave-assisted hydro-distillation was conducted using a NEOS 
microwave extraction system (800 W, 60 Hz) from Milestone, Sorisole, 
Italy. For the extraction process, a sample of 200 g of thyme was mixed 
with distilled water in a beaker, maintaining a solid-to-water ratio of 
1:3 (Lainez-Cerón et  al., 2022). The beaker was secured to the 
microwave-assisted extraction system, and the extraction process was 
carried out for 40 min at a stirring speed of 400 rpm.

EO was analyzed using the methodology described by Paris et al. 
(2020) with a gas chromatograph (Agilent 6850 N, Agilent 
Technologies, Santa Clara, CA, USA) coupled with a mass 
spectrometer (Agilent 5975 C). A 30 m × 0.25 mm column with a 
0.25-μm film thickness (Agilent HP-5) was employed, using helium 
as the carrier gas at a 1.1 mL/min flow rate. The injector temperature 
was set to 250°C. The oven temperature started at 60°C for 2 min, then 
increased gradually to 10°C per minute until it reached 250°C. This 
temperature was maintained for an additional 10 min before rising to 
300°C. Thyme EO volatile compounds were identified using the 
National Institute of Standards and Technology (NIST) library.

2.2 Determination of antifungal activity

Aspergillus flavus and Penicillium citrinum were obtained from the 
collection of the Food Microbiology laboratory of the University of 
the Americas Puebla. Mold spores were harvested from 7-day slants 
using 5 mL of aqueous Tween 80 solution (0.1% v/v). The 
concentration of spores in the suspension was determined using a 
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Neubauer chamber, and the spore suspension was adjusted to 1 × 106 
spores/mL.

2.3 Experimental design

A full-factorial experimental design was utilized to evaluate the 
effect of selected factors on the lag time, radial growth, and the growth 
or no-growth response of A. flavus and P. citrinum. Studied factors 
were aw, thyme EO concentration, and pH. Solid model systems were 
prepared using potato-dextrose agar (PDA) as a base for mold growth. 
In each case, the culture medium was adjusted to different aw values 
(0.99, 0.95, or 0.90) using sodium chloride. The amount of sodium 
chloride was calculated using the Favetto and Chirife (1985) 
Equation 1 as follows:

 
∗= −1wa mK  (1)

Where: K* = 0.03710, constant for sodium chloride, and 
m = solute molality.

After aw of PDA was adjusted, it was sterilized at 121°C for 15 min, 
cooled, and pH adjusted (5.0, 4.0, and 3.0) with filter-sterilized citric 
acid solution (10%). The acid amounts required to achieve each pH 
value were determined through titration curves. The PDA prepared 
for each condition was divided to add the quantities of thyme EO to 
reach the concentrations to be evaluated in each case (0, 25, 50, and 
500 ppm), mixed, and poured into 60 × 15 mm Petri dishes until 
solidified. 5 μL of spore suspension was inoculated in the center of the 
agar and allowed to dry for 10 min under aseptic conditions. 
Inoculated plates and corresponding controls were incubated at 25°C 
within airtight plastic chambers to prevent anoxic conditions and were 
regularly inspected for fungal growth for 90 days (2,160 h). Colony 
diameters were frequently quantified using a digital caliper (Mitutoyo 
Corp., Kawasaki, Japan), with measurements taken along two 
orthogonal axes to ensure accuracy. Negative controls without EO 
were included in the experimental design. All systems were evaluated 
in triplicate.

In addition, each medium formulation’s pH and aw, plates without 
fungal inoculation, were measured initially and after 90 days of 
incubation to verify that the pH and aw conditions were maintained 
throughout the incubation period, ensuring that the observed delay 
in growth rate was not attributable to changes in these two factors. pH 
was measured using a potentiometer (model 50, Beckman, Brea, CA, 
USA) that had been previously calibrated. Water activity was assessed 
with a hygrometer (AQUALAB, series 3B, v.3.0, Decagon, Pullman, 
WA, USA) that had also been calibrated. All measurements were taken 
in triplicate.

2.4 Modeling growth response

2.4.1 Modified Gompertz equation
The modified Gompertz equation is commonly used to describe 

mold growth because of its versatility and ability to represent 
sigmoidal curves (Zwietering et al., 1990; Kosegarten et al., 2017). 
P. citrinum and A. flavus growth curves were described using 
Equation 2, fitting the model parameters by non-linear regression.

 
( ) ( ) ( )µ

λ
   ×

= × − − +         
0

exp 1
ln / exp exp 1D D A t

A
 

(2)

Where: μ is the maximum growth rate (1/h), A is the maximum 
diameter observed, λ is the delay phase or lag time (h), and D is the 
colony diameter (mm) at time t (h).

A response surface polynomial model (Equation 3) was utilized 
to assess the dependence of Gompertz parameters on aw, pH, and 
thyme EO concentration. Stepwise backward elimination was applied 
to identify significant variables and interactions (p < 0.10), and the 
analysis was conducted in Minitab 21 software (Minitab Inc., State 
College, PA, USA).

 ( ) = β +β +…+β +…+β +…+β2 2
0 1 1 i i i i i i jf x x x x x x

 (3)

Where f(x) is the parameter (A, μ, or λ), xi are the independent 
variables (aw, pH, and EO concentration), and βi are the coefficients of 
the polynomial model. The R2 and residual analysis values were 
calculated to assess the goodness of fit of the models.

2.4.2 Probabilistic (binary-logistic regression) 
model

After the 90-day incubation period, mold responses were classified 
as 1 if growth was observed and 0 if no growth was detected. Then, a 
probabilistic model using logistic regression (Kosegarten et al., 2017; 
Hernández-Figueroa et al., 2024), as described in Equations 4–6, was 
applied to the data utilizing Minitab 21 software for the analysis.
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 ( ) = β +β +…+β +…+β +…+β2
0 1 1 i i i i i i jg x x x x x x

 (6)

Where p(x) represents the probability of growth, g(x) is the 
polynomial model, xi are the independent variables (aw, pH, and 
thyme EO concentration), and βi are the coefficients of the model. 
Only those variables and interactions that were statistically significant 
(p < 0.10) after stepwise backward elimination were utilized to 
construct the model. Hosmer-Lemeshow and Pearson’s tests were 
conducted to assess the model’s goodness of fit.

2.4.3 Time-to-growth (survival analysis) model
Based on the time at which the growth of P. citrinum and A. flavus 

became visible, a polynomial model was applied to describe the time-
to-growth (TTG) (Equation 7) using survival analysis (Hernández-
Figueroa et  al., 2024) in Minitab 21 statistical software. Fungal 
colonies become visible to the naked eye when they reach a diameter 
of 2 mm or greater (Marin et al., 2021). The mold growth data was 
classified as F if the failure (growth) was detected or C (censored) if 
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the mold showed no growth after 90 days. The variables for this model 
were normalized (normalized value = (actual value − average)/
standard deviation).

 ( ) = β +β +…+β +…+β +…0 1 1 i ijlnTTG X i i jX X X X
 (7)

Where TTG(X) is the time when visible mold growth is detected, 
βi are the polynomial model coefficients, and Xi are the normalized 
values of the studied factors (pH, aw, and EO concentration). Only 
those significant (p < 0.10) variables and interactions were utilized to 
construct the TTG model using Minitab 21 software.

3 Results and discussion

3.1 Thyme essential oil composition

The major compounds in thyme EO were p-cymene, thymol, 
carvacrol, caryophyllene, and γ-terpinene (Table  1), representing 
90.4% of the total. Etri and Pluhár (2024) and Pluhár et al. (2024) 
noted that thymol in thyme EO could vary considerably, influenced 
by chemotypes, variety, region, and environmental factors. Najar et al. 
(2021) analyzed different chemotypes of thyme, the ‘thymol’ 
chemotype EO showed thymol as the major constituent (51.26–
49.87%) followed by γ-terpinene and p-cymene, and in the ‘linalool’ 
chemotype, the EO contains oxygenated monoterpenes such as 
linalool (75%), linalyl acetate (8.15%), and b-caryophyllene (3.2%) as 
main constituents. The studied thyme variety contains trace amounts 
of copaene and camphene, each around 1.0%.

3.2 Effect of water activity, pH, and thyme 
EO concentration on fungal growth

The Gompertz model is the sigmoidal representation of microbial 
growth kinetics, capturing key parameters such as maximum growth 
(A), specific growth rate (μ), and lag phase duration (λ). The Gompertz 
model is often used to analyze mold growth kinetics under varying 
environmental conditions (Figure 1); it has been employed to evaluate 
how changes in moisture and temperature affect mold growth; also, 
the model’s parameters offer valuable insights into mold growth rates 
and inhibition, necessary for assessing spoilage risk (Pitt and Hocking, 
2022). Nielsen and Rios (2000) applied this model to study the effects 

of EOs on mold inhibition in bakery products, demonstrating how 
different EO concentrations influenced growth rates and lag phase 
periods. This highlights the model’s effectiveness in evaluating natural 
antifungal agents.

Table 2 presents the parameters of the Gompertz model, where the 
maximum growth, the growth rate, and the lag phase are observed. 
The control systems without EO showed that for aw 0.99 at pH levels 
of 3, 4, or 5, mold began to grow after 25–27 h. P. citrinum and 
A. flavus exhibited higher growth rates at the highest aw (0.99). In 
cultured media formulated with aw 0.99 and pH 5, the growth rate is 
higher than at pH 3. In contrast, mold growth occurs later at aw 0.95 
and pH of 3, starting after 140 h, compared to pH levels of 4 or 5, 
where growth begins after 26 or 62 h, respectively. Growth decreased 
significantly as aw was reduced, especially at aw = 0.90, where both 
molds showed minimal or no growth across pH levels and EO 
concentrations tested (Table 2). At aw of 0.90, mold growth occurs 
significantly later at a pH = 3, with a lag phase of more than 1,000 h. 
Reducing aw to 0.99, 0.95, or 0.90 at pH levels 3, 4, or 5 does not 
effectively inhibit mold growth without thyme EO. Adding 25 ppm of 
thyme EO influences the mold response (Figure 1). The lag phase is 
higher at pH 3 than at pH 5 for concentrations of 0, 25, and 50 ppm 
of EO. For concentrations of 100 ppm, the growth rate is lower at pH 
3 than at pH 5. Figure 1 shows that the Gompertz model fits the 
experimental data well; the R2 was >0.90 in the analyzed cases.

Polynomial models (Table 3) may be used to predict the mold’s 
behavior under different factor combinations. Figure  2 shows the 
surface response graphs for the studied molds’ lag time (h) under 
different combinations of aw and thyme EO in media formulated at pH 
4.0. P. citrinum growth remained relatively stable across pH levels 
when other conditions favored growth, while A. flavus showed 
variable growth rates and lag phases with changing pH. Acidic pH 
(around pH 3) tended to reduce growth rates and increase lag phases 
in both molds, indicating pH as a limiting factor for mold proliferation. 
Similar findings have been reported previously for Penicillium 
expansum (Tannous et  al., 2016) and A. flavus (Kosegarten et  al., 
2017). The lag phase typically increases as aw decreases, showing a 
delay in mold growth (Table 2; Figure 2). Dagnas et al. (2014) also 
recorded increasing lag times at decreasing aw for A. niger and 
Penicillium corylophilum in malt extract agar. Growth rates were 
generally higher at pH 5 for both molds, although pH sensitivity was 
more pronounced in A. flavus than in P. citrinum as previously 
mentioned. Both molds demonstrated considerable sensitivity to 
increasing thyme EO concentrations (Figure  2). At ≥50 ppm, 
P. citrinum growth was almost completely inhibited (indicating it is 
more sensitive to this factor), while A. flavus could still grow but with 
a substantially longer lag phase and reduced growth rate. EO 
concentrations of 100 or 500 ppm inhibited the growth of both molds 
entirely (Table 2). This indicates a concentration-dependent inhibition 
for both molds, but A. flavus seems to tolerate slightly higher 
concentrations than P. citrinum before complete growth inhibition 
occurs. A. flavus showed slightly higher resistance to lower EO 
concentrations than P. citrinum, maintaining growth at 25 and 50 ppm 
in certain conditions (Figure 2). Under subinhibitory conditions (low 
pH, high EO concentration), A. flavus generally displayed longer lag 
phases than P. citrinum, suggesting it may take longer to adapt to 
challenging environments.

The findings reported align with those from authors who 
evaluated the antifungal effects of thyme EO or its components in 

TABLE 1 Major components of thyme essential oil.

Compound Proportion (%)

p-cymene 53.29

Thymol 12.95

Carvacrol 10.25

Caryophyllene 8.65

γ-terpinene 4.90

Bornyl acetate 4.24

Camphene 1.20

Copaeno 1.09

https://doi.org/10.3389/fsufs.2025.1535812
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Hernández-Figueroa et al. 10.3389/fsufs.2025.1535812

Frontiers in Sustainable Food Systems 05 frontiersin.org

various combinations with other factors. Suhr and Nielsen (2003) 
demonstrated that thymol exhibits greater inhibitory effects at pH 5.5 
compared to pH 6.5. At acidic pH, thyme EO or thymol molecules 
become less dissociated and more hydrophobic, enhancing their 
ability to bind to hydrophobic regions of proteins and dissolve in the 
lipid phase (Oliveira et al., 2020; Ranjbar et al., 2022). This possibly 
explains the disruption of membrane permeability (Oliveira et al., 
2020; Ranjbar et al., 2022), confirmed by the efflux of intracellular K+ 
ions (Hu et  al., 2018). Similarly, Thompson (1990) observed that 
1.0 mM carvacrol completely inhibited the growth of A. flavus at pH 
4 and 8. Mycelial growth was partially inhibited at lower concentrations 
(0.1 and 0.5 mM), with the most significant reductions at these pH 
levels. Schlösser and Prange (2019) evaluated the impact of carvacrol 
on the mycelial growth of Penicillium verrucosum and Aspergillus 
westerdijkiae. Their findings revealed that supplementation with ½ the 
minimum inhibitory concentration (MIC) of carvacrol significantly 
reduced the mycelial dry weight of both molds throughout a 21-day 
incubation period. Debonne et al. (2019) reported that the growth of 
Penicillium paneum was significantly reduced at aw 0.88 compared to 
higher aw levels (0.93–0.97). Additionally, the lowest concentration of 
thyme EO required to inhibit growth over 144 h was 1 μL/mL. The 
evaluation of the antifungal activity of thyme EO in  vitro against 
A. niger and P. paneum confirmed that thyme EO at concentrations 
between 0 and 0.5 μL/mL significantly (p < 0.05) influenced both λ 
and μmax under various temperature conditions (Debonne et al., 2018).

3.3 Logistic model

Over the last four decades, predictive models originally developed 
for bacteria have been adapted to describe mold growth, including 
both primary and secondary models (Dagnas and Membré, 2013). 
These models allow food manufacturers to design product 
formulations that achieve a targeted shelf life or, conversely, to adjust 
shelf life based on the formulation. The binary logistic regression 
model has proven effective in determining the conditions under which 
mold growth occurs or is inhibited (Hernández-Figueroa et al., 2024; 
Kosegarten et al., 2017). The binary logistic regression model is a 
widely used statistical tool for predicting the probability of a binary 

outcome, such as the presence or absence of mold growth under 
specific environmental conditions. This model categorizes conditions 
as favorable or inhibitory to microbial growth, thereby allowing the 
assessment of key environmental factors such as pH, aw, and the 
antimicrobial agents concentration (Henley-Smith et al., 2014; Possas 
et al., 2021). However, the binary logistic model does not quantify the 
extent or rate of mold growth; it merely identifies whether conditions 
favor growth.

This study employed binary logistic regression to predict the 
probability of A. flavus and P. citrinum growth as a function of aw, pH, 
and EO concentration. The results indicated that aw and pH were 
significant predictors, with higher aw levels positively correlated with 
fungal growth, consistent with the established role of water availability 
in supporting microbial activity. Similarly, more neutral pH values 
(closer to pH 5) were associated with increased growth probability. 
Conversely, higher EO concentrations exhibited a significant 
inhibitory effect on fungal growth. These findings align with prior 
research demonstrating that antimicrobial compounds, such as EOs, 
can effectively suppress fungal activity (Al-Maqtari et al., 2021).

The interaction between factors provided additional insights 
(Table 4; Figure 3). For instance, aw and thyme EO concentration 
interaction affects the probability of mold growth (Figure 3), and the 
inhibitory effect of EO was more pronounced under conditions of 
lower aw, suggesting a synergistic potential for combining these 
variables in mold control strategies (Figure  3). Likewise, binary 
interactions of factors aw-cinnamon EO, aw-pH, and other 
combinations of fat content, protein content, temperature, and pH 
impacted A. flavus growth probability in PDA systems (Kosegarten 
et al., 2017). In another study, binary interactions of time, type of 
edible film application, and EO concentration determined the 
growth probability of Penicillium commune, Cladosporium 
herbarum, and Fusarium spp. on tomatoes (Hernández-Figueroa 
et al., 2024). According to the predictive model (Table 4), several 
conditions decrease the growth probability of P. citrinum to values 
below 0.05. These conditions include an aw of 0.95 at a pH of 3, 
combined with 20–25 ppm of EO, or an aw of 0.94 at a pH of 5 and 
35 ppm, as shown in Figure 3. For aw lower than 0.93 combined with 
a pH of 3.0, EO at <10 ppm achieves this growth probability. These 
conditions balance the need for a low probability of fungal growth 

FIGURE 1

Growth response of Aspergillus flavus (left) in systems formulated with water activity 0.99, pH 3.0, ● control (without EO), or ∆ 25 ppm thyme 
EO, and Penicillium citrinum (right) in media formulated with water activity 0.99, pH 4.0, ● control (without EO), or ∆ 25 ppm thyme EO. Lines 
Gompertz model fit.
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TABLE 2 Gompertz model parameters, growth (G) or No-Growth (NG) mold response, and class data (F, failure or C, censored) for time-to-growth modeling.

aw pH EO 
Concentration 

(ppm)

Penicillium citrinum Aspergillus flavus

A (ln(D/
Do))

Growth 
rate (1/h)

Lag (h) Class* G/NG A (ln(D/
Do))

Growth 
rate (1/h)

Lag (h) Class* G/NG

0.99 3 0 3.76 ± 0.38 0.09 ± 0.005 26.05 ± 1.2 F 1 0.4 ± 3.97 0.09 ± 0.005 25.66 ± 1.28 F 1

0.99 3 25 3.91 ± 0.31 0.01 ± 0.001 122.59 ± 6.13 F 1 0.11 ± 1.32 0.037 ± 0.003 168.57 ± 8.43 F 1

0.99 3 50 >2,160 C 0 0.19 ± 1.94 0.036 ± 0.003 116.21 ± 5.81 F 1

0.99 3 100 >2,160 C 0 0.17 ± 1.7 0.092 ± 0.008 245.62 ± 12.28 F 1

0.99 3 500 >2,160 C 0 >2,160 C 0

0.99 4 0 3.8 ± 0.38 0.13 ± 0.007 27.34 ± 1.367 F 1 0.39 ± 3.9 0.132 ± 0.007 27.19 ± 1.36 F 1

0.99 4 25 3.76 ± 0.38 0.01 ± 0.001 62.58 ± 0.626 F 1 0.21 ± 2.1 0.057 ± 0.005 144.39 ± 1.44 F 1

0.99 4 50 >2,160 C 0 0.23 ± 2.33 0.022 ± 0.002 86.64 ± 0.87 F 1

0.99 4 100 >2,160 C 0 0.18 ± 1.84 0.033 ± 0.003 191.47 ± 1.91 F 1

0.99 4 500 >2,160 C 0 >2,160 C 0

0.99 5 0 3.81 ± 0.27 0.13 ± 0.007 27.22 ± 0.544 F 1 0.27 ± 3.87 0.132 ± 0.007 27.24 ± 0.54 F 1

0.99 5 25 3.79 ± 0.19 0.12 ± 0.006 26.99 ± 0.81 F 1 0.19 ± 3.79 0.118 ± 0.006 26.99 ± 0.81 F 1

0.99 5 50 3.49 ± 0.17 0.01 ± 0.001 121.16 ± 6.058 F 1 0.1 ± 1.93 0.067 ± 0.007 146.02 ± 7.3 F 1

0.99 5 100 >2,160 C 0 0.24 ± 2.4 0.079 ± 0.008 97.2 ± 4.86 F 1

0.99 5 500 >2,160 C 0 >2,160 C 0

0.95 3 0 3.47 ± 0.17 0.01 ± 0.001 124 ± 4.96 F 1 0.18 ± 3.6 0.027 ± 0.003 149.31 ± 5.97 F 1

0.95 3 25 >2,160 C 0 >2,160 C 0

0.95 3 50 >2,160 C 0 >2,160 C 0

0.95 3 100 >2,160 C 0 >2,160 C 0

0.95 3 500 >2,160 C 0 >2,160 C 0

0.95 4 0 3.73 ± 0.22 0.04 ± 0.002 62.88 ± 1.886 F 1 0.22 ± 3.7 0.039 ± 0.002 62.8 ± 1.88 F 1

0.95 4 25 >2,160 C 0 0.4 ± 3.99 0.005 ± 0 63.27 ± 1.9 F 1

0.95 4 50 >2,160 C 0 0.19 ± 1.94 0.01 ± 0.001 1,427.07 ± 42.81 F 1

0.95 4 100 >2,160 C 0 0.13 ± 1.25 0.011 ± 0.001 1,668.06 ± 50.04 F 1

0.95 4 500 >2,160 C 0 >2,160 C 0

0.95 5 0 3.83 ± 0.27 0.04 ± 0.002 21.65 ± 0.433 F 1 0.28 ± 3.97 0.043 ± 0.002 22.84 ± 0.46 F 1

0.95 5 25 3.6 ± 0.36 0.01 ± 0.001 46.03 ± 1.381 F 1 0.34 ± 3.36 0.803 ± 0.08 500.43 ± 15.01 F 1

(Continued)
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TABLE 2 (Continued)

aw pH EO 
Concentration 

(ppm)

Penicillium citrinum Aspergillus flavus

A (ln(D/
Do))

Growth 
rate (1/h)

Lag (h) Class* G/NG A (ln(D/
Do))

Growth 
rate (1/h)

Lag (h) Class* G/NG

0.95 5 50 >2,160 C 0 0.24 ± 2.38 0.008 ± 0.001 1,107.17 ± 33.22 F 1

0.95 5 100 >2,160 C 0 0.23 ± 2.31 0.009 ± 0.001 1,235.02 ± 37.05 F 1

0.95 5 500 >2,160 C 0 >2,160 C 0

0.90 3 0 >2,160 C 0 0.21 ± 2.133 0.005 ± 0 1,015.77 ± 30.47 F 1

0.90 3 25 >2,160 C 0 >2,160 C 0

0.90 3 50 >2,160 C 0 >2,160 C 0

0.90 3 100 >2,160 C 0 >2,160 C 0

0.90 3 500 >2,160 C 0 >2,160 C 0

0.90 4 0 3.12 ± 0.09 0.004 ± 0.001 507.47 ± 20.299 F 1 0.09 ± 3.091 0.005 ± 0.001 462.45 ± 18.5 F 1

0.90 4 25 >2,160 C 0 >2,160 C 0

0.90 4 50 >2,160 C 0 >2,160 C 0

0.90 4 100 >2,160 C 0 >2,160 C 0

0.90 4 500 >2,160 C 0 >2,160 C 0

0.90 5 0 3.67 ± 0.18 0.01 ± 0.001 190.8 ± 5.724 F 1 0.17 ± 3.36 0.007 ± 0.001 34.83 ± 3.48 F 1

0.90 5 25 >2,160 C 0 >2,160 C 0

0.90 5 50 >2,160 C 0 >2,160 C 0

0.90 5 100 >2,160 C 0 >2,160 C 0

0.90 5 500 >2,160 C 0 >2,160 C 0

*Class; F, failure data; C, censored data.
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with practical constraints in food formulation (lower EO 
concentration). Based on the binary logistic regression, the 
developed predictive framework was designed to understand the 
conditions that favor or inhibit A. flavus and P. citrinum growth 

under varying aw, pH, and EO concentration levels (Figure 3). The 
binary logistic regression model revealed important findings: higher 
aw increases fungal growth, while higher concentrations of EO 
inhibit it.

TABLE 3 Coefficients of the polynomial models based on the parameters of the Gompertz model for each evaluated mold.

Term Penicillium citrinum Aspergillus flavus

Coefficients Coefficients

Lag (h) A
Growth rate 

(1/h)
Lag (h) A

Growth rate 
(1/h)

Constant 639.3001 −2.7777 −0.0528 1,897.49 −0.9655 0.0257

aw −217.5417 0.4031 0.00963 −3,801.1246 0.5277 0.0304

pH −111.4827 0.3683 0.00677 −212.9751 0.2954 0.0205

Concentration (ppm) 541.7872 −1.3807 −0.01886 −2,231.0938 −1.4102 −0.031

aw
2 141.5961 0.01281 −0.3654

pH2

Concentration (ppm)2 4.1728 0.0635 −3,936.9905 2.6307

aw*pH 103.5486 203.7075

aw*Concentration (ppm) −0.5227 −0.01482 −3,540.6004 −0.4837

pH*Concentration (ppm) −0.2786 −0.0263

R2 0.933 0.867 0.851 0.875 0.741 0.715

FIGURE 2

Lag time (h) response surface for the studied molds under different water activity and thyme EO combinations, maintaining pH at 4.0.

TABLE 4 Coefficients for the logistic and time-to-growth models.

Term Coefficients logistic regression model Coefficients time-to-growth model*

Penicillium citrinum Aspergillus flavus Penicillium citrinum Aspergillus flavus

Constant −214.1334 −72.5072 24.6239 12.5167

aw 210.8410 72.8794 −7.6743 −5.7698

pH 6.8839 2.0026 −5.3539 −0.7252

Concentration (ppm) −3.8451 −0.8621 27.7461 10.3677

aw*pH 0.5274 0.2848

aw*Concentration (ppm) 3.3743 0.8462 −8.5800 −6.7550

pH*Concentration (ppm) −6.5002 −0.1345

*Variable terms were normalized.
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3.4 Survival model

Time-to-growth regression is an important method for analyzing 
time-to-event data, commonly used in survival analysis and shelf-life 
estimation for food products (Bandyopadhaya et al., 2024; González-
Pérez et al., 2024). In food preservation, this method helps determine 
the length of the lag phase—the period before mold growth begins—
under different environmental conditions. By modeling the effects of 
factors such as aw, pH, and EO concentrations, this procedure provides 

insights into how these variables can delay the onset of mold growth. 
However, it is important to note that while this method effectively 
quantifies growth delays, it does not describe the subsequent growth 
rate or the extent of mold proliferation after the lag phase (Zaffora 
et al., 2024; Dantigny et al., 2005; Gougouli et al., 2011). Survival 
analysis is valuable for examining the lag phase before mold growth, 
including under antifungal agents. This method helps researchers 
measure the time it takes for molds like Aspergillus to grow, providing 
insights for shelf-life extension strategies (Gómez-Ramírez et al., 2013; 

FIGURE 3

Probability of growth after 90 days of incubation of Penicillium citrinum (top) and Aspergillus flavus (bottom) in systems formulated at pH 4.0 and 
different water activities and thyme EO concentrations.

https://doi.org/10.3389/fsufs.2025.1535812
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Hernández-Figueroa et al. 10.3389/fsufs.2025.1535812

Frontiers in Sustainable Food Systems 10 frontiersin.org

Kosegarten et al., 2017). Suhr and Nielsen (2004) evaluated weak acid 
preservatives’ effect on the growth of spoilage fungi at different aw and 
pH values. The obtained data was modeled using survival analysis to 
determine ‘spoilage-free time’ for the fungi. At the low aw level (0.80), 
only Eurotium species grew within the test period of 30 days. Higher 
aw levels and higher pH values decreased the spoilage-free times.

The time-to-growth regression method effectively quantifies 
conditions that delay the growth of A. flavus and P. citrinum (Figure 4). 
As can be seen, depending on the selected time (100, 500, or 1,500 h) 
to delay the growth of each mold studied, different aw and EO 
concentrations at pH 5 are required. In the same way, predictions of 
the time to growth can be made at other pHs (Table 4). In this study, 
aw exhibited a negative coefficient (Table 4), indicating that higher aw 
levels reduce the time required for growth to begin. Similarly, pH 
showed a negative effect, suggesting that shifting toward neutral pH 
accelerates mold growth. Conversely, the thyme EO concentration had 
a strong positive impact, significantly delaying mold growth at higher 
concentrations. Interaction terms showed the combined effects of the 
studied variables (Table  4). The interactions aw-pH, pH-EO 
concentration, and aw-EO concentration revealed synergistic or 
antagonistic effects on the mold’s time to growth. The regression 
model also offers practical recommendations for maximizing the 
mold’s lag phase under specific constraints. These findings emphasize 
the importance of considering combined factors rather than individual 
variables in preservation strategies (López-Malo et al., 2005; Mannaa 
and Kim, 2017; Samapundo et al., 2007). The regression model also 
offers practical recommendations for maximizing the lag phase of 
P. citrinum under specific constraints. For conditions with aw 0.95 and 
minimal thyme EO concentration (25 ppm), pH 5 (Figure  4) can 
extend the lag phase and delay growth detection. Predictions indicate 
that these conditions could inhibit P. citrinum growth for over 1,000 h 
(~42 days). A shorter lag time (20 days) had been reported for A. niger 
growth at aw 0.90 and <50 ppm of Mexican oregano EO in dried 
tomatoes (Gómez-Ramírez et al., 2013).

Based on the results of the binary logistic regression and 
regression with life data analyses, the growth responses of A. flavus 
and P. citrinum can be  compared under varying aw, pH, and EO 
concentration conditions. For A. flavus, the logistic regression analysis 
indicated a strong positive effect of aw on fungal growth probability, 

with high aw levels significantly increasing the probability of growth. 
In the regression with the life data model, higher aw led to faster 
growth onset. In contrast, P. citrinum was slightly less sensitive to 
changes in aw. Although increased aw did raise the probability of 
growth for P. citrinum, the magnitude of the effect was less pronounced 
than for A. flavus. For A. flavus, pH showed only a marginal impact 
on both models. A lower pH (around 3–4) slightly reduced the growth 
probability and delayed the growth onset, but this effect was not as 
pronounced as the effects of aw and EO concentration. In the case of 
P. citrinum, pH had a more substantial influence on growth probability 
and time-to-growth. Marin et al. (2021) highlighted that numerous 
studies have been published in recent years focusing on applying 
predictive mycology for the early prediction of fungal spoilage. 
Examining the lag time before fungal colonies appear is crucial, as 
molds are undesirable in several food products. Many studies use a 
growth/no-growth approach to define the boundaries influenced by 
various factors. This shift in predictive mycology—focusing on lag 
times and the probability of colony appearance—represents a 
significant advancement. While the kinetic model can fully describe 
growth dynamics. Together, these models would give a holistic 
understanding of how environmental factors impact mold growth, 
particularly useful in food safety and shelf-life studies. Dantigny 
(2021) highlights that fundamental principles from process control 
can be applicable to process modeling, emphasizing that the simplest 
model that effectively represents the data is the most desirable. A 
thorough understanding of the process is essential since no model can 
encompass all the complexities of a system. Identifying key biological 
responses and the significant factors influencing them is important 
since each model provides unique insights into mold growth.

4 Conclusion

The comparison shows that each model brings unique advantages 
to mold inhibition studies. The binary logistic model is helpful for 
quick assessment of growth vs. no-growth conditions and determining 
threshold values. The time-to-growth regression is valuable for 
understanding the delay in mold growth and evaluating preservation 
efficacy. The kinetic model is the most comprehensive for studying 

FIGURE 4

Essential oil (EO) concentrations required to delay the growth of Penicillium citrinum (left) and Aspergillus flavus (right) for 100, 500, or 1,500 h (solid 
lines), at different water activity levels and a constant pH of 5.0, predicted with the time-to-growth models (Table 4).
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mold growth dynamics, providing a complete picture of growth rates, 
maximum growth, and lag phases. Given each model’s distinct 
advantages, analyzing the data with all three approaches would 
be beneficial. Combining three approaches offers a clear understanding 
of mold inhibition by identifying threshold conditions, analyzing time 
delays, and assessing growth rates. This integrated method is valuable 
for evaluating antifungal strategies in food preservation. The study 
shows that a holistic modeling approach using kinetic analysis, logistic 
regression, and survival analysis reveals how formulation factors affect 
fungal growth. By adjusting aw, pH, and thyme EO concentration, food 
scientists can create strategies that reduce or delay fungal growth 
(A. flavus and P. citrinum). This is crucial for high-risk foods 
vulnerable to spoilage and mycotoxin contamination, ensuring 
microbial safety and extending shelf life.

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary material, further inquiries can be directed 
to the corresponding author.

Author contributions

RH-F: Data curation, Formal analysis, Investigation, Methodology, 
Writing  – original draft, Writing  – review & editing. EM-L: Data 
curation, Formal analysis, Investigation, Methodology, Writing – original 
draft, Writing – review & editing. AL-M: Formal analysis, Investigation, 
Resources, Supervision, Validation, Writing – original draft, Writing – 
review & editing. EP: Formal analysis, Investigation, Resources, 
Supervision, Validation, Writing – original draft, Writing – review & 
editing. TC-P: Formal analysis, Investigation, Resources, Supervision, 
Validation, Writing – original draft, Writing – review & editing. GN-M: 
Formal analysis, Investigation, Resources, Supervision, Validation, 
Writing  – original draft, Writing  – review & editing. RA-S: Formal 
analysis, Funding acquisition, Investigation, Resources, Supervision, 
Validation, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This paper was funded by 
VIEP-BUAP, grant number 100377166-VIEP2024.

Acknowledgments

The authors thank the University of the Americas Puebla 
(UDLAP) and Benemérita Universidad Autónoma de Puebla for 
supporting this work.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member 
of Frontiers, at the time of submission. This had no impact on the peer 
review process and the final decision.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

References
Abd El-Hack, M. E., Kamal, M., Altaie, H. A. A., Youssef, I. M., Algarni, E. H., 

Almohmadi, N. H., et al. (2023). Peppermint essential oil and its nano-emulsion: 
potential against aflatoxigenic fungus Aspergillus flavus in food and feed. Toxicon 
234:107309. doi: 10.1016/j.toxicon.2023.107309

Abubakar, A., Suberu, H. A., Bello, I. M., Abdulkadir, R., Daudu, O. A., and 
Lateef, A. A. (2013). Effect of pH on mycelial growth and sporulation of Aspergillus 
parasiticus. J. Plant Sci. 1, 64–67. doi: 10.11648/j.jps.20130104.13

Alagawany, M., Farag, M. R., Abdelnour, S. A., and Elnesr, S. S. (2021). A review on 
the beneficial effect of thymol on health and production of fish. Rev. Aquac. 13, 632–641. 
doi: 10.1111/raq.12490

Aljabeili, H. S., Barakat, H., and Abdel-Rahman, H. A. (2018). Chemical composition, 
antibacterial and antioxidant activities of thyme essential oil (Thymus vulgaris). Food 
Nutr. Sci. 9, 433–446. doi: 10.4236/fns.2018.95034

Al-Maqtari, Q. A., Rehman, A., Mahdi, A. A., Al-Ansi, W., Wei, M., Yanyu, Z., et al. 
(2021). Application of essential oils as preservatives in food systems: challenges and 
future prospectives–a review. Phytochem. Rev. 21, 1209–1246. doi: 
10.1007/s11101-021-09776-y

Amit, S. K., Uddin, M. M., Rahman, R., Islam, S. R., and Khan, M. S. (2017). A review 
on mechanisms and commercial aspects of food preservation and processing. Agric. 
Food Secur. 6, 1–22. doi: 10.1186/s40066-017-0130-8

Baert, K., Valero, A., De Meulenaer, B., Samapundo, S., Ahmed, M. M., Bo, L., et al. (2007). 
Modeling the effect of temperature on the growth rate and lag phase of Penicillium expansum 
in apples. Int. J. Food Microbiol. 118, 139–150. doi: 10.1016/j.ijfoodmicro.2007.07.006

Bandyopadhaya, S., Sarkar, U., and Bera, D. (2024). “Food stability simulation: 
accelerated shelf-life mechanism” in Food coatings and preservation technologies. ed. 
M. Sen (Hoboken, NJ, USA: John Wiley & Sons), 259–300.

Battilani, P., Toscano, P., Van der Fels-Klerx, H. J., Moretti, A., Camardo Leggieri, M., 
Brera, C., et al. (2016). Aflatoxin B1 contamination in maize in Europe increases due to 
climate change. Sci. Rep. 6:24328. doi: 10.1038/srep24328

Carocho, M., Barreiro, M. F., Morales, P., and Ferreira, I. C. (2014). Adding molecules 
to food, pros and cons: a review on synthetic and natural food additives. Compr. Rev. 
Food Sci. Food Saf. 13, 377–399. doi: 10.1111/1541-4337.12065

Dagnas, S., and Membré, J. M. (2013). Predicting and preventing mold spoilage of 
food products. J. Food Prot. 76, 538–551. doi: 10.4315/0362-028X.JFP-12-349

Dagnas, S., Onno, B., and Membré, J.-M. (2014). Modeling growth of three bakery 
product spoilage molds as a function of water activity, temperature and pH. Int. J. Food 
Microbiol. 186, 95–104. doi: 10.1016/j.ijfoodmicro.2014.06.022

Dantigny, P. (2021). Applications of predictive modeling techniques to fungal growth 
in foods. Curr. Opin. Food Sci. 38, 86–90. doi: 10.1016/j.cofs.2020.10.028

https://doi.org/10.3389/fsufs.2025.1535812
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://doi.org/10.1016/j.toxicon.2023.107309
https://doi.org/10.11648/j.jps.20130104.13
https://doi.org/10.1111/raq.12490
https://doi.org/10.4236/fns.2018.95034
https://doi.org/10.1007/s11101-021-09776-y
https://doi.org/10.1186/s40066-017-0130-8
https://doi.org/10.1016/j.ijfoodmicro.2007.07.006
https://doi.org/10.1038/srep24328
https://doi.org/10.1111/1541-4337.12065
https://doi.org/10.4315/0362-028X.JFP-12-349
https://doi.org/10.1016/j.ijfoodmicro.2014.06.022
https://doi.org/10.1016/j.cofs.2020.10.028


Hernández-Figueroa et al. 10.3389/fsufs.2025.1535812

Frontiers in Sustainable Food Systems 12 frontiersin.org

Dantigny, P., Guilmart, A., and Bensoussan, M. (2005). Basis of predictive mycology. 
Int. J. Food Microbiol. 100, 187–196. doi: 10.1016/j.ijfoodmicro.2004.10.013

Debonne, E., Van Bockstaele, F., De Leyn, I., Devlieghere, F., and Eeckhout, M. (2018). 
Validation of in-vitro antifungal activity of thyme essential oil on Aspergillus Niger and 
Penicillium paneum through application in par-baked wheat and sourdough bread. LWT 
87, 368–378. doi: 10.1016/j.lwt.2017.09.007

Debonne, E., Vermeulen, A., Van Bockstaele, F., Soljic, I., Eeckhout, M., and 
Devlieghere, F. (2019). Growth/no-growth models of in-vitro growth of Penicillium 
paneum as a function of thyme essential oil, pH, aw, temperature. Food Microbiol. 83, 
9–17. doi: 10.1016/j.fm.2019.04.003

Dobson, A. D. W. (2011). “Yeasts and molds: Aspergillus flavus” in Encyclopedia of 
dairy sciences. ed. J. W. Fuquay. 2nd ed (San Diego, CA, USA: Academic Press), 785–791.

Escobar, A., Perez, M., Romanelli, G., and Blustein, G. (2020). Thymol bioactivity: a 
review focusing on practical applications. Arab. J. Chem. 13, 9243–9269. doi: 
10.1016/j.arabjc.2020.11.009

Etri, K., and Pluhár, Z. (2024). Exploring chemical variability in the essential oils of 
the thymus genus. Plan. Theory 13:1375. doi: 10.3390/plants13101375

Favetto, G. J., and Chirife, J. (1985). Simplified method for the prediction of water 
activity in binary aqueous solutions. Int. J. Food Sci. Technol. 20, 631–636. doi: 
10.1111/j.1365-2621.1985.tb01822.x

Gómez-Ramírez, C., Sosa-Morales, M. E., Palou, E., and López-Malo, A. (2013). 
Aspergillus niger time to growth in dried tomatoes. Int. J. Food Microbiol. 164, 23–25. 
doi: 10.1016/j.ijfoodmicro.2013.03.017

González-Pérez, J. E., Jiménez-González, O., Romo-Hernández, A., López-Malo, A., 
and Ramírez-Corona, N. (2024). Time-to-failure approach for estimating the shelf life 
of freeze-dried carotenoid-enriched apples: forecasting the deterioration of quality 
properties for different packaging types and storage conditions. ACS Agric. Sci. Technol. 
4, 1241–1249. doi: 10.1021/acsagscitech.4c00465

Gougouli, M., Kalantzi, K., Beletsiotis, E., and Koutsoumanis, K. P. (2011). 
Development and application of predictive models for fungal growth as tools to improve 
quality control in yogurt production. Food Microbiol. 28, 1453–1462. doi: 
10.1016/j.fm.2011.07.006

Gougouli, M., and Koutsoumanis, K. P. (2017). Risk assessment of fungal spoilage: a 
case study of Aspergillus niger on yogurt. Food Microbiol. 65, 264–273. doi: 
10.1016/j.fm.2017.03.009

Henley-Smith, C. J., Steffens, F. E., Botha, F. S., and Lall, N. (2014). Predicting the 
influence of multiple components on microbial inhibition using a logistic response 
model-a novel approach. BMC Complementary Altern. Med. 14, 1–10. doi: 
10.1186/1472-6882-14-190

Hernández-Figueroa, R. H., Mani-López, E., and López-Malo, A. (2024). 
Antifungal activity of alginate coatings with essential oil of Mexican oregano 
incorporated in the stem of tomatoes. Int. J. Food Sci. Technol. 59, 4774–4783. doi: 
10.1111/ijfs.17207

Houbraken, J., and Samson, R. A. (2017). Current taxonomy and identification of 
foodborne fungi. Curr. Opin. Food Sci. 17, 84–88. doi: 10.1016/j.cofs.2017.10.010

Hu, L.-B., Ban, F.-F., Li, H.-B., Qian, P.-P., Shen, Q.-S., Zhao, Y.-Y., et al. (2018). Thymol 
induces conidial apoptosis in Aspergillus flavus via stimulating K+ eruption. J. Agric. 
Food Chem. 66, 8530–8536. doi: 10.1021/acs.jafc.8b02117

Kosegarten, C. E., Ramírez-Corona, N., Mani-López, E., Palou, E., and López-Malo, A. 
(2017). Description of Aspergillus flavus growth under the influence of different factors 
(water activity, incubation temperature, protein and fat concentration, pH, and 
cinnamon essential oil concentration) by kinetic, probability of growth, and time-to-
detection models. Int. J. Food Microbiol. 240, 115–123. doi: 
10.1016/j.ijfoodmicro.2016.04.024

Lainez-Cerón, E., López-Malo, A., Palou, E., and Ramírez-Corona, N. (2022). 
Dynamic performance of optimized microwave assisted extraction to obtain Eucalyptus 
essential oil: energy requirements and environmental impact. Int. J. Food Eng. 18, 
129–142. doi: 10.1515/ijfe-2021-0102

Leistner, L., and Gould, G. W. (2002). “Hurdles in foods” in Hurdle technologies: 
combination treatments for food stability, safety, and quality. eds. L. Leistner and G. W. 
Gould (Boston, MA: Springer), 47–50.

Leyva Salas, M., Mounier, J., Valence, F., Coton, M., Thierry, A., and Coton, E. (2017). 
Antifungal microbial agents for food biopreservation—a review. Microorganisms 5:37. 
doi: 10.3390/microorganisms5030037

López-Malo, A., Alzamora, S. M., and Palou, E. (2005). Aspergillus flavus growth in the 
presence of chemical preservatives and naturally occurring antimicrobial compounds. Int. J. 
Food Microbiol. 99, 119–128. doi: 10.1016/j.ijfoodmicro.2004.08.010

Mandal, S., and DebMandal, M. (2016). “Thyme (Thymus vulgaris L.) oils” in Essential 
oils in food preservation, flavor and safety (San Diego, CA, USA: Academic Press), 
825–834.

Mannaa, M., and Kim, K. D. (2017). Influence of temperature and water activity on 
deleterious fungi and mycotoxin production during grain storage. Mycobiology 45, 
240–254. doi: 10.5941/MYCO.2017.45.4.240

Marin, S., Freire, L., Femenias, A., and Sant’Ana, A. S. (2021). Use of predictive 
modelling as tool for prevention of fungal spoilage at different points of the food chain. 
Curr. Opin. Food Sci. 41, 1–7. doi: 10.1016/j.cofs.2021.02.006

Najar, B., Pistelli, L., Ferri, B., Angelini, L. G., and Tavarini, S. (2021). Crop yield and 
essential oil composition of two Thymus vulgaris chemotypes along three years of organic 
cultivation in a hilly area of central Italy. Molecules 26:5109. doi: 10.3390/molecules26165109

Nielsen, P. V., and Rios, R. (2000). Inhibition of fungal growth on bread by volatile 
components from spices and herbs, and the possible application in active packaging, 
with special emphasis on mustard essential oil. Int. J. Food Microbiol. 60, 219–229. doi: 
10.1016/S0168-1605(00)00343-3

Odeyemi, O. A., Alegbeleye, O. O., Strateva, M., and Stratev, D. (2020). Understanding 
spoilage microbial community and spoilage mechanisms in foods of animal origin. Compr. 
Rev. Food Sci. Food Saf. 19, 311–331. doi: 10.1111/1541-4337.12526

Oliveira, R. C., Carvajal-Moreno, M., Correa, B., and Rojo-Callejas, F. (2020). Cellular, 
physiological and molecular approaches to investigate the antifungal and anti-
aflatoxigenic effects of thyme essential oil on Aspergillus flavus. Food Chem. 315:126096. 
doi: 10.1016/j.foodchem.2019.126096

Pardo, E., Marin, S., Ramos, A. J., and Sanchis, V. (2006). Ecophysiology of 
ochratoxigenic Aspergillus ochraceus and Penicillium verrucosum isolates. Predictive 
models for fungal spoilage prevention–a review. Food Additives and Contaminants, 23, 
398–410. doi: 10.1080/02652030500376102

Paris, M. J., Ramírez-Corona, N., Palou, E., and López-Malo, A. (2020). Modelling 
release mechanisms of cinnamon (Cinnamomum zeylanicum) essential oil encapsulated 
in alginate beads during vapor-phase application. J. Food Eng. 282:110024. doi: 
10.1016/j.jfoodeng.2020.110024

Pitt, J. I. (2006). “Penicillium and related genera” in Food spoilage microorganisms. 
ed. C. W. Blackburn (Cambridge, UK: Woodhead Publishing Ltd), 437–450.

Pitt, J. I., and Hocking, A. D. (2022). “Ecology of fungal food spoilage” in Fungi and 
food spoilage (Cham: Springer International Publishing), 3–12.

Pleadin, J., Frece, J., and Markov, K. (2019). “Mycotoxins in food and feed” in 
Advances in food and nutrition research. ed. F. Toldrá, vol. 89 (Cambridge, MA, USA: 
Academic Press), 297–345.

Pluhár, Z., Kun, R., Cservenka, J., Neumayer, É., Tavaszi-Sárosi, S., Radácsi, P., et al. (2024). 
Variations in essential oil composition and chemotype patterns of wild thyme (Thymus) species 
in the natural habitats of Hungary. Horticulturae 10:150. doi: 10.3390/horticulturae10020150

Possas, A., Bonilla-Luque, O. M., and Valero, A. (2021). From cheese-making to 
consumption: exploring the microbial safety of cheeses through predictive microbiology 
models. Food Secur. 10:355. doi: 10.3390/foods10020355

Ranjbar, A., Ramezanian, A., Shekarforoush, S., Niakousari, M., and Eshghi, S. (2022). 
Antifungal activity of thymol against the main fungi causing pomegranate fruit rot by 
suppressing the activity of cell wall degrading enzymes. LWT 161:113303. doi: 
10.1016/j.lwt.2022.113303

Reyes-Jurado, F., Franco-Vega, A., Ramírez-Corona, N., Palou, E., and López-Malo, A. 
(2015). Essential oils: antimicrobial activities, extraction methods, and their modeling. 
Food Eng. Rev. 7, 275–297. doi: 10.1007/s12393-014-9099-2

Rico-Munoz, E., Samson, R. A., and Houbraken, J. (2019). Mould spoilage of foods 
and beverages: using the right methodology. Food Microbiol. 81, 51–62. doi: 
10.1016/j.fm.2018.03.016

Samapundo, S., Devlieghere, F., Geeraerd, A. H., De Meulenaer, B., Van Impe, J. F., 
and Debevere, J. (2007). Modelling of the individual and combined effects of water 
activity and temperature on the radial growth of Aspergillus flavus and A. parasiticus on 
corn. Food Microbiol. 24, 517–529. doi: 10.1016/j.fm.2006.07.021

Schlösser, I., and Prange, A. (2019). Effects of selected natural preservatives on the 
mycelial growth and ochratoxin A production of the food-related moulds Aspergillus 
westerdijkiae and Penicillium verrucosum. Food Addit. Contam. Part A 36, 1411–1418. 
doi: 10.1080/19440049.2019.1640397

Suhr, K. I., and Nielsen, P. V. (2003). Antifungal activity of essential oils evaluated by 
two different application techniques against rye bread spoilage fungi. J. Appl. Microbiol. 
94, 665–674. doi: 10.1046/j.1365-2672.2003.01896.x

Suhr, K. I., and Nielsen, P. V. (2004). Effect of weak acid preservatives on growth of 
bakery product spoilage fungi at different water activities and pH values. Int. J. Food 
Microbiol. 95, 67–78. doi: 10.1016/j.ijfoodmicro.2004.02.004

Taiwo, O. R., Onyeaka, H., Oladipo, E. K., Oloke, J. K., and Chukwugozie, D. C. (2024). 
Advancements in predictive microbiology: integrating new technologies for efficient 
food safety models. Int. J. Food Microbiol. 2024:6612162. doi: 10.1155/2024/6612162

Tannous, J., Atoui, A., El Khoury, A., Francis, Z., Oswald, I. P., Puel, O., et al. (2016). 
A study on the physicochemical parameters for Penicillium expansum growth and 
patulin production: effect of temperature, pH, and water activity. Food Sci. Nutr. 4, 
611–622. doi: 10.1002/fsn3.324

Tapia, M. S., Alzamora, S. M., and Chirife, J. (2020). “Effects of water activity (aw) on 
microbial stability as a hurdle in food preservation” in Water activity in foods: 
fundamentals and applications, Hoboken, NJ, USA: John Wiley & Sons, Inc. 323–355.

Tarlak, F. (2023). The use of predictive microbiology for the prediction of the shelf life 
of food products. Food Secur. 12:4461. doi: 10.3390/foods12244461

Thompson, D. P. (1990). Influence of pH on the fungitoxic activity of naturally 
occurring compounds. J. Food Prot. 53, 428–429. doi: 10.4315/0362-028X-53.5.428

Wang, Z., Wang, C. Y., Wang, Y. B., Xue, J. J., Li, Z., Li, J. J., et al. (2013). Effect of 
different pH values on growth and sporulation of Estye vermicola. Afr. J. Microbiol. Res. 
7, 3217–3221. doi: 10.5897/AJMR12.783

https://doi.org/10.3389/fsufs.2025.1535812
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://doi.org/10.1016/j.ijfoodmicro.2004.10.013
https://doi.org/10.1016/j.lwt.2017.09.007
https://doi.org/10.1016/j.fm.2019.04.003
https://doi.org/10.1016/j.arabjc.2020.11.009
https://doi.org/10.3390/plants13101375
https://doi.org/10.1111/j.1365-2621.1985.tb01822.x
https://doi.org/10.1016/j.ijfoodmicro.2013.03.017
https://doi.org/10.1021/acsagscitech.4c00465
https://doi.org/10.1016/j.fm.2011.07.006
https://doi.org/10.1016/j.fm.2017.03.009
https://doi.org/10.1186/1472-6882-14-190
https://doi.org/10.1111/ijfs.17207
https://doi.org/10.1016/j.cofs.2017.10.010
https://doi.org/10.1021/acs.jafc.8b02117
https://doi.org/10.1016/j.ijfoodmicro.2016.04.024
https://doi.org/10.1515/ijfe-2021-0102
https://doi.org/10.3390/microorganisms5030037
https://doi.org/10.1016/j.ijfoodmicro.2004.08.010
https://doi.org/10.5941/MYCO.2017.45.4.240
https://doi.org/10.1016/j.cofs.2021.02.006
https://doi.org/10.3390/molecules26165109
https://doi.org/10.1016/S0168-1605(00)00343-3
https://doi.org/10.1111/1541-4337.12526
https://doi.org/10.1016/j.foodchem.2019.126096
https://doi.org/10.1080/02652030500376102
https://doi.org/10.1016/j.jfoodeng.2020.110024
https://doi.org/10.3390/horticulturae10020150
https://doi.org/10.3390/foods10020355
https://doi.org/10.1016/j.lwt.2022.113303
https://doi.org/10.1007/s12393-014-9099-2
https://doi.org/10.1016/j.fm.2018.03.016
https://doi.org/10.1016/j.fm.2006.07.021
https://doi.org/10.1080/19440049.2019.1640397
https://doi.org/10.1046/j.1365-2672.2003.01896.x
https://doi.org/10.1016/j.ijfoodmicro.2004.02.004
https://doi.org/10.1155/2024/6612162
https://doi.org/10.1002/fsn3.324
https://doi.org/10.3390/foods12244461
https://doi.org/10.4315/0362-028X-53.5.428
https://doi.org/10.5897/AJMR12.783


Hernández-Figueroa et al. 10.3389/fsufs.2025.1535812

Frontiers in Sustainable Food Systems 13 frontiersin.org

Wheeler, K. A., Hurdman, B. J., and Pitt, J. I. (1991). Influence of pH on the growth of 
some toxigenic species of Aspergillus, Penicillium and Fusarium. Int. J. Food Microbiol. 
12, 141–149. doi: 10.1016/0168-1605(91)90063-U

Wijnker, J. J., Koop, G., and Lipman, L. J. A. (2006). Antimicrobial properties of salt 
(NaCl) used for the preservation of natural casings. Food Microbiol. 23, 657–662. doi: 
10.1016/j.fm.2005.11.004

Zaffora, B., Coisne, L., and Gérard, C. (2024). Survival models to estimate time to 
visible mold growth on new paper-based food-contact materials under varying 
environmental conditions. LWT 193:115767. doi: 10.1016/j.lwt.2024.115767

Zwietering, M. H., Jongenburger, I., Rombouts, F. M., and Van't Riet, K. J. A. E. M. 
(1990). Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56, 1875–1881. 
doi: 10.1128/aem.56.6.1875-1881.1990

https://doi.org/10.3389/fsufs.2025.1535812
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://doi.org/10.1016/0168-1605(91)90063-U
https://doi.org/10.1016/j.fm.2005.11.004
https://doi.org/10.1016/j.lwt.2024.115767
https://doi.org/10.1128/aem.56.6.1875-1881.1990

	Antifungal efficacy of thyme essential oil: a multi-model approach to growth inhibition
	1 Introduction
	2 Materials and methods
	2.1 Essential oil extraction
	2.2 Determination of antifungal activity
	2.3 Experimental design
	2.4 Modeling growth response
	2.4.1 Modified Gompertz equation
	2.4.2 Probabilistic (binary-logistic regression) model
	2.4.3 Time-to-growth (survival analysis) model

	3 Results and discussion
	3.1 Thyme essential oil composition
	3.2 Effect of water activity, pH, and thyme EO concentration on fungal growth
	3.3 Logistic model
	3.4 Survival model

	4 Conclusion

	References

