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Climate-related challenges in rice production in Indonesia underscore the necessity 
for early-maturing rice varieties. Developing these varieties can enhance productivity 
by shortening cropping cycles, although the process is often time-consuming, 
costly, and requires testing across multiple locations. Thus, modeling approaches 
offer efficient means of simulating the performance of various early maturing rice 
varieties across many conditions. This study addresses the limited application of 
the ORYZA (v3) model in tropical settings by calibrating and validating it using 
field data from two early-maturing rice cultivars: Cakrabuana and Inpari 13. The 
research used nested split-plots with three replications, two irrigation treatments, 
continuous flooding (CF) and alternate wetting and drying (AWD), alongside three 
nitrogen dosage levels: 0 kg ha−1, 90 kg ha−1, and 180 kg ha−1 were implemented. 
Model calibration was based on observations of phenology and biomass, focusing 
on parameters such as developmental rates and biomass partitioning. Validation 
was conducted using independent field data, calibrated Cakrabuana and Inpari 
13 crop parameters, and relevant climate and soil information. Cakrabuana met 
the metric standards, with RMSEn values of 0.11 to 0.17, NSE from 0.68 to 0.93, 
and MAPE between 0.08 and 0.13%. While, Inpari 13 met the standards for the 
weight of storage organs. Model tests revealed strong validity for Cakrabuana, 
while Inpari 13’s lower validity resulted from environmental sensitivity. These 
findings support the ORYZA (v3) calibrated model as a reliable support planting 
forecasts for Cakrabuana variety, while further calibration of Inpari 13 is needed.
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1 Introduction

Rice (Oryza sativa L.) is the staple food for most people worldwide 
(Zaghum et al., 2022), particularly in Indonesia, where 95% of the 
population consumes it regularly, averaging 1.6 kg per week (Sakir 
et al., 2024; Indonesia Central Bureau of Statistics, 2013). In 2023, 
Indonesia’s rice production was 53.62 million tons, a 1.12% decrease 
from 2022, while productivity rose slightly to 52.59 tons per hectare. 
The country’s population is projected to grow from 238.5 million in 
2010 to 305.6 million by 2035 (Indonesia Central Bureau of Statistics, 
2013), increasing the demand for rice. To mitigate food shortages, the 
government has imported 429,207 tons of rice in 2022, up 5.26% from 
2021 (Indonesia Central Bureau of Statistics, 2024). Meeting rising 
consumption needs poses significant challenges, especially related to 
climate change (Rahim et al., 2024).

Climate change significantly impacts global temperatures, leading 
to unpredictable weather patterns and extreme events like droughts 
and floods (Rajakaruna et  al., 2024). This disruption in climate 
negatively affects farming, as irregular rainfall results in reduced crop 
yields (Raza et  al., 2024). In Indonesia, shorter rainy seasons and 
erratic rainfall have forced farmers to adjust their planting times and 
methods (Surmaini et al., 2024). Traditional rice varieties typically 
grown in Indonesia take 125 to 150 days to mature, but these varieties 
struggle to adapt to the changing climate conditions (Achyadi et al., 
2019). To combat these pressing challenges, the introduction of early-
maturing rice varieties emerges as a critical and immediate solution, 
potentially safeguarding food security and supporting farmers in an 
increasingly unpredictable climate (Dey et al., 2023).

Early maturing rice varieties, such as Cakrabuana and Inpari 13, 
offer significant advantages through reduced growth cycles that lower 
planting durations and climate change risks (Yun et al., 2023; Liang 
et al., 2024). These cultivars can enhance productivity by up to 56% 
(Musa et al., 2024) and are noted for their high yield potential and 
adaptability (Anshori et  al., 2024). To maximize these benefits, 
optimizing planting schedules and effective cultivation practices, such 
as irrigation and fertilization, is essential (Gao et al., 2023; Xiong et al., 
2022; Zhang et al., 2020). While complex, crop modeling simplifies 
this by systematically outlining growth dynamics and enabling virtual 
experimentation with defined inputs (Jamshidi et  al., 2024; Wang 
et al., 2024). This approach not only improves research efficiency but 
also enhances plant productivity, resulting in time and cost savings.

Several models have been developed for rice cultivation, including 
CERES-Rice (Ansari et  al., 2021), DNDC-Rice (Sun et  al., 2023; 
Katayanagi et al., 2016), RiceGrow (Tang et al., 2018), APSIM-ORYZA 
(Amarasingha et al., 2015; Hosseinpour et al., 2025; Liu et al., 2019), 
and ORYZA-2000 (Majumder and Das, 2018). The most recent and 
advanced iteration of the ORYZA model series is ORYZA (v3) (Li 
et al., 2017), which offers improved capabilities for simulating rice 
responses to irrigation, nitrogen management, and environmental 
conditions. Effective plant growth simulation depends on multiple 
parameters, including management parameters, soil properties, 
climatic factors, and cultivar-specific characteristics (Nurulhuda 
et al., 2022).

Comprehensive assessments of rice crop models, including 
CERES-Rice, ORYZA2000, and ORYZA (v3), have been conducted 
for various rice varieties across several countries, particularly in 
tropical regions. Significant studies have taken place in the Philippines 
(Li et al., 2016; Li et al., 2017; Radanielson et al., 2018), Thailand 
(Hasegawa et al., 2008; Wikarmpapraharn and Kositsakulchai, 2010) 

and Malaysia (Nurulhuda et al., 2022; Faiz et al., 2019). However, 
research on rice crop models is less frequent in other tropical 
countries, such as Indonesia. Previous research by Agustiani et al. 
(2018), Hayashi et al. (2018), and Hayashi et al. (2021), focused on 
older rice varieties in Indonesia that were not well-adapted to climate 
change. To date, there has been a noticeable absence of case studies 
investigating the application of ORYZA (v3) with early-maturing rice 
cultivars in Indonesia. Therefore, this development is vital for 
maintaining the model’s relevance with the most recent data and 
adapting to the prevailing climate conditions, especially in Indonesia.

The ORYZA (v3) model is a process-based simulation tool 
developed to model the growth, development, and yield of rice (Oryza 
sativa L.) under various environmental conditions and agronomic 
practices. It simulates the physiological and phenological processes 
from planting to harvest, covering both vegetative and generative 
phases (Honorio Filho et al., 2024). ORYZA (v3) calculates biomass 
growth through canopy photosynthesis, influenced by solar radiation, 
air temperature, and Leaf Area Index (LAI). It allocates biomass to 
plant organs—roots, stems, leaves, and grains—using evolving organ 
division ratios (Yu Q. et al., 2023; Yu J. et al., 2023) The model also 
incorporates water uptake and usage, making it sensitive to conditions 
like limited irrigation or flooding, and includes nitrogen nutrition 
components, addressing nitrogen uptake, allocation, and its impact on 
growth and photosynthesis (Li et al., 2017).

The ORYZA (v3) model requires three main input groups: daily 
climate data (solar radiation, maximum and minimum temperatures, 
and rainfall), soil characteristics (texture, field capacity, and soil moisture 
content), and management parameters (planting dates, fertilizer dosages, 
and irrigation schedules). It is essential to calibrate the genetic parameters 
of rice varieties like Cakrabuana and Inpari 13 to accurately simulate 
their developmental phases, including tillering initiation, panicle 
primordia, and flowering. Calibration involves aligning model outputs—
such as flowering dates, maximum Leaf Area Index (LAI), and yield—
with field observations, while validation tests the model’s performance 
under varied conditions without changing calibrated parameters (IRRI, 
2014). The latest version has improved capabilities, including simulations 
for flooded land and nitrogen deficiency effects. Many reports have 
shown the effectiveness of ORYZA (v3) for assessing crop management 
strategies and varietal adaptation in the face of climate variability and 
resource constraints, particularly in tropical (Hayashi et  al., 2018; 
Hayashi et al., 2021; Nurulhuda et al., 2022; Agustiani et al., 2018) and 
subtropical (Hameed et al., 2019; Jun-wei et al., 2022; Yuan et al., 2017) 
rice production systems.

Irrigation methods, such as continuous flooding (CF) and 
alternate wetting and drying (AWD), along with effective nitrogen 
management, play significant roles in optimizing water and nutrient 
use efficiency (Bo et al., 2024; Soliman et al., 2024). These factors are 
crucial for early-maturing rice varieties with shorter growth cycles 
(Mu’min et  al., 2024; Gao et  al., 2024). Therefore, the current 
development is vital for ensuring the model’s relevance with the latest 
data and current climate conditions, especially in Indonesia. The 
calibrated and validated ORYZA (v3) model, which utilizes early-
maturing rice varieties like Cakrabuana and Inpari 13, enhances the 
model’s accuracy. Calibration has been done under different irrigation 
and nitrogen fertilizer dosages during the wet season; thus, validation 
is needed to improve the model’s accuracy under various nitrogen 
dosages and irrigations.

Thus, this study aims to assess the performance of the ORYZA 
(v3) model for early-maturing rice varieties, specifically Cakrabuana 
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and Inpari 13. This assessment will focus on the effects of varying 
doses of nitrogen fertilizer and different irrigation schemes, as well as 
the response of paddy biomass to these treatments.

2 Materials and methods

2.1 Experimental design

This research took place in Maradekayya Village, Bajeng 
Subdistrict, Gowa Regency, South Sulawesi, at coordinates 5°16′31.8” 
S, 119°26′25.5″E, from April to August 2024. It utilized a nested split-
plot randomized complete block design with three replications, 
featuring two irrigation treatments: continuous flooding (CF) (i0) and 
alternate wetting and drying (AWD) (i1), as per the International Rice 
Research Institute (IRRI). Main plots were based on three nitrogen 
(N) dosage levels: no nitrogen (n0), 90 kg ha-1 (n1), and 180 kg ha-1 
(n2). The subplots included early maturing rice varieties, Cakrabuana 
(v1) and Inpari 13 (v2), leading to 36 observed plots. The experimental 
layout is shown in Figure 1.

2.2 Research procedure

The research began with plowing and tilling the soil, creating a 
muddy environment. The land was organized into 3 m x 4 m plots, 
with a 0,5 m gap between them. Seeds were soaked for 24 h and placed 
in a nursery bed until they were 15 days old, after which they were 
transplanted into the field in a 20 cm grid. Seedlings were maintained 
through various agronomic practices, including manual and chemical 
weeding, regular watering, fertilization, and pest control. Weeding was 
crucial in the early growth stages, conducted around 30 days after 
planting to reduce competition from weeds. Other agronomic 
standard protocols are based on Musa et al. (2024) and Anshori et al. 
(2024). For irrigation, Continuous Flooding (CF) provides a constant 
water supply throughout the growing season. In the Alternate Wetting 
and Drying (AWD) method, fields are flooded with 3 to 5 cm of water 
until the water table drops to 15 cm below the surface before 

re-irrigating. Irrigation stops 1 to 2 weeks before harvesting 
(IRRI, 2016).

Validating the ORYZA Model (v3) requires gathering three 
prerequisite types of input data: climate data, soil data, and 
experimental data. Climate data should include measurements such 
as rainfall (mm/day−1), solar radiation (MJ/m2), maximum and 
minimum temperatures (°C), and wind speed (m/s−1). Soil sampling 
was performed at the research site by collecting four samples from 
different points at depths of 0–10 cm, 10–20 cm, 20–40 cm, and 
40–60 cm. The essential focus was on the physical properties of the 
soil, particularly carbon, nitrogen content, and hydraulic properties.

Soilhydrau.exe, developed by the International Rice Research 
Institute (IRRI), was used to estimate soil hydraulic properties. This 
tool is part of the ORYZA crop growth modeling framework and helps 
simulate water dynamics in the soil profile. Soilhydrau.exe requires 
basic input data, including soil texture (sand, silt, and clay 
percentages), bulk density, and optional organic matter content. It uses 
pedotransfer functions (PTFs) to derive hydraulic properties from 
these data points. The results are then formatted in ORYZA simulation 
files, enabling accurate modeling of soil water retention, infiltration, 
drainage, and plant water uptake (Hayashi et al., 2021; Bouman et al., 
2001). By including these hydraulic properties, SoilHydrau.exe 
improves the accuracy of water balance and crop growth simulations 
in rice production systems. While the design of each experimental 
plot followed the IRRI protocol (IRRI, 2014; Li et al., 2017), which 
requires biomass sampling at key growth stages: 17 DAT, panicle 
initiation, flowering, grain filling, and physiological maturity. 
Additionally, experimental data should include details on phenological 
phases, biomass, leaf area index, and fertilizer application. For more 
information, please refer to Supplementary Files 1–3.

Cakrabuana is a superior type of rice developed from the Inpari 
13 variety. It is created through a special technique involving 
irradiation with gamma rays, which enhances its desirable traits. 
Cakrabuana rice has a relatively short growth cycle of 104 days from 
planting to harvest, although it can sometimes be harvested in under 
100 days in tropical conditions. This variety grows upright and reaches 
an average height of 105 cm, with a typical yield of 7.5 ton ha−1. Inpari 
13 is a superior rice variety developed from a blend of OM606 and 
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FIGURE 1

Experimental layout in dry and wet season.
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IR18348-36-3-3. This rice variety has a short growth cycle, taking 
about 103 days from planting to harvest. Under high-temperature 
conditions, it can be harvested in less than 100 days. The plants are 
strong and upright, featuring mildly rough leaves that grow upright. 
Inpari 13 is known for its relatively high yield, averaging 6.59 ton ha−1, 
and it can produce even more under very favorable environmental 
conditions, with a maximum potential yield of up to 8 ton ha−1 
(Balitbangtan, 2021).

2.3 ORYZA (v3) model calibration

The ORYZA (v3) model was initially calibrated using treatment-
specific data collected from December 2023 to March 2024. This 
calibration was validated with data from the same treatments gathered 
between April and August 2025. The calibration parameters were 
selected based on the ORYZA (v3) manual and existing literature 
(IRRI, 2014; Li et al., 2017). Calibration of crop parameters in ORYZA 
defines the characteristics of the varieties used in simulations. This 
involves adjusting specific parameter values to accurately represent the 
test varieties used available experimental data. The primary objective 
is to minimize the discrepancies between the model’s simulated 
outputs and the observed experimental values. Calibration of crop 
parameters in ORYZA involves defining the variety’s characteristics 
by adjusting parameter values based on experimental data. The 
parameterization focused on observed phenological stages, 
particularly the timing of critical growth events such as panicle 
initiation, flowering, and maturity. To modify the development rates 
across four distinct phases, the DRATE (v2) file was utilized. These 
phases include the juvenile phase (DVRJ, °C day−1), the photoperiod-
sensitive phase (DVRI, °C day−1), the panicle development phase 
(DVRP, °C day−1), and the reproductive phase (DVRR, °C day−1). 
Additionally, the PARAM (v2) file was used to estimate key parameters 
such as specific leaf area (SLA, ha kg−1), the proportion of shoot dry 
matter allocated to leaves (FLV), stems (FST), and panicles (FSO), the 
fraction of carbohydrates directed to stems (FSTR), and the leaf death 
rate coefficient (DRLV, day−1). Observations of various variables 
contributed to these estimations, including the leaf area index (LAI) 
and measurements of dry biomass for weight storage organ (WSO), 
weight of stems (WST), weight of green leaves (WLVG), weight of 
dead leaves (WLVD), and aboveground total biomass (WAGT). The 
calibration scheme flow for ORYZA (v3) in the Cakrabuana and 
Inpari 13 varieties is shown in Figure 2.

2.4 Observation parameters and data 
analysis

Observations to analyze the phenological phases of rice were 
conducted by monitoring key stages: 17 DAT, panicle initiation, 
flowering, grain filling, and physiological maturity. Dates for these 
phases were recorded for the ORYZA model. Biomass samples 
were collected at the same stages by cutting the rice stems with a 
sickle and grouping them by treatment. The biomass was divided 
into dead leaves, green leaves, stems, and panicles, each 
representing different physiological roles essential for plant 
productivity (Yoshida, 1981). Samples were dried at 70°C for 
3 days. Drying at this temperature and duration removes moisture 

content from the samples without causing thermal degradation of 
plant tissues, proteins, or other organic compounds, ensuring 
accurate dry weight measurements (Houghton et al., 2009; Peng 
et al., 2004).

Validation involves assessing how accurately the calibrated 
model predicts actual field data collected from Maradekayya Village 
in the Bajeng District of Gowa Regency, South Sulawesi. This 
assessment compared the observed data with the simulations 
generated using ORYZA (v3). When the simulated results closely 
align with the observed data, it typically indicates that the model 
or simulation is accurate and reliable in representing real-world 
behavior. The observed and simulated data undergo evaluation 
using several metrics, including Root Mean Square Error 
normalized (RMSEn) (Meus et al., 2022), Nash-Sutcliffe Efficiency 
(NSE) (Suliansyah et al., 2023), Percent Bias (PBIAS) (Musyoka 
et  al., 2021), and Mean Absolute Percentage Error (MAPE) (Li 
et  al., 2020). Each of these metrics provides insights into the 
model’s accuracy and performance, allowing for a comprehensive 
evaluation of its predictive capabilities. The relevant equations are 
as follows:
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The symbol n within the equation represents the number of 
samples in the dataset. The variable yᵢ denotes the observed values, 
while ŷt refers to the simulated values generated by the model. 
Additionally, X̅ signifies the mean (average) of the observed values. 
According to Moriasi et  al. (2007), model performance can 
be categorized in several ways. For the RMSEn, a value of 0 indicates 
perfect prediction. Values below 0.2 are considered very good, while 
those ranging from 0.2 to 0.5 are deemed fair. Values exceeding 0.5 are 
classified as poor. In terms NSE, a score of 1 represents perfect 
prediction. Scores above 0.75 are categorized as excellent, and scores 
between 0.5 and 0.75 are considered fair. Any score below 0.5 is 
viewed as poor. For PBIAS, a value of 0 signifies no bias. Values within 
±10% are rated as excellent, those between ±10 and ±25% are 
considered fair, and values exceeding ±25% indicate significant bias. 
While for MAPE, values under 10% indicates excellent, 10–20% are 
fair, 20–50% less poor and more than 50% are considered poor 
(Tayman and Swanson, 1999).
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FIGURE 2

Calibration and validation scheme of ORYZA (v3) model for Cakrabuana and Inpari 13.
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3 Results

3.1 Performance of the ORYZA (v3) model 
on Cakrabuana and Inpari 13

The analysis presents boxplots for RMSEn, NSE, PBias, and 
MAPE values across different biomass components for two rice 
varieties, Cakrabuana and Inpari 13 (Figures 3–6). The RMSEn values 
show more significant variability in the Cakrabuana variety, 
particularly for WSO, WLVD, WST, and WAGT, while Inpari 13 
exhibits lower variability, especially in WLVG. NSE values indicate 
better performance for Inpari 13 across most components, whereas 
Cakrabuana has a broader data range for LAI and WSO. The PBias 
results reveal that Cakrabuana tends to overestimate values, 
particularly in WST, WAGT, and WSO, while Inpari 13 generally 
underestimates all components. MAPE values are excellent for both 
varieties, except for the WSO in Cakrabuana, which shows a similar 
trend for Inpari 13 with good variability across its components.

The trend for the physiological traits across the different 
treatments and varieties generally indicates variability in validation 
results, reflecting differing performance levels. In the WST 
component (Table 1), the NSE values highlight treatment n1i1 with 
the Inpari 13 variety as favorably validated. In contrast, the 
Cakrabuana variety’s treatment n2i0 stands out in the MAPE test 
despite poor validation in RMSEn and PBias. Moving to the WLVG 
component (Table 2), treatment n0i1 with the Cakrabuana variety 
demonstrated excellent performance metrics, indicating strong 
validation across PBIAS and MAPE. The WLVD component 
(Table 3) showed consistently satisfactory results for treatment n0i0, 
suggesting reliable performance with low RMSEn and high NSE 
values. The WSO component’s (Table 4) results were powerful for 
treatment n0i1 with Inpari 13, indicating effective performance 
across all statistical measures. Conversely, the weight of the ground 
total biomass component (Table 5) demonstrated satisfactory results 
for treatment n1i0, reflecting reliable validation. In contrast, the LAI 
component (Table 6) revealed acceptable performance for treatment 
n1i1 with Cakrabuana, particularly in PBias and MAPE metrics. 
Overall, while some treatments excelled in specific traits, others 

showed a need for improvement, highlighting the variability and 
complexity in the physiological responses of the different varieties 
and treatments.

The model validation results for the Cakrabuana and Inpari 13 
varieties have been analyzed. For the Cakrabuana variety under the 
Controlled Flood (CF) irrigation treatment (i0), there was a strong 
agreement between the observed and simulated values for most 
biomass components as shown in Figures 7, 8. However, under the 
Alternate Wetting and Drying (AWD) irrigation treatment (i1), 
significant discrepancies were observed between the actual and 
simulated values for particular wet component (WSO) measures. In 
the case of the Inpari 13 variety, the validation results for both CF (i0) 
and AWD (i1) treatments demonstrated a good fit for the WSO 
component. Nevertheless, significant differences were noted in the 
other components such as WST, WLVG, WLVD, and Wet WAGT 
under the AWD irrigation (i1) treatment, indicating substantial 
fluctuations in the values. Additionally, the Leaf Area Index (LAI) 
from the model validation results tends to either underestimate or 
overestimate the observed values. Conversely, for all treatments of the 
Inpari 13 variety, the estimated values consistently fall below the 
observed LAI values, exhibiting a different trend than the 
Cakrabuana variety.

3.2 Effects of irrigation and nitrogen on 
model accuracy

The model validation results for the Cakrabuana and Inpari 13 
rice varieties reveal distinct performance under different irrigation 
treatments. For Cakrabuana under CF, there is a strong correlation 
between observed and simulated biomass values. However, under 
AWD, discrepancies in the WSO were significant across fertilizer 
treatments. Inpari 13 showed a good fit for WSO under CF and AWD 
but exhibited notable differences in stem weight, vegetative leaf 
weight, and grain weight under AWD compared to simulated values. 
Additionally, the LAI from the model often underestimated or 
overestimated actual observations, with Inpari 13 consistently showing 
lower LAI values than observed, contrasting with Cakrabuana’s trend.

FIGURE 3

Box plot of RMSEn values for model validation of Cakrabuana (A) and Inpari 13 (B) varieties.
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FIGURE 4

Box plot of NSE values for model validation of Cakrabuana (A) and Inpari 13 (B) varieties.

FIGURE 5

Box plot of PBIAS values for model validation of Cakrabuana (A) and Inpari 13 (B) varieties.

FIGURE 6

Box plot of MAPE values for model validation of Cakrabuana (A) and Inpari 13 (B) varieties.
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Figure 7 illustrate the biomass simulation results across various 
nitrogen levels (0 kg.ha−1, 90 kg.ha−1, and 180 kg.ha−1), highlighting 
how growth responses are influenced by nitrogen availability, 
irrigation, and variety treatments. At 0 kg.ha−1, the model shows 
consistently low biomass accumulation across all varieties and 
irrigation methods, indicating that nitrogen is a critical limiting factor 
during early and peak growth stages. The gap between simulated and 
observed biomass is most pronounced in these treatments, revealing 
underperformance due to nutrient limitations. With 90 kg.ha−1, 
biomass production improves significantly, and simulated values align 
more closely with observations, particularly under Alternate Wetting 
and Drying (AWD) irrigation. This level is better suited for mid-season 

growth, especially for the Cakrabuana variety, although some peak 
value deviations occur. At 180 kg.ha-1, the model captures the 
strongest correlation between simulated and observed biomass, 
particularly late in the season under AWD irrigation, reflecting the 
benefits of high nitrogen and effective irrigation. However, for the 
Inpari 13 variety, the model slightly underestimates late-season 
growth, suggesting sensitivity to variety-specific traits.

The model validation results for Leaf Area Index (LAI) across 
different nitrogen levels highlight distinct patterns in canopy 
development under various treatments. In the 0 kg.ha−1 treatments, 
the model consistently underestimates LAI, particularly under 
continuous flooding, indicating sensitivity to nitrogen stress that 

TABLE 1 Indicators of relative fit tests for model validation of the weight of stem total (WST) component in Cakrabuana and Inpari 13 varieties.

Treatments Variety Statistic fit test

RMSEn NSE PBias MAPE

0 kg ha−1 and Continous Flooding 

(n0i0)

Cakrabuana 1.23P −4.60NM −77%NM 19%**

Inpari 13 0.62P −0.09NM 53%NM 13%**

0 kg ha−1 and Alternate Wetting and 

Drying (n0i1)

Cakrabuana 1.37P −2.71NM −105%NM 26%*

Inpari 13 0.58P 0.28NM 48%NM 12%**

90 kg ha−1 and Continous Flooding 

(n1i0)

Cakrabuana 1.06P −2.08NM −65%NM 16%**

Inpari 13 0.58P 0.07NM 50%NM 12%**

90 kg ha−1 and Alternate Wetting and 

Drying (n1i1)

Cakrabuana 1.71P −6.40NM −126%NM 32%*

Inpari 13 0.49P 0.51* 39%NM 10%**

180 kg ha−1 and Continous Flooding 

(n2i0)

Cakrabuana 0.56P 0.22NM −37%NM 9%***

Inpari 13 0.64P −0.12NM 52%NM 13%**

180 kg ha−1 and Alternate Wetting and 

Drying (n2i1)

Cakrabuana 1.76P −5.81NM −135%NM 34%*

Inpari 13 0.48P 0.39* 39%NM 10%**

Bold values indicate satisfactory model performance based on established statistical criteria. RMSEn, P = Poor, NM = Not Met, * = Fair, ** = Good, *** = Excellent; NSE, NM = Not Met,  
* = Met, ** = Good; Pbias, NM = Not Met, * = Fair, ** = Good, *** = Excellent; MAPE, P = Poor, * = Fair, ** = Good, *** = Excellent. RMSEn = 0 indicates perfect prediction; < 0.2 is very 
good; 0.2–0.5 is fair; > 0.5 is poor. NSE = 1 indicates perfect prediction; > 0.75 excellent; 0.5–0.75 fair; < 0.5 poor. Pbias = 0 indicates no bias; ±10% excellent; ±10 - ± 25% fair; > ± 25% 
significant bias. MAPE < 10% excellent; 10–20% fair; 20–50% less poor; > 50% poor.

TABLE 2 Indicators of relative fit tests for model validation of the weight of green leaves (WLVG) component in Cakrabuana and Inpari 13 varieties.

Treatments Variety Statistic fit test

RMSEn NSE PBias MAPE

0 kg ha−1 and Continous Flooding (n0i0)
Cakrabuana 0.63P 0.0NM 35%NM 9%***

Inpari 13 1.03P −2.59NM 89%NM 22%*

0 kg ha−1 and Alternate Wetting and 

Drying (n0i1)

Cakrabuana 0.49P 0.46* -1%*** 0%***

Inpari 13 0.99P −2.41NM 86%NM 22%*

90 kg ha−1 and Continous Flooding 

(n1i0)

Cakrabuana 0.67P −0.48NM 55%NM 14%**

Inpari 13 1.01P −1.96* 84%NM 21%*

90 kg ha−1 and Alternate Wetting and 

Drying (n1i1)

Cakrabuana 0.32P 0.62* 23%** 6%***

Inpari 13 0.93P −2.20NM 79%NM 20%*

180 kg ha−1 and Continous Flooding 

(n2i0)

Cakrabuana 0.62P −0.22NM 48%NM 12%**

Inpari 13 1.06P −2.52NM 91%NM 23%*

180 kg ha−1 and Alternate Wetting and 

Drying (n2i1)

Cakrabuana 0.33P 0.68* 17%** 4%***

Inpari 13 1.02P −2.44NM 88%NM 22%*

Bold values indicate satisfactory model performance based on established statistical criteria. RMSEn, P = Poor, NM = Not Met, * = Fair, ** = Good, *** = Excellent; NSE, NM = Not Met, * = 
Met, ** = Good; Pbias, NM = Not Met, * = Fair, ** = Good, *** = Excellent; MAPE, P = Poor, * = Fair, ** = Good, *** = Excellent. RMSEn = 0 indicates perfect prediction; < 0.2 is very good; 
0.2–0.5 is fair; > 0.5 is poor. NSE = 1 indicates perfect prediction; > 0.75 excellent; 0.5–0.75 fair; < 0.5 poor. Pbias = 0 indicates no bias; ±10% excellent; ±10 - ± 25% fair; > ± 25% significant 
bias. MAPE < 10% excellent; 10–20% fair; 20–50% less poor; > 50% poor.
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limits leaf expansion. For the 90 kg.ha−1 treatments, agreement 
between observed and simulated values improves, especially in AWD 
irrigation, where the model captures timing and magnitude of peak 
LAI more accurately in the Cakrabuana variety under 90 kg.ha−1 and 
AWD treatment. However, observed LAI for Inpari 13 variety remains 
higher for longer than predicted. In the 180 kg.ha−1 treatments, the 
model performs best in Cakrabuana variety, closely aligning with 
observations. Yet, for the Inpari 13 variety, the model continues to 
underestimate LAI despite higher nitrogen availability, suggesting a 
lack of representation of variety-specific traits under high-input 
conditions (Figure  8). Overall, while the model shows improved 
accuracy with higher nitrogen levels and irrigation, persistent 
underestimations in Inpari 13 and under continuous flooding indicate 
a need for further calibration.

4 Discussions

4.1 Validation of Cakrabuana and Inpari 13

Based on the analysis of the RMSEn values presented in Tables 1-6, 
it is clear that most values fall within the “good” category for the 
Cakrabuana rice varieties. The evaluation results demonstrate that 
ORYZA (v3) effectively predicts the growth and production of 
Cakrabuana rice, achieving RMSEn values of 11 and 21%. This indicates 
that Cakrabuana varieties are suitable for further simulations. According 
to González et al. (2021), a simulation meets very good criteria if it has 
an RMSEn value of less than 10%. An RMSEn value between 10 and 
20% is considered good, while values from 20 to 30% are acceptable. 
Any RMSEn value exceeding 30% is categorized as poor. The NSE 
values for the Cakrabuana variety are 0.68, 0.94, and 0.93, indicating 
that the simulation results are acceptable. These values place the 
Cakrabuana model within the good and perfect categories. According 
to Elsadek et al. (2024), an NSE value is categorized as very good if it 
falls between 0.75 and 1.0, and as good if it is between 0.65 and 0.75. So, 

based on the evaluation of the NSE model performance, the Cakrabuana 
model is deemed acceptable. Additionally, the evaluation results showed 
a PBIAS value close to 0. A PBIAS value near 0 indicates that the 
discrepancies between the simulation results and the observed data for 
the Cakrabuana variety are minimal. Elsadek et al. (2024) also noted 
that a PBIAS value is considered better when it approaches 0.

Figures  3–6 showed the box plots of all relative fit tests for all 
validations of treatment. The model underestimates the dry biomass of 
total aboveground components, including stems and green leaves, while 
overestimating the Leaf Area Index (LAI). Other studies, such as those 
by Yuan et al. (2017) and Nurulhuda et al. (2022), reported similar 
discrepancies with LAI measurements. While exhibiting both 
underestimations and overestimations, the dry biomass of dead leaves 
and panicles may be better understood using sigmoid curves in crop 
modeling. Sigmoid curves effectively represent the nonlinear behavior 
of biomass accumulation and decomposition in crop models (Meade 
et al., 2013), particularly those fitted with WSO and WLVD. These 
curves begin with a lag phase, transition into a rapid growth phase, and 
ultimately plateau as the system reaches saturation. This S-shaped 
pattern accounts for the initial underestimations of linear models during 
the slow start of biomass growth. It prevents overestimations that may 
arise when growth is projected beyond the point of diminishing returns. 
By reflecting biological processes, sigmoid curves improve the accuracy 
and reliability of biomass estimates related to dead leaves and panicles.

The validation results of the model performance for the Inpari 13 
variety are unacceptable, as they only meet the criteria for the WSO 
component. The incompatibility between the varieties and the model 
may arise from treatment variations and the adaptability of the varieties 
to the environment. These factors can lead to significant discrepancies 
between the simulation results and the actual observations. This idea 
is supported by Xu et  al. (2013), who noted that in a changing 
environment, even minor mismatches between simulated phenology 
and observational data can result in substantial errors in the model’s 
yield predictions. The validation conducted using RMSE, PBIAS, and 
MAPE approaches to evaluate the agreement between observed and 

TABLE 3 Indicators of relative fit tests for model validation of the weight of dead leaves (WLVD) component in Cakrabuana and Inpari 13 varieties.

Treatments Variety Statistic fit test

RMSEn NSE PBias MAPE

0 kg ha−1 and Continous Flooding 

(n0i0)

Cakrabuana 0.20* 0.94** 9%*** 2%***

Inpari 13 0.84P −0.45NM 69%NM 17%**

0 kg ha−1 and Alternate Wetting and 

Drying (n0i1)

Cakrabuana 1.68P −8.47 NM −73%*** 18%**

Inpari 13 0.74P −0.23NM 60%NM 15%**

90 kg ha−1 and Continous Flooding 

(n1i0)

Cakrabuana 0.61P −0.01NM −10%NM 2%***

Inpari 13 0.65P −0.36NM 55%NM 14%**

90 kg ha−1 and Alternate Wetting and 

Drying (n1i1)

Cakrabuana 1.30P −3.94NM −52%NM 13%**

Inpari 13 0.54P 0.02NM 40%NM 10%***

180 kg ha−1 and Continous Flooding 

(n2i0)

Cakrabuana 0.53P 0.41* 28%NM 7%***

Inpari 13 0.71P −0.17NM 61%NM 15%**

180 kg ha−1 and Alternate Wetting and 

Drying (n2i1)

Cakrabuana 1.13P −2.32NM −38%NM 9%***

Inpari 13 0.79P −0.48NM 65%NM 16%**

Bold values indicate satisfactory model performance based on established statistical criteria. RMSEn, P = Poor, NM = Not Met, * = Fair, ** = Good, *** = Excellent; NSE, NM = Not Met,  
* = Met, ** = Good; Pbias, NM = Not Met, * = Fair, ** = Good, *** = Excellent; MAPE, P = Poor, * = Fair, ** = Good, *** = Excellent. RMSEn = 0 indicates perfect prediction; < 0.2 is very 
good; 0.2–0.5 is fair; > 0.5 is poor. NSE = 1 indicates perfect prediction; > 0.75 excellent; 0.5–0.75 fair; < 0.5 poor. Pbias = 0 indicates no bias; ±10% excellent; ±10 - ± 25% fair; > ± 25% 
significant bias. MAPE < 10% excellent; 10–20% fair; 20–50% less poor; > 50% poor.
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simulated values indicates that the Cakrabuana simulation model is 
viable for further use, as it meets the established standards.

The Inpari 13 variety has not met the predetermined criteria and 
is therefore unsuitable for further simulation. This may be due to the 
specific interaction that Inpari 13 has with the irrigation system, which 
was not considered during calibration. The calibration process in this 
model was conducted during the rainy season, which does not affect 
the irrigation system. Irrigation management parameters in ORYZA 
v3 are assumed to be  static during calibration due to excess water 
caused by rainfall. This makes water content dependent on available 

rainfall data, so this approach does not dynamically reduce or cancel 
irrigation applications in response to natural rainfall during the 
simulation. As a result, the actual field water status during periods of 
high rainfall can be wetter than predicted by the model, especially for 
varieties such as Inpari 13. These varieties are expected to have high 
sensitivity to slight differences in waterlogging or drainage conditions. 
This may explain why the model does not fully capture the actual 
response of Inpari 13 in wet season irrigation dynamics. Therefore, 
recalibration for crop key parameters is needed to improve the Inpari 
13 validation result.

TABLE 4 Indicators of relative fit tests for model validation of the weight of storage organ (WSO) component in Cakrabuana and Inpari 13 varieties.

Treatments Variety Statistic fit test

RMSEn NSE PBias MAPE

0 kg ha−1 and Continous 

Flooding (n0i0)

Cakrabuana 1.14P −36.22NM −93%NM 46%*

Inpari 13 0.44P −0.09NM 42%NM 21%*

0 kg ha−1 and Alternate Wetting 

and Drying (n0i1)

Cakrabuana 2.03P −23.08NM −196%NM 98%P

Inpari 13 0.11** 0.89** 11%** 5%***

90 kg ha−1 and Continous 

Flooding (n1i0)

Cakrabuana 0.24* 0.65* −23%* 12%**

Inpari 13 0.33P 0.64* 24%* 12%**

90 kg ha−1 and Alternate 

Wetting and Drying (n1i1)

Cakrabuana 1.42P −10.40NM −141%NM 70%P

Inpari 13 0.15** 0.86** −15%** 7%***

180 kg ha−1 and Continous 

Flooding (n2i0)

Cakrabuana 0.39P −0.98NM −28%NM 14%**

Inpari 13 0.49P −0.20NM 45%NM 23%*

180 kg ha−1 and Alternate 

Wetting and Drying (n2i1)

Cakrabuana 1.73P −35.97NM −166%NM 83%P

Inpari 13 0.17** 0.78** 17%* 8%***

Bold values indicate satisfactory model performance based on established statistical criteria. RMSEn, P = Poor, NM = Not Met, * = Fair, ** = Good, *** = Excellent; NSE, NM = Not Met,  
* = Met, ** = Good; Pbias, NM = Not Met, * = Fair, ** = Good, *** = Excellent; MAPE, P = Poor, * = Fair, ** = Good, *** = Excellent. RMSEn = 0 indicates perfect prediction; < 0.2 is very 
good; 0.2–0.5 is fair; > 0.5 is poor. NSE = 1 indicates perfect prediction; > 0.75 excellent; 0.5–0.75 fair; < 0.5 poor. Pbias = 0 indicates no bias; ±10% excellent; ±10 - ± 25% fair; > ± 25% 
significant bias. MAPE < 10% excellent; 10–20% fair; 20–50% less poor; > 50% poor.

TABLE 5 Indicators of relative fit tests for model validation of the weight above ground total biomass (WAGT) component in Cakrabuana and Inpari 13 
varieties.

Treatments Variety Statistic fit test

RMSEn NSE PBias MAPE

0 kg ha−1 and Continous 

Flooding (n0i0)

Cakrabuana 0.42P 0.60* −28%NM 7%***

Inpari 13 0.78P −0.41NM 66%NM 17%**

0 kg ha−1 and Alternate 

Wetting and Drying (n0i1)

Cakrabuana 1.08P -1.14NM −86%NM 21%*

Inpari 13 0.65P 0.05NM 56%NM 14%**

90 kg ha−1 and Continous 

Flooding (n1i0)

Cakrabuana 0.17** 0.93** 0%*** 0%***

Inpari 13 0.68P 0.02NM 56%NM 14%**

90 kg ha−1 and Alternate 

Wetting and Drying (n1i1)

Cakrabuana 0.86P −0.82NM −64%NM 16%**

Inpari 13 0.48P 0.54* 41%NM 10%**

180 kg ha−1 and Continous 

Flooding (n2i0)

Cakrabuana 0.18** 0.93** 3%*** 1%***

Inpari 13 0.80P −0.55NM 68%NM 17%**

180 kg ha−1 and Alternate 

Wetting and Drying (n2i1)

Cakrabuana 0.95P −0.98NM −72%NM 18%**

Inpari 13 0.84P −89.85NM 84%NM 21%**

Bold values indicate satisfactory model performance based on established statistical criteria. RMSEn, P = Poor, NM = Not Met, * = Fair, ** = Good, *** = Excellent; NSE, NM = Not Met, * = 
Met, ** = Good; Pbias, NM = Not Met, * = Fair, ** = Good, *** = Excellent; MAPE, P = Poor, * = Fair, ** = Good, *** = Excellent. RMSEn = 0 indicates perfect prediction; < 0.2 is very good; 
0.2–0.5 is fair; > 0.5 is poor. NSE = 1 indicates perfect prediction; > 0.75 excellent; 0.5–0.75 fair; < 0.5 poor. Pbias = 0 indicates no bias; ±10% excellent; ±10 - ± 25% fair; > ± 25% significant 
bias. MAPE < 10% excellent; 10–20% fair; 20–50% less poor; > 50% poor.
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Once validated, the model provides reliable yield predictions 
customized for specific locations and rice varieties. For actual farmers, 
the outcomes from the assessed ORYZA model offer practical benefits, 
including more accurate yield forecasts, guidance on optimal planting 
dates, improved fertilizer and irrigation management, and strategies 

for managing climate risks. By simulating different scenarios, the 
model assists farmers and agricultural advisors in making informed 
decisions that can increase productivity and reduce losses. In real-
world applications, using ORYZA (v3) has resulted in significant yield 
improvements and enhanced resilience to climate variability.

TABLE 6 Indicators of relative fit tests for model validation of the Leaf Area Index (LAI) component in Cakrabuana and Inpari 13 varieties.

Treatments Variety Statistic fit test

RMSEn NSE PBias MAPE

0 kg ha−1 and Continous 

Flooding (n0i0)

Cakrabuana 0.54B −22.13NM 40%NM 10%***

Inpari 13 0.86B −119.32NM 85%NM 21%*

0 kg ha−1 and Alternate Wetting 

and Drying (n0i1)

Cakrabuana 0.47B −24.77NM 23%* 6%***

Inpari 13 0.86B −81.03NM 85%NM 21%*

90 kg ha−1 and Continous 

Flooding (n1i0)

Cakrabuana 0.50B −28.77NM 26%NM 6%***

Inpari 13 0.88B −34.83NM 86%NM 21%*

90 kg ha−1 and Alternate 

Wetting and Drying (n1i1)

Cakrabuana 0.62B −41.20NM 1%*** 0%***

Inpari 13 0.86B −141.31NM 86%NM 21%*

180 kg ha−1 and Continous 

Flooding (n2i0)

Cakrabuana 0.58B −18.62NM 39%NM 10%***

Inpari 13 0.88B −52.83NM 86%NM 22%*

180 kg ha−1 and Alternate 

Wetting and Drying (n2i1)

Cakrabuana 0.50B −26.04NM −6%*** 1%***

Inpari 13 0.84B −89.85NM 84%NM 21%*

Bold values indicate satisfactory model performance based on established statistical criteria. RMSEn, P = Poor, NM = Not Met, * = Fair, ** = Good, *** = Excellent; NSE, NM = Not Met, 
* = Met, ** = Good; Pbias, NM = Not Met, * = Fair, ** = Good, *** = Excellent; MAPE, P = Poor, * = Fair, ** = Good, *** = Excellent. RMSEn = 0 indicates perfect prediction; < 0.2 is very 
good; 0.2–0.5 is fair; > 0.5 is poor. NSE = 1 indicates perfect prediction; > 0.75 excellent; 0.5–0.75 fair; < 0.5 poor. Pbias = 0 indicates no bias; ±10% excellent; ±10 - ± 25% fair; > ± 25% 
significant bias. MAPE < 10% excellent; 10–20% fair; 20–50% less poor; > 50% poor.
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FIGURE 7

Comparison graph of simulation and observation results of biomass (kg ha−1) of Cakrabuana (A) and Inpari 13 (B) Varieties at different doses of nitrogen 
fertilizer and irrigation.
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4.2 Interaction of nitrogen dosage and 
irrigation

Irrigation management can enhance nitrogen use efficiency in 
plants by maintaining a proper balance between aerobic and 
anaerobic conditions. This balance helps reduce nitrogen losses 
through leaching, which affects nitrogen availability differently. 
Studies have shown that rice grown under continuous flooding 
often produces lower biomass than rice managed with alternate 
wetting and drying (AWD). One possible reason is that anaerobic 
conditions in flooded soils promote denitrification, where nitrate 
is lost as gas to the atmosphere. In contrast, AWD reduces 
anaerobic periods, limiting denitrification and helping retain 
more nitrogen in the soil for plant uptake. According to Soliman 
et al. (2024), nitrogen leaching is particularly prevalent in rice 
fields submerged in water, especially during the early growth 
phase. As a result, plants struggle to achieve optimal growth 
during this critical period. In contrast, AWD irrigation has been 
shown to enhance nutrient absorption efficiency and promote 
more vigorous root development. Fu et al. (2021) reported that 
soil conditions experiencing more frequent dry phases reduce the 
risk of diseases associated with excess moisture, thereby 
optimizing crop production. The trend in Figures 7, 8 indicates 
that biomass accumulation in rice plants increases with nitrogen 
availability during the seed ripening period. Higher nitrogen 
doses (90 kg ha−1 and 180 kg ha−1) increase biomass, while a 
deficiency (0 kg ha−1) results in low biomass content. Although 
Leaf Area Index (LAI) values remain similar across different 
nitrogen treatments and irrigation management, a similar result 
was shown in Shao et al. (2024) and Hashimoto et al., 2023.

4.3 Application of sigmoid curves in crop 
growth modeling

Sigmoid curves are essential for predicting biomass, as they 
effectively illustrate the growth patterns of plant organs across 
different developmental stages. In the results, the sigmoid curve 
demonstrates a rapid increase in growth during the initial phase, 
followed by a gradual slowdown and eventually a plateau. This pattern 
helps ensure that inputs are synchronized with the crop’s growth 
requirements, ultimately enhancing biomass accumulation and yield 
production. This observation is consistent with the findings of 
Radanielson et al. (2018) and Hsieh et al. (2021), who noted that these 
curves effectively capture growth dynamics across different phases, 
emphasizing the relationship between time and biomass accumulation. 
Initially, the growth rate is slow, followed by a rapid increase, and 
concludes with a decline in the final phase. Thus, the sigmoid curve is 
an appropriate model for describing biomass rates throughout the 
different stages of rice phenology.

The trend in Tables 3–6 and Figures  7, 8 shows that the 
Cakrabuana variety’s simulation values closely match observed results, 
indicating a more responsive model than the Inpari 13 variety, 
demonstrating significant discrepancies and poor model performance. 
Additionally, the sigmoid curves for both varieties show a similar 
trend across various irrigation treatments, with the Continuous 
Flooding (CF) treatment exhibiting a more pronounced curve than 
the Alternate Wetting and Drying (AWD) treatment. This difference 
is attributed to validation during the rainy season, which affected the 
effectiveness of AWD compared to CF. Li J. et al. (2024) and Li N. et al. 
(2024) noted that seasonal conditions can influence weather patterns, 
ultimately impacting model performance and plant phenology. At the 
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FIGURE 8

Comparison graph of simulation and observation results of leaf area index (LAI) of Cakrabuana (A) and Inpari 13 (B) Varieties at different doses of 
nitrogen fertilizer and irrigation.
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same time, biomass value indicates differences in nitrogen 
management and irrigation.

5 Conclusion

Model tests simulating genotypic variability in rice plants 
demonstrated acceptable performance levels. The Cakrabuana 
variety exhibited strong results across all biomass parameters, 
particularly in WAGT and WST. It displayed a consistent sigmoid 
curve pattern, providing a valuable reference for modeling optimal 
planting times. RMSEn values for total aboveground biomass and 
panicle biomass ranged from 0.11 to 0.17. The NSE scores were 0.68 
for the WST component and 0.93 for the WAGT component, 
indicating reliable model accuracy. The MAPE values were also low, 
recording 0.13% for WST and 0.08% for WAGT. The modeling 
concept for the Cakrabuana variety is particularly relevant under 
continuous flooding conditions. In contrast, model validation for the 
Inpari 13 variety was less effective in explaining the calibration 
process, although it did perform well in simulating the weight of the 
storage organ. This may be caused by the high sensitivity of several 
calibrated crop parameters to the environment. Overall, the Inpari 
13 calibrated model has limited potential as a reliable model for 
predicting planting times. As a practical application, the Cakrabuana 
variety model may be a useful decision-support tool for planning 
rice cultivation under continuous flooding scenarios. One limitation 
of this study is using rice varieties with similar maturity durations 
for calibration and validation. Future research should consider 
utilizing varieties with different growth durations to provide 
additional insights for modeling with ORYZA (v3). It is also 
recommended that the Inpari 13 variety be  re-parameterized to 
enhance its simulation accuracy and model relevance. Consequently, 
Cakrabuana’s calibrated model is highly recommended for 
forecasting planting times, especially during continuous flooding. 
However, the potential for developing the Cakrabuana model also 
needs to be explored, such as spacing patterns and their integration 
with organic fertilizers. This aims to generate model-based 
agronomic recommendations specific to the Cakrabuana variety. 
This approach will increase the translational impact of this research, 
allowing farmers to adopt more efficient and science-based 
management strategies.
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