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Ruminant livestock production depends on microorganisms to ferment forages 
into valuable dairy and meat products. However, this process also generates enteric 
methane emissions, a significant contributor to anthropogenic greenhouse gases. 
Despite various strategies aimed at reducing methane emissions, success has 
been limited. In previous work, we developed an AI-driven model based on deep 
microbiome sequencing, which predicts the effect of feed additives on methane 
emissions. The model uses sequenced rumen samples from a given herd to 
construct microbiome networks to identify biomarkers associated with feed additive 
effectiveness in the reduction of methane emissions. In this study, we validated the 
model supplying a commercial methane-mitigating feed additive and performing 
hundreds of in-situ methane measurements across several commercial dairy 
farms. The results highlight the model’s robustness and precision, demonstrating 
its effectiveness in predicting enteric methane reductions and enhancing feed 
additive performance. Additionally, the model serves as a critical tool for data-
driven decision-making, playing a pivotal role in advancing precision agriculture 
practices.
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1 Introduction

Enteric methane emissions from ruminants, particularly dairy cattle, are a significant 
source of global greenhouse gases and play a critical role in climate change. These emissions 
arise as a byproduct of microbial fermentation in the rumen and constitute a considerable 
portion of the agriculture sector’s greenhouse gas emissions (Dillon et al., 2021; Mizrahi et al., 
2021). Beyond its environmental impact, methane production can also signify a loss of dietary 
energy that could otherwise be directed toward livestock production such as milk, meat, etc. 
(Arndt et al., 2022; Tseten et al., 2022). Therefore, developing effective strategies to mitigate 
methane emissions in dairy cattle is crucial for promoting environmental sustainability and 
enhancing the efficiency of livestock production.

Among the diverse strategies under investigation, methane-mitigating feed additives have 
emerged as a focal point of interest. Natural compounds such as essential oils are particularly 
promising due to their bioactive properties and ability to alter rumen fermentation patterns, 
inhibit methanogenic archaea, and reduce methane production overall (Adesogan et al., 2013; 
Beauchemin et al., 2008; Falero et al., 2022; Permata et al., 2023). Additionally, essential oils 
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improve feed efficiency, making them a practical and effective 
approach for methane mitigation (Durmic et  al., 2014; Tseten 
et al., 2022).

Recent advances in artificial intelligence (AI) provide powerful 
tools for exploring, analyzing, and optimizing various agricultural 
processes, driving the advancement of precision agriculture (Negussie 
et al., 2019; Jeong et al., 2022). This study validates an innovative 
AI-driven model designed to predict the impact of methane-
mitigating feed additives on enteric methane emissions in dairy cattle. 
By integrating rumen microbiome sequencing data from Israeli 
Holstein cows with hundreds of methane measurements across 13 
commercial dairy herds, the model enables precise predictions of the 
impact of tested feed additive on methane emission outcomes.

The primary goal of this study was to validate the accuracy of the 
AI-driven model using an essential oil-based feed additive (Agolin 
Ruminant, Altech, Biere, Switzerland) recognized for its methane-
reducing potential (Carrazco et al., 2020; Batley et al., 2024).

This research responds to the pressing demand for sustainable 
agricultural practices by targeting the reduction of the environmental 
footprint of livestock farming. By presenting an innovative method to 
predict the effects of feed additives on enteric methane emissions, the 
study advances global initiatives to mitigate climate change through 
precision agriculture.

2 Materials and methods

2.1 General study design

Previously we developed an AI-driven model based on a two-stage 
trial design targeting the prediction of the efficacy of methane-
reducing additives using cows’ microbiome data. Briefly, the first stage 
involves an unsupervised machine-learning process trained on a 
diverse dataset of microbiome samples collected from cows across 
various farms. In the second stage, a smaller subset of cows, whose 
methane emissions have been periodically documented, is used to 
implement supervised learning (Figure 1). This stage aims to construct 
a predictive model that links microbiome profiles to the effectiveness 
of feed additives by generating a “predictive efficacy score” for each 
specific farm and feed additive tested (Altshuler et al., 2023; Altshuler 
et al., 2024).

In this case study, the validation step was performed with a widely 
commercial feed additive, (Agolin Ruminant, Altech, Biere, 
Switzerland), which is composed of coriander seed oil, eugenol, 

geranyl acetate, and geraniol. This was followed by an extensive in-vivo 
methane emission procedure, which included biweekly methane 
measurements taken at the same time of day at each site over 
3 months, resulting in at least seven time points. To avoid seasonal 
effects, and enhance methodological robustness, the model validation 
was conducted in independent cohorts across 13 different commercial 
farms located in various geographical regions of Israel, ranging from 
the cooler mountainous areas in the north to arid dessert regions in 
the south and template plains in the center of the country.

To assess the overall efficacy of the feed additive across all the 
participating farms, we  conducted our data analysis using two 
simulated scenarios; in the first one (naive approach), we assume that 
the feed additive is supplied to all the participating farms; while in the 
second approach (optimized approach), we  adopted a precision 
agriculture-oriented strategy, assuming that the feed additive is 
applied only to farms with a higher likelihood of benefiting from it 
based on the model’s predictions.

2.2 Animals and feed additive

Israeli Holstein cows from 13 commercial dairy farms in Israel 
participated in this study. The herds were maintained on a standard 
mixed diet with a 32/68 forage-to-concentrate ratio, while each farm 
followed its own nutritional regimen. As in many other countries, this 
could include by-products from the food industry, such as pulp, gluten 
meal, and citrus fruits. Due to the relatively small size of the farms 
(between 400 to 900 animals), cows within each herd were housed in 
the same barn. The participating farms were a mix of 70% Kibbutz-
type, which are large, cooperatively owned and managed units, and 
30% Moshav-type, which are smaller, family-owned farms. To ensure 
the welfare of the animals participating in the study, all experimental 
procedures adhered to the Guide for the Care and Use of Agricultural 
Animals in Research and Teaching (Ag Guide; Federation of Animal 
Science Societies (FASS), 2010). A qualified veterinarian closely 
supervised the rumen sampling procedure and all technical 
procedures to minimize potential stress or discomfort to the animals. 
Additionally, all animals were managed under standard farming 
practices without deviations from routine.

In this study, the selected feed additive (Agolin), was supplied by 
each local farm staff according to the producer’s instructions (1gram/
cow/day for 60 days mixed with the concentrate part of the mix) as a 
top dressing to 20 randomly selected cows at each site (treatment 
group, 260 cows in total). Visual consumption tracking was conducted 

FIGURE 1

Schematic representation of the field study design. Each group is wholly independent.
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at each farm. The treated cows were identified by ear tags for future 
data collection. Additionally, another 20 cows were randomly selected 
at each farm to form the control group (260 cows in total), receiving 
the standard mixed diet without the feed additive. Periodic in-situ 
methane measurements were then taken to compare the model’s 
predictions with actual methane emissions.

2.3 Ruminal sampling and sequencing

The sample size was previously defined as at least 0.5% of the total 
herd size (Altshuler et al., 2023; Altshuler et al., 2024). However, to 
mitigate potential sequencing errors, the sampling process was set at 
15 rumen samples per dairy farm. The samples were collected using a 
300-cm polyvinyl stomach tube. The tube and speculum were 
thoroughly rinsed after each use to prevent cross-contamination 
(Supplementary material 1). To safeguard the samples from 
degradation during transport, the samples were treated with Zymo 
DNA/RNA shield buffer (Zymo Research, Cat. No. R1100-250) and 
transported at room temperature to a specialized facility for DNA 
extraction. Library preparation for paired-end sequencing was carried 
out using the Illumina DNA Prep kit (Illumina, Cat. no. 20060059) 
and the NovaSeq 6,000 S4 reagent kit v1.5 (300 cycles) (Illumina, Cat. 
no. 20028312) on an Illumina NovaSeq  6,000 instrument. The 
integrity of sequences was assessed by FASTQC, an standard trimming 
and filtering were performed by BBDUK software, discarding 
sequences shorter than 100 bp or having a Phred score below 35. 
Trimmed sequences are used in the model performance without the 
need for taxonomic or functional classification.

2.4 Enteric methane emission 
measurements

Enteric methane measurements used for model performance 
assessment and validation were obtained using the ATEX Gas 
Analyzer (Geotech SEM 5000), a specialized instrument for methane 
measurement. This instrument was selected after extensive 
comparisons with other well-established systems (Supplementary  
material 2). The results of these comparisons along with key 
advantages such as ease of use, non-intrusive operation, no need for 
animal training, and onsite performance, support the ATEX Gas 
Analyzer as a suitable tool for ruminant methane measurement 
(Altshuler et al., 2023; Altshuler et al., 2024). In addition, to these 
comparisons, the sensor used in this instrument has been previously 
recommended for cattle studies (Rey et al., 2019; Ribeiro et al., 2020).
The ATEX device records continuous methane measurements every 3 
to 5 s, generating hundreds of methane readings for animal. To ensure 
a single and consistent methane reading per cow for each visit, values 
lower than 5 ppm were removed, and then the median for each cow 
was obtained, establishing a dependable foundation for subsequent 
comparative analysis across various visits and cows. The threshold was 
set to 5 ppm based on our previous in-situ experience with the 
instrument; Field operators noted that when the instrument is 
positioned too far from cows, or even in open areas, background 
readings below 5 ppm are commonly observed.

Finally, model validation was conducted on each farm by 
comparing the model’s predictions with in-situ methane emissions. 

Methane measurements were consistently taken between 06:00 to 
08:00 am.

2.5 Model construction and performance

Initially, genomic sequences from a given rumen sample—
consisting of 120 to 150 nucleotide strings—are filtered and analyzed. 
The AI-driven model processes these genomic sequences and 
generates subsequences of 30 nucleotides (k-mer 30). These 
subsequences are then displayed as a network of k-mers, where each 
node represents a unique k-mer, and the edges are formed by two 
k-mers derived from the same sequencing read. As a result, each 
network is unique and reflects the specific microbiome composition. 
The network structure reveals clusters of k-mers that frequently appear 
together (biomarkers); which can later be correlated with biological 
conditions such as methane emissions.

Next, networks from each rumen microbiome sample within a 
given farm are combined, creating a superposition network—a dense 
structure that provides a more comprehensive representation of farm-
level features (Figure  2; Supplementary material 3). The use of a 
superposition network allows for the integration of new samples, and 
the model’s generic nature enables the analysis of biological targets or 
traits beyond feed additive efficacy, such as the effects of diet on milk 
or meat production, or susceptibility to diseases.

The generation of a superposition network for each farm facilitates 
the identification of subsequences (or biomarkers) statistically 
associated with methane emissions. Each microbiome marker from a 
given farm is then analytically validated to ensure it is unlikely to 
occur randomly in microbial genetic samples. A complete description 
of the model steps was previously published (Altshuler et al., 2023; 
Altshuler et al., 2024).

Finally, the identified biomarkers are grouped into two sets of 
DNA subsequences. The biomarkers positively associated with the 
desired biological condition (e.g., low methane emissions) are placed 
in the “top list” (or “positive list”), while those subsequences associated 
with a non-desired condition are grouped in the “bottom list” (or 
negative list). Both lists are used to analyze the farm’s overall response 
to a given feed additive, generating a predictive score ranging from 0 
to 1 (Figure 3).

Briefly, the model computes the average score of individual cows 
within each farm, resulting in a global farm-level score ranging from 
−1 to 1. This score is then normalized through a simple mathematical 
process, yielding values between 0 (indicating expected low efficacy of 
the analyzed additive) and 1 (indicating expected high efficacy). 
Scores around 0.5 suggest insufficient information for an accurate 
prediction (Supplementary material 4).

This phase requires a model training step based on methane 
emissions, which utilizes 40 cows divided into three groups: training, 
control, and validation (Supplementary material 5).

3 Results

3.1 General feed additive efficacy

Figure 4 illustrates the efficacy analysis of the tested feed additive 
based on the obtained biomarkers (Supplementary material 6). 
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Initially, efficacy is shown as a normal distribution under naive 
approach conditions, where no farm selection is applied. This is 
compared with the optimized or precision agriculture approach, 
where the feed additive is applied to only 50% of the farms with the 
higher chance of being positively impacted. The comparison 
demonstrates that the optimized strategy significantly enhances the 
global additive’s efficacy by focusing on farms where it is predicted to 
have the greatest impact. Thus, under the naive approach, the model 
predicts a general 8% reduction in methane emissions. In contrast, the 
optimized approach achieves an overall 14% reduction on enteric 
methane emissions.

Despite both approaches achieving significant reductions in 
methane emissions, statistical analysis indicates that both 
approaches are significantly different (Cohen’s d = 0.89, Hedges’ 
g = 0.85), with a large effect size. In other words, the differences 
between the two scenarios are substantial and unlike to be due to 
random variation. Therefore, in the optimized scenario, the feed 
additive achieved a significant higher reduction in enteric 
methane emissions.

3.2 Prediction vs. real feed additive efficacy

Methane emissions decreased significantly in the treated groups 
following the administration of the feed additive compared to the control 
groups; thus, the normalized efficacy column in Table  1 reflects the 
normalized mean percentage change in methane emissions, accounting 
for variations in control and treatment groups. Reductions in methane 
emissions were observed in 11 of 13 farms, with reductions ranging from 
0.1 to 19%, with an overall reduction of 9.86%. In two cases, sites JN2 and 
RZ1 exhibited a slight increase of 1.1% in methane emission.

To test accuracy, we compare the enteric methane emissions with 
the prediction obtained by the AI-driven model (Figure 5). Thus, the 
model accurately predicted the effect of the feed additive at each site. 
When values in the efficacy score (axis x) were higher than 0.6, a higher 
impact of the feed additive in methane reduction (axis y) was observed. 
Thus, sites GR1, AB1, FG1, MP1, and SI1 obtained higher values for the 
efficacy score and were the most positively impacted by the feed 
additive, exhibiting reductions on enteric methane emissions of 13.4, 
9.5, 14.8, 19.9, and 17.7%, respectively (Table 1).

FIGURE 2

Schematic representation of the unsupervised learning phase.

FIGURE 3

Schematic representation of the supervised learning phase paired with validation and prediction steps.
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The statistical analysis of all the sites analyzed corroborates the 
accuracy of the model. Both Kendall’s Tau and the Spearman’s Rho 
metrics (−0.73 and − 0.89 respectively) indicate a strong negative 

monotonic relationship between the model’s predictions and the 
actual methane emissions. In other words, when the predictive score 
was higher for a given site, real enteric methane emissions were 

FIGURE 4

Normalized efficacy distribution for the feed additive, based on the identified k-mers markers, and regressed to fit a normal distribution (the dark Blue, 
denoted as ‘naive’). The Green chart, denoted as ‘optimized’, illustrates the additive’s efficacy across the 50% of farms predicted by our microbiome-
based model to have the highest efficacy. The charts include the appropriate Cohen’s d and Hedge’s g metrics, indicating strong statistical significance 
of the observed effects under optimized conditions.

TABLE 1 Summary of methane emission changes across farms.

Farm CH4 change 
(Treatment)

CH4 change 
(Control)

Normalized efficacy 
ηA,fi

Effect size Cohen’s D

RZ1 27.4% −28.2% 1.1% 0.8 0.14

LV1 18.9% 22.3% −2.8% −9.5 −0.04

YE1 −26.0% −24.3% −2.3% −2.0 −0.03

BT1 4.5% 20.7% −13.4% −20.6 −0.18

AB1 −46.8% −41.2% −9.5% −8.3 −0.10

GR1 121.2% 155.5% −13.4% −47.5 0.11

FG1 −56.6% −49.1% −14.8% −11.6 −0.23

SI1 −38.7% −25.5% −17.7% −13.7 −0.30

MP1 −58.6% −48.3% −19.9% −20.5 −0.23

JN2 102.9% 100.7% 1.1% −2.3 −0.01

YK2 −19.5% −19.4% −0.00 −0.5 −0.00

ST2 59.6% 73.0% −7.7% −15.8 −0.08

TS2 32.3% 42.1% −6.9% −12.8 −0.08

Effect size and Cohen’s D values reflect the strength of the relationship between variables.
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significantly reduced. Conversely, when the predictive score was low, 
minimal reductions in enteric methane emissions were observed, 
thereby validating the accuracy of the model.

4 Discussion

This study successfully validated a novel AI-driven model that 
uses rumen microbiome data to accurately predict the efficacy of a 
commercial feed additive (Agolin) in reducing enteric methane 
emissions. The robustness of this validation is demonstrated by 
various factors addressed in the study, such as the wide 
geographical and climatological diversity across Israel, the different 
types of dairy farms analyzed (Kibbutz and Moshav, or extensive 
vs. familiar), and the varied diets involved on each farm. 
Additionally, our model overcomes traditional biases related to 
taxonomical read assignments and limitations of culture-based 
methods, which are often restricted to a limited number of cow 
rumen microorganisms.

The model’s prediction accuracy validated in this study is 
consistent with validations performed in parallel using different 
types of feed additives (Altshuler et al., 2023; Altshuler et al., 2024). 
Thus, this model can provide a valuable tool for herd management 
and methane mitigation strategies, as it quantifies the impact of 
feed additives on enteric methane emissions. Therefore, integrating 
our model with any feed additive could help farmers make 
personalized, faster and more informed decisions. Moreover, the 
model’s nature allows for the integration of new data and adaptation 
to the changing conditions in any dairy. Another significant 
advantage of the tested model is its to be  it can also be  widely 
adapted to diverse data sources, such as cows, sheep, soil, or even 
humans. It can also be modified to assess other critical microbiome-
related outcomes, such as disease risk or productivity, facilitating 
early interventions and improving livestock health and 
operational efficiency.

The model’s effectiveness was supported by its consistent 
performance across different herds, suggesting that the patterns 
observed from reads and k-mers follow a power-law distribution—a 
relationship where one quantity changes as a fixed power of another, 
indicating consistent patterns across different scales (see Altshuler 
et al., 2023, section 5.8.3), which suggests that our results follow a 
more universal principle, and they are not result of coincidence.

The feed additive here assessed exhibits an important capacity to 
reduce enteric methane emissions, reaching in some farm reductions 
close to 20%, which is higher than the previously reported reductions on 
methane emissions (Becker et al., 2023; Bach et al., 2023); however also 
it was detected in some cases in which the effect was negligible or even 
slightly higher than the control group. This point is extremely important 
because our model predicted this phenomenon, generating very low 
(close to zero) predictive scores for these sites, despite the lack of clear 
differences observed in-situ between these and the other diaries.

Despite these promising results, the study presents some 
limitations. Efforts to reduce bias by categorizing cows based on age, 
lactation period, and milk yield remain crucial, as individual 
differences in diet, and environment may still influence microbiome 
composition and methane production. Additionally, potential 
mislabeling during the supervised learning phase could affect the 
model’s accuracy, highlighting the need for precise data collection. 
Future research should address these issues more thoroughly. 
Additionally, it is evident that the results obtained here apply only to 
the tested feed additive; therefore, the model needs to undergo further 
validation with other widely used feed additives.

5 Conclusion

This AI-driven model effectively predicted the impact of the tested 
feed additive on enteric methane emissions, even in cases where the effect 
was minimal. As the model undergoes further validation with additional 
methane-mitigating feed additives, it will enable the development of 
customized feed additive strategies at the farm level, helping farmers 
optimize both environmental sustainability and productivity. Moreover, 
the model’s flexibility extends its application to forecasting other critical 
microbiome-related outcomes, such as disease risk and productivity. 
Therefore, this model holds significant potential for global impact by 
helping farmers and nutritionists optimize personalized strategies in 
response to emerging methane reduction policies.
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FIGURE 5

Predictive model accuracy for the tested feed additive. The scatter 
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displayed, serving as statistical measures of correlation between the 
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2010) and supervised by a qualified veterinarian. The staff responsible 
for methane measurements were carefully trained to use the methane 
measuring instrument before performing in-situ measurements.
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