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With the rapid growth of today’s market, food processing industries are compelled 
to adopt advanced solutions to ensure product safety and quality, reduce costs 
amidst low-profit margins, guarantee timely delivery of an increased demand for 
product preferences, and enhance sustainability. To cope with these challenges, 
Digital Twin (DT) technology has emerged as a promising solution. Due to the 
relative novelty of this technology, research on its application within the food 
processing industry remains limited, necessitating additional studies to better 
understand its potential and multifaceted role from different perspectives. This 
review analyzes existing studies on DT applications in the food industry, discussing 
the concept, benefits, and challenges hindering its full adoption. On this basis, 
this study contributes to the existing body of knowledge on DT by identifying 
the state-of-the-art within the food processing industry and categorizing use 
cases from both industrial and academic contexts. Further, it explores the DT 
from a sustainability perspective, emphasizing its role in optimizing resource 
utilization for more efficient and sustainable food processing. Furthermore, the 
study examines its potential as a versatile tool to support sustainability initiatives 
within the industry. Lastly, it discusses the future impact of DT in shaping the 
evolution of food processing.
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1 Introduction

The food processing industry is inherently complex and diverse, encompassing various 
food types, processing methods, preservation techniques, and distribution systems. This 
complexity gives rise to numerous challenges, including increased consumer demands, 
product diversification, and sustainability concerns (Karadeniz et al., 2019; Maheshwari et al., 
2023; Ciano et al., 2021; Verboven et al., 2020; Wari and Zhu, 2019). Therefore, the industry is 
compelled to rethink approaches to enhance productivity, efficiency, quality, and sustainability, 
as well as meet consumer demands. Small and medium-sized food processing industries 
typically adopt a non-integrated approach to process optimization, dictated by their priorities, 
resources, and data availability (Klemeš et al., 2008). Further, many still rely on traditional 
process design methods driven by vendor management systems using unstructured data 
analysis and demand prediction (Maheshwari et  al., 2023; Wari and Zhu, 2019). These 
traditional methods prioritize products over customers, emphasizing profit maximization 
rather than customer satisfaction by implementing short-term goal-seeking strategies rather 
than long-term comprehension (Leng et al., 2020; Marcello Braglia and Marrazzini, 2020). The 
food processing industry is characterized by high water and energy demand, contributing to 
significant waste generation and greenhouse gas emissions (Asgharnejad et al., 2021; Clairand 
et  al., 2020; Garnett, 2013; Nikmaram and Rosentrater, 2019). According to the United 
Nations, globally about 12% of water resources are used for industrial use, with 56% of it being 
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consumed by the food and beverage industry, and the global energy 
consumption of the food sector is about 200 EJ per year, with 
processing and distribution activities contributing to about 45% of this 
total (Eslami et al., 2023). In response to these challenges, current 
research explores innovative solutions such as the adoption of 
advanced technologies and digitalization (Clairand et  al., 2020). 
Particularly, Digital Twin technology has emerged as a potential 
solution within the context of Industry 4.0 (Koulouris et al., 2021; 
Henrichs et al., 2022).

The concept of the Digital Twin (DT), or Digital Twins (DTs), was 
introduced by Grieves around 2002 in the context of Product Lifecycle 
Management (PLM). It was later adopted by NASA to describe the 
development of advanced, high-fidelity simulations for flight 
certification and testing (Udugama et al., 2021). In 2017, the advisory 
firm Gartner identified DT as one of the top 10 strategic technology 
trends, forecasting its widespread adoption among major industrial 
players (Melesse et al., 2020; Perno et al., 2022). Although DT has been 
defined in different ways by companies and researchers (Yu et al., 
2022), a common definition is still lacking. Conceptually, DT is a 
living model that looks like, acts like and links-to a physical object or 
system that can continually be updated with incoming data from the 
operating environment to monitor the status and forecast future 
behaviors to improve or optimize decision-making for any time 
horizon (Melesse et al., 2020, 2021; Yu et al., 2022). DT can look like 
either a 1-D, 2-D, or 3-D representation of a physical object or a 
system. These models can either act like a single state (e.g., an average 
process system state), or discrete event – multiple steady states (e.g., 
multiple equilibrium process system states), or dynamic state (e.g., 
model predictive control), which directly or indirectly connect to a 
physical object or system. The connectivity of the DT (or level of 
integration) can be categorized based on the flow of data between the 
digital and physical layers (Bottani et al., 2020; Liu et al., 2021; Botín-
Sanabria et  al., 2022). For instance, when the digital layer is fully 
disconnected from the physical layer and no automated data exchange 

occurs, it is referred to as a digital model (DM). When the digital layer 
is partially connected, i.e., it only acquires data from sensors in the 
physical layer, it is termed a digital shadow (DS). Lastly, when there is 
full connectivity between the digital and physical layers, with data 
flowing bidirectionally via sensors, it is referred to as a DT (Liu et al., 
2021). The unification of three features namely looks like, acts like and 
link-to, describes a paradigm shift in DT modeling, distinguishing DT 
from conventional representations that may capture only the 
appearance or behavior of a physical object or system without a strong 
linkage to the physical entity. While all three features are essential for 
optimal performance, the fidelity of each feature varies depending on 
the specific purpose and application of the DT (Yu et al., 2022).

DT can be classified based on application level, technique, and 
functionality (Figure 1). As far as application level is concerned, they 
may replicate individual units (resource-centric) (e.g., unit operation, 
equipment, product), the entire system (process-centric) (e.g., 
production line, packaging line), or a more complex system (hybrid-
centric) (e.g., the shop-floor management system) (Park et al., 2020; 
Henrichs et  al., 2022). Regarding techniques, DT models can 
be categorized as statistical (for process control, design, and product 
personalization), artificial intelligence (AI), or data-driven, (for 
monitoring, detection, calibration, verification, and validation), and 
physics-based (for Multiphysics modelling and simulation). The latter 
may incorporate mechanistic kinetics of biological and chemical 
processes. While mechanistic DTs are often capable of simulating the 
behavior of the real object realistically and comprehensively, the 
model parameters used in mechanistic DTs can be also quantified, 
verified, and validated with intelligent DTs using statistical methods 
and AI methods such as machine learning (ML). The technique is 
chosen considering the user’s needs and application complexity. In 
terms of DT functionality, each type of DT serves a specific purpose, 
including real-time monitoring, resource consumption analysis, 
system failure detection and prediction, process or product 
optimization, behavior analysis, technology integration, virtual 

FIGURE 1

Classifications of Digital Twin based on taxonomy.
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testing, evaluation and validation, and virtual maintenance. These 
specific purposes, (Park et  al., 2020), are grouped into four main 
technical functionalities.

 1 Prognostic: DTs can be  implemented to predict or forecast 
future states or behaviors of a process or system. It involves 
analyzing historical data, current conditions, and various 
factors to make informed predictions about future outcomes, 
forecasting the performance of unit operations, predicting 
insufficiency, and anticipating failures or issues before 
their occurrence.

 2 Reactive simulation: DTs can enable responding to changes or 
events in real-time autonomously. Monitoring and dynamic 
reactions to deviations from expected behavior or predefined 
thresholds as well as controlling and adjusting the processing 
variables are the expected outcomes. Thus, it can recommend 
corrective and preventive actions using monitoring and 
prediction results.

 3 Virtual Commissioning: For virtual commissioning through 
DTs testing and validation of new technologies or equipment 
can be performed in a simulated environment before its real 
implementation in the processing plants.

 4 Synchronization-based Simulation Representation: utilization of 
DTs in the representation of synchronization-based simulation 
involves synchronizing the DT with a physical system to create 
a simulation model closely mirroring the real process. DT and 
the physical system are kept synchronized in real-time or near-
real-time, allowing the accurate simulation and analysis of the 
process performance under various conditions. This 
application is valuable for testing scenarios, optimizing 
operations, and improving decision-making in complex 
systems such as transportation networks, energy grids, and 
smart cities.

Cyber-physical systems (CPS) play an important role in DT 
technology. In particular, CPS provides the foundation for the DT. It 
adds advanced capabilities to physical systems through computation 
and communication, interacting intensively with physical processes, 
which allows the accurate creation of virtual models or DTs. These 
DTs, in turn, leverage the capabilities of CPS to monitor, analyze, and 
control physical systems, leading to precise and efficient management 
and operation (Wang et al., 2015; Liu et al., 2017; Tao et al., 2019).

In digitally transformed food process operations, DT serves as a 
virtual replica of assets (i.e., equipment, unit operations), continuously 
synchronized with real systems via sensors (e.g., temperature and pH 
sensors) and advanced big data analytic tools (e.g., cloud computing 
and ML). This innovative approach enables real-time simulation and 
visualization of the food process operations, enhancing 
communication, collaboration, and decision-making. Different from 
conventional computer simulations, which rely on predefined models 
and scenarios and implement results after the simulation study, DT 
operates as a dynamic entity, continuously updating and implementing 
results through operational devices or personnel into real systems. 
This allows real-time adjustments and immediate actions in real 
scenarios for optimized processes and improved product quality. 
Furthermore, DT aims to extend computer simulations beyond their 
traditional scope of process or product design through virtual 
prototyping and optimization, offering comprehensive insights into 

processes and product development (Maheshwari et  al., 2023; 
Verboven et al., 2020). This technology represents an effort to make 
simulation and data science tools available not only in the design 
phase (e.g., through what-if simulations) but also during real-
time operations.

Existing studies on food-related DTs have discussed the concept 
of this technology, exploring various aspects, including its 
development, applications, utilization, potential benefits and 
limitations. Notably, these efforts have been predominantly focused 
on agricultural applications, with comparatively less attention given 
to other stages of the food system (Henrichs et al., 2022). Particularly, 
more research efforts on the application of DTs in food processing and 
manufacturing are needed, given the non-negligible contribution of 
this sector to the environmental impact. To the best of our knowledge, 
no prior reviews have comprehensively analyzed and discussed the 
implementation of DTs within the food processing industry from 
various aspects with a particular focus on sustainability.

To provide valuable insights for academia, industry, and 
policymakers to shape the future of digital transformation in the food 
industry, this review systematically analyzes existing studies on the 
applications of DT in the food industry, discussing its concept, 
benefits, and challenges to full adoption. Specifically, this work 
contributes to the existing body of knowledge on DT by identifying 
state-of-the-art applications and examining their adoption through 
both real-world use cases and findings from the literature. Further, it 
explores DT potential from a sustainability perspective, emphasizing 
its role in optimizing resource utilization for more efficient and 
sustainable food processing. Furthermore, it proposes a potential 
approach within the DT framework to serve as a general tool for 
supporting sustainability initiatives within the food processing 
industry. Lastly, it discusses the future impact of DT in shaping the 
evolution of food processing.

2 Methodology

Given the novelty of DT technology, the state-of-the-art 
application of DTs in the food processing industry is identified, and 
seminal works, use cases, existing gaps and the potential for future 
work in the area are discussed.

To ensure rigor and comprehensiveness, relevant works were 
selected based on the following criteria: (1) Primary Focus: The 
literature primarily focus is on DT applications in food processing. 
The initial inclusion and exclusion criteria were defined using 
keyword-based searches to filter publications based on their titles and 
abstracts. Exclusions included duplicates and studies not directly 
related to DT in the food industry; (2) Types of Literature: Sources 
included journal articles, conference papers, white papers, book 
chapters, and press releases. While these sources vary in depth and 
scientific rigor, they were included to provide a comprehensive 
overview of DT applications in food processing and capture broader 
research trends in the field; (3) Literature language: Only publications 
available in English were considered. (4) Implicit DT Applications: 
Studies discussing DT enabling technologies without explicitly using 
the term “Digital Twin” were also considered for inclusion, ensuring 
that relevant advancements were not overlooked; (5) Final inclusion 
and exclusion: To further refine the initial selections for the final set, 
papers that only mentioned DT in food processing in passing were 
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excluded. Recent review papers’ references were examined to include 
studies that may not have been captured through the initial criteria. 
This step ensured more exhaustive coverage of literature.

All selected publications were categorized based on a predefined 
taxonomy (e.g., source type, food sector category, industrial case study 
and academic case study). Then, they underwent a detailed review, 
with identified applications systematically analyzed and discussed.

3 Results

A total of 43 case studies were identified from various sources. 
Figure 2 presents the distribution of these case study sources analyzed 
in this study. Most studies were published as journal articles (63%), 
followed by press releases (16%), which include web pages and 
company websites.

To better capture the current applications of DT in the food 
processing industry, case studies have been sorted according to the 
European Union’s classification of food processing. The food 
processing industry is classified into eight distinct categories: (1) meat 
products, (2) fish products, (3) fruit and vegetables, (4) edible oils, (5) 
dairy products, (6) grain mill products, (7) bakery, and (8) 
miscellaneous (e.g., sugar, tea, coffee, condiments, seasonings, snacks, 
and prepared and canned meals) (Asgharnejad et al., 2021). Within 
these categories, three main groups are identified: food preservation 
plants, food ingredient manufacturing plants, and food product 
manufacturing plants (Maroulis and Saravacos, 2008). Food 
Preservation facilities primarily utilize agricultural raw materials, 
often seasonal, employing preservation techniques such as thermal 
treatment, refrigeration, freezing, concentration, and dehydration. 
Food Ingredient Manufacturing facilities utilize bulk agricultural 
products or by-products of food processing to produce various 
ingredients (i.e., Sugars, starch, flour, oils, proteins, pectin, and gums). 
These facilities typically utilize operations and equipment units similar 
to traditional chemical processes. Food Product Manufacturing 
facilities often employ material transformation and preservation 

processes, in addition to packaging, to produce a diverse range of final 
products for consumers. Figure  3 depicts the application of DT 
technology across various food processing categories within the three 
main groups.

DT applications in the food processing within the miscellaneous 
category, encompassing products like, beverages (such as soft drinks 
beer, energy drink, fruit juices and water), food products (such as 
chocolate, French crêpe, honey, ice cream, starch-based foods, 
condiments), and food ingredients (such as sugar and syrup) 
(Siemens, 2018; Karadeniz et al., 2019; Bottani et al., 2020; Vignali and 
Bottani, 2020; Watson et al., 2021; Eppinger et al., 2021; Hong et al., 
2021; Koulouris et al., 2021; McLean and Redmond, 2021; Vetter and 
Strube, 2022; Tshabalala and Kuriakose, 2023; Cabeza-Gil et al., 2023; 
Tancredi G. P. C. et al., 2023; Coca-Cola, 2023; Force Technology, 
2024a, 2024b; George, 2021; Nestlé, n.d.; NVIDIA, n.d.; Siemens, n.d.) 
represent the most studied category of food processing, accounting for 
58% of all categories examined. Within this category, approximately 
84 and 16% of the case studies are concerned with food product 
manufacturing and food ingredient manufacturing groups, 
respectively, with the food preservation group being overlooked. The 
DT of fruit and vegetable products represents the second most studied 
category, constituting 16% of all categories examined. Within this 
category, both food preservation and food product manufacturing 
groups received almost equal attention, while food ingredient 
manufacturing was disregarded. DT applications in the grain, dairy, 
and meat product categories were studied at similar rates, representing 
7, 9, and 7% of the total studies, respectively. Within these sectors, 
most of the case studies focused on food product manufacturing 
group, followed by food ingredient manufacturing, and food 
preservation groups. Finally, the bakery products category was the 
least explored, while no applications were found in the fish and edible 
oils categories.

The analysis further differentiated between practical DT 
applications (industrial case study) and research (academic case 
study) within the studies, providing insights into the current state of 
DT adoption at the industrial level (Figure 4). Notably, a clear disparity 
exists, with a significantly higher number of studies focusing on 
research compared to industrial use cases.

4 Discussion

4.1 Digital Twin in the food processing 
industry

4.1.1 Applications
The utilization of DT in the food processing industry has 

undoubtedly important advantages. It has been adopted across food 
sectors to optimize operations, enhance product quality, and improve 
consumers acceptability through the design of personalized products. 
However, the analyzed case studies revealed a clear lack of applications 
in the fish and edible oils sectors. This might be due to several factors, 
as discussed in the following. Indeed, DT technology has been 
adopted in food sectors where the high complexity of the processes 
makes streamlining useful to analyze the most critical phases affecting 
process performance and product quality. Moreover, regardless of 
whether production is carried out in batch or continuous processes, 
the utilization of DT technology is attractive for industries 

FIGURE 2

Percentage of Digital Twins’ application in different case studies by 
publication type.
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characterized by individualization-based manufacturing (e.g., 
personalized food products), multi-product manufacturing (e.g., 
condiments and breweries), and manufacturing of products for which 
slight changes in processing parameters highly affect the quality (e.g., 
sugar and dairy production). These industries often prioritize rapid 
recipe adjustments, efficient management of the productions based on 
multi-products, effective handling of production uncertainties, and 
precise control of the processing parameters.

It is worth noting that some implementations already exist in the 
food industry such as soft drinks manufacturing. The companies use 
DTs to manage the plant shopfloor and warehouses, as well as 
streamline processes (Coca-Cola, 2023; NVIDIA, n.d.). Further, other 
multi-product food companies leverage this technology to optimize 
operations, enable product personalization, and maintain high-quality 
standards (Nestlé, n.d.; Siemens, n.d.). The dairy industry uses this 
technology to maintain product quality, enhance resource efficiency 
and improve waste management (Force Technology, 2024b). The 
bakery product producers employs DT to facilitate the management 
and optimization of existing recipes, and the design of new products 

(Force Technology, 2024a). Similarly, the breweries employ the DTs 
for precise process control, ensuring consistent product quality 
(George, 2021). However, within the research domain, the number of 
case studies on the practical implementation of DT is lower compared 
to those focused on scientific studies. This could be attributed to the 
company’s concerns to publicly disclose the utilization of DT 
technology and its advancement to maintaining a competitive 
advantage. Additionally, the implementation of DT often involves the 
collection and analysis of sensitive data, which companies may 
be reluctant to share for confidentiality reasons. Furthermore, many 
DT applications are still in their early stages, and companies may 
prefer to achieve more robust results before their dissemination.

4.1.2 Purpose of use
The adoption of DT technology is driven by production and 

market factors, such as the need to meet increased demand or adapt 
to evolving market preferences, align with specific nutritional 
standards, and packaging sizes (Koulouris et al., 2021). Additionally, 
the increased competition in the business environment compels 

FIGURE 3

Digital Twin applications across food sectors.
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companies to look beyond cost reduction, and consider as key factors 
the improvement of product quality, productivity, and process 
efficiency (Perno et al., 2022). Further, food companies have to cope 
with low-profit margins while being challenged to face market changes 
by reducing time-to-market while developing new and flexible 
processes for a wide range of products (Koulouris et al., 2021). The 
employee-related factors play a role, with companies leveraging DTs 
to enhance creativity and cooperation between employees and offer 
virtual reality-based training programs and increase workplace safety 
by identifying potential hazards (Henrichs et al., 2022).

DT is deemed implemented when it incorporates as key elements 
the physical object or process that should be twinned, a virtual model 
representing the essential properties of the physical counterpart, and 
the connection between the two (Kritzinger et al., 2018; Xia et al., 
2020; Ricci et al., 2021). It is worth mentioning that if there is lacking 
of or insufficient data available between the digital layer and its 
physical counterpart, it is not possible, by definition, to consider the 
model of the system as a DT. In the food processing industry, DTs have 
been implemented at different stages, using various enabling 
technologies for system architectures, each encompassing a specific 
purpose for their use. These stages are the design, processing, and 
service, and, in turn, are subdivided into sub-categories considering 
their specific purposes as follows.

4.1.2.1 Design stage

 1 Optimization: DT utilization can assist in individuating the 
optimal design parameters to maximize process efficiency and 
minimize resource consumption. It can be employed to design 
new products, new processes and retrofitting the existing ones 
to enhance product quality, productivity, and efficient use 
of resources.

 2 Data Generation: In situations where sufficient data for process 
design are lacking, for instance when only lab-scale data are 
available, DT can be employed to generate the necessary data. 

This can help in rebalancing datasets or estimating operating 
conditions or product characteristics, facilitating the setup of 
accurate models, through techniques such as ML, to be fed into 
optimization models.

 3 Virtual Evaluation, Verification, and Validation: DTs serve as 
cost-effective tools for evaluating, verifying, and validating 
designed processes and products in a virtual environment.

4.1.2.2 Processing stage

 1 Process monitoring: DTs could offer real-time monitoring by 
integrating essential data with visual models. It can combine 
historical, real-time, and predictive data to track past 
performances, monitor current operations, and forecast future 
outcomes. Thus, not only current data can be presented but DT 
could help in understanding situations and 
optimizing decisions.

 2 Process control: Conventional methods for process control are 
based on physical measurements, and models should be used 
for predictive control. DTs, instead, enhance process control by 
leveraging the connection between virtual and physical 
components to eliminate disturbances and maintain 
quality specifications.

 3 Process prediction: Variations in processing variables, such as 
raw material characteristics fluctuations, pose challenges. DTs 
predict how these variations impact processing conditions, 
leveraging soft sensing technologies like ML to forecast the 
trend of critical variables that are difficult or costly to 
be measured directly.

 4 Process optimization and production planning: Conventional 
process optimization and production planning methods are 
affected by disturbances and uncertainties since they rely on 
static information. DTs vastly improve the effectiveness of 
optimization and planning processes by providing both 
monitored and predicted data.

4.1.2.3 Service stage

 1 Fault Detection and Diagnosis: Fault locations can be pinpointed 
by comparing process variables from both virtual and physical 
processes. DTs facilitate fault diagnosis, enabling the 
identification of fault types and/or affected resources.

 2 Virtual Testing: As a digital replica of the physical object, DTs 
allow testing operations in scenarios where failures could result 
in significant losses or damages. Unlike traditional simulation, 
DTs offer a highly realistic and accurate simulation 
environment. The identical virtual settings enable thorough 
exploration and testing without the inherent risks associated 
with physical systems.

 3 Predictive maintenance: Like process prediction, predictive 
maintenance can be  managed by DTs that can provide 
information on disturbances and uncertainties, thus providing 
more accurate maintenance times, such as cleaning-in-
place scheduling.

Table  1 shows the results reported in the literature on the 
implementation of DTs in food processing, including the phases and 
specific purposes of their implementation and the main findings. For 

FIGURE 4

Applications of Digital Twin: Industrial case study vs. Academic case 
study.

https://doi.org/10.3389/fsufs.2025.1538375
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Abdurrahman and Ferrari 10.3389/fsufs.2025.1538375

Frontiers in Sustainable Food Systems 07 frontiersin.org

TABLE 1 Overview of key findings on the implementation of DT in food processing industry.

Phase Specific purpose Reference Findings

Product Optimization Hong et al. (2021) DT technology enabled the design of Microwave-Assisted Thermal Sterilization 

(MATS) systems, optimizing parameters like phase shifts and cavity dimensions 

to improve heating uniformity and throughput for ready-to-eat meals.

Vetter and Strube (2022) DT model for sugar crystallization was used to evaluate the influence of different 

factors such as temperature, agglomeration, or crystal attrition on sugar quality.

Force Technology (2024a) DT technology facilitated the management and optimization of existing 

bakery products, the design of new ones, and the presentation of both current 

and potential new products to customers, even prior to real production.

Data generation Nikitina and Chernukha (2020) DT enabled meat product personalization by helping developing recipes for 

new food products with a complex composition and characteristics. Further, 

testing meat via DT allowed saved time, and resources in experimentation.

Virtual testing Siemens (2018) DT enabled inline packaging design with considerable time savings for new 

PET bottle development.

Siemens (2018) DT enabled virtual testing, leading to greater efficiency and a significant 

reduction of cycle times in new energy drink development.

Process Monitoring Siemens (2018) Fully automated plant and real-time monitoring were achieved by DT of a 

cheese plant, eliminating many actions previously performed by workers 

interventions.

Dolci (2017) DT of malthouse allowed real-time monitoring and predicting of how process 

parameters, such as CO2 concentration, temperature, humidity and pH, vary 

in the three steps of the malting process.

George (2021) DT facilitated real-time monitoring of the fermentation process, ensuring 

consistent product quality. Alongside that, it provided operators with critical 

insights for maintaining equipment uptime, enhancing production efficiency, 

and minimizing bottlenecks.

Nestlé (n.d.) and Siemens (n.d.) DT enabled a comprehensive monitoring system, leveraging advanced DT-

enabling tools to oversee facility assets and materials. It facilitated the 

simulation of the entire production process, from raw materials to finished 

products. Key achievements included enhanced product design and 

personalization, process optimization, improved predictive maintenance, and 

strengthened quality control.

Control Ozden and Kılıç (2022) DT controlled the process of banana drying by using images obtained just 

from a digital camera. Further, the developed DT could end the drying 

process by estimating the drying progress without using an extra sensor or 

equipment.

Raut et al., (2022) DT optimized the drying process by effectively controlling process 

parameters, leading to higher or similar carotenoid retention in carrot slices, 

shorter drying times, and reduced energy consumption.

McLean and Redmond (2021) DT of chocolate plant enabled better control of the chocolate bar production 

process and an improvement of the consistency and uniformity of the product 

across the processing lines.

Tancredi G. P. C. et al. (2023) DT of filters in a milling plant demonstrated its capability to control the 

velocity of the polluted air in the manifold, ensuring the optimal solid particle 

concentration in the air before discharging it in the atmosphere.

Eppinger et al. (2021) DT of a ketchup plant improved monitoring of the temperature of the product to 

optimize energy use efficiency and product quality.

Tancredi G. et al. (2021) DT technology enabled precise monitoring of pasteurization process 

parameters, reducing safety risks during pilot plant testing.

Eppinger et al. (2021) DT of a milk powder dryer allowed optimizing the drying process by 

modifying the airflow rate, direction and flow conditions in the nozzles 

resulting in improved product quality. Further, the reduction in operating 

costs was achieved, avoiding the construction of an expensive pilot plant.

(Continued)
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Phase Specific purpose Reference Findings

Prediction Tancredi et al. (2022) DT AI-based pasteurizer for liquid foods was proven effective enough in 

predicting anomalies.

Watson et al. (2021) Coupling sensors and DT allowed predicting the endpoint of fermentation of 

beer, preventing over or under-fermenting in breweries and the associated 

resource loss.

Schemminger et al. (2024) DT effectively predicted the drying behavior and quality retention of 

carrot slices by assessing the biological variability among individual slices 

during the drying process.

Bottani et al. (2020) DT of a juice pasteurizer enabled the prediction of potential anomalies in 

the unit by comparing the results of the simulation model with real-time 

data from the plant.

Vignali and Bottani (2020) DT of a juice pasteurizer enabled the prediction of pressure and temperature 

during pasteurization based on real data taken from sensors.

Watson et al. (2021) Intelligent sensors with ML enabled the real-time monitoring and 

optimization of the mixing processes of honey-water, accurately 

predicting the endpoint of the mixing stage.

Nget et al. (2023) The DT model enabled the prediction with high accuracy of cooking 

temperatures and moisture loss in Cambodian pâté, resulting in 

enhanced food safety and quality in the preparation of Cambodian pâté

Watson et al. (2021) Intelligent sensors, as enablers of DT, improved potato tuber quality 

assessment by predicting dry matter content and classifying 

potatoes by size, eliminating the need for destructive methods. This led 

to enhanced resource efficiency and reduced waste in food manufacturing 

processes.

Cabeza-Gil et al. (2023) The DT enabled real-time monitoring of crêpe properties, including 

temperature, color, and weight loss, with high accuracy. This allowed for 

precise prediction of cooking completion time based on user-defined 

criteria.

Optimization and planning Maheshwari et al. (2023) DT of an ice cream plant enhanced the existing machine and work efficiency 

and effectiveness.

Koulouris et al. (2021) DT aided in achieving efficient production in a brewery. Long-term 

planning can be performed utilizing a digital model able analyzing 

productivity while considering the effects of process variabilities to 

individuate the way the production goals can be achieved, rationalize 

production plans or manage production changes.

Dąbrowska et al. (2022) DT enabled scheduling the sequence of a sugar packing machine and 

preventing the occurrence of problems in a sugar packaging line.

Tshabalala and Kuriakose (2023) DT assisted in reducing the cycle between workstations and pre-determine 

possible bottlenecks that might occur during production.

Coca-Cola (2023) For customer-specific mixed orders, DT simulated the bottling plant, 

facilitating the analysis of order data and warehouse layout to determine 

optimal picking routes, Yard management efficacy optimization and waste 

reduction were achieved.

NVIDIA (n.d.) DT enabled automation of warehouse operations and workflow, maximizing 

inventory storage capacity, increasing throughput, and minimizing the space, 

equipment, and labor required.

(Continued)
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the sake of clarity, the specific purpose of each study is reported, 
regardless of the additional functionalities that might be achieved.

As shown in Table 1, the implementation of DT technology in 
food processing was mostly concerning the process phase, being 
control and prediction of the most targeted functionalities. As 
mentioned before, some studies achieved additional functionalities of 
DT applications besides the specific purpose for their use. For 
instance, to mention a few, Bottani et al. (2020) developed a DT for a 
fruit juice pasteurization unit to predict potential anomalies and 
enhance worker safety. Simultaneously, DT was used to control 
process parameter variations. In the study case of carrot slice drying 
conducted by Schemminger et al. (2024) the specific purpose of DT 
was the prediction of product quality, while monitoring and 
controlling were concurrently considered as functionalities of the 
DT. Thus, it can be highlighted that DT can be exploited for multiple 
functionalities simultaneously and fulfill the requirements of more 
controlled and efficient food processing operations.

4.1.3 Tools, methods and technologies for digital 
Twin system architecture

DT has been supported by various technologies and tools (from 
simulations to agents, from graphical representations to service 
platforms), each serving specific purposes aligned with the user’s 
ultimate goal (Crespi et al., 2023). Modeling and simulation are pivotal 
components of DT technology, particularly in complex processes. 
Commercial process simulator software, such as SuperPro Designer, 

Aspen Plus, Aspen HYSYS, etc., are widely employed for constructing 
virtual plants (Ureta and Salvadori, 2022). Typically, these process 
simulators utilize first-principles modeling, also known as white-box 
modeling, which relies on a deep understanding of physical–chemical 
phenomena underneath the process. Previous studies carried out for 
the food processing and chemical processing industry (Koulouris 
et  al., 2021; Barbero-sánchez et  al., 2024) have demonstrated the 
significant role of process simulators within the DT framework. These 
tools are characterized by standardized methodologies and robust 
technical support, ensuring the quality and reliability of DT 
applications in complex processes (Yu et al., 2022). Computational 
fluid dynamics (CFD) simulation tools (i.e., COMSOL Multiphysics, 
Ansys, etc.) also contribute significantly to DT frameworks. While 
these tools are inherently slow and cannot provide real-time or near-
real-time simulation feedback, which is one of the key aspects of DT, 
they can be integrated with significant powerful tools, such as AI. For 
instance, ML models can be trained on a set of CFD-generated data to 
build quickly accessible models for real-time simulation, enabling 
faster predictions. This approach, explored in a case study for oven 
automation, was enabling real-time simulations for optimized thermal 
processing control (Kannapinn et  al., 2022). In addition, CFD 
simulations can be launched in advance, building a database, which 
can then be used for real-time system control by comparing expected 
outcomes with sensor data to detect faults or anomalies, as discussed 
by Solari et al. (2023). Overall, these approaches allow for the creation 
of more efficient and responsive DT systems. Intelligent sensors and 

Phase Specific purpose Reference Findings

Service Fault Detection and Diagnosis Eppinger et al. (2021) DT technology corrected the positioning of cheese on the belt conveyor by 

using camera systems to detect and rectify misalignments.

Tancredi G. P. C. et al. (2023) DT-based control system in a pasteurizer for liquid foods showed a fast 

response and good robustness in controlling the pasteurization process by 

adjusting automatically the pressure setpoint, preventing any potential system 

failure.

Siemens (2018) DT of a syrup mixing process enabled the prevention of possible bottlenecks 

and optimize the production process as a result of optimized monitoring, 

planning and scheduling.

Gericke et al. (2019) DT of water bottling enabled the identification of points where faults could 

occur allowing minimizing maintenance scheduling. Additionally, DT could 

help detecting drops in production rates and individuating the bottlenecks 

where these problems might occur providing self-correction actions.

Solari et al. (2023) The DT enabled the accurate assessment of the filter’s operating state, 

identification of failure events or operating anomalies, and prediction of the 

Remaining Useful Life of the cyclone bag filter.

Predictive maintenance Simeone et al. (2018), Simeone 

et al. (2020), Watson et al. (2021)

DT coupled with smart monitoring AI improved the management of the CIP 

process by facilitating the evaluation of fouling occurrence, enabling timely 

alerts to operators on cleaning efforts adequacy within a specified timeframe.

Force Technology (2024b) DTs facilitated well-planned CIP by monitoring biofilm growth in the heat 

exchanger in real time during production and detecting potential sources of 

bacterial growth and pathogens.

Karadeniz et al. (2019) DT technology for ice cream machines was tested, demonstrating its ability to 

enhance fault monitoring, performance assessment, and predict potential 

usage and/or level of depreciation.

Virtual testing - -

TABLE 1 (Continued)
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cloud platforms are advanced tools that enable the development and 
implementation of DT. These tools leverage data-driven (black-box) 
modeling, powered by big data analysis, IoT, and machine learning. 
While this approach is gaining traction in food processing in the 
context of Industry 4.0, hybrid modeling, combining white-box and 
black-box modeling approaches, is increasingly being considered in 
food-related DT studies. For example, (Tancredi et  al., 2022) 
conducted a hybrid modeling study of a heat exchanger for monitoring 
and anomalies detection. Fundamental equations were incorporated 
in the model developed in LabVIEW environment for simulation. 
Additionally, Python was employed to develop an ML algorithm, 
enabling full process automation and autonomous fault detection, 
allowing real-time adjustments to optimize performance. Hybrid 
modeling approach offers a balanced integration of theoretical 
foundations and empirical data, providing a more robust and reliable 
DT function (Eppinger et al., 2021; Tancredi et al., 2022). Table 2 
provides an overview of the diverse tools employed for DT 
construction within the analyzed food processing case studies.

4.1.4 Digital Twin for resource efficiency 
enhancement and waste management

The application of DT technology in the food sector can 
be crucial to meeting the societal demand for increased sustainability 
by improving resource efficiency and reducing water and energy 
consumption and emissions. Therefore, the driving factors for the 
use of DTs are not only the needs of the food industry to meet market 

demands and maintain competitiveness through the development of 
new products, quality enhancement, personalized food product 
design, and productivity improvement, but also a commitment to 
reduce its environmental footprint. Therefore, the use of DT 
technology can be seen as a significant advantage for the management 
of this last problem. For instance, DT facilitates precise control of 
production lines (Noor Hasnan and Yusoff, 2018; Clairand et al., 
2020). This enables real-time monitoring of potential water and 
energy losses, allowing the implementation of solutions to prevent 
such losses (Clairand et al., 2020; Ojo et al., 2018). Measuring and 
analyzing specific variables and parameters of unit operations for 
water and energy usage through DT enables the identification and 
anticipation of potential issues. This proactive approach allows for 
the adjustment of process parameters, leading to improved water and 
energy efficiency and reduced waste. For example, in the ketchup 
processing industry (Eppinger et al., 2021), maintaining ketchup 
temperature above a certain threshold throughout the process is 
crucial to prevent bacterial proliferation, although at the cost of 
significant thermal energy consumption. DT technology can 
optimize thermal management systems, allowing for a reduction in 
the safety margin for target temperature settings. This not only 
decreases thermal energy consumption, leading to substantial cost 
savings but also preserves product quality. Similarly, in the milk 
powder industry (Eppinger et al., 2021), the drying process plays a 
pivotal role in determining end-product quality. Given its energy-
intensive nature, optimizing the drying process typically requires 

TABLE 2 A summary of different tools and technologies used in the case studies for constructing system architecture of DT technology.

DT enablers Tools References

Process simulator tools for steady state or dynamic 

systems
SuperPro designer® process simulator, AnyLogic, 

Aspen modular, Simulink-MATLAB, SIMIT simulator 

and AmeSim

Gericke et al. (2019), Koulouris et al. (2021), 

Maheshwari et al. (2023), Siemens (2018), Tshabalala 

and Kuriakose (2023), and Vetter and Strube (2022)

Computer-aided-design CAD tools Siemens PLM NX CAD Software and Ansys 

SpaceClaim

Siemens (2018) and Solari et al. (2023)

Tools for planning, scheduling and management
SchedulePro®, Siemens SIMATIC IT R&D Suite, 

Siemens MoM system and TIA portal and COMOS

Koulouris et al. (2021) and Siemens (2018)

Commotional fluid dynamics (CFD) simulation tools*
Ansys Fluent and COMSOL® Multiphysics

Force Technology (2024a), Schemminger et al. (2024), 

and Solari et al. (2023)

Computational Electromagnetics (CEM) simulation 

tool

QUICKWAVE Hong et al. (2021)

Programming language Python and G-Code Cabeza-Gil et al. (2023), Tancredi et al. (2022)

Graphical programming environment tools LabVIEW Bottani et al. (2020), Tancredi G. et al. (2021), Tancredi 

G. P. C. et al. (2023), Tancredi et al. (2022), and Vignali 

and Bottani (2020)

Intelligent platforms Microsoft Azure tool George (2021), McLean and Redmond (2021), 

Micorosoft (n.d.)

Technologies AI-powered sensors, monitoring systems, cameras, IoT, 

Augmented Reality (AR) and Virtual Reality (VR)

Coca-Cola (2023), Dolci (2017), Eppinger et al. (2021), 

Force Technology (2024b, 2024a), Karadeniz et al. 

(2019); Nestlé (n.d.), Nikitina and Chernukha (2020); 

NVIDIA (n.d.), Ozden and Kılıç (2022), Raut et al. 

(2022), Siemens (n.d., 2018), Simeone et al. (2018, 

2020), Valero et al. (2023) and Watson et al. (2021)

*Some tools, such as CFD simulation software, do not support data acquisition, automation, or real-time integration. However, they can function as a DT when integrated with powerful 
technologies like AI. It is worth noting that some tools integrate the Monte Carlo simulation technique to support statistical and computational analyses to enhance DT functionality.
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empirical testing. By leveraging DT technology to adjust airflow 
directions and processing conditions, energy efficiency can 
be improved alongside product quality, while reducing the number 
of experimental trials. In the flour industry, precise control of the air 
velocity in pneumatic conveying systems is vital for both 
environmental safety and product quality (Tancredi G. P. C. et al., 
2023). Optimizing this parameter can significantly improve the 
system’s energy efficiency. In honey-based product manufacturing 
(Watson et al., 2021), inefficient mixing can result in off-specification 
products and excessive energy consumption. The mixing process can 
leverage DT to predict the remaining time for complete mixing, 
enabling better scheduling of batch processes and enhancing 
productivity. Thus, preventing under-mixing and over-mixing, 
product rework or disposal is minimized, while excess energy usage 
is reduced. DT technology also contributes to water efficiency in 
Cleaning-In-Place (CIP) systems in the food industry (Simeone 
et al., 2018; Simeone et al., 2020). The food industry can leverage this 
technology for real-time monitoring and optimized planning of CIP 
processes. For example, in processes involving tanks of product 
concentrate, DT can evaluate fouling levels during cleaning, 
providing timely alerts to operators regarding cleaning adequacy 
within specified timeframes, thereby preventing both over cleaning 
and insufficient cleaning (Simeone et al., 2020). Furthermore, in the 
dairy industry, DTs can facilitate well-planned CIP by monitoring 
biofilm growth in the heat exchanger in real time during production 
and detecting potential sources of bacterial growth and pathogens. 
This approach ensures proper hygiene, maintained quality, and 
reduced downtime, while simultaneously improving water and 
energy efficiency (Force Technology, 2024b). Beyond water and 
energy use efficiency, DT can mitigate food waste during production. 
For example, DTs can be utilized for predictive maintenance of assets 
like pasteurizers, contributing to more efficient and less wasteful 
food production (Force Technology, 2024b). Furthermore, 
considering the variability of raw materials due to seasonal factors, 
DT technology offers an adaptive approach to adjusting processing 
parameters, such as machine settings, based on raw material quality 
or properties, thereby minimizing waste. Overall, DT could 
contribute to the growth of sustainable processes by optimizing the 
use of raw materials, water and energy, enabling food waste to 
be reduced (Eppinger et al., 2021; Watson et al., 2021).

4.2 Digital Twin as a general tool for 
supporting sustainability initiatives

In food processing, most design and optimization problems are 
aimed at several objectives, which can often be  contradictory 
(Abakarov et al., 2013; Madoumier et al., 2019). Potential antagonistic 
effects can arise when optimizing multiple objectives, as maximizing 
one may lead to the minimization of one or several others (Rangaiah, 
2009; Rangaiah et al., 2020). For instance, maximizing food product 
quality (texture, nutrient concentration, flavor, etc.,) often conflicts 
with process performance objectives, such as minimizing utility 
consumption, maximizing profit, or ensuring safety (Madoumier 
et  al., 2019). Optimal solutions can be achieved through a multi-
objective optimization (MOO) approach (Rangaiah, 2009; Rangaiah 
et al., 2020). MOO offers well-balanced solutions for the single-unit 
operation and the entire process, simultaneously investigating and 

estimating potential savings (Cerda-Flores et al., 2022). This approach 
can be integrated into the DT framework to serve as a versatile tool 
for implementing and assessing the effectiveness of sustainability 
initiatives in food processing. Recent studies in other disciplines have 
demonstrated the effectiveness of this approach in identifying optimal 
trade-offs between conflicting objectives within DT framework. For 
instance, Wang et al. (2023) investigated the scheduling optimization 
of laminar cooling water supply systems for hot rolling mills to 
enhance energy efficiency in the steel industry. The optimization 
model was designed to minimize multiple objectives simultaneously, 
primarily focusing on reducing the electrical energy usage in the 
pumping system while ensuring adequate water supply and 
operational efficiency. This optimization model was introduced in a 
DT framework, enabling a new mechanism for scheduling that 
includes virtual-real response, interaction, control, and iterative 
optimization. The proposed scheduling system significantly reduced 
energy consumption while ensuring the cooling requirements. This 
demonstrated the effectiveness of the DT model in optimizing 
resource use in industrial applications. Guo et al. (2024) proposed a 
novel DT model for geothermal heating systems to be utilized in 
buildings to address supply–demand mismatches. The authors 
integrated MOO within the DT framework to enable simultaneous 
optimization of the costs, geothermal energy utilization, and carbon 
emissions. This approach facilitated accurate heating demand 
prediction and optimal control of storage systems and heat pumps, 
maximizing geothermal energy use while minimizing both the costs 
and the emissions. The authors emphasized that this approach is an 
effective mean of enhancing energy sustainability. Therefore, in the 
perspective of a wider utilization of DT technology in the food 
processing industry, the integration of MOO into DT is highly 
valuable to enhance the usefulness and maximize the functionality of 
this model and enable more effective product and process design 
and optimization.

4.3 Challenges and limitations

While significant progress has been made in developing DT 
models for the food industry, large-scale deployment remains 
challenging. This is due, in part, to the need for advanced 
mathematical, numerical, and computational methodologies to 
ensure robustness and scalability (Bianco et al., 2022; Kannapinn 
et al., 2022). Beyond DT model development, recent research has 
highlighted general implementation challenges (Fuller et al., 2020; 
Henrichs et al., 2022; Melesse et al., 2020, 2021; Perno et al., 2022; 
Verboven et al., 2020; Wagner et al., 2019). For instance, Fuller 
et  al. (2020), noted similarities between DT implementation 
challenges and those encountered in data analytics and the IoT, 
including data security, data acquisition, communication, storing, 
sorting, and analysis. Incorporating functional requirements into 
the DT including the monitoring of asset operations, the 
measurement of key performance indicators (KPIs), the materials 
data, the notification of unacceptable fluctuations and the use of 
simulation to identify potential adjustment actions, necessitates a 
vast amount of data, potentially hindering DT’s operational 
efficiency. Specifically, deep learning algorithms are considered 
highly energy-intensive tools, exacerbated by the increasing 
volumes of IoT data transmitted over networks (Yu et al., 2022). 
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Further, a significant increase in computational requirements 
could lead to a trade-off between marginal benefits and the power 
consumed, which may counteract the intended purpose. Other 
studies have identified further implementation challenges, 
including the lack of a standardized methodology for information 
transfer between physical and virtual objects (Melesse et al., 2020, 
2021; Perno et  al., 2022), the need for a consistent framework 
(Henrichs et al., 2022; Wagner et al., 2019), and the complexity of 
model implementation given the intricate nature of food matrices 
(Verboven et al., 2020). Furthermore, the reluctance of some food 
companies to adopt emerging technologies, coupled with concerns 
over high investment costs and data security, also hinders 
widespread DT implementation within the food sector (Melesse 
et  al., 2020, 2021; Verboven et  al., 2020; Henrichs et  al., 2022; 
Krupitzer et al., 2022; Perno et al., 2022). In Figure 5, the Ishikawa 
diagram is reported to highlight the factors that delay or hinder 
the full adoption of DT technology.

4.4 Related studies and future direction

Recent publications have investigated the prerequisites for 
developing and implementing DTs in the process industry, 
highlighting their potential benefits, challenges, and essential 
enabling technologies (Lee et al., 2013; Eisen et al., 2020; Verboven 
et al., 2020; Xia et al., 2020; Liu et al., 2021; Perno et al., 2022). DT 
concepts and capabilities are still evolving, and existing literature 
reviews offer valuable insights in this context, however, efficient 
resource management throughout the entire process operations 
have not been highly prioritized. For instance, Verboven et al. 
(2020) underlined that a comprehensive, multidisciplinary 
approach is required for a successful deployment and operation, 
highlighting the benefits of DTs in food processing operations. 
Nikitina and Chernukha (2020), whose work was focused on the 
utilization of DTs in food product development, underscored the 

efficiency and cost-saving benefits of DTs for testing new food 
product recipes virtually. Pylianidis et al. (2021) considered DT 
applications in food systems, focusing only on agriculture 
production, while Henrichs et al. (2022) reviewed DT applications 
in a broader context in the food industry, primarily focusing on 
the food supply chain. The latter highlighted the challenges and 
potentials of implementing this technology in the food industry 
with a focus on the supply chain. Kucha and Olaniyi (2024) 
studied the potential implementation of DTs in the meat industry 
utilizing the latest digital tools like IoT sensors for product quality 
improvement, highlighting the significance of this technology in 
the meat industry.

Differently from previous review papers, in this work, the 
applications of DTs in food industry have been thoroughly 
analyzed, with a specific focus on their potential and challenges 
to sustainability outcomes. The paper specifically targeted the 
food processing industry, providing a classification of the 
applications of DTs emphasizing the key elements, the model 
bases, functionalities and the purposes of their use (Table 3). It 
also sheds light on the technologies, commercial software and 
methods utilized for constructing the system architecture of DTs, 
offering insights into target units, products, and processes. The 
potential contribution of DTs in providing suggestions to increase 
the sustainability of the food processing industry, with particular 
attention on water and energy management, was analyzed and 
discussed. However, the limited number of publicly available 
industrial case studies did not allow fully capture the scope of DT 
adoption across the sector. Efforts are needed to get information 
on its implementation extent in the food industry as well as the 
factors that hinder its wider adoption.

Overall, being DT an emerging technology, standards and 
frameworks must be established and DT modeling methodology 
must be improved, enabling applications to enhance resource use 
efficiency and minimize waste generation in food 
processing operations.

FIGURE 5

Factors that delay or hinder the full adoption of Digital Twin technology.
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TABLE 3 Summary on the Digital Twin technology: applications and development approach.

Application Twinned 
system

Model 
feature

Model basis Connectivity Application 
level

Functionality Reference

Baked product Oven 3-D

Dynamic

Physics-Based DT Resource-centric Prognostic

Reactive simulation

Synchronization-based 

Simulation

Force Technology 

(2024a)

Banana Drying system 3-D

Dynamic

Statistical-Based

Data-Driven

DT Resource-centric Virtual Commissioning Ozden and Kılıç (2022)

Beverage/ soft 

drinks

Tube-in-tube 

heat exchanger

2-D

Dynamic

Physics-Based

Data-Driven

DT Resource-centric Prognostic

Reactive simulation

Tancredi et al. (2022)

Bottling plant 3-D

Dynamic

Statistical-Based

Data-Driven

DT Process-centric Prognostic

Synchronization-based 

Simulation

Coca-Cola (2023)

Wearhouse -

Dynamic

Statistical-Based

Data-Driven

DT Process-centric Prognostic

Synchronization-based 

Simulation

NVIDIA (n.d.)

Brewery Plant units 2-D

Discrete Event

Physics-Based

Statistical-Based

DT Process-centric Prognostic

Reactive simulation

Virtual Commissioning

Koulouris et al. (2021)

Fermenter -

Dynamic

Data-Driven DT* Resource-centric Prognostic Watson et al. (2021)

Plant units -

Dynamic

Physics-Based

Statistical-Based

Data-driven

DT Process-centric Prognostic

Synchronization-based 

Simulation

George (2021)

Carrot Drying system 

and the product

3-D

Dynamic

Physics-Based DS Resource-centric Prognostic

Virtual Commissioning

Schemminger et al. 

(2024)

Drying system 2-D

Dynamic

Physics-Based DT Resource-centric Virtual Commissioning Raut et al. (2022)

Cheese Belt conveyor 2-D

Dynamic

Statistical-Based

Data-Driven

DT Resource-centric Prognostic

Reactive simulation

Synchronization-based 

Simulation

Eppinger et al. (2021)

Plant units 3-D

Dynamic

Statistical-Based

Data-Driven

DT Process-centric Prognostic

Reactive simulation

Siemens (2018)

Chocolate Plant units -

Dynamic

Statistical-Based

Data-Driven

DT Process-centric Prognostic

Reactive simulation

McLean and Redmond 

(2021)

Condiments and 

other products 

concentrate

Process tank 2-D

Dynamic

Statistical-Based

Data-Driven

DS* Resource-centric Prognostic Simeone et al. (2018), 

Simeone et al. (2020) 

and Watson et al. 

(2021)

Dairy products Plate heat 

exchanger

-

Dynamic

Physics-Based

Data-Driven

DT Resource-centric Prognostic Force Technology 

(2024b)

Drink bottles Bottling machine 3-D

Dynamic

Physics-Based DT Resource-centric Virtual Commissioning Siemens (2018)

Energy drink Product 3-D

Dynamic

Physics-Based

Statistical-Based

DT Resource-centric Virtual Commissioning Siemens (2018)

Flour Filtration system 2-D

Dynamic

Physics-Based DT Resource-centric Prognostic

Virtual Commissioning

Tancredi G. P. C. et al. 

(2023)

Fruit juice Pulsed electric

field (PEF) 

system

2-D

Dynamic

Physics-Based DT Resource-centric Prognostic

Reactive simulation

Bottani et al. (2020)

Pasteurization

system

2-D

Dynamic

Physics-Based DT Resource-centric Prognostic

Reactive simulation

Vignali and Bottani 

(2020)

(Continued)
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Application Twinned 
system

Model 
feature

Model basis Connectivity Application 
level

Functionality Reference

French crêpe French crêpe 3-D

Dynamic

Physics-Based

Data-Driven

DT Resource-centric Prognostic Cabeza-Gil et al. (2023)

Honey Mixer -

Dynamic

Statistical-Based

Data-Driven

DT* Resource-centric Prognostic Watson et al. (2021)

Ice cream Plant and 

management

2-D

Dynamic

Physics-Based DT Hybrid- Centric Prognostic

Synchronization-based 

Simulation

Maheshwari et al. 

(2023)

Ice cream 

machine

3-D

Dynamic

Physics-Based DT Resource-centric Prognostic 

Synchronization-based 

Simulation

Karadeniz et al. (2019)

Ketchup Plant units 3-D

Dynamic

Statistical-Based

Data-Driven

DT Process-centric Prognostic 

Synchronization-based 

Simulation

Eppinger et al. (2021)

Liquid food

(fruit juice, milk, 

beer)

Pasteurization

system

2-D

Dynamic

Physics-Based DT Resource-centric Prognostic

Reactive simulation

Tancredi G. et al. 

(2021) and Tancredi G. 

P.C. et al. (2023)

Malt Malthouse -

Dynamic

Physics-Based DT Process-centric Prognostic

Synchronization-based 

Simulation

Dolci (2017)

Meat

(pork meat and 

cattle meat)

Food system -

Dynamic

Statistical-Based

Data-Driven

DT Hybrid- Centric Prognostic

Reactive simulation

Virtual Commissioning

Valero et al. (2023)

Product -

Single State

Physics-Based DM Resource-centric Virtual Commissioning Nikitina and 

Chernukha (2020)

Product 3-D

Dynamic

Physics-Based

Statistical-Based

DT Resource-centric Virtual Commissioning Nget et al. (2023)

Milk powder Spray dryer - Physics-Based DT Resource-centric Virtual Commissioning Eppinger et al. (2021)

Multi-products Product and 

Plant level

-

Dynamic

Statistical-Based

Data-Driven

DT Resource and 

Process-centric

Prognostic

Reactive simulation

Virtual Commissioning

Synchronization-based 

Simulation

Nestlé (n.d.) and 

Siemens (n.d.)

Potato Product - Statistical-Based

Data-Driven

DT* Resource-centric Prognostic Watson et al. (2021)

Starch-based 

food

Thermal 

sterilization 

system

3-D

Dynamic

Physics-Based DT Resource-centric Prognostic

Virtual Commissioning

Hong et al. (2021)

Sugar Crystallizer 2-D

Dynamic

Physics-Based DT Resource-centric Prognostic

Virtual Commissioning

Vetter and Strube 

(2022)

Packing machine 2-D

Dynamic

Physics-Based

Statistical-Based

DT Resource-centric Prognostic

Virtual Commissioning

Dąbrowska et al. (2022)

Syrup Mixer 3-D

Dynamic

Physics-Based DT Resource-centric Prognostic

Reactive simulation

Siemens (2018)

Water bottling Bottling line 3-D

Dynamic

Statistical-Based DT Resource-centric Prognostic

Virtual Commissioning

Gericke et al. (2019)

Water plant 2-D

-

Statistical-Based DS Process-centric Prognostic

Virtual Commissioning

Tshabalala and 

Kuriakose (2023)

Wheat Cyclone Bag 

Filter

3-D

Dynamic

Physics-Based DT Resource-centric Prognostic

Virtual Commissioning

Solari et al. (2023)

1-D,2-D and 3-D are the dimensional representation of the digital object; DM, DS, DT are the digital model, digital shadow and Digital Twin. *DT and DS were not explicitly mentioned, but 
their enabling tools were utilized to achieve the objectives of the studied scenario.

TABLE 3 (Continued)
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DT can either replace current systems or be integrated into 
existing tools and methods to enhance their functionality beyond 
traditional limits, offering a powerful solution for managing 
complexity more effectively. From our perspectives, since DT can 
be applied at any system level and time horizon, it is particularly 
valuable in scenarios where human intervention requires 
significant intellectual and resource efforts.

5 Conclusion

To conclude, Digital Twin (DT) technology holds a significant 
promise for revolutionizing the food processing industry. Its 
potential spans a range of holistic solutions, including real-time 
control, production scheduling, technology upgrades, asset 
diagnosis, maintenance, and optimization for more efficient and 
sustainable processes. However, open questions need to 
be addressed to ensure broad adoption across all food processing 
categories. Current DT case studies in the food processing industry 
remain limited, with a primary focus on investigating and 
demonstrating the feasibility of applications and use-cases. This 
review analyzed its applications across various food processing 
categories, distinguishing between its practical adoption and 
existing scientific literature. Key aspects, including functionalities, 
purpose of use, and challenges to full adoption, were discussed to 
provide insights into its status. The potential approach within the 
DT framework to serve as a general tool for supporting 
sustainability initiatives within the food processing industry was 
examined. Furthermore, the review emphasized the need for 
further research to bridge existing gaps. Standardization efforts, the 
development of a consistent framework, and advancements in 
modeling and simulation techniques are required to allow the 
growth and adoption of the DT within food sectors to achieve true 
digitalization within this complex industry. Addressing these 
challenges will be  pivotal in unlocking the full potential of DT 
technology, paving the way for smarter, more sustainable food 
processing operations.
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