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Semi-arid grassland ecosystems are crucial for biodiversity, carbon sequestration, 
and animal fodder; however, they are increasingly threatened by overgrazing 
degradation and climate variability. Understanding their spatial distribution and 
palatability is essential for sustainable land management and maintenance of 
pastoralist livelihoods. This study aimed to map grassland communities and assess 
their palatability in semi-arid Kenya using Multiple Endmember Spectral Mixture 
Analysis (MESMA) and Sentinel-2 satellite imagery, integrating species abundance 
with forage quality metrics. Sentinel-2 imagery was processed using MESMA to 
classify the fractional cover of four key grass species (Cynodon, Setaria, Themeda, 
and Kunthii) along with non-grass land cover types (bare ground, forests, shrubs, 
and water). An iterative endmember selection method optimized the classification, 
achieving a root mean square error (RMSE) of 23.5% and a 6% improvement in the 
overall accuracy compared to the unoptimized models. Palatability was assessed 
based on literature-derived chemical analyses and pastoralists’ perceptions of 
the forage quality. In the study area, medium and low-palatable species (Setaria 
and Kunthii) predominated lowland and midland areas, whereas highly palatable 
Cynodon was found in small, scattered areas across varied elevations. Mixed-
grass communities were found in the central areas. The optimized MESMA model 
effectively identified overgrazed areas and areas vulnerable to degradation by 
observing grass palatability with grazing pressure from wildlife and livestock. 
The MESMA model utilized Sentinel-2 imagery and successfully characterized 
grassland communities’ spatial distribution and palatability in the study area. These 
findings provide actionable insights for sustainable grazing management and land 
protection, assisting pastoralists in identifying optimal grazing areas and enabling 
land managers to implement targeted restoration measures.

KEYWORDS

MESMA, rangeland, pasture, remote sensing, grassland, Kenya

OPEN ACCESS

EDITED BY

Víctor Fernández García,  
Université de Lausanne, Switzerland

REVIEWED BY

Simon Taugourdeau,  
Centre de Coopération Internationale en 
Recherche Agronomique pour le 
Développement (CIRAD), France
Robai Liambila,  
Jomo Kenyatta University of Agriculture and 
Technology, Kenya

*CORRESPONDENCE

James M. Muthoka  
 j.muthoka@sussex.ac.uk

RECEIVED 11 December 2024
ACCEPTED 29 April 2025
PUBLISHED 27 May 2025

CITATION

Muthoka JM, Rowhani P, Salakpi EE, 
Balzter H and Antonarakis AS (2025) 
Classification of grassland community types 
and palatable pastures in semi-arid savannah 
grasslands of Kenya using multispectral 
Sentinel-2 imagery.
Front. Sustain. Food Syst. 9:1543491.
doi: 10.3389/fsufs.2025.1543491

COPYRIGHT

© 2025 Muthoka, Rowhani, Salakpi, Balzter 
and Antonarakis. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 27 May 2025
DOI 10.3389/fsufs.2025.1543491

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fsufs.2025.1543491&domain=pdf&date_stamp=2025-05-27
https://www.frontiersin.org/articles/10.3389/fsufs.2025.1543491/full
https://www.frontiersin.org/articles/10.3389/fsufs.2025.1543491/full
https://www.frontiersin.org/articles/10.3389/fsufs.2025.1543491/full
https://www.frontiersin.org/articles/10.3389/fsufs.2025.1543491/full
https://www.frontiersin.org/articles/10.3389/fsufs.2025.1543491/full
mailto:j.muthoka@sussex.ac.uk
https://doi.org/10.3389/fsufs.2025.1543491
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://doi.org/10.3389/fsufs.2025.1543491


Muthoka et al. 10.3389/fsufs.2025.1543491

Frontiers in Sustainable Food Systems 02 frontiersin.org

1 Introduction

Grasslands cover over one-third of the global land area (FAO, 
2005) and play a pivotal role in food production and carbon 
sequestration (Chen et al., 2023; Yang et al., 2019). These ecosystems, 
which are distributed across most continents, are fundamental in 
providing primary livestock feed, thus producing milk and meat, 
which are essential for pastoralist livelihoods (Caroline King-Okumu 
et al., 2015; Catley et al., 2016). Despite their importance, grasslands 
face numerous challenges threatening their ability to support 
pastoralist livelihoods and sustain ecological functions.

Inadequate pasture management and intensified grazing have 
resulted in widespread grassland degradation (Lyu et al., 2020), while 
the proliferation of invasive plant species (Githae, 2018; Muthoka 
et al., 2021; Strum et al., 2015; Vujanović et al., 2022) has diminished 
native plant diversity. Moreover, the loss of grazing land due to hard 
borders and fences (Evans and Adams, 2016) further constrains 
available forage, and climate change (Liu et al., 2021; Yang et al., 2019) 
exacerbates these challenges, leading to decreased grassland plant 
diversity (Jawuoro et al., 2017; Wachendorf et al., 2018). Consequently, 
food insecurity and poor livestock production have emerged, posing 
significant risks to the pastoralist communities.

Approximately 80% of Kenya’s land comprises arid and semi-arid 
lands (ASALs), which support millions of pastoralists who depend on 
these areas for their livelihoods (Amwata et  al., 2016). Savannah 
grasslands host a rich diversity of plant species (Mganga et al., 2021, 
2015; Muthoka et al., 2022) but are characterized by high rainfall 
variability (Cheng et al., 2020), which influences forage availability.

In grassland management, the palatability of feed is a crucial 
consideration, influenced by the nutritional content, digestibility, and 
texture of the plants, which affect an animal’s preference for specific 
feeds (Hou et al., 2023; Watuwaya et al., 2022). These factors drive 
livestock migratory patterns, particularly during dry seasons when 
high-quality feed is scarce (Turner and Schlecht, 2019). Pastoral 
communities adapt their grazing strategies based on their knowledge 
of palatable feed locations and species compositions (Tilahun et al., 
2017). However, such dynamics can lead to pasture degradation due 
to prolonged animal movement and intensive feeding habits (Euclides 
et al., 2019; Negrón et al., 2019). Therefore, understanding the spatial 
distribution of palatable feed locally and considering broader animal 
movement patterns are essential. Consequently, characterizing 
different grassland communities and assessing their palatability are 
crucial for sustainable grassland management, pastoralist movement, 
and livestock wellbeing.

Field-based surveys and aerial photography can accurately 
quantify grass community abundance; however, these methods are 
time-consuming, labor-intensive, and have limited geographical and 
temporal coverage (Dabasso et al., 2012; Dalle, 2020; Weiss and Hall, 
2020). Space-based remote sensing technologies offer the potential for 
large-scale continuous monitoring of grassland community abundance 
(Fauvel et al., 2020; Reinermann et al., 2020; Wachendorf et al., 2018). 
Most efforts to map grassland communities and pasture-palatable 
factors have used remote sensing methods that rely on hard classifiers 
and multivariate statistical analyses (Chabalala et al., 2020; Ferner 
et  al., 2021) to assign a single variable to each pixel. Savannah 
grasslands are spatially heterogeneous, characterized by highly mixed 
compositions that represent multiple grassland communities within a 
single pixel.

Quantifying grassland community abundance provides insights 
into ecosystem diversity and heterogeneity (Hill and Guerschman, 
2020) and has implications for biodiversity and palatable pastures 
(Faghihinia et  al., 2021; Jawuoro et  al., 2017). In this context, 
abundance refers to the proportion or fraction of each grass species 
within a given pixel or location. Recent remote sensing studies have 
focused on determining pasture quality indices and biomass (Chen 
et al., 2021; Li et al., 2020) or vegetation indices related to forage 
quality (Zwick et al., 2024). Existing studies on grassland palatability 
often rely on remote sensing indices or focus on individual grass 
species, overlooking the complex interactions within grassland 
communities. This creates a critical gap, as understanding grass 
community composition and its spatial heterogeneity is essential for 
addressing challenges, such as overgrazing, degradation, and drought 
resilience. While pastoralists utilize traditional knowledge to identify 
forage quality (Dalle, 2020; Keba et  al., 2013), these methods are 
limited in spatial scope and consistency, highlighting the need for 
scalable, data-driven approaches, such as Multiple Endmember 
Spectral Mixture Analysis (MESMA).

Recently, advanced classification methodologies, including 
Spectral Mixing Analysis (SMA) and Multiple Endmember Spectral 
Mixture Analysis (MESMA), have emerged (Quintano et al., 2012; 
Roberts et al., 2012, 1993). These approaches utilize spectral unmixing 
techniques to determine the abundance of various spectral members 
within individual pixels (Roberts et  al., 1993). In comparison to 
alternative classification methods, such as Maximum Likelihood or 
Random Forest, which assigns a single land cover type per pixel, SMA 
and MESMA have demonstrated superior performance in the spatial 
identification of palatable grass species within heterogeneous natural 
grasslands. Investigations employing MESMA have successfully 
identified fractional cover in various plant communities, including 
forests, shrubs, and grasses in Californian semi-arid regions (Hamada 
et  al., 2011; Roberts et  al., 1998), and more recently derived 
abundances of forest and shrub species (Bogan et  al., 2019). 
Notwithstanding advancements in remote sensing technology, few 
studies have utilized MESMA to classify diverse grass communities or 
established correlations between these classifications and forage 
palatability. To the best of our knowledge, no previous research has 
employed MESMA to map the spatial distribution of palatable grasses 
at a community level. Considering the necessity for precise large-scale 
insights into grassland composition for sustainable grazing 
management, this represents a significant limitation.

The primary objective of this study was to map the spatial 
distribution of grass communities in semi-arid Kenyan savannahs 
using Multiple Endmember Spectral Mixture Analysis (MESMA) and 
Sentinel 2 imagery. A secondary objective is to derive palatability 
maps to support sustainable grazing management. To address this gap, 
our study aimed to:

 1) Multiple Endmember Spectral Mixture Analysis (MESMA) 
was employed on Sentinel-2 imagery to classify the fractional 
cover of four key grassland community types (Cynodon, 
Setaria, Themeda, and Kunthii) in semi-arid Kenyan savannahs.

 2) The spatial distribution of palatable grasses was mapped by 
integrating MESMA-derived classifications with literature-
based forage-quality metrics and pastoralist knowledge to 
provide actionable insights for sustainable grazing and 
land management.
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2 Materials and methods

2.1 Description of the study area

This study focuses on the semi-arid savannah grasslands of the 
Kapiti Research Station, Machakos County, Kenya, a region critical for 
understanding grassland dynamics because of its high biodiversity and 
vulnerability to grazing pressure, drought, and degradation. The 
station, covering 128 km2 at elevations ranging from 1,615 to 1,920 m, 
and is centered around Latitude 1.630S, Longitude 37.140E, represents 
typical conditions of Kenyan ASALs (Arid and Semi-Arid Lands), 
which sustain millions of pastoralists. These factors make Kapiti an 
ideal site for testing the applicability of MESMA in grassland 
community classification and palatability mapping. The Kapiti 
Research Station has a warm tropical climate and experiences a 
bimodal rainfall pattern, with the short rains occurring from October 
to December. October marks the onset of the short rainy season, 
characterized by the initial growth phase of herbaceous vegetation. 
The average annual precipitation is 550 mm, with high interannual 
variability. Herbaceous plant species and patchy savanna woody 
species characterize the Savannah grassland at the Kapiti Research 
Station. Acacia species dominate woody species, whereas the plant 
species are a mix of perennial grasses (Setaria trinervia, Themeda 
triandra, Cynodon dactylon, Digitaria macroblephara, Microchloa 

kunthii), annuals (Eragrostis tenuifolia and Aristida keniensis), and 
forbs (Blepharis hildebrandtii, Sida ovata, Schkuhria). Furthermore, 
the broad savannah plains and hills distinguish the topography; the 
primary soil is red and black cotton.

2.2 Data

2.2.1 Grassland community ground inventories
In 2019, we  conducted a field campaign to survey grassland 

communities across two three km-long transects oriented East–West 
and North–South (Figure 1). Eight grassland sites were identified to 
collect the grassland diversity data. Within each 30 m × 30 m (900 m2) 
sample plot, we examined four 0.5 m × 0.5 m quadrants in detail. 
Initially, the cover was estimated, and then each species’ herbaceous 
composition and abundance within each quadrant was recorded using 
the Braun-Blanquet cover-abundance index (Braun-Blanquet, 1932; 
Werger, 1974). Subsequently, we  tabulated the related plots and 
defined groups of similar plots as communities based on their 
consistent composition.

The semi-arid grasslands of Kapiti Research Station are 
heterogeneous and consist of herbaceous and woody vegetation 
communities. Table 1 outlines the grassland communities associated 
with the eight studied grassland sites. Grasslands were initially 

FIGURE 1

Map of the study area showing the sample vegetation unit overlaid on a Sentinel-2 false-color composite image. Panel (b) shows the 5-m resolution 
digital terrain model of the study area, which was created using data collected by a Leica ALS60 aerial LiDAR. Panel (c) shows the location of the study 
area within Machakos County.
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categorized into community types according to their dominant cover 
(Boonman, 1993) and further enhanced field-based observations and 
analyses (Muthoka et al., 2022). Specifically, we delineated Cynodon, 
Setaria, Kunthii, and Themeda grassland communities based on each 
site’s ecological predominance of the principal grass species. 
Furthermore, four non-grass land-cover types (trees, shrubs, water, 
and bare ground) were incorporated into the classification to reflect 
the diverse patterns of the area. There were no croplands or significant 
built-up areas in the study area; therefore, these areas were excluded 
from the analysis (Figure 2).

This classification considers the ecological interactions and 
adaptation strategies of coexisting species in grassland communities. 
Microchloa Kunthii is prevalent in arid locations owing to its 
remarkable drought resistance, enabling it to flourish under adverse 
climatic conditions (Smrithy et  al., 2023). Similarly, Digitaria 
Macroblephara and Themeda triandra are prevalent species in 
herbaceous strata, demonstrating adaptability to diverse soil textures 
and disturbance patterns (Anderson et al., 2007). Setaria is a resilient 
grass species adept at thriving in tropical pastures, where its effective 
utilization of sunshine and water allows it to surpass other grasses, 
particularly in lowland regions (Knuesting et  al., 2018). Cynodon 
Dactylon exhibits vigorous growth, environmental versatility, and 
allelopathic characteristics, allowing it to inhibit adjacent species and 
prevail in diverse environments (Ziech et al., 2016).

Considering the rarity of homogeneous species locations and the 
ecological coexistence of these species, identifying grassland 
community types instead of concentrating exclusively on individual 
species offers a holistic framework for ecological evaluation. This 
method enabled us to incorporate the contributions of dominant 
species to fodder quality, environmental adaptation, and grazing 

dynamics, thereby enhancing the classification of Kapiti 
grassland ecosystems.

The Kunthii community was assigned medium palatability 
because of the significant contribution of associated species, such as 
Mariscus macropus (medium) and Digitaria macroblephara (high), 
across the sites, improving the overall forage quality. This classification 
encompasses ecological interactions and the cumulative grazing value 
offered by the species assemblage rather than relying exclusively on 
the dominant species.

2.2.2 Satellite-based earth observation data
The Copernicus Sentinel-2 satellite imagery utilized in this study 

comprises a twin polar-orbiting constellation equipped with a 
Multispectral Instrument (MSI) (Phiri et  al., 2020). This MSI is 
capable of acquiring optical imagery with spatial resolutions of 10, 20, 
and 60 m across 13 spectral channels, from which we extracted only 
10 spectral bands that are essential for vegetation analysis.

We selected a Level 1C Sentinel-2 image, acquired on 16th 
October 2019, with no cloud cover over the study area, taking into 
consideration the region’s persistent cloud cover and the timing of the 
vegetation community presence. Fieldwork was conducted 
concurrently with the acquisition of the Sentinel-2 image on 16th 
October 2019, ensuring precise ground validation. The timing of the 
image acquisition coincided with the early growth stage of the 
vegetation, influenced by the onset of the short rainy season.

Sen2CorV2.8 was employed to perform atmospheric correction, 
retrieving surface reflectance devoid of atmospheric effects and 
geometric distortions (Main-Knorn et  al., 2017). Subsequently, 
we clipped the image corresponding to the study area by applying a 
study area mask to the 10 visible, near-infrared, and 

TABLE 1 Descriptions of grassland site herbaceous communities and palatability levels based on the existing literature.

Grassland sites Dominant species 
(abundance)

Level Community Reference

KIT1B

Microchloa kunthii (25) L

Kunthii

Namukolo (2019)

Mariscus Macropus (25) M
Dalle (2020)

Digitaria Macroblephara (25) H

KIT1C Microchloa kunthii (25) L Namukolo (2019)

KIL1F

Digitaria Macroblephara (25) H

Themeda

Dalle (2020)

Themeda triadra (25) M Dalle (2020) and Hosaka (1957)

Microchloa kunthii (25) L Namukolo (2019)

Hyparrhenia lintonii (10) M Jawuoro et al. (2017)

KIL1E
Setaria (95) L

Setaria
Dalle (2020)

Ischaemum (5) L Dalle (2020)

KIL2A
Cynodon dactylon (75) H

Cynodon Dalle (2020) and Hosaka (1957)
Justicia (5) L

KIL2B

Mariscus Macropus (25) M

Themeda

Dalle (2020) and Hosaka (1957)
Themeda triadra (25) M

Microchloa kunthii (25) L Namukolo (2019)

KIL2C
Microchloa kunthii (25) L Namukolo (2019)

Heteropogon (25) M Dalle (2020) and Hosaka (1957)

KIL2D Setaria (95) L Setaria Dalle (2020)

H = high, M = medium and L = low, while abundance cover is in brackets ().
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shortwave-infrared spectral bands. Data processing was conducted 
using SNAP (Sentinel Application Platform) version 7.0 (SNAP, 2020), 
an open-source tool developed by the European Space Agency and 
optimized for Sentinel-2 imagery. SNAP was utilized for atmospheric 
correction (Sen2CorV2.8) and geometric alignment to ensure the 
high-quality surface reflectance data were free of atmospheric 
distortions. This tool was selected due to its compatibility with 
multispectral analysis.

2.3 Methods

2.3.1 Multiple endmember spectral mixture 
analysis (MESMA)

We applied the MESMA algorithm (Roberts et  al., 1998) to 
Sentinel-2 images and translated them into maps showing the relative 
abundance of fractional cover in community grasslands. MESMA 
allows multiple endmembers to differ within each pixel, resulting in a 
relative abundance of land-cover classes of interest in every pixel 
(Roberts et al., 1998). The MESMA Equation 1 is as follows:

 
( ) ( ) ( )( ) ( ) ( )λ λ ε λ

= =
= × + =∑ ∑

1 1
,and 1,

m m
j jj

i ii i i
j j

P f P f
 

(1)

where the spectral mixture ( )λ iP  of pixel i at wavelength λ, which 
is represented as an aggregate of the reflectance endmember series, 

( )( )λ j
iP  ( = …1j m ) for pixel i, and m  is the number of endmember 

classes. ( )ε λ i is the residual describing the unspecified variation in the 
reflectance wavelength λ of the pixel and ( )j

if  is the fractional 
abundance of endmember class j in pixel i.

Furthermore, when the endmember fractions add up to 100% 
during the analysis, they are typically constrained by their sum being 
equal to 1.0 (Roberts et al., 1998). We then used the root mean square 
error (RMSE) (Equation 2) and the residual error of the model to 
determine how well it fits the data (ε_λ):

 

( )λ
λ

ε
−=
∑ 2

1RMSE

M

M  
(2)

where M denotes the total number of the image bands. Finally, 
MESMA selects the best-fit model for each pixel, ensuring that more 
materials are mapped across the image, while minimizing the fraction 
errors at the pixel scale. All analyses were performed using the ENVI 
(Harris Geospatial/solutions) extension of VIPER Tools V2.0.

2.3.2 Endmember selection
The endmembers were extracted for each target class from the 

Sentinel-2 surface reflectance image for all land-cover types, including 
the four grassland communities described in Table  1 (Setaria, 
Themeda, Kunthi, and Cynodon), shrubs, forests, water, and bare 
ground (Table 2). The target class samples were selected based on grass 

FIGURE 2

A process flow for classification of grassland community types and palatable pasture.
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inventories from the dominant grassland community analysis (i.e., 
within the eight field plots shown in the figure and defined in Table 1). 
The target class samples were selected based on grass inventories from 
the dominant grassland community analysis (i.e., within the eight field 
plots shown in the figure and defined in Table  1). Additionally, 
on-ground knowledge of non-herbaceous land cover classes was 
incorporated. Endmembers for non-herbaceous land cover types 
(trees, shrubs, water, and bare ground) were extracted from high-
resolution Google Earth images. A total of 439 endmembers were 
collected (Table 2), comprising 135 from grasslands and 304 from 
non-grassland land-cover types.

This study examined two methodologies for selecting the optimal 
classification model to delineate grassland communities. The first 
approach, termed the unoptimized endmember model, utilized all 
selected endmembers for grass and non-grass cover types. The second 
approach, designated as the optimized endmember model, employed 
only the optimized endmembers derived from the IES technique.

Accuracy assessment and validation are crucial for classifying land 
cover products, primarily based on remote sensing data (Dube et al., 
2019). Consequently, our validation data were collected from 27 
subplots, each centered within a 30 m × 30 m grassland site. Subplot 
locations were stratified to capture variability across grassland 
communities and land cover types, ensuring representative sampling. 
We employed random sampling within predefined strata to address 
potential biases and compared the validation plots against independent 
ground measurements. This approach minimizes spatial autocorrelation 
and provides robust accuracy assessments for the MESMA classification. 
of MESMA fraction outputs for each of the target grassland 
communities (Cynodon, Setaria, Kunthi, and Themeda) and 30 for each 
of the control classes (shrubs, trees, water, and bare ground). Various 
metrics were utilized to assess the accuracy and uncertainty of the 
products. Initially, we employed the coefficient of determination (R2) 
and RMSE to evaluate the fractional accuracy of the MESMA product, 
as previous research has demonstrated that these metrics are adequate 
for assessing the accuracy of the MESMA approach (Bogan et al., 2019). 
Subsequently, based on the best-performing model, we utilized an error 
matrix to determine the overall accuracy of the covers and ascertain 
uncertainty. Finally, we  computed the Transformed Divergence 
separability index to examine whether the best model exhibited spectral 
separability between grassland communities and cover.

2.3.3 Derivation of the grassland cover and 
palatability

Dominant species and their palatability across the study sites were 
systematically classified to ensure their ecological relevance. 
We identified the predominant grass species at each location based on 
their ecological prevalence and quantified their percentage cover. 
We incorporated only species with substantial cover values (≥5%) in 
the analysis to emphasize the ecologically significant contributors to 
grassland structure and grazing dynamics.

We utilized data from relevant literature (e.g., Dalle, 2020; Hosaka, 
1957; Jawuoro et  al., 2017) to determine the palatability of each 
identified species, categorizing them into three levels: high (H), 
medium (M), or poor (L) according to their forage quality. Due to 
their superior nutritional content and digestibility, livestock exhibit a 
preference for high-palatability species, such as Digitaria 
macroblephara and Cynodon dactylon. Species with medium 
palatability, such as Themeda triandra and Mariscus macropus, were 
moderately consumed without being highly palatable. Species with 
low palatability, such as Microchloa kunthii and Setaria, are generally 
grazed during periods of scarcity or are considered less desirable due 
to their low nutritional value or presence of secondary metabolites.

Grassland communities were classified into six types based on the 
predominance of specific species or the ecological associations among 
coexisting species. Community-level palatability was assessed by 
aggregating the palatability ratings of all dominant species at each site. 
Communities characterized by highly palatable species (e.g., Cynodon 
dactylon) were designated as “High,” while those containing both 
medium and low-palatable species were categorized as “Medium” 
(e.g., Kunthii Community). Communities comprising low-palatable 
species were designated as “Low” (e.g., Setaria Community). In cases 
where discrepancies in palatability levels were encountered, 
community categories were derived from field observations and 
ecological interpretations of the literature.

Fractional cover values were converted into palatability classes based 
on the dominant species’ ecological prevalence and nutritional quality. 
Species were categorized into three palatability levels: high, medium, and 
low, using information from literature and field observations. For 
instance, high palatability comprised of pixels dominated by species like 
Cynodon dactylon and Digitaria macroblephara, with fractional cover 
≥20%. Similarly, medium palatability comprised pixels with mixed 
dominance of medium-palatability species (e.g., Themeda triandra) and 
low-palatability species, with fractional cover between 10 and 20%. 
Finally, low palatability consisted of pixels dominated by low-palatability 
species like Setaria spp., with fractional cover ≥10%. These thresholds 
were applied consistently across the study area, ensuring standardized 
classification of palatability levels.

The transformation of fractional maps into classified thematic 
maps constitutes a critical step in remote sensing land cover analysis. 
This process entails aggregating fractional estimates to assign a 
dominant land-cover class to each pixel, which is essential for ecological 
applications. Fractional maps represent the proportion of various land-
cover types within individual pixels, with values ranging from 0 to 1, 
reflecting a particular class’s relative probability or magnitude (Li et al., 
2010; Ling et al., 2013). In generating a classified map, researchers 
typically determine the maximum fractional value for each pixel, 
thereby ensuring that each pixel is assigned to a single distinct land 
cover class (Ling et  al., 2014). This methodology is particularly 
advantageous for landscapes with standard mixed pixels, facilitating a 

TABLE 2 Number of endmembers chosen for each land cover class, 
which included four grass communities (Cynodon, Kunthi, Themeda, and 
Setaria) and non-grassland cover types (shrubs, trees, water, and bare 
ground).

I.D. Land cover 
classes

Endmember numbers

1 Cynodon 31

2 Kunthi 32

3 Themeda 48

4 Setaria 24

5 Shrubs 49

6 Trees 99

7 Bare ground 89

8 Water 66
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more coherent representation of land cover types. Researchers may 
apply additional criteria, such as proximity to similar classes or expert-
defined thresholds, to resolve ambiguities and inform categorization 
(Chen et al., 2018; Ge et al., 2016). The establishment of consistent 
classification criteria is of particular importance in heterogeneous 
landscapes, where the spatial distribution of land cover classes can 
significantly influence classification outcomes (Ling et al., 2013).

A comprehensive literature review was conducted to provide 
information on the palatability of target grassland communities in 
Kenya’s semi-arid environments. The palatability classification 
methodology relies on chemical analyses of grass and pastoralists’ 
perceptions of forage value. Dalle (2020) conducted eight group 
discussions with 108 pastoralists from various regions in Ethiopia to 
assess forage quality in the semi-arid Borana lowlands of Southern 
Oromia. Keba et al. (2013) employed grass chemical analysis (i.e., ash, 
nitrogen, crude protein, acid detergent fiber, and acid detergent lignin 
content) in a laboratory and perception analysis by holding seven 
group discussions with key local informants to establish palatability 
levels in the Ethiopian semi-arid rangeland. These studies categorized 
palatability as highly desirable, intermediate, or least desirable. Based 
on these and similar studies, grassland communities and their 
corresponding palatability categorization were identified in the 
literature (Jawuoro et al., 2017). To derive a palatability map from the 
classified map, the grass communities detected in the MESMA model 
output were further classified into four unique palatability levels (high, 
medium, and low). The categories were then spatially displayed to 
create a palatability map, facilitating targeted evaluation of fodder 
availability throughout the study area.

3 Results

3.1 Endmember spectral library and models

Figure 3 presents the spectral profiles of the average endmembers 
within each of the eight classes. Figure 3a depicts the average spectral 
profile of each category based on all the endmembers collected, 
specifically the unoptimized endmembers. The final unoptimized 

endmember spectral library yielded 439 two-endmember models (one 
cover class + shade), 81,589 three-endmember models (two cover 
classes + shade), and 8,381,761 four-endmember models (three cover 
classes + shade).

Figure  3b illustrates the spectral profile of the average 
endmembers within each land cover class following the application 
of the IES optimization technique. The final IES spectral library 
model provided possible combinations for each Sentinel-2 pixel 
probability-class model. Utilizing the optimized endmember 
spectral library, we  obtained 31 two-endmember models (one 
cover class + shade), 402 three-endmember models (two cover 
classes + shade), and 2,838 four-endmember models (three cover 
classes + shade).

3.2 MESMA classification and accuracy 
assessment

3.2.1 Unoptimized endmember MESMA
Figure  4 presents the results of the unoptimized Endmember 

MESMA classification for all eight land cover classes, including the 
four community grassland types. The unoptimized Endmember 
MESMA classification exhibited a high abundance of Kunthii, Themeda 
communities, and shrubs, and a low abundance of Cynodon, Setaria 
communities, and tree cover. Additionally, abundant bare ground was 
observed across most locations in the study area. Comparing the 
spatial abundance patterns, the Sentinel-2 image (Figure  1a) and 
elevation map (Figure 1b) demonstrated similarities in spatial form 
changes. The Cynodon grassland community was identified at various 
elevations and patches across the study area. Kunthii and Themeda 
grassland community types were observed mixed with shrubs at all 
elevations, and it was noted that these grassland communities preferred 
areas with good drainage. Furthermore, a high shrub fractional 
abundance was detected in the southern part of the study area. A high 
Setaria fractional abundance was identified in the northeast of the 
study area, particularly in low-elevation areas. Tree fractional 
abundance estimates were observed in high-elevation areas along 
ephemeral channels and the central part of the study area. Finally, 

FIGURE 3

Spectra in the final endmember library for the target grass communities (Cynodon, Kunthii, Themeda, and Setaria) and non-grassland cover type 
classes (shrubs, trees, bare ground, and water) for the unoptimized endmember model (a) and the optimized endmember model (b).
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water fractions with low abundance were identified in specific areas 
ranging from mid to low elevations.

Figure 5 illustrates the evaluation of the unoptimized Endmember 
MESMA classification in comparison to ground observations. The 
unoptimized MESMA model attained an overall RMSE of 23.5%, 
resulting in a 6% improvement in classification accuracy. Significantly, 
the RMSEs for principal grassland classes, such as Cynodon and 
Setaria, were below 25%, facilitating more accurate spatial mapping of 
palatable grasses. The model yielded RMSEs of 25 and 29% for bare 
ground, Cynodon community, and tree cover, respectively, while 
shrubs, Kunthii, and Setaria communities demonstrated higher RMSE 
values of 32, 33, and 34%, respectively. Notably, some points in Figure 4 
are observed at zero, indicating discrepancies between predicted and 
observed cover percentages. This could be as a result of species present 
but not predicted due to spectral similarity or species predicted but not 
present due to noise, or limitations in the endmember library.

3.2.2 Optimized endmember MESMA
The Transformed Divergence (TD) values for the optimized 

endmember selection method demonstrated significant spectral 

separability among the majority of land cover classes, particularly for 
grassland communities such as Cynodon and Setaria. The results, 
presented in Supplementary Table  1, illustrate the efficacy of the 
optimized endmember library in distinguishing various grassland 
types from non-grassland cover categories.

Figure  6 illustrates the results of the optimized endmember 
MESMA classification. Firstly, Cynodon fractional abundance was 
observed in patches across various elevations and locations within the 
study area. Secondly, high-to-moderate fractional abundances were 
identified in the Kunthii and Themeda communities. Grassland 
communities were located in well-drained areas. Thirdly, Setaria 
fractional abundances were detected in the northern part of the study 
area; however, a significant increase in these abundances was also 
observed in the southwestern and eastern regions. Consistent with the 
unoptimized results, a high abundance of fractional shrub cover was 
identified toward the north of the study area. A significant decrease in 
the fractional abundance of shrubs was noted toward the south of the 
study area. Fourthly, bare ground was present throughout the study 
area at various elevations, across vegetation communities, and near 
edges at low heights. Lastly, a comparison of the fractional abundances 
of trees and water between the two models revealed no significant 
differences in the model spatial pattern outputs.

Figure 7 illustrates the evaluation of the optimized Endmember 
MESMA classification in comparison to ground observations. The 
MESMA model significantly reduced the Root Mean Square Errors 
(RMSEs) across all classes, thereby enhancing the accuracy for Kunthii 
(10%), Cynodon (8%), Setaria (8%), and Themeda (4%). These 
reductions demonstrate the model’s capacity to more accurately 
capture fractional abundance, particularly for grassland communities 
with high spatial heterogeneity. Similarly, among the non-grass land-
cover types, improvements in RMSEs were observed for bare ground 
(5%), water (4%), shrubs (3%), and trees (2%). Furthermore, a 
comparison of the coefficients of determination for the two models 
indicates that the optimized endmember MESMA also exhibited 
improvement for the non-grassland land cover types (R2 > 0.57) and 
the target grassland cover types at (R2 > 0.52). However, some points 
in Figure 6 are observed at zero, indicating discrepancies between 
predicted and observed percentages, which could be  a result of 
spectral overlap between predicted and species present.

The optimized endmember MESMA model produced lower 
RMSE results for all the eight cover types. Thus, the optimized 
endmember MESMA model was used to derive the spatial palatability 
of the selected region.

Figure 8a illustrates the spatial distribution of the grass community 
and non-grassland land-cover types, while Figure  8b depicts the 
derived grass palatability of the Kapiti area. A palatability map was 
generated from the reclassified grassland community-type outputs. 
The map indicates fractional cover values exceeding 20%, suggesting 
moderate to high grass abundance. Moreover, areas with mixed grass 
communities and fractions surpassing 20% were deemed significant. 
The analysis revealed that the Kapiti area is predominantly 
characterized by medium-and low-palatable grass, with limited 
regions of highly palatable grasses. Additionally, mixed communities 
were identified in the central portions of the study area, and 
low-palatable grass (i.e., Setaria community) was observed in 
lowland regions.

Table  3 presents the performance of the classification process 
applied to grassland cover and community type. User accuracy (UA) 

FIGURE 4

Fractional cover maps from the unoptimized endmember MESMA, 
showing fractional cover values ranging from 0 (cool colors) to 1 
(warm colors). Major land cover classes are annotated, and key 
regions of interest are highlighted to illustrate patterns of fractional 
abundance.
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reflects the precision of each class prediction. Water emerged as the 
most accurately predicted class, with a UA of 86.67%, whereas 
Themeda exhibited the lowest UA at 48.15%. Among the classes, 
Cynodon exhibited a UA of 70.37%, Kunthii registered 51.85%, and 
Setaria recorded 66.67%. Producer accuracy (PA) reveals the model’s 
ability to classify instances for each class correctly. Water demonstrated 
the highest performance in this category, with a PA of 100.00%, 

whereas Kunthii recorded the lowest at 51.35%. Specifically, Cynodon 
had a PA of 73.08%, Setaria of 60.00%, and Themeda of 72.22%. The 
Overall Accuracy (OA) of the model, representing the proportion of 
the total number of correct predictions, was 67.45%. The Kappa 
statistic, which accounts for chance agreement, was calculated to 
be  0.6338, indicating substantial agreement beyond what would 
be  expected by chance. The classification process demonstrated 

FIGURE 5

Scatterplots comparing unoptimized endmember MESMA-estimated grassland community and non-grassland community type cover against field-
based validation data. On each panel, fitted regression lines (solid red) are displayed.

FIGURE 6

Scatterplots comparing optimized-endmember MESMA-estimated grassland community and control cover against field-based validation data. On 
each panel, fitted regression lines (solid red) are displayed.
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varying degrees of success in correctly classifying different grassland 
covers and community types, with Cynodon, Kunthii, Setaria, and 
Themeda displaying diverse accuracies. The variances in UA and PA 
also provided insight into the reliability of these accuracy measurements.

Table 4 presents the palatability levels of the grassland community 
and the associated uncertainties. The analysis revealed that the 
grassland area with high palatability measured 24.52 hectares, with an 
uncertainty of ±4.303 ha. Simultaneously, grasslands categorized as 
medium palatability encompassed an area of 5,893.07 hectares with an 
estimation uncertainty of ±1,698.088 ha. Moreover, the area with low 
palatability measured 376.44 hectares, with an associated uncertainty 
of ±68.211 ha. Finally, the mixed palatability level accounted for an area 
of 226.72 hectares, with an estimation uncertainty of ±38.18 hectares.

4 Discussion

Mapping grassland communities provides a comprehensive 
understanding the ecosystem’s structure and function, which is 

important sustainable land management. Detailed spatial 
information on grass palatability enables pastoralists to make 
informed decisions about grazing patterns and optimize herd 
nutrition while preventing overgrazing and land degradation. This 
study addresses this need by employing Multiple Endmember 
Spectral Mixture Analysis (MESMA) of Sentinel-2 satellite imagery 
to distinguish grass species and communities based on their 
unique spectral signatures. By mapping the distribution of 
palatable grass communities across the semi-arid savannahs of 
Kenya, our optimized MESMA model significantly improved 
classification accuracy, achieving a root mean square error (RMSE) 
of 23.5%, with individual classes ranging from 10 to 30%. These 
results demonstrate MESMA’s effectiveness in capturing grassland 
heterogeneity and provide valuable insights into sustainable 
grassland management and livestock grazing strategies that 
support ecological balance and pastoral livelihoods.

4.1 Optimisation endmember spectral 
library

Our efforts to enhance the endmember spectral library through 
the Iterative Endmember Selection (IES) methodology yielded 
successful outcomes by considerably diminishing the number of 
necessary models while increasing the accuracy of each predicted land 
cover category. This progression is paramount for tackling 
computational obstacles associated with extensive spectral libraries. 
The substantial decrease from 81,589 three-endmember models to 402 
and from 8,381,761 four-endmember models to 2,838 exemplifies the 
enhanced efficiency achieved through this procedure. These findings 
align with recent studies (Bogan et al., 2019; Fernández-García et al., 
2021) that reported a decrease in computational time and resources 
when utilizing a limited number of MESMA endmember models in 
comparison to models featuring a multitude of endmembers and an 
increase in classification accuracy. The decrease in model quantity 
amplifies computational effectiveness, a critical aspect of large-scale 
remote sensing applications where computational capabilities are 
frequently constrained.

4.2 MESMA classification and accuracy 
assessment

Utilizing MESMA, incorporating both unoptimized and optimized 
endmember libraries, offered a comprehensive depiction of the spatial 
arrangement of diverse land cover categories and their corresponding 
fractional proportions. The unoptimized MESMA categorization 
revealed substantial fractional proportions of Kunthii spp. and 
Themeda spp. assemblages alongside shrubs, with noticeable 
inconsistencies in depicting Cynodon spp. and Setaria spp. 
assemblages. These inaccuracies were particularly pronounced for 
Kunthii and Setaria, where higher RMSE values were observed, likely 
because of spectral overlap caused by their similar biophysical traits, 
such as conopy structure. Spectral separability analysis using the 
Transformed Divergence (TD) metric confirmed moderate 
separability between these classes, highlighting the challenges in 
distinguishing them based solely on Sentinel-2 spectral bands. 
Conversely, the optimized MESMA categorization notably enhanced 

FIGURE 7

Fractional cover maps are generated from optimized endmember 
showing fractional cover values ranging from 0 (cool colors) to 1 
(warm colors). Major land cover classes are annotated, and key 
regions of interest are highlighted to illustrate patterns of fractional 
abundance.
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the precision of these fractional abundance estimations, particularly 
for grassland assemblage types. These results are consistent with prior 
research indicating enhancements in classification precision with 
optimized endmember libraries (Tane et al., 2018; Xu et al., 2015). In 
particular, the accuracy levels for the Kunthii, Cynodon, Setaria, and 
Themeda communities were enhanced by 10, 8, 8, and 4%, respectively. 
We also detected improvements in non-grass categories such as barren 
land, water bodies, shrubs, and forests. The overall accuracy (OA) of 
the optimized MESMA model (Figure 7) was 67.45%, with a kappa 
coefficient of 0.6338, implying considerable concurrence beyond 
random chance.

4.3 Spatial distribution of grass 
communities

Our findings support theoretical frameworks like niche 
differentiation and disturbance ecology. For example, Cynodon’s 
presence in upland areas under moderate grazing aligns with niche 
theory, while Setaria’s dominance in lowland areas underscores the 
role of soil moisture in plant community assembly, reinforcing trait-
based ecology principles. These results enhance our understanding 
of how environmental gradients and disturbances drive species 
coexistence and grassland heterogeneity, crucial for predicting 
ecosystem responses to climate change and land-use pressures. 
Diverse grass communities follow distinct landscape partitions 
based on their ecological adaptations, reflecting broader concepts 
of niche differentiation, trait-based assembly, and ecological 
disturbances. The Setaria community thrives in low-lying, 

moisture-rich soils, illustrating hydric conditions’ competitive 
advantage, allowing these grasses to outcompete less tolerant 
species (Prakash et al., 2021; Rafique et al., 2021). Conversely, the 
Kunthii community, mainly Microchloa kunthii, occupies arid 
uplands, preferring coarse-textured, well-drained soils, highlighting 
soil characteristics’ role in species filtration and spatial variations 
(Ward et al., 2017).

In addition, the Cynodon community, mainly consisting of 
Cynodon dactylon, is situated in the central hill region, where 
topographical elevation generates specific microclimatic and 
edaphic conditions conducive to this species. The adaptive 
capacity of Cynodon dactylon for well-drained soils and its 
favorable growth response to moderate grazing disturbances 
illustrate the complex function of herbivory in shaping grasslands 
(Morgan and Salmon, 2020). The fragmentation of Cynodon 
patches indicates that heavy grazing diminishes vegetative 
biomass and affects competitive dynamics and successional 
pathways among desirable and resilient species (Muthoka et al., 
2022; Smit et al., 2023).

The Themeda community, characterized by Themeda triandra, 
demonstrates the influence of intermediate environmental conditions 
on vegetation patterns. This community, situated on moderate slopes 
and in mid-elevation regions, reflects a balance between soil moisture 
retention and disturbance levels favorable to Themeda’s ecological 
strategies (Moore et al., 2019). Areas with pronounced slopes and 
degraded soils, characterized by shrubs and exposed Earth, signify a 
transition in competitive interactions, favoring species more adapted 
to severe environments, consequently diminishing grass prevalence 
(Liu et al., 2023).

FIGURE 8

Vegetation composition and forage palatability at Kapiti Research Station derived from optimized endmember MESMA. (a) Dominant land-cover and 
plant communities: Bare ground (brown), Cynodon spp. community (red), Kunthii spp. community (yellow), Setaria spp. community (light green), 
Shrubs (orange), Themeda spp. community (dark green), Trees (forest green), Water (blue) and Mixed cover (beige). (b) Grassland palatability classes: 
High (red), Medium (dark green), Low (light green) and Mixed (brown).
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TABLE 3 Confusion matrix and estimation uncertainties for grassland community palatability classification at Kapiti research station.

Reference data

Grassland cover 
and 

communities

Bare 
ground

Cynodon Kunthii Setaria Shrubs Themeda Trees Water
User 

Accuracy 
(UA) UA variance

Classification data

Bare ground 24 0 0 0 0 0 0 4 80.00% ±0.1456

Cynodon 0 19 0 0 0 0 0 0 70.37% ±0.1755

Kunthii 0 3 14 0 0 2 0 0 51.85% ±0.1921

Setaria 0 0 0 18 9 0 0 0 66.67% ±0.1812

Shrubs 0 0 0 3 19 2 6 0 63.33% ±0.1754

Themeda 1 2 2 3 1 13 0 0 48.15% ±0.1921

Trees 0 0 0 3 8 0 19 0 63.33% ±0.1754

Water 4 0 0 0 0 0 0 26 86.67% ±0.1237

Weights 30 27 27 27 30 27 30 30

Producer Accuracy (PA) 82.76% 73.08% 82.35% 60.00% 51.35% 72.22% 76.00% 100.00%

PA variance ±0.1226 ±0.1499 ±0.171 ±0.1461 ±0.1209 ±0.1909 ±0.1421 ±0

Overall Accuracy (OA) 67.45%

Overall Accuracy Variance ±0.0567

Kappa 0.6338

Kappa Variance ±0.0646
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These trends collectively underscore that no single factor 
determines community distribution. The integration of climate, 
terrain, soil characteristics, and grazing regimes has shaped semi-arid 
grasslands. Incorporating these findings with ecological theories, such 
as niche theory and disturbance ecology, enhances our comprehension 
of species coexistence, resilience, and ecosystem functionality (Carroll 
et  al., 2023). By understanding this complex interaction, we  can 
ultimately inform more comprehensive and adaptable management 
strategies, ensuring that interventions consider multiple interacting 
gradients and their effects on conserving biodiversity and ecosystem 
services in semi-arid regions (Titcomb et al., 2021).

4.4 Palatability zones

The palatability map generated provides significant insights into 
the regional distribution of fodder quality at the Kapiti Research 
Station. As depicted on the map, areas indicating a moderate to 
high prevalence of palatable grasses correlated closely with field 
observations and other regional grassland distribution studies. The 
diversity of grass types, comprising medium-and low-palatability 
species with areas of highly palatable grasses, enhances our 
comprehension of feed supply. These findings corroborate the 
current study, including Dalle (2020) and Havemann et al. (2022), 
who observed similar palatability trends on a larger scale. Our 
detailed study identified specific areas where clusters of highly 
palatable grasses were predominant. Such spatial differentiation 
demonstrates how ecological gradients, including soil drainage and 
topographic variations, underpin the observed variations in grass 
community composition.

In this study area, wildlife and livestock frequently traverse the 
Kapiti region in search of optimal grazing locations. These animals 
navigate areas along established migratory routes determined by 
water accessibility, topography, and food resources. The map 
generated in this study can serve as a crucial decision-making tool 
for pastoralists, who rely on visual and experiential indicators to 
guide their herds. By overlaying traditional movement patterns 
with geographical data on grass palatability, herders can 
strategically focus grazing in locations with elevated terrain and 
superior forage quality, thereby optimizing cattle nutrition. 
Conversely, they may avoid sections characterized by low 
palatability grasses typically associated with poorly drained soils 
and lower altitudes, thus minimizing the time and energy expended 
in less productive areas. This evidence-based approach may 
enhance cattle health, improve productivity, and reduce 
overgrazing stress in sensitive areas, fostering sustainable 
pastoral livelihoods.

4.5 Implications and future directions

4.5.1 Practical implications for sustainable 
grassland management

The findings of this study offer actionable insights into sustainable 
grazing management and land protection in semi-arid savanna 
grasslands. The palatability maps generated in this study provide 
valuable insights for pastoralists and land managers to optimize 
livestock grazing routes and enhance nutrition while mitigating 
overgrazing. Similarly, land managers, can use these maps to targeted 
restoration, such as reseeding in low-palatability zones and promoting 
ecological resilience.

These outputs align with the needs of policymakers at both 
county and national levels. At the county level, governments can 
leverage the spatial distribution of palatable grasses to design 
rotational grazing plans that align with seasonal forage availability 
and reduce the pressure on degraded areas. At the national level, the 
findings contribute to evidence-based recommendations for 
rangeland management policies, support biodiversity conservation, 
and combat land degradation across semi-arid regions. 
Furthermore, integrating these insights into climate adaptation 
frameworks can enhance ecosystem resilience and ensure food 
security in pastoral communities. By mapping optimal grazing 
zones and identifying high-risk areas for degradation, policymakers 
can develop adaptive strategies to address the dual challenges of 
climate variability and increased grazing pressure.

This study emphasizes the scalability of the MESMA framework. 
This approach is transferable to other semi-arid regions in Kenya and 
East Africa, including Laikipia, Narok, Kajiado, and parts of Tanzania 
and Ethiopia. While the Kapiti Research Station provides a robust 
dataset for validating the MESMA model, it is important to note that 
the findings may vary in other Kenyan or East Africa savannas owing 
to differences in environmental conditions, grazing pressures, and 
species compositions. For example, regions with higher rainfall or 
different soil types may exhibit distinct vegetation patterns. 
We recommend conducting additional validation studies in diverse 
ecosystems, such as the Laikipia Plateau and Serengeti Plains, to assess 
the model’s generalizability and refine its application across various 
landscapes. These regions share ecological similarities with the Kapiti 
Research Station, such as rainfall variability, soil type, and dominant 
grass species, making them suitable candidates for model application. 
To ensure successful scalability, we  recommend site-specific 
calibration using ground-truth data to refine spectral libraries and 
validate models, accounting for local variations in vegetation 
composition and environmental conditions.

However, the implementation of these strategies faces obstacles, 
including pastoralists’ limited access to geospatial tools and resource 
constraints for large-scale land management. Addressing these 
challenges requires capacity-building initiatives, such as training 
pastoralists to interpret palatability maps, and policy interventions to 
fund restoration programs.

4.5.2 Future research
Despite these contributions, this study highlights several avenues 

for future research. A key limitation is the reliance on single-season 
Sentinel-2 imagery, which may not adequately capture the seasonal 
variations in grassland composition and palatability. Future studies 
should integrate multi-seasonal or multi-year datasets to assess the 

TABLE 4 Estimated grassland areas and associated uncertainties by 
palatability level at Kapiti research station.

Palatability level Palatable grassland area 
with uncertainty estimated 

in parentheses (ha)

High 24.52 (±4.303)

Medium 5,893.07 (±1,698.088)

Low 376.44 (±68.211)

Mixed 226.72 (±38.18)
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temporal dynamics better and improve the accuracy of 
palatability assessments.

Additionally, incorporating hyperspectral imaging could 
enhance spectral differentiation among closely related grass species, 
enabling a more precise evaluation of fodder quality based on plant 
chemical properties such as protein and fiber content. Hyperspectral 
data could also resolve the classification ambiguities observed in 
this study, particularly for medium-palatability species such as 
Setaria and Kunthii, where spectral overlap may lead 
to misclassification.

Systematic field sampling can quantify plant biomass, nutritional 
composition, and digestibility across various locations and seasons, 
providing a comprehensive reference dataset for calibrating and 
validating remote sensing indices. Field initiatives may include long-
term vegetation monitoring plots, soil moisture assessments, and 
physiological stress indicators in plants, all of which could enhance 
our understanding of grassland ecology. Expanding validation efforts 
to encompass more diverse sampling sites would further augment the 
generalizability of the findings.

Lastly, the integration of livestock movement data, such as GPS 
tracking, with palatability maps could yield more comprehensive 
insights into the interplay between grazing patterns and forage 
availability. This integration would help refine spatial predictions of 
palatability and address areas where the model underestimates or 
overestimates species presence, as observed in Figures 4, 6.

5 Conclusion

This research contributes to the field of remote sensing by 
illustrating the effectiveness of the MESMA algorithm in 
delineating the spatial distribution and palatability of grassland 
communities within semi-arid Kenyan savannas. The findings 
present valuable strategies for optimizing sustainable grazing 
practices, enhancing livestock productivity, and guiding rangeland 
management policies through the provision of actionable data on 
forage availability and grassland heterogeneity. By employing 
Sentinel-2 multispectral imagery, this study highlights the sensor’s 
capacity to characterize and map grassland communities at the 
pixel fraction level, thus yielding crucial information on fine-scale 
spatial heterogeneity. This detailed data is fundamental for 
elucidating vegetation dynamics and productivity within these 
intricate ecosystems.

The optimized MESMA approach significantly enhanced 
fractional abundance mapping, providing more robust insights into 
grassland composition and palatability. The integration of literature 
on the nutritional value of grassland communities as a proxy for 
palatability further augments the contribution of this study to the 
nuanced understanding of grassland dynamics.

The findings of this study will provide policymakers and land 
managers with essential spatial data to develop targeted grazing 
systems, optimize restoration efforts in degraded areas, and mitigate 
overgrazing. Through the integration of these insights into rangeland 
management policies, stakeholders can enhance the resilience of semi-
arid ecosystems while safeguarding the livelihoods of pastoral 
communities. This knowledge is crucial for improving the 
socioeconomic conditions of pastoral communities and promoting 

sustainable grassland management practices that are vital in semi-arid 
savannah ecosystems.

Ultimately, this study underscores the critical importance of 
advanced remote sensing techniques, specifically those employing 
Sentinel-2, in enhancing our comprehension of semi-arid grassland 
ecosystems. By facilitating more accurate mapping and 
characterization of grassland communities, this research makes a 
substantial contribution to the development of strategies for improving 
pasture management, a crucial factor in sustaining the socioeconomic 
wellbeing of pastoral communities and preserving the ecological 
integrity of semi-arid savanna grasslands.

Data availability statement

The datasets presented in this study can be  found in online 
repositories. The names of the repository/repositories and accession 
number(s) can be found at: https://doi.org/10.25377/sussex.28945880.

Author contributions

JM: Conceptualization, Data curation, Formal analysis, Investigation, 
Methodology, Software, Validation, Visualization, Writing – original 
draft, Writing – review & editing. PR: Funding acquisition, Supervision, 
Writing – original draft, Writing – review & editing. ES: Supervision, 
Writing – original draft, Writing – review & editing. HB: Supervision, 
Writing – original draft, Writing – review & editing. AA: Supervision, 
Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This research was supported 
by the NERC Science for Humanitarian Emergencies and Resilience 
Studentship Cohort (SHEAR SSC) grant number NE/R007799/1, and 
the SHEAR ForPAc project grant number NE/P000673/1. HB was 
supported by NERC through the National Centre for Earth  
Observation.

Acknowledgments

We want to express our gratitude to the ILRI and its staff for 
granting access to and using the Kapiti research station for the 
experimental setup and data collection. Anton Vrieling was supported 
by the Dutch Research Council (NWO) and the Space for Global 
Development (WOTRO) program as part of the CGIAR-Netherlands 
partnership. The use of the DTM (Figure  1) is attributed to the 
United Kingdom. The Space Agency and King’s College London were 
purchased for their collaborative PRISE project. We are also grateful 
to the School of Global Studies for supplying phenocams via the 
Physical Geography Lab. In addition, we  thank Mr. Stephan 
M. Hennekens for assistance with taxonomy data integration using 
the TURBOVEG software. Furthermore, we thank Mr. John Musembi 
and Miss Abby Carol from the University of Nairobi’s Department of 

https://doi.org/10.3389/fsufs.2025.1543491
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://doi.org/10.25377/sussex.28945880


Muthoka et al. 10.3389/fsufs.2025.1543491

Frontiers in Sustainable Food Systems 15 frontiersin.org

Land Resource Management and Agricultural Technology for their 
help with data collection and laboratory analysis.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that Gen AI was used in the creation of this 
manuscript. This was used in editing and grammar checks (Open 
Paperpal and Grammarly).

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fsufs.2025.1543491/
full#supplementary-material

References
Amwata, D. A., Nyariki, D. M., and Musimba, N. R. K. (2016). Factors influencing 

pastoral and agropastoral household vulnerability to food insecurity in the drylands of 
Kenya: a case study of Kajiado and Makueni counties. J. Int. Dev. 28, 771–787. doi: 
10.1002/JID.3123

Anderson, T. M., Starmer, W. T., and Thorne, M. (2007). Bimodal root diameter 
distributions in Serengeti grasses exhibit plasticity in response to defoliation and soil 
texture: implications for nitrogen uptake. Funct. Ecol. 21, 50–60. doi: 
10.1111/j.1365-2435.2006.01192.x

Bogan, S. A., Antonarakis, A. S., and Moorcroft, P. R. (2019). Imaging spectrometry-
derived estimates of regional ecosystem composition for the Sierra Nevada, California. 
Remote Sens. Environ. 228, 14–30. doi: 10.1016/J.RSE.2019.03.031

Boonman, J. G. (1993). East Africa’s grasses and fodders: their ecology and husbandry. 
Dordrecht: Springer Netherlands.

Braun-Blanquet, J. (1932). Plant sociology: the study of plant communities: McGraw-
Hill Book Co. Inc. Available at: https://www.cabidigitallibrary.org/doi/
full/10.5555/19331600801

Caroline King-Okumu, B., Caroline King-Okumu, B., and Yimer, E. (2015). 
Pastoralism pays: new evidence from the Horn of Africa: IIED Publications Library. 
Avaiulable at: https://dlci-hoa.org

Carroll, T., Cardou, F., Dornelas, M., Thomas, C. D., and Vellend, M. (2023). 
Biodiversity change under adaptive community dynamics. Glob. Change Biol. 29, 
3525–3538. doi: 10.1111/gcb.16680

Catley, A., Lind, J., and Scoones, I. (2016). The futures of pastoralism in the horn of 
Africa: pathways of growth and change. Rev. Sci. Tech. OIE 35, 389–403. doi: 
10.20506/rst.35.2.2524

Chabalala, Y., Adam, E., Oumar, Z., and Ramoelo, A. (2020). Exploiting the 
capabilities of Sentinel-2 and RapidEye for predicting grass nitrogen across different 
grass communities in a protected area. Appl. Geomat. 12, 379–395. doi: 
10.1007/S12518-020-00305-8

Chen, Y., Ge, Y., Chen, Y., Jin, Y., and An, R. (2018). Subpixel land cover mapping 
using multiscale spatial dependence. IEEE Trans. Geosci. Remote Sens. 56, 5097–5106. 
doi: 10.1109/TGRS.2018.2808410

Chen, Y., Guerschman, J., Shendryk, Y., Henry, D., and Harrison, M. T. (2021). 
Estimating pasture biomass using Sentinel-2 imagery and machine learning. Remote 
Sens. 13:603. doi: 10.3390/rs13040603

Chen, L., Sofia, G., Qiu, J., Wang, J., and Tarolli, P. (2023). Grassland ecosystems 
resilience to drought: the role of surface water ponds. Land Degrad. Dev. 34, 1960–1972. 
doi: 10.1002/ldr.4581

Cheng, Y., Vrieling, A., Fava, F., Meroni, M., Marshall, M., and Gachoki, S. (2020). 
Phenology of short vegetation cycles in a Kenyan rangeland from PlanetScope and 
Sentinel-2. Remote Sens. Environ. 248:112004. doi: 10.1016/J.RSE.2020.112004

Dabasso, B. H., Oba, G., and Roba, H. G. (2012). Livestock-based knowledge of 
rangeland quality assessment and monitoring at landscape level among borana herders 
of northern Kenya. Pastoralism 2, 1–13. doi: 10.1186/2041-7136-2-2/FIGURES/2

Dalle, G. (2020). Evaluation of forage quantity and quality in the semi-arid Borana 
lowlands, southern Oromia, Ethiopia. Trop. Grassl.-Forrajes Trop. 8, 72–85. doi: 
10.17138/TGFT(8)72-85

Dube, T., Pandit, S., Shoko, C., Ramoelo, A., Mazvimavi, D., and Dalu, T. (2019). 
Numerical assessments of leaf area index in tropical savanna rangelands, South Africa 

using Landsat 8 OLI derived metrics and in-situ measurements. Remote Sens. 11:829. 
doi: 10.3390/RS11070829

Euclides, V. P., Montagner, D. B., Macedo, M. C. M., de Araújo, A. R., Difante, G. S., 
and Barbosa, R. A. (2019). Grazing intensity affects forage accumulation and persistence 
of Marandu palisadegrass in the Brazilian savannah. Grass Forage Sci. 74, 450–462. doi: 
10.1111/gfs.12422

Evans, L. A., and Adams, W. M. (2016). Fencing elephants: the hidden politics of 
wildlife fencing in Laikipia, Kenya. Land Use Policy 51, 215–228. doi: 
10.1016/J.LANDUSEPOL.2015.11.008

Faghihinia, M., Zou, Y., Bai, Y., Dudáš, M., Marrs, R., and Staddon, P. L. (2021). 
Grazing intensity rather than host plant’s palatability shapes the community of 
arbuscular mycorrhizal fungi in a steppe grassland. Microb. Ecol. 84, 1–10. doi: 
10.1007/s00248-021-01920-7

FAO (2005). Grasslands of the world: Food & Agriculture Organisation. Available at: 
https://www.fao.org/4/y8344e/y8344e05.htm

Fauvel, M., Lopes, M., Dubo, T., Rivers-Moore, J., Frison, P. L., Gross, N., et al. (2020). 
Prediction of plant diversity in grasslands using Sentinel-1 and -2 satellite image time 
series. Remote Sens. Environ. 237:111536. doi: 10.1016/J.RSE.2019.111536

Fernández-García, V., Marcos, E., Fernández-Guisuraga, J. M., Fernández-Manso, A., 
Quintano, C., Suárez-Seoane, S., et al. (2021). Multiple endmember spectral mixture 
analysis (MESMA) applied to the study of habitat diversity in the fine-grained landscapes 
of the Cantabrian Mountains. Remote Sens. 13:979. doi: 10.3390/RS13050979

Ferner, J., Linstädter, A., Rogass, C., Südekum, K. H., and Schmidtlein, S. (2021). 
Towards forage resource monitoring in subtropical savanna grasslands: going 
multispectral or hyperspectral? Eur. J. Remote Sens. 54, 364–384. doi: 
10.1080/22797254.2021.1934556

Ge, Y., Chen, Y., Stein, A., Li, S., and Hu, J. (2016). Enhanced subpixel mapping with 
spatial distribution patterns of geographical objects. IEEE Trans. Geosci. Remote Sens. 
54, 2356–2370. doi: 10.1109/TGRS.2015.2499790

Githae, E. W. (2018). Status of Opuntia invasions in the arid and semi-arid lands of 
Kenya. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 13, 1–9. doi: 
10.1079/PAVSNNR201813003

Hamada, Y., Stow, D. A., and Roberts, D. A. (2011). Estimating life-form cover 
fractions in California sage scrub communities using multispectral remote sensing. 
Remote Sens. Environ. 115, 3056–3068. doi: 10.1016/j.rse.2011.06.008

Havemann, C. P., Retief, T. A., Collins, K., Fynn, R. W. S., Tosh, C. A., and de 
Bruyn, P. J. N. (2022). Home range and habitat use of roan antelope Hippotragus equinus 
in northern Botswana. J. Arid Environ. 196:104648. doi: 10.1016/j.jaridenv.2021.104648

Hill, M. J., and Guerschman, J. P. (2020). The MODIS global vegetation fractional 
cover product 2001–2018: characteristics of vegetation fractional cover in grasslands 
and savanna woodlands. Remote Sens. 12:406. doi: 10.3390/rs12030406

Hosaka, E. (1957). Palatability and nutritive value of forages. Available at: https://core.
ac.uk/download/pdf/211321808.pdf

Hou, L., Xin, X., Shen, B., Qin, Q., Altome, A. I. A., Hamed, Y. M. Z., et al. (2023). 
Effects of long-term grazing on feed intake and digestibility of cattle in meadow steppe. 
Agronomy 13:1760. doi: 10.3390/agronomy13071760

Jawuoro, S. O., Koech, O. K., Karuku, G. N., and Mbau, J. S. (2017). Plant species 
composition and diversity depending on piospheres and seasonality in the southern 
rangelands of Kenya. Ecol. Process. 6, 1–9. doi: 10.1186/S13717-017-0083-7

https://doi.org/10.3389/fsufs.2025.1543491
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fsufs.2025.1543491/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fsufs.2025.1543491/full#supplementary-material
https://doi.org/10.1002/JID.3123
https://doi.org/10.1111/j.1365-2435.2006.01192.x
https://doi.org/10.1016/J.RSE.2019.03.031
https://www.cabidigitallibrary.org/doi/full/10.5555/19331600801
https://www.cabidigitallibrary.org/doi/full/10.5555/19331600801
https://dlci-hoa.org
https://doi.org/10.1111/gcb.16680
https://doi.org/10.20506/rst.35.2.2524
https://doi.org/10.1007/S12518-020-00305-8
https://doi.org/10.1109/TGRS.2018.2808410
https://doi.org/10.3390/rs13040603
https://doi.org/10.1002/ldr.4581
https://doi.org/10.1016/J.RSE.2020.112004
https://doi.org/10.1186/2041-7136-2-2/FIGURES/2
https://doi.org/10.17138/TGFT(8)72-85
https://doi.org/10.3390/RS11070829
https://doi.org/10.1111/gfs.12422
https://doi.org/10.1016/J.LANDUSEPOL.2015.11.008
https://doi.org/10.1007/s00248-021-01920-7
https://www.fao.org/4/y8344e/y8344e05.htm
https://doi.org/10.1016/J.RSE.2019.111536
https://doi.org/10.3390/RS13050979
https://doi.org/10.1080/22797254.2021.1934556
https://doi.org/10.1109/TGRS.2015.2499790
https://doi.org/10.1079/PAVSNNR201813003
https://doi.org/10.1016/j.rse.2011.06.008
https://doi.org/10.1016/j.jaridenv.2021.104648
https://doi.org/10.3390/rs12030406
https://core.ac.uk/download/pdf/211321808.pdf
https://core.ac.uk/download/pdf/211321808.pdf
https://doi.org/10.3390/agronomy13071760
https://doi.org/10.1186/S13717-017-0083-7


Muthoka et al. 10.3389/fsufs.2025.1543491

Frontiers in Sustainable Food Systems 16 frontiersin.org

Keba, H. T., Madakadze, I. C., Angassa, A., and Hassen, A. (2013). Nutritive value of 
grasses in semi-arid rangelands of Ethiopia: local experience based herbage preference 
evaluation versus laboratory analysis. Asian Australas. J. Anim. Sci. 26, 366–377. doi: 
10.5713/AJAS.2012.12551

Knuesting, J., Brinkmann, M. C., Silva, B., Schorsch, M., Bendix, J., Beck, E., et al. (2018). 
Who will win where and why? An ecophysiological dissection of the competition between 
a tropical pasture grass and the invasive weed bracken over an elevation range of 1000 m in 
the tropical Andes. PLoS One 13:e0202255. doi: 10.1371/journal.pone.0202255

Li, X., Ling, F., and Du, Y.. (2010). Characterizing sub-pixel landscape patterns from 
remotely sensed imagery with sub-pixel mapping methods. in: Presented at the 2010 
18th international conference on Geoinformatics, pp. 1–5.

Li, J., Pei, Y., Zhao, S., Xiao, R., Sang, X., and Zhang, C. (2020). A review of remote 
sensing for environmental monitoring in China. Remote Sens. 12:1130. doi: 
10.3390/rs12071130

Ling, F., Du, Y., Li, X., Zhang, Y., Xiao, F., Fang, S., et al. (2014). Superresolution land 
cover mapping with multiscale information by fusing local smoothness prior and 
downscaled coarse fractions. IEEE Trans. Geosci. Remote Sens. 52, 5677–5692. doi: 
10.1109/TGRS.2013.2291902

Ling, F., Li, X., Du, Y., and Xiao, F. (2013). Sub-pixel mapping of remotely sensed 
imagery with hybrid intra-and inter-pixel dependence. Int. J. Remote Sens. 34, 341–357. 
doi: 10.1080/01431161.2012.705441

Liu, Y., Yang, P., Zhang, Z., Zhang, W., Wang, Z., Zhang, Z., et al. (2021). Diverse 
responses of grassland dynamics to climatic and anthropogenic factors across the 
different time scale in China. Ecol. Indic. 132:108341. doi: 10.1016/j.ecolind.2021.108341

Liu, X., Zhou, W., Li, X., Zhang, Y., and Dong, W. (2023). Secondary succession of 
shrub-herb communities in the hilly area of Taihang Mountain. Front. Plant Sci. 
14:1194083. doi: 10.3389/fpls.2023.1194083

Lyu, X., Li, X., Gong, J., Wang, H., Dang, D., Dou, H., et al. (2020). Comprehensive 
grassland degradation monitoring by remote sensing in Xilinhot, Inner Mongolia, 
China. Sustainability 12:3682. doi: 10.3390/su12093682

Main-Knorn, M., Pflug, B., Louis, J., Debaecker, V., Müller-Wilm, U., and Gascon, F. 
(2017). “Sen2Cor for Sentinel-2” in Image and signal processing for remote sensing 
XXIII, vol. 10427 (SPIE), 37–48. Available at: https://www.spiedigitallibrary.org/
conference-proceedings-of-spie/10427/2278218/Sen2Cor-for-Sentinel-2/10.1117/12. 
2278218.short

Mganga, K. Z., Kaindi, E., Ndathi, A. J., Bosma, L., Kioko, T., Kadenyi, N., et al. (2021). 
Plant morphoecological traits, grass-weed interactions and water use efficiencies of 
grasses used for restoration of African rangelands. Front. Ecol. Evol. 8:613835. doi: 
10.3389/fevo.2020.613835

Mganga, K. Z., Musimba, N., Nyariki, D., Nyangito, M., and Mwang’ombe, A. W. 
(2015). The choice of grass species to combat desertification in semi-arid Kenyan 
rangelands is greatly influenced by their forage value for livestock. Grass Forage Sci. 70, 
161–167. doi: 10.1111/gfs.12089

Moore, N. A., Camac, J. S., and Morgan, J. W. (2019). Effects of drought and fire on 
resprouting capacity of 52 temperate Australian perennial native grasses. New Phytol. 
221, 1424–1433. doi: 10.1111/nph.15480

Morgan, J. W., and Salmon, K. L. (2020). Dominant C3 tussock grasses are resilient to 
the re-introduction of fire in long-unburned temperate grasslands. Appl. Veg. Sci. 23, 
149–158. doi: 10.1111/avsc.12476

Muthoka, J. M., Antonarakis, A. S., Vrieling, A., Fava, F., Salakpi, E. E., and Rowhani, P. 
(2022). Assessing drivers of intra-seasonal grassland dynamics in a Kenyan savannah using 
digital repeat photography. Ecol. Indic. 142:109223. doi: 10.1016/j.ecolind.2022.109223

Muthoka, J. M., Salakpi, E. E., Ouko, E., Yi, Z.-F., Antonarakis, A. S., and Rowhani, P. 
(2021). Mapping Opuntia stricta in the arid and semi-arid environment of Kenya using 
Sentinel-2 imagery and ensemble machine learning classifiers. Remote Sens. 13:1494. 
doi: 10.3390/rs13081494

Namukolo, M. (2019). Beef from grass. Notion Press Media Pvt Ltd.

Negrón, M., López, I., and Dörner, J. (2019). Consequences of intensive grazing by 
dairy cows of contrasting live weights on volcanic ash topsoil structure and pasture 
dynamics. Soil Tillage Res. 189, 88–97. doi: 10.1016/j.still.2018.12.025

Phiri, D., Simwanda, M., Salekin, S., Nyirenda, V. R., Murayama, Y., and 
Ranagalage, M. (2020). Sentinel-2 data for land cover/use mapping: a review. Remote 
Sens. 12:2291. doi: 10.3390/rs12142291

Prakash, P. T., Banan, D., Paul, R. E., Feldman, M. J., Xie, D., Freyfogle, L., et al. (2021). 
Correlation and co-localization of QTL for stomatal density, canopy temperature, and 
productivity with and without drought stress in Setaria. J. Exp. Bot. 72, 5024–5037. doi: 
10.1093/jxb/erab166

Quintano, C., Fernández-Manso, A., Shimabukuro, Y. E., and Pereira, G. (2012). 
Spectral unmixing. Int. J. Remote Sens. 33, 5307–5340. doi: 10.1080/01431161.2012.661095

Rafique, T., Hameed, M., Naseer, M., Rafique, R., Sadiq, R., Zikreae, A., et al. (2021). 
Comparative leaf anatomy of grasses (Poaceae) in Faisalabad region of Pakistan. Polish 
J. Environ. Stud. 30, 5701–5709. doi: 10.15244/pjoes/136043

Reinermann, S., Asam, S., and Kuenzer, C. (2020). Remote sensing of grassland 
production and management—a review. Remote Sens. 12:1949. doi: 10.3390/rs12121949

Roberts, D. A., Gardner, M., Church, R., Ustin, S., Scheer, G., and Green, R. O. 
(1998). Mapping chaparral in the Santa Monica Mountains using multiple 
endmember spectral mixture models. Remote Sens. Environ. 65, 267–279. doi: 
10.1016/S0034-4257(98)00037-6

Roberts, D. A., Quattrochi, D. A., Hulley, G. C., Hook, S. J., and Green, R. O. (2012). 
Synergies between VSWIR and TIR data for the urban environment: an evaluation of 
the potential for the hyperspectral infrared imager (HyspIRI) decadal survey mission. 
Remote Sens. Environ 117, 83–101. doi: 10.1016/j.rse.2011.07.021

Roberts, D. A., Smith, M. O., and Adams, J. B. (1993). Green vegetation, 
nonphotosynthetic vegetation, and soils in AVIRIS data. Remote Sens. Environ. 44, 
255–269. doi: 10.1016/0034-4257(93)90020-X

Smit, C., Buyens, I. P., and le Roux, P. C. (2023). Vegetation patch dynamics in 
rangelands: How feedbacks between large herbivores, vegetation and soil fauna alter 
patches over space and through time. Appl. Veg. Sci. 26:e12747.

Smrithy, V., Kulkarni, A., Shigwan, B. K., Porembski, S., and Datar, M. N. (2023). 
Desiccation-tolerant vascular plants from Western Ghats, India: review, updated checklist, 
future prospects and new insights. Nord. J. Bot. 2023:e03939. doi: 10.1111/njb.03939

Strum, S. C., Stirling, G., and Mutunga, S. K. (2015). The perfect storm: land use 
change promotes Opuntia stricta’s invasion of pastoral rangelands in Kenya. J. Arid 
Environ. 118, 37–47. doi: 10.1016/j.jaridenv.2015.02.015

Tane, Z., Roberts, D., Veraverbeke, S., Casas, Á., Ramirez, C., and Ustin, S. (2018). 
Evaluating endmember and band selection techniques for multiple endmember spectral 
mixture analysis using post-fire imaging spectroscopy. Remote Sens. 10:389. doi: 
10.3390/rs10030389

Tilahun, M., Angassa, A., and Abebe, A. (2017). Community-based knowledge 
towards rangeland condition, climate change, and adaptation strategies: the case of Afar 
pastoralists. Ecol. Process. 6, 1–13. doi: 10.1186/s13717-017-0094-4

Titcomb, G. C., Amooni, G., Mantas, J. N., and Young, H. S. (2021). The effects of 
herbivore aggregations at water sources on savanna plants differ across soil and climate 
gradients. Ecol. Appl. 31:e02422. doi: 10.1002/eap.2422

Turner, M. D., and Schlecht, E. (2019). Livestock mobility in sub-Saharan Africa: a 
critical review. Pastoralism 9, 1–15. doi: 10.1186/s13570-019-0150-z

Vujanović, D., Losapio, G., Milić, S., and Milić, D. (2022). The impact of multiple 
species invasion on soil and plant communities increases with invasive species co-
occurrence. Front. Plant Sci. 13:875824. doi: 10.3389/fpls.2022.875824

Wachendorf, M., Fricke, T., and Möckel, T. (2018). Remote sensing as a tool to assess 
botanical composition, structure, quantity and quality of temperate grasslands. Grass 
Forage Sci. 73, 1–14. doi: 10.1111/gfs.12312

Ward, D., Kirkman, K., and Tsvuura, Z. (2017). An African grassland responds 
similarly to long-term fertilization to the park grass experiment. PLoS One 12:e0177208. 
doi: 10.1371/journal.pone.0177208

Watuwaya, B. K., Syamsu, J. A., Budiman, B., and Useng, D. (2022). Forage 
productivity in native grasslands of Haharu sub-district, east Sumba District, Indonesia. 
Biodiversitas J. Biol. Divers. 23:3. doi: 10.13057/biodiv/d230321

Weiss, W. P., and Hall, M. B. (2020). Laboratory methods for evaluating forage quality. 
Forages Sci. Grassl. Agric. 2, 659–672. doi: 10.1002/9781119436669.ch36

Werger, M. J. A. (1974). On concepts and techniques applied in the Ziirich-Montpellier 
method of vegetation survey. Bothalia 11, 309–323. doi: 10.4102/abc.v11i3.1477

Xu, Y., Shi, J., and Du, J. (2015). An improved endmember selection method based on 
vector length for MODIS reflectance channels. Remote Sens. 7, 6280–6295. doi: 
10.3390/rs70506280

Yang, Y., Tilman, D., Furey, G., and Lehman, C. (2019). Soil carbon sequestration 
accelerated by restoration of grassland biodiversity. Nat. Commun. 10, 1–7. doi: 
10.1038/s41467-019-08636-w

Ziech, M. F., Olivo, C. J., Ziech, A. R. D., Meinerz, G. R., Gagstetter, A. L., and 
Cullmann, J. R. (2016). Responses of Cynodon pastures mixed with forage peanut in 
southwestern Paraná, Brazil. Semina Ciênc. Agrár. 37, 4193–4202. doi: 
10.5433/1679-0359.2016v37n6p4193

Zwick, M., Cardoso, J. A., Gutiérrez-Zapata, D. M., Cerón-Muñoz, M., 
Gutiérrez, J. F., Raab, C., et al. (2024). Pixels to pasture: using machine learning and 
multispectral remote sensing to predict biomass and nutrient quality in tropical 
grasslands. Remote Sens. Appl. Soc. Environ. 36:101282. doi: 10.1016/j.rsase.2024. 
101282

https://doi.org/10.3389/fsufs.2025.1543491
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://doi.org/10.5713/AJAS.2012.12551
https://doi.org/10.1371/journal.pone.0202255
https://doi.org/10.3390/rs12071130
https://doi.org/10.1109/TGRS.2013.2291902
https://doi.org/10.1080/01431161.2012.705441
https://doi.org/10.1016/j.ecolind.2021.108341
https://doi.org/10.3389/fpls.2023.1194083
https://doi.org/10.3390/su12093682
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10427/2278218/Sen2Cor-for-Sentinel-2/10.1117/12.2278218.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10427/2278218/Sen2Cor-for-Sentinel-2/10.1117/12.2278218.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10427/2278218/Sen2Cor-for-Sentinel-2/10.1117/12.2278218.short
https://doi.org/10.3389/fevo.2020.613835
https://doi.org/10.1111/gfs.12089
https://doi.org/10.1111/nph.15480
https://doi.org/10.1111/avsc.12476
https://doi.org/10.1016/j.ecolind.2022.109223
https://doi.org/10.3390/rs13081494
https://doi.org/10.1016/j.still.2018.12.025
https://doi.org/10.3390/rs12142291
https://doi.org/10.1093/jxb/erab166
https://doi.org/10.1080/01431161.2012.661095
https://doi.org/10.15244/pjoes/136043
https://doi.org/10.3390/rs12121949
https://doi.org/10.1016/S0034-4257(98)00037-6
https://doi.org/10.1016/j.rse.2011.07.021
https://doi.org/10.1016/0034-4257(93)90020-X
https://doi.org/10.1111/njb.03939
https://doi.org/10.1016/j.jaridenv.2015.02.015
https://doi.org/10.3390/rs10030389
https://doi.org/10.1186/s13717-017-0094-4
https://doi.org/10.1002/eap.2422
https://doi.org/10.1186/s13570-019-0150-z
https://doi.org/10.3389/fpls.2022.875824
https://doi.org/10.1111/gfs.12312
https://doi.org/10.1371/journal.pone.0177208
https://doi.org/10.13057/biodiv/d230321
https://doi.org/10.1002/9781119436669.ch36
https://doi.org/10.4102/abc.v11i3.1477
https://doi.org/10.3390/rs70506280
https://doi.org/10.1038/s41467-019-08636-w
https://doi.org/10.5433/1679-0359.2016v37n6p4193
https://doi.org/10.1016/j.rsase.2024.101282
https://doi.org/10.1016/j.rsase.2024.101282

	Classification of grassland community types and palatable pastures in semi-arid savannah grasslands of Kenya using multispectral Sentinel-2 imagery
	1 Introduction
	2 Materials and methods
	2.1 Description of the study area
	2.2 Data
	2.2.1 Grassland community ground inventories
	2.2.2 Satellite-based earth observation data
	2.3 Methods
	2.3.1 Multiple endmember spectral mixture analysis (MESMA)
	2.3.2 Endmember selection
	2.3.3 Derivation of the grassland cover and palatability

	3 Results
	3.1 Endmember spectral library and models
	3.2 MESMA classification and accuracy assessment
	3.2.1 Unoptimized endmember MESMA
	3.2.2 Optimized endmember MESMA

	4 Discussion
	4.1 Optimisation endmember spectral library
	4.2 MESMA classification and accuracy assessment
	4.3 Spatial distribution of grass communities
	4.4 Palatability zones
	4.5 Implications and future directions
	4.5.1 Practical implications for sustainable grassland management
	4.5.2 Future research

	5 Conclusion

	References

