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The diversity of urban residents’ dietary in China has increased with socioeconomic 
development. However, still there is a prominent problem of unbalanced and 
inadequate regional development of diet. Exploring the characteristics of the 
dietary structure of urban residents in China as expressed by Dietary Structure 
Index (DSI) holds greater significance for healthier China. This paper analyzes 
the spatiotemporal differentiation and influencing factors of the DSI of Chinese 
urban residents, and concludes that from 2015 to 2022, the average values of 
DSI of Chinese urban residents showed a significant upward trend. Specifically, 
the comprehensive DSI and animal-based DSI still have a significant gap with the 
scientifically recommended balanced dietary pattern, while the plant-based DSI 
is generally higher. There is a clear regional pattern in the spatial distribution of 
the DSI of urban residents in China, which generally shows a decreasing trend 
from northeast to southwest. The spatial agglomeration of the comprehensive 
DSI and the animal-based DSI are significantly higher than the plant-based DSI. 
In general, the DSI of Chinese urban residents is positively correlated with the 
level of consumption, urbanization, and education, while negatively correlated 
with the consumer price index. We propose promoting plant-based diets and 
reducing excessive meat consumption in high-DSI regions, while leveraging 
urban infrastructure to deliver nutrition education and providing subsidies for 
healthier food options in markets. In low-DSI regions, interventions should focus 
on incentivizing local production of vegetables and legumes through agricultural 
subsidies, expanding cold-chain logistics to enhance the distribution of perishable 
foods, and establishing community-based nutrition programs to improve residents’ 
food literacy, and argue that these are the potential measures to optimize the 
dietary structure of Chinese urban residents.
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1 Introduction

Dietary structure, a strong measure of the state of national nutrition and health, is 
described as the variety, quantity, and proportion of foods in the human diet (Yu et al., 2024). 
Dietary structure of a nation holds greater significance in developing food consumption 
strategies and policies (Nurhasan et al., 2024). Since the reform and opening-up during the 
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1980s, China’s economy has developed rapidly, and the dietary 
structure of urban residents has continuously transformed. Especially 
after crossing the stage of basic needs of food among Chinese 
populations, the types of food consumption have shown a diversified 
developmental trend (Shi et  al., 2022). However, unprecedented 
dietary structure change can lead to malnutrition causing 
cardiovascular disease, and obesity (Li S. et al., 2024; Li Y. et al., 2024). 
According to the United Nations’ 2030 Agenda for Sustainable 
Development and the Decade of Action on Nutrition (2016 ~ 2025), 
hunger must be  eliminated, and all forms of malnutrition should 
be prevented by 2030 (UN, 2015; WHO, 2017). However, based on the 
three dietary standards defined by the UN-Food and Agriculture 
Organization, approximately 141 million people in China were unable 
to achieve a healthy (high) dietary level by 2022 with increased rate of 
malnutrition cardiovascular related mortality (FAO, 2023). The 
obesity rate among residents aged 18 and above in China is as high as 
34.35% (Pan et al., 2021). Exploring the dietary structure has become 
an important filed of research today to address both malnutrition and 
excessive nutrition among residents of highly urbanized China.

The research on dietary structure in developed countries initially 
emerged from disease treatment, demonstrating that optimizing 
plant-based diets can positively prevent and manage conditions like 
overweight, obesity, and hypertension (Ha et al., 2022; Nunes et al., 
2020; Padwal et al., 2016). Subsequent studies on national dietary 
patterns revealed distinct models: Western model, dominated by high-
protein animal products (e.g., meat, dairy) and characterized by high 
calories, fat, and protein (Ax et  al., 2015); the Japanese model, 
emphasizing balanced intake of calories, fats, and proteins amid rising 
obesity concerns (Imaeda et al., 2015); and Mediterranean model, 
defined by high fiber, vitamins, and low saturated fats (Shen et al., 
2015). These diverse dietary paradigms—rooted in health priorities, 
economic contexts, and cultural norms—collectively illustrate the 
food environment theory, where accessibility, affordability, and 
cultural preferences shape consumption (Turner et  al., 2018). In 
China, rapid urbanization has amplified spatial mismatches: 
developed coastal regions exhibit animal-based dietary dominance, 
while remote areas face supply chain barriers to diverse nutrition 
(Yang and Zhen, 2019). Such disparities align with spatial dependency 
theory, positing that geographic and economic proximity drives 
clustered dietary behaviors (Anselin, 1988).

In recent years, with increased concerns to dietary health in 
China, some relevant studies have analyzed changing trends in the 
dietary structure of residents. Those studies have found that the 
diet of Chinese residents has gradually shifted from plant-based 
foods to animal-based foods, but plant-based foods are still 
dominant (Wang et al., 2023; Yuan et al., 2019; Li S. et al., 2024; Li 
Y. et al., 2024). In the context of factors influencing the dietary 
patterns, some scholars have made qualitatively studies on the 
impact of level of socio-economic development, and urbanization, 
on food consumption of urban and rural residents in China, and 
suggest that changing residents’ unreasonable concepts about food 
consumption and increasing residents’ income levels to improve 
dietary nutrition (Wang, 1998; Chen, 2012; Yang and Zhen, 2019). 
Studies such as the use of conventional econometric models 
including AIDS, multiple logistic regressions, and grey relational 
analysis on income, price, and region, have further advanced the 
understanding of the preferences of residents in food consumption 
in China (Xiong et al., 2019). Lately, the focus on provincial or 

regional scale studies such as the Qinghai-Tibet Plateau (Gao 
et al., 2017; Wang et al., 2021), Northern pastoral areas (Yang and 
Zhen, 2019), Shandong (Li et al., 2018) and Beijing (Xiong et al., 
2019) have significantly improved the condition of dietary 
structure and nutritional characteristics of residents in China. 
However, overall, research gaps remain in the following aspects: 
the unbalanced and inadequate regional development of diet in 
China remains unclear (Wang, 2012). The conventional regression 
model fails to include spatial heterogeneity of variables influencing 
consumptions. Besides, at the macro level, the research on the 
dietary structure of Chinese urban residents is relatively weak 
failing to grasp a trend (Zhang et  al., 2021). As the China’s 
urbanization rate has surpassed 65.22% (NBSC, 2022) with 
differences among cities, requirement of the assessment of 
spatiotemporal dietary structures across cities has 
increased substantially.

This study addresses the key research gaps mentioned above 
through three innovative approaches: First, a Dietary Structure Index 
(DSI) will be constructed for 31 provincial-level administrative units 
(2015 ~ 2022) based on the Chinese Dietary Guidelines for Residents 
(CNS, 2023), aiming to reflect the unbalanced and inadequate 
regional development of diet in China. Second, spatiotemporal 
differences in the DSI of urban residents will be mapped to explore 
the overall dietary nutrition balance and its spatial correlation 
characteristics. Third, spatial econometric model will be employed to 
analyze the driving factors of urban residents’ DSI, avoiding 
regression bias caused by spatially correlated differences. This 
research will provide valuable insights for improving the dietary 
nutrition structure of urban residents in China and formulating food 
safety policies.

2 Materials and methods

2.1 Conceptual framework

The schematic flow chart depicted in Figure  1 illustrates the 
conceptual framework of this study. First, the Entropy Weight 
TOPSIS method was employed to construct an evaluation system for 
the DSI of Chinese urban residents from two dimensions: animal-
based diets and plant-based diets. This process generated a 
comprehensive DSI, an animal-based DSI, and a plant-based 
DSI. Subsequently, the kernel density estimate method was utilized 
to analyze the overall evolutionary patterns of Chinese urban 
residents’ DSI from three aspects: position, kurtosis, and distribution 
Extensibility. Besides, the exploratory spatial data analysis method 
was adopted to examine the spatial distribution, spatial correlation, 
and spatial agglomeration characteristics of the DSI. Next, a spatial 
econometric model was applied to quantify the influence of 
socioeconomic factors on the DSI of Chinese urban residents. Finally, 
based on the research findings, discussions are conducted and 
research conclusions are summarized.

2.2 Construction of the indicator system

Consuming diverse foods is not only a critical component of a 
balanced diet but also a fundamental prerequisite for establishing a 
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reasonable dietary structure. This study builds upon the recommended 
balanced dietary patterns outlined in the Chinese Dietary Guidelines 
for Residents (2022). Leveraging the most recent accessible data, 
we adopted the food classification system in the Chinese Statistical 
Yearbook and existing food-related research methodologies (Zhang 
et al., 2021; Wang et al., 2022). Guided by the dietary habits of urban 
residents across different regions of China, we  constructed an 
evaluation system for the DSI encompassing comprehensive, animal-
based, and plant-based food categories for Chinese urban residents. 
Subsequently, the DSIs for Chinese urban residents were calculated 
(Table 1).

2.3 Methods

2.3.1 Entropy weight TOPSIS method
Compared with the Analytic Hierarchy Process or Principal 

Component Analysis method, the Entropy Weight TOPSIS 
method has the characteristics of avoiding subjective weighting 
bias and being suitable for dynamic evaluation of multiple 
indicators (Li S. et al., 2024; Li Y. et al., 2024). The calculation steps 
are as follows:

Firstly, indicator weighting. The weights obtained by the entropy 
weight method are assigned to a vector matrix { }= 1 2 3, , , ,jW w w w w  
to form a weighted norm matrix { }= xijX , where = × ,ij j ijx w z
represents the weighted calculated index value, ijz represents the 
specific index value after standardization, and jw is the weight 
determined by the entropy weight method.

Then, determine the positive ideal solution and the negative ideal 
solution. The positive ideal solution used in this article is the 

maximum value among all indicators after the first step of calculation, 
and the negative ideal solution is the minimum value, that is, the 
positive ideal solution { }+ =X ax ,jM  and the negative ideal solution 

{ }− =X min ,j i  and j represent the research unit and research 
indicators, respectively.

Finally, calculate the DSI of Chinese urban residents. After 
obtaining the positive and negative ideal solutions for each indicator 
using the above method, the Euclidean distance calculation formulas 
for Equations 1, 2 are used to calculate the distances +

aijS  and −
aijS  

between each scheme and the positive and negative ideal solutions, 
and then the relative closeness aijS  between each scheme and the 
positive ideal solution is calculated.

FIGURE 1

Flow chart of this study.

TABLE 1 Evaluation system for the DSI of urban residents in China.

Target 
layer

Rule 
layer

Index 
layer

Lower 
limit 

(kg/a)a

Upper 
limit 

(kg/a)b

Average 
(kg/a)c

DSI

Plant 

based-

food

Grain 73.0 109.5 91.3

Vegetable 109.5 182.5 146.0

Fruit 73.0 127.8 100.4

Edible oil 9.1 11.0 10.1

Animal-

based 

food

Meat 15.6 26.0 20.8

Aquatic 

products

15.6 26.0 20.8

Eggs 14.6 27.4 21.0

Milk 109.5 182.5 146.0

a, b, and c represent the upper limit, lower limit, and average consumption of various foods 
recommended in the Chinese Dietary Guidelines for Residents NSCPRC, 2023.
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Formula for calculating Euclidean distance:
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Proximity calculation formula as Equation 3:
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2.3.2 Kernel density estimation
Kernel Density Estimation (KDE) was employed to analyze the 

temporal evolution of DSI distributions, as it provides a 
non-parametric visualization of data density and polarization trends. 
Compared to histograms or quantile plots, KDE smooths data noise 
through bandwidth selection, offering a clearer depiction of 
distribution shifts over time (Yang et  al., 2022). This paper uses 
Gaussian kernel function to observe the dynamic distribution and 
polarization phenomenon of the DSI of Chinese urban residents (Yang 
et al., 2022; Roy and Chowdhury, 2025). This formula is as Equation 4:
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Where ( )nf x  represents the estimated kernel density of the DSI; − ix x  
represents the distance from the estimated point to the sample point; n is 
the number of study areas; h is bandwidth; k() represents the weighted 
kernel function. In this study, a Gaussian kernel function was combined 
with the Chinese urban residents’ DSI as the sample point to create a fitted 
cooperative graph. Based on the morphology, peak value, fluctuation, and 
trend of the obtained graph, a comparative observation was conducted to 
analyze the overall evolution law of the Chinese urban residents’ DSI.

2.3.3 Exploratory spatial data analysis
This paper uses the Global Moran Index (GMI) to analyze the 

overall agglomeration of China’s urban residents’ DSI, GMI quantifies 
overall clustering, critical for validating the hypothesis that dietary 
patterns exhibit regional dependencies due to shared socioeconomic 
or environmental factors (Lu et al., 2022; Roy et al., 2023; Roy et al., 
2024a), This formula is as Equation 5:
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Where GMI represents the global autocorrelation index, n 
represents the number of research units, ix  and jx  represent the DSI 

values at spatial positions i and j, and ijw  represents the spatial 
weight matrix.

Global autocorrelation represents the overall agglomeration of 
the research area, while local autocorrelation represents the 
correlation of specific spatial ranges (Roy et al., 2024b). This paper 
uses the Local Indicators of Spatial Association (LISA) to identify 
local spatial agglomerations, which focuses solely on hotspot 
detection, LISA provides a dual classification of spatial association, 
capturing both similarity and dissimilarity (Roy et  al., 2022; 
Majumder et al., 2023a; Majumder et al., 2023b). The formula is 
as follows:
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Where iLISA  represents the local autocorrelation statistic, and the 
meanings of ix , and jx  are ijw  as shown in Equation 5. Generally, a 

iLISA  value less than 0 indicates the spatial clustering of dissimilar 
values, otherwise, it’s the opposite.

2.3.4 Spatial econometric model
Spatial econometric models account for spatial dependence and 

heterogeneity, capturing how observations in nearby locations 
influence each other, which traditional models often ignore. The 
Spatial Econometric Model including three types: Spatial Lag Model 
(SLM), Spatial Error Model (SEM), and Spatial Durbin Model (SDM) 
(Hou et al., 2024), the formula is as follows:

The SLM is defined as Equation 7:
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The SLM is defined as Equation 8:
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The SLM is defined as Equation 9:
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where i and t represent provinces and research years, respectively; 
θ represents random disturbance term; ρ represents spatial auto 
regression coefficient; ξ represents spatial error coefficient; α0,ω, φ, τ 
and σ represent the spatial regression coefficients of independent 
variables; and Wij is an element in the adjacency space weight matrix 
W, representing the spatial correlation between province i and 
province j.
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2.4 Data sources

Considering the continuity and accessibility of food 
consumption data, the research period selected in this paper was 
from 2015 to 2022. All data were sourced from the China Statistical 
Yearbook (NBSC, 2016–2023a), China City Statistical Yearbook 
(NBSC, 2016–2023b), China Social Development and Statistical 
Bulletin (NBSC, 2016–2023c). As this study only has missing food 
consumption data for individual years in Xinjiang and Tibet, and 
linear imputation is suitable for small-scale missing data with 
higher computational efficiency compared to kriging or machine 
learning methods, linear interpolation was used to supplement 
the data.

3 Results

3.1 Spatiotemporal changes of the DSI in 
Chinese urban residents

To comprehensively analyze the differences between the food 
consumption of Chinese urban residents and the recommended 
balanced dietary pattern in the Chinese Dietary Guidelines for 
Residents (2022), we explored the spatiotemporal characteristics of 
the Chinese urban residents’ DSI from three aspects: comprehensive 
DSI, animal-based DSI, and plant-based DSI.

3.1.1 Temporal evolution characteristics
As shown in Table 2, the average comprehensive DSI, animal-

based DSI, and plant-based DSI of Chinese urban residents exhibited 
a significant upward trend from 2015 to 2022, increasing from 0.586, 
0.530, and 0.821  in 2015 to 0.669, 0.610, and 0.852  in 2022, 
respectively. Notable improvements were observed in provinces such 
as Gansu, where the comprehensive DSI rose from 0.655 in 2015 to 
0.854 in 2022, Shaanxi with an increase from 0.540 in 2015 to 0.792 in 
2022, and Xinjiang where the index grew from 0.595  in 2015 to 
0.837  in 2022. These advancements can likely be  attributed to 
enhanced agricultural subsidies, the expansion of cold-chain logistics, 
and the dietary diversification driven by urbanization. In contrast, 
Beijing and Shandong experienced declines in their comprehensive 
DSI values, from 0.960 in 2015 to 0.893 in 2022 and from 0.984 in 
2015 to 0.855 in 2022, respectively. These decreases may reflect a shift 
toward plant-based diets in high-income regions or the impact of 
policy-driven reductions in animal-based in 2022 food consumption. 
Provinces with historically low indices, including Guizhou and 
Hainan, showed only marginal progress, with their comprehensive 
DSI increasing from 0.190 in 2015 to 0.239 in 2022 and from 0.189 in 
2015 to 0.244 in 2022, respectively. This suggests the persistence of 
structural barriers such as limited market access or insufficient 
nutrition education in these areas.

Significant improvements in plant-based DSI were noted in Tibet 
and Qinghai, rising from 0.000 in 2015 to 0.354 in 2022 and from 
0.610  in 2015 to 0.426  in 2022, respectively, which can likely 
be  attributed to targeted agricultural interventions. Conversely, 
Guangdong and Fujian saw declines in their plant-based DSI, from 
0.827 in 2015 to 0.679 in 2022 and from 0.804 in 2015 to 0.601 in 2022, 
respectively, possibly linked to urbanization-induced dietary 
transitions that favor animal-based foods. These regional variations 

underscore the complex interplay of socioeconomic development, 
infrastructure investments, and localized policy efficacy in shaping 
dietary patterns. Overall, while the narrowing gap between provincial 
DSI indicates reduced disparities, challenges remain in aligning food 
consumption with national dietary guidelines across all regions.

Further we  selected data from the first and last years of the 
research period to draw a kernel density map for the comprehensive 
DSI, animal-based DSI, and plant-based DSI, and analyzed the 
evolutionary trend of Chinese urban residents (Figure  2). The 
density function of the comprehensive DSI, animal-based DSI, and 
plant-based DSI of Chinese urban residents under positional 
perspective showed a rightward shift trend (Figures 2a,b), indicating 
that the dietary consumptions of urban residents have followed the 
recommended standard of balanced dietary structure pattern in 
China. The diversity of residents’ dietary has also increased over the 
study period. Mainly the density function curves of the 
comprehensive DSI and animal-based DSI have a large rightward 
shift (Figures  2a,b), indicating their rapid development. The 
relatively small rightward shift of the density function of the plant-
based DSI (Figure  2c) suggests that the plant-based food 
consumption among urban residents in China is generally high 
during the study period.

From the perspective of kurtosis, the peak kernel density values 
of the density function curve for the comprehensive DSI, animal-
based DSI, and plant-based DSI of Chinese urban residents during the 
study period showed an upward trend with unimodal distribution 
(Figures 2a,b). Specifically, the kurtosis of the density function curves 
for the comprehensive DSI and animal-based DSI of Chinese urban 
residents increased from 1.48 and 1.26 in 2015 to 2.12 and 1.74 in 
2022, respectively indicating their low values distribution with the 
wider gap between them in the recommended balanced dietary 
pattern. In the meanwhile, the width of the density function curve has 
narrowed (Figures 2a,b), indicating that the degree of difference in the 
comprehensive DSI and animal-based DSI between different provinces 
has decreased. Besides, although the kurtosis of the density function 
curve of the plant-based DSI for Chinese urban residents has 
increased, the amplitude is relatively small (Figure 2c), due to the 
relatively stable consumption of plant-based foods by urban residents.

From the perspective of distribution extensibility as shown by the 
left and right tails of the density curves, there was a trend of elongation 
and thinning of the comprehensive DSI and animal-based DSI in the 
left tail (Figures 2a,b). Such trend reflects the improved comprehensive 
DSI and animal-based DSI of Chinese urban residents. Meantime, 
provinces with low level DSI decreased gradually narrowing the gap 
with balanced dietary structure pattern. The right tail also showed an 
extended trend and thinning (Figures 2a,b), reflecting a slight decrease 
in the comprehensive DSI and animal-based DSI. Provinces such as 
Beijing, Tianjin, Liaoning, and Shandong had a high level of both 
indices (Table 2) due to the increase in the proportion of plant-based 
diets in these provinces (NBSC, 2016–2023a). The plant-based DSI 
showed an upward trend on the left side of the curve (Figure 2c), 
reflecting the increased consumption structure among urban residents.

3.1.2 Spatial evolution characteristics
We selected the first and last years to draw spatial distribution 

maps of the comprehensive DSI, animal-based DSI, and plant-based 
DSI, to intuitively and comprehensively analyze the spatial evolution 
characteristics of the DSI. Using ArcGIS 10.8 software data 
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visualization, the DSI of urban residents in the study area was divided 
into five categories: high value (0.86 ~ 1), relative high value 
(0.66 ~ 0.85), middle value (0.46 ~ 0.65), relative low value 
(0.26 ~ 0.45), and low value (0 ~ 0.25) using the equal division method 
(Figure 3).

Figures 3a,b show that the number of high-value areas for the 
comprehensive DSI of urban residents increased from 5 in 2015 to 
7 in 2022, expanding spatially to provinces such as Gansu (northwest 
China) and Inner Mongolia (North China). The distribution pattern 
shifted from clustered adjacency to discrete distribution, with a 
significant expansion in range. The number of relative high-value 

areas rose from 9 in 2015 to 12 in 2022, with their spatial distribution 
similarly transitioning from clustered to discrete patterns. With 
large provinces like Xinjiang (northwest China) and Shanxi (North 
China) transitioning to relative high-value areas, the spatial 
coverage of such regions expanded significantly. The number of 
middle-value areas decreased from 8 in 2015 to 6 in 2022, mainly 
distributed in adjacent clusters across Qinghai (northwest China), 
Sichuan (southwest China), Hubei and Hunan (Central China), and 
Jiangxi and Fujian (East China). The counts of relative low-value 
and low-value areas decreased from 6 and 3 in 2015 to 4 and 2 in 
2022, respectively, though their spatial distribution remained 

TABLE 2 DSI of urban residents in China from 2015 to 2022.

Region Comprehensive DSI Animal-based DSI Plant-based DSI

2015 2022 2015 ~ 2022 
(average)

2015 2022 2015 ~ 2022 
(average)

2015 2022 2015 ~ 2022 
(average)

Beijing 0.960 0.893 0.918 0.951 0.911 0.913 0.995 0.844 0.946

Tianjin 0.945 0.884 0.895 0.930 0.847 0.869 1.000 0.972 0.994

Hebei 0.875 0.839 0.847 0.851 0.836 0.833 0.965 0.844 0.919

Shanxi 0.710 0.796 0.714 0.670 0.749 0.672 0.880 0.943 0.920

Inner 

Mongolia
0.728 0.856 0.794 0.667 0.850 0.759 0.941 0.876 0.946

Liaoning 0.937 0.920 0.911 0.923 0.887 0.893 0.989 0.995 0.980

Jilin 0.666 0.740 0.699 0.596 0.667 0.637 0.933 0.942 0.949

Heilongjiang 0.735 0.798 0.724 0.710 0.742 0.678 0.822 0.939 0.915

shanghai 0.810 0.895 0.848 0.773 0.914 0.829 0.935 0.931 0.933

Jiangsu 0.764 0.795 0.751 0.743 0.760 0.720 0.843 0.891 0.884

Zhejiang 0.539 0.691 0.597 0.448 0.535 0.512 0.904 0.983 0.917

Anhui 0.679 0.738 0.686 0.636 0.668 0.632 0.824 0.922 0.909

Fujian 0.472 0.588 0.524 0.374 0.585 0.475 0.804 0.601 0.732

Jiangxi 0.565 0.586 0.542 0.545 0.524 0.505 0.641 0.768 0.724

Shandong 0.984 0.855 0.923 0.982 0.839 0.911 0.993 0.902 0.973

Henan 0.824 0.786 0.776 0.791 0.692 0.724 0.965 0.978 0.977

Hubei 0.524 0.625 0.524 0.496 0.537 0.462 0.646 0.849 0.825

Hunan 0.381 0.546 0.451 0.292 0.436 0.357 0.835 0.892 0.916

Guangdong 0.377 0.445 0.376 0.281 0.365 0.286 0.827 0.679 0.811

Guangxi 0.323 0.303 0.308 0.204 0.228 0.225 0.900 0.592 0.814

Hainan 0.189 0.244 0.199 0.080 0.121 0.101 0.790 0.598 0.733

Chongqing 0.516 0.697 0.570 0.497 0.703 0.541 0.578 0.676 0.717

Sichuan 0.352 0.586 0.431 0.276 0.449 0.318 0.647 0.865 0.856

Guizhou 0.190 0.239 0.187 0.083 0.132 0.094 0.745 0.563 0.686

Yunnan 0.263 0.327 0.251 0.111 0.163 0.130 0.862 0.813 0.834

Tibet 0.137 0.339 0.189 0.180 0.332 0.198 0.000 0.354 0.152

Shaanxi 0.540 0.792 0.663 0.444 0.710 0.584 0.915 0.985 0.972

Gansu 0.655 0.854 0.761 0.569 0.797 0.708 0.976 0.982 0.965

Qinghai 0.398 0.522 0.442 0.359 0.567 0.430 0.610 0.426 0.518

Ningxia 0.522 0.715 0.543 0.393 0.567 0.433 0.990 0.996 0.970

Xinjiang 0.595 0.837 0.743 0.563 0.795 0.704 0.711 0.962 0.907

Average 0.586 0.669 0.606 0.530 0.610 0.553 0.821 0.852 0.892

Due to the limited space in the table, only the DSI values for the first year, the last year, and the average value throughout the study period are presented.
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relatively stable. Relative low-value areas were primarily 
concentrated in Tibet and Yunnan (southwest China), as well as 
Guangxi and Guangdong (southern China), while low-value areas 
were mainly distributed in Guizhou (southwest China) and Hainan 
(southern China).

Figures 3c,d show that the number of high-value areas for the 
animal-based DSI of urban residents decreased from 5 in 2015 to 4 in 
2022, with the spatial distribution pattern shifting from clustered 
adjacency to discrete distribution. These areas included Beijing (North 
China), Inner Mongolia, Liaoning (Northeast China), and Shanghai 
(East China). The number of relative high-value areas increased from 
6 in 2015 to 13 in 2022, with the spatial distribution forming adjacent 
clusters and the coverage expanding significantly. This expansion 
included Xinjiang, Gansu, and Shaanxi (Northwest China), 
Chongqing (Southwest China), Shandong and Anhui (East China), 
and Hebei and Tianjin (North China). The number of middle-value 
areas decreased from 7 in 2015 to 6 in 2022, encompassing Qinghai 
and Ningxia (Northwest China), Hubei (Central China), and Jiangxi, 
Fujian, and Zhejiang (East China). The number of relative low-value 

areas declined from 8  in 2015 to 4  in 2022, with their spatial 
distribution largely characterized by an east–west pattern across Tibet 
and Sichuan (Southwest China), Hunan (Central China), and 
Guangdong (South China). Low-value areas remained relatively stable 
in distribution, mainly concentrated in Yunnan and Guizhou 
(Southwest China) and Guangxi and Hainan (South China).

Figures 3e,f show that the number of high-value areas for the 
plant-based DSI of urban residents in China increased from 16 in 
2015 to 18 in 2022, with the distribution expanding to provinces such 
as Xinjiang (Northwest China), Heilongjiang (Northeast China), and 
Anhui and Zhejiang (East China). The number of relatively high-value 
areas decreased from 9 in 2015 to 7 in 2022, primarily distributed in 
a circular pattern across Yunnan and Chongqing (Southwest China), 
Hubei (Central China), Jiangxi (East China), and Guangdong (South 
China). The number of middle-value areas declined from 5 in 2015 to 
4 in 2022, with notable spatial distribution shifts, mainly concentrated 
in Guizhou (Southwest China), Guangxi and Hainan (South China), 
and Fujian (East China). While no low-value areas were observed in 
2015, two relatively low-value areas emerged in 2022, located in Tibet 

FIGURE 2

Kernel density plot of DSI for Chinese urban residents in China from 2015 to 2022. a represents the comprehensive DSI kernel density curve; b 
represents the animal- based DSI kernel density curve, c represents the plant- based DSI kernel density curve.
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(Southwest China) and Qinghai (Northwest China). Additionally, the 
low-value areas that existed previously have disappeared.

3.1.3 Spatial differentiation pattern
According to Table  3, from 2015 to 2022, the GMI of the 

comprehensive DSI and animal-based DSI for urban residents in 
China were both greater than 0.5 and significant at the 1% level. The 
GMI of the plant-based DSI was greater than 0.062 and significant at 

the 10% level, indicating that provinces with high or low values of the 
comprehensive DSI, animal-based DSI, and plant-based DSI for urban 
residents tend to agglomeration spatially, especially the spatial 
agglomeration of the comprehensive DSI and animal-based DSI is 
more obvious than that of the plant-based DSI.

Although the GMI indicates significant spatial correlation in the 
DSI of urban residents across different provinces of China, there is no 
specific spatial correlation between provinces in distinct regions. 

FIGURE 3

Distribution of DSI of urban residents in China. a represents the comprehensive DSI; b represents the animal- based DSI, c represents the plant- based 
DSI.
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Therefore, we used LISA to identify that locally significant spatial 
correlations exist in the DSI of urban residents across provinces in 
different regions of China (Figure 4).

Figures 4a,b show that Jilin, Liaoning, Inner Mongolia, Beijing, 
Tianjin, Hebei, Shanxi, Shandong, Jiangsu, and Shanghai were 
clustered as H-H in both 2015 and 2022, while Ningxia, Shaanxi, and 
Henan formed H-H clusters in 2022. H-H provinces represent 
hot-spot areas with higher comprehensive DSI. Qinghai, Sichuan, 
Chongqing (2015), Jiangxi (2022), Guizhou, Yunnan, Guangxi, 
Hunan, Guangdong, and Hainan were categorized as L-L clusters in 
both years, indicating cold-spot areas with lower comprehensive 
DSI. In 2015, Ningxia and Shaanxi were L-H outliers (low-value 
regions surrounded by high-value regions), while Chongqing was an 
H-L outlier (high-value region surrounded by low-value regions), 
both representing dissimilar value clustering.

Figures 4c,d show the H-H cluster distribution of the animal-
based DSI, including Jilin, Liaoning, Inner Mongolia, Beijing, Tianjin, 
Hebei, Shanxi, Shandong, Jiangsu, and Anhui in 2015, and Shaanxi 
in 2022. H-H provinces served as hot-spot areas with higher animal-
based DSI. Sichuan, Chongqing, Yunnan, Guizhou, Guangxi, Hunan, 
Guangdong, and Hainan (2015), along with Jiangxi (2022), formed 
L-L clusters with lower animal-based DSI. Ningxia and Shaanxi 
(2015) and Ningxia (2022) were L-H outliers, while Jiangxi (2015) 
and Chongqing (2022) were H-L outliers, indicating negative local 
spatial autocorrelation due to dissimilar value clustering.

Figures 4e,f show the H-H cluster distribution of the plant-based 
DSI, including Heilongjiang in 2015 and Jilin, Liaoning, Inner Mongolia, 
Beijing, Tianjin, Hebei, Shanxi, Shandong, Anhui, and Shaanxi in 2022. 
H-H provinces were hot-spot areas with higher plant-based DSI. Tibet 
(2015) and Yunnan, Guangxi, Guangdong, and Hainan (2022) formed 
L-L clusters with lower plant-based DSI. No H-L or L-H clusters were 
observed for the plant-based DSI in either 2015 or 2022.

3.2 Influencing factors of DSI in Chinese 
urban residents

3.2.1 Selection of influencing factors
We referred relevant research from various authors (Wang, 1998; 

Chen et al., 2012; Yang and Zhen, 2019) for consumption capacity, 
consumer price index, urbanization level, and education level as 
influencing factors of the DSI of Chinese urban residents. The 

comprehensive DSI was chosen as the dependent variable, and the 
selected indicators influencing the consumption are defined as 
follows (Table 4).

 (1) Consumption capacity (CC) is characterized by the per 
capita disposable income of urban residents. Assuming all 
other factors remain constant, an increase in income level 
will inevitably lead to changes in the dietary level, 
purchasing power, and dietary choices of urban residents. 
Higher requirements will be placed on the nutrition and 
safety of diets, and the dietary structure will shift from a 
plant-based diet dominated by cereal products to an 
animal-based diet dominated by meat, eggs, and milk, and 
then to quality-of-life products, thereby promoting the 
development of a balanced dietary structure.

 (2) Consumer price index (CPI) is an index that reflects the 
price changes such as dietary purchased by urban residents 
from the perspective of consumers. It can reflect the trend 
and degree of changes in the price level of dietary purchased 
by urban residents. An increase in the consumer price 
index may affect the ability and desire of urban residents to 
purchase a corresponding dietary, thereby hindering the 
formation of diverse dietary among urban residents.

 (3) Urbanization level (UL) is characterized by urbanization 
rate, which is the proportion of urban population to total 
population. With the improvement of urbanization level, 
residents’ consumption of non-staple and processed foods 
will increase, while primary food consumption will 
decrease. The consumption of meat, eggs, and dairy 
products will increase, promoting the gradual 
diversification of urban residents’ dietary consumption. In 
this process, urban residents will actively or passively 
engage in nutritional balance and dietary structure 
optimization, achieving the transformation and upgrading 
of urban residents’ dietary structure.

 (4) Educational level (EL) is characterized by the number of 
higher education students per 100,000 population. The 
level of education and culture can cause differences in the 
food consumption concepts, dietary habits, dietary culture, 
and absorption of various nutrients among urban residents, 
which affects their dietary behavior choices. Urban 
residents with higher levels of education have higher health 

TABLE 3 GMI values of DSI in China from 2015 to 2022.

Year The GMI of 
comprehensive DSI

P-value The GMI of 
animal-based 
DSI

P-value The GMI of 
plant-based 
DSI

P-value

2015 0.642 0.000 0.648 0.000 0.200 0.000

2016 0.588 0.000 0.599 0.000 0.159 0.000

2017 0.541 0.000 0.577 0.000 0.207 0.000

2018 0.598 0.000 0.624 0.000 0.151 0.003

2019 0.523 0.000 0.547 0.000 0.142 0.010

2020 0.518 0.000 0.526 0.000 0.137 0.016

2021 0.528 0.000 0.557 0.000 0.062 0.081

2022 0.501 0.000 0.507 0.000 0.200 0.002
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awareness and nutritional knowledge reserves and attach 
importance to the intake of healthy dietary such as 
vegetables and fruits products, which has a positive impact 
on the formation of a balanced dietary structure.

3.2.2 Analysis of influencing factors
Due to significant discrepancies in data across indicators, 

logarithms were applied to all variables before model estimation to 
mitigate heteroscedasticity. Regression analysis of the influencing 

factors on the comprehensive DSI for urban residents in China was 
conducted using Stata 17. The OLS model exhibited a goodness-of-fit 
(R2) of 0.353 (Table  5), indicating a moderate level of model fit. 
Among the selected indicators, only three variables—consumption 
capacity (CC), urbanization level (UL), and education level (EL)—
were statistically significant (p < 0.05) (Table 5). Given that the OLS 
model does not account for spatial correlation, the construction of a 
spatial econometric model was deemed necessary to derive more 
robust conclusions. The GMI in Table 3 revealed significant spatial 

FIGURE 4

LISA cluster map of DSI of urban residents in China from 2015 to 2022. a represents the comprehensive DSI cluster; b represents the animal- based DSI 
cluster, c the plant- based DSI cluster.
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agglomeration effects in the comprehensive DSI for Chinese urban 
residents, suggesting that traditional ordinary least squares (OLS) 
regression models are inadequate and necessitating the adoption of 
spatial econometric model. When using spatial econometric models 
to analyze the magnitude of influencing factors, it is necessary to 
compare the SLM, SEM, and SDM to avoid the risk of subjective 
model specification and ensure that the results of spatial econometric 
analysis are not only statistically significant but also have realistic 
explanatory power. As shown in Table 5, results from the spatial error 
LR test, spatial lag LR test, and Wald test collectively identified the 
SDM as the optimal specification, as all tests rejected the null 

hypothesis that the SDM could be simplified to the SLM or SEM. A 
Hausman Test with results below zero (or passing the significance test) 
led to the rejection of the random-effects model. Given that the SDM 
accommodates three types of fixed effects—time-fixed, space-fixed, 
and space–time-fixed, an LR test was employed to select the most 
appropriate model. The test supported the adoption of the space–time 
fixed-effects model. Consequently, the SDM with space–time fixed 
effects was identified as the best-fitting model, and its parameter 
estimation results were subsequently analyzed and discussed.

The SDM results revealed relationships between influencing 
factors and the DSI. CC exhibited a positive coefficient (0.125), though 

TABLE 4 Statistical description of the variables.

Variable Unit Obs Min Max Mean SD

Comprehensive DSI – 248 0.098 0.984 0.606 0.015

Consumption capacity Yuan 248 23,767 84,034 38,876 743.641

Consumer price index % 248 96.6 113.9 103.154 0.210

Urbanization level % 248 27.74 89.93 60.944 0.755

Educational level Person 248 1,275 5,428 2881.782 53.240

TABLE 5 Estimation results of spatial regression model.

Determinants OLS SLM SEM SDM

C
−0.208

(−0.118)
– – –

ln CC it

0.153**

(2.449)

0.098

(0.634)

0.100

(0.636)

0.125

(0.803)

ln CPI it

−0.316

(−0.845)

−0.285

(−1.196)

−0.292

(−1.196)

−0.171

(−0.672)

ln UL it

0.653***

(6.899)

0.624***

(4.423)

0.634***

(4.371)

0.244*

(1.691)

ln EL it

0.154***

(2.671)

0.165***

(3.118)

0.166***

(3.101)

0.163***

(3.190)

w × ln CC it – – –
0.125

(0.115)

w × ln CPI it – – –
−0.767

(−0.520)

w × ln UL it – – –
4.191***

(4.620)

w × ln EL it – – –
0.692*

(1.671)

R2 0.353 0.277 0.249 0.462

Sigma2 –
−0.193

(−0.562)

0.002***

(11.135)

0.002***

(11.138)

Log- likelihood – 427.8480 427.1698 442.2163

Moran’s I 9.829*** – – –

LM-lag 53.702*** – – –

LM-error 10.205*** – – –

Wald test spatial lag – – – 29.97***

LR test spatial lag – – – 111.84***

Wald test spatial error – – – 29.57***

LR test spatial error – – – 66.08***

*, **, *** represent significance levels of 10%, 5%, and 1%, respectively.
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statistically insignificant, potentially due to regional income disparities 
or collinearity with urbanization, as higher incomes in developed 
regions may already align with diversified diets, leaving limited 
marginal effects. The negative coefficient of the CPI (−0.171, p < 0.1) 
suggests that rising food prices hinder dietary diversity, likely by 
reducing affordability of nutrient-rich foods, particularly in 
low-income regions. UL showed a significant positive effect (0.244, 
p < 0.1), aligning with studies indicating that urban environments 
enhance access to diverse foods and promote shifts toward balanced 
diets through improved supply chains and dietary awareness. 
Conversely, the negative coefficient of EL (0.163, p < 0.01) appears 
counterintuitive but may reflect educated populations prioritizing 
quality over quantity—opting for nutrient-dense, plant-based foods 
over excessive animal products, thereby narrowing deviations from 
recommended guidelines. Spatially, neighboring regions’ urbanization 
(4.191, p < 0.01) and education (0.692, p < 0.1) exerted positive 
spillover effects, implying clustered policy interventions could amplify 
benefits. These findings underscore the need for regionally tailored 
strategies: boosting rural incomes and stabilizing food prices to 
mitigate CPI impacts, leveraging urbanization’s infrastructure 
advantages, and integrating nutrition education to align dietary 
behaviors with scientific guidelines.

4 Discussion

From an overall perspective of China, there is a clear regional 
differentiation pattern in the DSI of urban residents, which generally 
shows a decreasing trend from China’s northeast to southwest region. 
The formation and changes of the DSI of urban residents across China 
are not only related to various factors such as consumption capacity, 
consumer price index, urbanization level, and education level, but also 
the impact of changes of the regional natural environment, external 
transportation convenience, and differences in the dietary culture 
(Yin, 2013). As the climate in Northeast China is cold and the winter 
is relatively long, people are accustomed to storing dry vegetables for 
winter consumption, such as pickled dishes. At the same time, to resist 
severe cold, residents living in high latitude areas consume high 
calorie diet such as meat. A diversity in the consumption of both 
plant-based and animal-based foods could be the reason why the DSI 
of northern provinces would become relatively high. For example, 
except for the low altitudinal area, such as the Huangshui Valley, the 
Tibet autonomous region in southwest China, where extensive 
livestock farming including the rearing of sheep and yaks is common 
indicating a predominant meat diet in the region (Gao et al., 2017). 
The meat consumption in urban areas of China is dominated by beef 
followed by mutton, but the consumption pattern is largely influenced 
by the changes in the local natural environment and inconvenient 
transportation, imbalanced demand and supply of various types of 
food including vegetables, eggs, and poultry often causing insufficiency 
of diet among consumers in the Tibetan autonomous region. Besides, 
Tibetan Buddhists do not consume fish further the improving the DSI 
of the residents yet in a relatively low level of change compared to 
other regions (Figure 3).

The spatial clustering of DSI provides actionable insights for 
targeted policy interventions. In high-DSI regions (e.g., 
northeastern and coastal provinces such as Beijing, Liaoning, and 
Shandong), where dietary diversity approaches recommended 
guidelines but overreliance on animal-based foods persists, 

policymakers should prioritize public health campaigns to promote 
plant-based diets and reduce excessive meat consumption, 
leveraging urban infrastructure for nutrition education and 
subsidizing healthier food options in markets. For instance, cities 
like Beijing and Shanghai could integrate dietary guidelines into 
school curricula and workplace wellness programs, while offering 
tax incentives for retailers to stock plant-based alternatives (Wang 
et al., 2023). Conversely, in low-DSI clusters (e.g., southwestern and 
remote regions such as Yunnan, Guizhou, and Tibet), where dietary 
imbalances stem from limited access to diverse foods, interventions 
must address structural barriers: in addition to incentivizing local 
production of vegetables and legumes through agricultural 
subsidies (e.g., grants for greenhouse farming in Tibet), promoting 
the commercialization of traditional and autochthonous foods 
could enhance dietary diversity while aligning with sustainable 
food systems. For example, Yunnan’s ethnic minority regions could 
develop geographical indication products for traditional crops like 
wild mushrooms and colored rice, leveraging e-commerce platforms 
to expand market access (Pretty et al., 2018). In Tibet, integrating 
highland barley—a climate-resilient staple with cultural 
significance—into urban food supply chains through public-private 
partnerships could improve both nutritional diversity and local 
agricultural livelihoods (Bellemare et al., 2020). Such initiatives not 
only address food accessibility but also preserve agro-biodiversity 
and cultural heritage, supporting long-term sustainability.

Further measures include expanding cold-chain logistics to 
enhance perishable food distribution (Xue et al., 2021), establishing 
community-based nutrition programs to improve food literacy (Yang 
and Zhen, 2019), and fostering cross-regional collaborations for 
neighboring provinces with contrasting DSI levels (e.g., H-L outliers 
like Chongqing), such as joint subsidies for interprovincial food 
supply chains or shared public health initiatives (Zhang et al., 2021). 
By aligning zoning regulations (e.g., prioritizing markets in low-DSI 
areas) and fiscal policies (e.g., tax breaks for nutrient-dense food 
retailers) with spatial agglomeration patterns, China can bridge 
regional dietary gaps while offering a model for other nations 
navigating similar transitions (Meng et al., 2020). These measures 
directly address the spatiotemporal disparities identified in the study, 
ensuring that policy actions are both geographically precise and 
scalable to national goals.

This study has several limitations that warrant consideration. 
First, the analysis relied on provincial-level data from China (2015–
2022), which may overlook intra-regional heterogeneity and short-
term fluctuations in dietary patterns. Second, the exclusion of granular 
food categories (e.g., processed foods, micronutrient intake) limits the 
holistic assessment of dietary quality. Third, spatial econometric 
models assume static spatial relationships, potentially underestimating 
dynamic interactions across regions. While findings are context-
specific to China’s urbanization and policy landscape, the mechanisms 
linking socioeconomic factors (e.g., urbanization, education) to 
dietary transitions may hold relevance for other developing nations 
undergoing similar nutritional shifts. For instance, regions in 
Southeast Asia or Sub-Saharan Africa with rising incomes and urban 
sprawl might experience comparable trends toward animal-based 
diets and spatial agglomeration effects. However, cultural preferences, 
agricultural policies, and infrastructure disparities could modulate 
these patterns, necessitating localized adaptations of interventions. 
Future studies should validate these frameworks in diverse settings to 
enhance cross-regional applicability.
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5 Conclusion

The DSI of Chinese urban residents showed a significant 
upward trend from 2015 to 2022, with the gap narrowing gradually 
between observed diets and the balanced dietary pattern 
recommended in the Chinese Dietary Guidelines for Residents 
(2022). The comprehensive and animal-based DSIs improved 
rapidly, characterized by spatially concentrated distributions and a 
reduction in low-value regions; however, both remained far from 
the recommended balanced pattern, though inter-provincial 
disparities decreased moderately. The plant-based DSI showed 
steady improvement, but its upward trajectory was limited by 
already high baseline consumption of plant-based foods. Spatially, 
the DSI exhibited a clear northeast-to-southwest gradient, with 
significant spatial agglomeration. The comprehensive and animal-
based DSIs demonstrated stronger clustering than the plant-based 
DSI, likely due to more uniform plant-based food consumption 
across regions. Socioeconomic factors played a critical role: DSI 
correlated positively with consumption capacity, urbanization, and 
education level, and negatively with the consumer price index.

From a policy perspective, these findings advocate spatially 
tailored interventions. In high-DSI regions, strategies should focus on 
curbing excessive meat consumption through subsidies for plant-
based foods (e.g., vegetables, legumes) and integrating nutrition 
education into urban public health systems. Low-DSI areas require 
investments in cold-chain logistics and agricultural subsidies to 
enhance access to diverse, perishable foods, complemented by 
community nutrition programs to improve dietary literacy. Leveraging 
spatial spillover effects (identified through spatial econometric 
models), cross-regional collaborations—such as inter-provincial cold-
chain networks and joint agricultural subsidy schemes—could amplify 
policy efficacy. Scientifically, this study advances the application of 
spatial econometrics in dietary research, addressing gaps in regional 
dietary disparities and reinforcing the role of geographic context in 
shaping nutritional outcomes.
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