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The agriculture sector is currently facing several challenges, including the growing 
global human population, depletion of natural resources, reduction of arable land, 
rapidly changing climate, and the frequent occurrence of human diseases such 
as Ebola, Lassa, Zika, Nipah, and most recently, the COVID-19 pandemic. These 
challenges pose a threat to global food and nutritional security and place pressure 
on the scientific community to achieve Sustainable Development Goal 2 (SDG2), 
which aims to eradicate hunger and malnutrition. Technological advancement 
plays a significant role in enhancing our understanding of the agricultural 
system and its interactions from the cellular level to the green field level for the 
benefit of humanity. The use of remote sensing (RS), artificial intelligence (AI), 
and machine learning (ML) approaches is highly advantageous for producing 
precise and accurate datasets to develop management tools and models. These 
technologies are beneficial for understanding soil types, efficiently managing 
water, optimizing nutrient application, designing forecasting and early warning 
models, protecting crops from plant diseases and insect pests, and detecting threats 
such as locusts. The application of RS, AI, and ML algorithms is a promising and 
transformative approach to improve the resilience of agriculture against biotic and 
abiotic stresses and achieve sustainability to meet the needs of the ever-growing 
human population. In this article covered the leveraging AI algorithms and RS 
data, and how these technologies enable real time monitoring, early detection, 
and accurate forecasting of pest outbreaks. Furthermore, discussed how these 
approaches allows for more precise, targeted pest control interventions, reducing 
the reliance on broad spectrum pesticides and minimizing environmental impact. 
Despite challenges in data quality and technology accessibility, the integration of 
AI and RS holds significant potential in revolutionizing pest management.
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1 Introduction

In every field, whether rocket science or agriculture, there is a 
constant search for more convenient and intelligent tools to automate 
various processes and this can only be achieved through machines’ 
ability to easily understand human intelligence. Agriculture, which 
involves the cultivation of food crops, is a labor-intensive yet essential 
occupation that sustains life on planet Earth. Furthermore, the world 
is facing an alarming situation due to the increasing population, 
climate change, depletion of natural resources, a reduction in farm 
workers, and the emergence of novel human diseases such as the 
COVID-19 pandemic. There are challenges in managing agricultural 
field to meet the necessary food demand and achieve the second 
sustainable development goal (SDG-2), which aims for zero hunger 
(Martos et al., 2021). During the last decade, there has been significant 
technological advancement in many industries worldwide and the 
European Commission has designated the year 2021 as the beginning 
of industrial innovation, referred to as Industry 5.0 (Martos et al., 
2021). The use of wooden and metal farming tools was categorized 
under the first two phases of agricultural revolutions. During the third 
and fourth phases, significant technological advancements such as 
robotics, machinery, telecommunication systems, and decoding of 
genetic codes were the major achievements. The fifth agricultural 
industrial revolution involves current technological interventions, 
such as artificial intelligence (AI), machine learning (ML), and remote 
sensing (RS) (Martos et al., 2021). AI and RS tools now make it easier 
to manage agricultural fields, by improving methods for monitoring 
crop yield and health. This involves the timely management of insect 
pests, pathogens, and weeds, as well as efficient irrigation, nutrient 
supply, and soil fertility management (Kim et al., 2008).

Agriculture-linked robots are designed to facilitate the effective 
integration of AI in the agricultural sector, providing potential 
solutions to various challenges. With the help of AI, farmers can use 
chatbots as their virtual guides to receive timely advice and 
recommendations on various aspects of crop management. The use of 
unmanned aerial vehicles (UAVs) or drones, assisted by global 
positioning system (GPS), can be  remotely controlled, replacing 
manual labor in various agricultural tasks such as crop health 
assessment, irrigation scheduling, herbicide application, weed and 
pest identification, and forecasting (Mogili and Deepak, 2018; 
Ahirwar et al., 2019). AI is constantly evolving in new directions as a 
result of advancements in computational techniques and along with 
many other sectors of the economy, agriculture has also begun to 
benefit from AI. It has made significant advancements in agriculture, 
such as in weeding, irrigation management, disease, and insect pest 
monitoring and management. It also suggests suitable sowing and 
harvest dates for specific crops and facilitates the sale of crops in the 
appropriate marketplace at the optimal time (Javaid et al., 2023).

AI has significantly assisted farmers in implementing various 
technologies, and the prior analysis of farm activities ensure a guaranteed 
crop quantity and quality (Vijayakumar and Balakrishnan, 2021; Subeesh 
and Mehta, 2021). AI can address numerous challenges in agriculture, 
such as labor shortages, by offering solutions like auto-driven tractors, 
smart irrigation systems, fertilization and pesticide applicators, and 
AI-based harvesting robots (Wongchai et al., 2022; Bu and Wang, 2019). 
Numerous datasets on temperature, soil moisture, and other resources 
required for optimal crop growth are utilized by AI and ML models to 
gain real-time insights into, when to plant, what to plant, when to fertilize, 

and when to harvest(Singh et al., 2022; Sabrina et al., 2022). AI algorithms 
can be useful in detecting insects of various sizes and feeding habits and 
promptly notify farmers about the invasion of insect pests in their fields 
through smartphones, enabling them to take timely actions to prevent 
crop losses. In this review, we  explore the application AI and RS in 
managing insect pests. We analyze the success and challenges associated 
with utilizing these technologies in pest management. Additionally, 
we provide a comprehensive overview of AI and RS as potent tools for 
achieving sustainable and effective pest control in agricultural and 
ecological contexts.

2 Remote sensing (RS)

Currently, there has been a shift in the strategy, for identifying, 
detecting, classifying, and managing various insect pests and disease-
causing pathogens from traditional methods to the use of innovative 
information-gathering tools and techniques such as remote sensors, 
geographic information systems (GIS), and GPS. RS is the art and 
science of gathering information about an object, area, or phenomenon 
through the analysis of data obtained by a device that does not make 
physical contact with the object under investigation (Lillesand et al., 
2015). According to De Jong and Van der Meer (2007), the remote 
sensing process (Figure 1) consists of several stages, each of which 
plays a crucial role in acquiring and utilizing remotely sensed data. RS 
is a broad term used to encompass various technologies such as 
satellites, GIS, Internet of Things (IoT), cloud computing, sensors, 
Decision Support System (DSS), and autonomous robots. The process 
of RS is mainly influenced by the characteristics of electromagnetic 
radiation (EMR), which is used to collect data and interpret it. Based 
on the source of EMR; RS is categorized into two types: passive remote 
sensing and active remote sensing. Active remote sensors have their 
source of radiation, such as RADAR (Radio Detection and Ranging) 
and operates day and night as it does not depend on light. However, 
passive remote sensors do not have their radiation source, but rather 
depend on external sources to illuminate the object, therefore, work 
only during daytime.

The atmosphere plays a crucial role in the process of RS, as EMR 
passes through it before reaching the target object on the Earth’s surface. 
When radiation interacts with gas molecules or small particles, such as 
aerosols, it can scatter in various directions, including backwards to the 
sensor. When EMR such as visible light, infrared, or microwave, from a 
remote sensing platform, such as a satellite or a drone, reaches the target 
object, several interactions may occur. These interactions are mainly 
determined by the inherent properties of the object and the 
characteristics of the incoming radiation. The three most common 
interactions are absorption, emission, and reflection. RS instruments are 
designed to detect and measure the reflected radiation and by analyzing 
the reflected radiation at different wavelengths, researchers can extract 
valuable information about the target’s characteristics and make 
informed decisions for a wide range of applications (Pellikka and Rees, 
2009). After the interaction between incoming radiation and the target 
object, a sensor (such as digital cameras, electromagnetic scanners, radar 
systems, multispectral scanners, and hyperspectral scanners) collects 
and records the data in the form of reflected or emitted electromagnetic 
radiation (Yang and Everitt, 2011). Radiation can be stored in either 
analog form (like aerial photographs) or digital formats (like signal 
values) stored on a magnetic CD or DVD. After recording the EMR 
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from the target objects using a remote sensor, the data is transmitted in 
electronic form to a receiving station for further processing. For image 
analysis, various software options are available, such as Imagga, Hive, 
and Anyline. These programs automatically apply advanced algorithms 
to input images to extract information from them. Three basic groups 
of information interpreted while observing the image, include the 
assignment of different class labels to separate pixels in an image, 
estimation of properties of the target object, and monitoring the changes 
in target properties over time (Jensen, 2007). The final output of a 
remote sensing process can sometimes be used as input for further 
examination, such as in GIS. At the same time; this information can 
be  used in conjunction with other types of data for various 
research purposes.

Integrated pest management (IPM) is a comprehensive approach 
to controlling pests to reduce the use of pesticides on crops and soil 
and promote an eco-friendly environment. However, implementing 
IPM requires ongoing monitoring and surveillance of crops, which 
can be a challenging task. Therefore, AI can be utilized to address this 
issue (Murmu et al., 2022). AI can analyze large sets of data and draw 
inferences based on previous reports, enabling farmers to implement 
timely pest management practices (Katiyar, 2022). Numerous studies 
have been conducted which highlights the effectiveness of RS and AI 
in insect pest management. Prabhakar et al. (2012) demonstrated the 
use of satellite-based RS to monitor and predict the spread of a major 
insect pest, the fall armyworm (Spodoptera frugiperda), in maize fields. 
In another study, Smith et  al. (2020) demonstrated how drones 
equipped with multispectral sensors were used to assess pest damage 
in vineyards, by analyzing the spectral signatures of the vines. The 
advancements in the RS process help to provide synoptic data of high 
precision at a very fast pace, even from inaccessible areas (Malinowski 
et al., 2015). The timeline illustrates the brief history (Figure 2) of 
advancements in RS technology.

2.1 Remote sensing platforms

The platform on which remote sensors are mounted, i.e., RS 
platforms, are categorized into three types, based on the elevation at 

which the sensors are placed from the earth’s surface: ground-based, 
airborne, and spaceborne (Johnson et  al., 2001). Ground-based 
platforms are positioned near or on the Earth’s surface to examine 
specific characteristics of the environment, plants, or objects of 
interest and are particularly useful for conducting detailed and 
localized studies, focusing on individual plants or small patches of 
vegetation. Airborne platforms refer to aircraft used to carry RS 
instruments for aerial surveys. These platforms offer the advantage of 
operating at lower altitudes compared to satellites, which allows for 
higher spatial resolution and targeted data acquisition. Different types 
of tools used for aerial survey missions include airplanes, helicopters, 
and UAVs. Spaceborne platforms refer to sensors and instruments 
placed on satellites (geostationary satellites and sun-synchronous 
satellites) orbiting the Earth and capturing data from space, providing 
global and repetitive coverage of the Earth’s surface. The data collected 
by these satellites is instrumental in various applications, including 
weather forecasting, climate monitoring, land cover mapping, 
agriculture, and disaster response (Roy et al., 2022). The most recent 
example of spaceborne RS is India’s Chandrayaan-3 lander, Vikram, 
which softly landed on the South Pole of the moon on August 23, 
2023. The rover, Pragyan, has conducted studies on the moon’s 
atmosphere and confirmed the presence of oxygen and other mineral 
elements (Kanu et al., 2024).

3 Applications of remote sensing and 
artificial intelligence in agriculture

Modern agriculture and food production, aimed at supporting the 
ever-growing global population, are constantly challenged by the 
impact of global climate change, which in turn increases the pressure 
of abiotic and biotic stresses on crop production, leading to an 
imbalance in economic and environmental sustainability (Bakala 
et al., 2020). For this, AI and RS seem to be a ray of hope, as can 
quantify phenotypic data of crops using various tools (Jung et al., 
2021). In addition to their applications in other fields, RS and AI play 
a vital role in agricultural and horticultural fields (Figure 3). The use 
of AI in the form of Unmanned Aircraft Systems (UAS) has provided 

FIGURE 1

Schematic representation of different stages of the remote sensing process.
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an unparalleled advantage in conducting advanced data analysis for 
the management of agricultural fields, thereby increasing the overall 
resilience and efficiency of the system (Coble et al., 2018). Various 
companies, such as AGEYE Technologies, aWhere, Blue Reiver 
Technology, FarmShots, Fasal, Harvest CROO Robotics, HelioPas AI, 
Hortau Inc., Ibex Automation, PEAT, Root AI, Trace Genomics, and 
VineView, have developed different AI-based tools for agriculture, 
performing various functions like predicting weather and its 
correlation with pest population dynamics, managing weed systems, 
picking and packaging fruits and vegetables, and monitoring irrigation 
and fertilization (Dutta et al., 2014). Remote sensing as a highly useful 
technology, allows continuous gathering of information about a crop 
without causing damage and at a very low cost (Barbedo, 2019). 
Images are captured by remote sensors, and with the assistance of deep 

learning machine models (DLMM), these images are classified. Based 
on the input image data, an interpretation is made to determine 
whether the plant is healthy or diseased. Convolutional neural 
networks (CNNs), a subset of AI was used to identify the disease-
causing pathogen in plants by analyzing input data of lesions and spots 
on leaf images (Barbedo, 2019).

3.1 Crop identification

The RS and AI play an important role in identifying and classifying 
crops, by understanding the spectral characteristics of different 
vegetation cover, especially when the crops being studied have similar 
characteristics and are difficult to distinguish. As compared to 
traditional crop identification methods, AI offers a significant 
advantage by promoting greater accuracy and efficiency through the 
ability to analyze large datapools in less time, detect subtle variations 
in plant features and monitoring crops in real time leading to better 
decision making and optimized resource allocation to different crops. 
With the assistance of optical RS, Low and Duveiller (2014) defined 
the spatial resolution requirements for identifying a specific crop and 
reported no common pixel size (one-size-fits-all) for identifying every 
crop. However, the pixel size and purity required for crop identification 
vary from crop to crop and from one landscape to another. Also, not 
every type of sensor is suitable for identifying the majority of crops. 
For example, MODIS (250 meters) can identify the majority of crops 
in a particular field, while Landsat (30 meters) provides object-based 
classification. Zhang et al. (2016) used two consumer-grade cameras, 
namely the Red, Green, and Blue (RGB) camera, and a modified Near-
Infrared (NIR) camera, mounted on an airborne RS platform for crop 
identification in Texas. The images captured by NIR cameras provide 
more effective classification results than those captured by RGB 
cameras and other non-spectral features.

AI-based crop identification is now readily available for 
identifying different field crops by analyzing images with the help of 
CNNs, which can identify, classify, and detect different objects based 
on image features (Ranjithkumar et al., 2021). Ibatullin et al. (2022) 
utilized RS and AI to monitor various crops, achieving an accuracy of 
85–95% in crop identification using satellites such as Sentinel-1 and 
Sentinel-2. The genus Ficus comprises nearly 1,000 plant species 
worldwide, making it challenging for a common man to identify them 
manually with 100% accuracy. In this context, Kho et  al. (2017) 
developed a baseline automated system using an artificial neural 
network (ANN) and support vector machine (SVM) to identify and 
classify crop images of three Ficus species: F. benjamina, 
F. pellucidopunctata, and F. sumatrana with an accuracy level of 
approximately 83%.

3.2 Crop acreage estimation

The demand for various agricultural and horticultural crops 
fluctuates over time due to unreliable prices or market values. 
Therefore, it is important to accurately determine the area needed for 
growing specific crops by market planning and export opportunities. 
Estimating crop area to achieve a desirable yield for feeding a large 
population is one of the most challenging tasks faced by policymakers. 
In the current scenario, satellite-based RS, GIS, and ML have estimated 

FIGURE 2

Timeline showing the history of remote sensing.
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crop acreage over vast geographic areas. Meraj et al. (2022) estimated 
the wheat crop acreage and its yield in Uttar Pradesh,India using 
satellite-acquired data and the Carnegie-Ames-Stanford Approach 
(CASA) model. Another satellite, SPOT-5 multispectral imagery data 
is used to identify the crop type and estimate the crop area 
simultaneously (Yang et al., 2006). Kshetrimayum et al. (2024) used 
integration of ML algorithms and Sentinel-1A satellite SAR data to 
know the pearl millet crop acreage in India, to predict the yield of 
pearl millet in Agra and Firozabad.

3.3 Canopy measurement

Canopy structure and volume are important factors in crops, 
particularly for the precise application of fertilizers, pesticides, and 
irrigation in horticultural crops (Sharma et al., 2022). According to 
Trout et al. (2008), remote sensors could be used to assess the canopy 
characteristics in horticultural crops by quantifying the 
photosynthetically active radiation (PAR) absorbed by the plant 
canopy. Ayyalasomayajula et  al. (2009) measured the tree canopy 
volume and height of an automated citrus tree with 85% accuracy 
using oblique or orthoimages. The measurement of temperature at the 
canopy level is a crucial indicator for detecting water deficit in crop 
plants. One of the methods used to assess crop water deficit is 
thermography, which involves remotely measuring the temperature at 
the crop canopy. Giménez-Gallego et al. (2021)developed an automatic 
sensor for measuring crop canopy temperature in almonds using a 
low-cost thermal camera and AI-based image segmentation models. 
To analyze the data acquired by UAVs, a user-friendly application 
called Agroview was developed. This cloud and AI-based application 
can count and locate the position of plants in the field, differentiate 
between dead and live plants, measure various characteristics of the 

canopy, and create disease and pest stress maps. The Agroview app was 
used by Ampatzidis et  al. (2020) to assess the phenotypic 
characteristics of citrus fields, including tree height, canopy size, and 
pest detection in both normal and high-density plantations.

3.4 Harvest time assessment

Due to the universal shift in market economies, the need for 
accurate and precise information has become crucial for strategic 
decision-making at all levels, including producers, resource 
management, market levels, and financing. Due to the predictive 
nature of RS, farmers can now depend on it to obtain information 
about the factors that affect the planting and harvesting seasons of a 
crop. The combination of conventional imaging techniques, 
spectroscopy, and hyperspectral imaging systems can be  used to 
obtain spatial and spectral data from fruits, vegetables, and other 
crops to determine crucial quality parameters (Singh et al., 2009). 
According to Hahn (2004), tomatoes can be classified based on their 
firmness with 90%precision as hard, soft, and very soft using remote 
sensors. Temporal RIS-AWiFS data was utilized to determine the 
optimal harvesting dates in apple orchards. Previously, the prediction 
of harvest time relied on common statistical procedures, which often 
resulted in errors. To address this issue, a novel harvest time prediction 
model based on LSTM (Long Short-Term Memory) AI has been 
developed using real-time production and weather data (Liu et al., 
2022). There has been integration of AI with UAVs to make a 
conceptual design of olive harvesting drones, in order to replace the 
traditional time consuming methods of olive harvesting and gathering, 
which was more labor intensive and a hectic job (Khan et al., 2024). 
As date fruit (Phoenix dactylifera L.) is having a diverse group of 
genotypes, varying in external features as well as biochemical 

FIGURE 3

Role of artificial intelligence and remote sensing in agriculture.
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composition, this makes it difficult to assess proper harvesting time 
and post harvest handling of all genotypes separately in order to make 
it more market consuming. To deal with this problem, nowadays AI 
and computer vision technology is being put into use and considered 
to be accurate, non destructive, fast and efficient budding technology 
(Noutfia and Ropelewska, 2024). Nowadays, potato harvesting time is 
predicted by aome improved AI models like ResNet-59, which gives 
more precision and can rationalize the distribution of important 
resources, minimize waste and improve food security (Abdelhamid 
et al., 2024). AI- driven harvest time assessment of a crop is more 
impactful than traditional manual judging, because it gives more 
precision in ensuring the crop is harvested at peak period by keeping 
in view all the factors like even ripening of crop, market information, 
shelf life and waste reduction. By identifying the precise harvest 
window, AI minimizes the risk of uneven ripening (overripe/
underripe), which leads to better quality produce and less post harvest 
losses, thus maintaining economic stability of people associated with 
farming. In contrast, traditional methods only rely on visual 
observations by farmers, which are often inaccurate due to factors like 
inconsist and uneven monitoring of large areas and weather variability.

3.5 Crop yield estimation

RS approach can be used by growers to assess the final yield of a 
particular crop and calculate the variations among different fields 
growing the same crop. Vegetation indices (VI’s) based on spectral 
bands of multispectral imagery can be used, with the most widely used 
VIs being the NIR/Red ratio (Jordan, 1969) and NDVI (Normalized 
Difference Vegetation Index) (Rouse et al., 1973). Zaman et al. (2006) 
utilized an automatic ultrasonic system and a remote sensing-based 
yield monitoring system and reported a linear correlation between 
tree size and fruit yield. One more aspect of remote sensing, namely 
thermal imaging, has been utilized to estimate the number of fruits in 
orchards and groves. This is based on the principle that there is a 
temperature difference between the fruit and the surrounding 
environment. Crop yield depends on the interaction of various plant 
and environmental factors, such as temperature, rainfall, plant type, 
germination percentage, flowering percentage, and pesticide 
application. Therefore, it is crucial to estimate the impact of each 
factor on crop yield. Al-Adhaileh and Aldhyani (2022) employed the 
ANN model in Saudi Arabia to accurately predict crop yields using 
available data sets for various factors influencing potato, rice, 
sorghum, and wheat yields. Similarly, Babaee et al. (2021) used ANN 
to estimate the yield of rice crops. In a similar context, Hara et al. 
(2021) emphasized the importance of selecting independent variables 
to predict yield using artificial neural networks in conjunction with 
remotely sensed data. There has been a major integration between AI 
and data of Sentinel-2 satellite in precision agriculture, particularly for 
yield assessment in different crops like maize, wheat, rice (Aslan et al., 
2024). Vegetation indices are derived from the images collected by 
satellite and then put to use for predicting yield with high accuracy by 
the integration of AI algorithms including ML and deep learning 
models. For validation of AI-based yield prediction models, common 
metrics used are mean absolute error (MAE), mean squared error 
(MSE), root mean squared error (RMSE), R-squared (R2), and these 
validation metrics assess the accuracy and precision of data acquire by 
different models.

3.6 Stress due to pests and diseases

Identification of various insect pests and diseases on farmland and 
the collection of data on effective pest and disease control mechanisms 
are now being carried out using RS and AI. RS and AI/ML techniques 
are highly effective in measuring changes in plant biomass, pigments, 
coloration, and plant vigour during abiotic stress in crop plants (Pinter 
et al., 2003). Small et al. (2015)revealed that utilizing historical weather 
data could be beneficial in predicting potential disease outbreaks of 
late blight in tomatoes and potatoes. They proposed the development 
of a web-based DSS. RS can sense physical and physiological changes 
such as chlorosis, cell death, stunted growth, wilting, and rolling of 
leaves in plants. Fluorescence spectroscopy (Lins et  al., 
2009),fluorescence imaging (Moshou et  al., 2005) and NIR 
Spectroscopy were used to detect fire blight disease in pear plants that 
showed no symptoms (Spinelli et al., 2006). A relatively new technique, 
electronic nose systems, is used for identifying plant diseases. The 
E-nose and fluorescence imaging has been innovatively used for 
assessing stress in plants caused due to insect pests and diseases, by 
detecting subtle changes in volatile organic compounds (VOCs) 
released by the plant through release of odour and changes in plant 
tissue fluorescence pattern. This leads to early detection of insect pests 
and diseases before any visible symptoms. E- noses were used for early 
identification and differentiation between fire blight and blossom 
blight disease in apple trees under laboratory conditions (Fuentes 
et al., 2018). A field experiment conducted by Lins et al. (2009) aimed 
to distinguish leaves into citrus canker-attacked leaves and chlorosis-
infected healthy leaves. The SVM outperforms other ML techniques 
in predicting the occurrence and abundance of plant diseases and 
pests. Bhatia et al. (2020) utilized a hybrid approach, combining SVM 
and logistic regression algorithms, to detect powdery mildew disease 
in tomatoes. Similarly, Xiao et al. (2019) discussed the use of LSTM 
networks to correlate weather data with population dynamics and pest 
attacks of insects. An interesting smartphone application has been 
devised for on time detection and identification of pests and diseases 
in order to decrease substantial economic losses. This application is 
using python based REST API, PostgreSQL and Keycloak and is tested 
in field against various pests like Tuta absoluta in tomato (Christakakis 
et al., 2024).

3.7 Weed infestation mapping

RS techniques prove to be a more economical and quicker method 
for mapping weeds than traditional ground survey procedures, 
especially in large geographical areas. Weeds were categorized as 
broad-leaved and grass-weeds, according to their texture to develop 
targeted selective herbicides, using Gabour wavelets and neural 
networks. Digital color photographs were used to identify bare spots 
in blueberry fields (Zhang et al., 2010). Similarly, Backes and Jacobi 
(2006) detected weeds in sugarbeet fields using high-resolution 
satellite images from the QuickBird satellite. They were able to identify 
an extensive and dense infestation of Canadian thistle as a weed. 
Costello et  al. (2022)developed a new method for detecting and 
mapping Parthenium-infested areas using RGB and hyperspectral 
imagery, supplemented by artificial intelligence.

The indiscriminate use of herbicides worldwide has led to 
herbicide resistance in various weeds and to manage this, advanced 
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strategies based on AI are required. Several AI-based tools are 
commercially available for weed management, including RS, robotics, 
and spectral analysis. However, despite the high potential of AI-based 
tools in managing herbicidal resistance in weeds, they are not used on 
a large scale (Ghatrehsamani et al., 2023). The accurate detection and 
identification of weed categories are necessary for targeted 
management. Nowadays, AI and UAVs are commonly used to manage 
weeds in rice fields (Ahmad et  al., 2023). Su (2020) used drones 
equipped with hyperspectral cameras to identify weed species by 
capturing numerous images of different spectral bands. Machleb et al. 
(2020) demonstrated the use of autonomous mobile robots for 
monitoring, detecting various weeds, mapping weeds, and efficiently 
managing them. Similarly, various ML algorithms such as Random 
Forest Classifier (RFC), SVM, and CNN help classify different types 
of digital images to detect weeds in various crops like rice (Kamath 
et al., 2020).

3.8 Abiotic stress monitoring

Crop plants are generally affected by several environmental 
factors, such as light, temperature, and water, which result in abiotic 
stresses like drought, salinity, acidity, and heat. Monitoring abiotic 
stress in plants is crucial for effective agricultural management and 
assessment of crop health. RS techniques provide valuable tools for 
detecting and diagnosing various types of abiotic stresses. One 
common indicator of abiotic stress in plants is the reduction in 
chlorophyll content. When plants experience stress, such as water 
scarcity or mineral toxicity, their chlorophyll content degrades, 
leading to changes in their spectral reflectance properties.

A new approach has been developed to sense the stress level, 
particularly in the case of tree and row crops in which a shaded 
portion of tree canopy is taken into consideration (Jones et al., 2002). 
However, it has a limitation where stomata usually remain closed in 
the shade areas and there is less temperature variation. In the same 
way, the availability of surface water can be measured with the help of 
reflectance patterns in plant canopies with or without the presence of 
surface water (Pinter et al., 2003).

By combining spectral reflectance data with advanced data 
analysis techniques, such as vegetation indices (VIs) and ML 
algorithms, researchers can quantitatively assess stress levels and 
monitor the health of crops and vegetation over time, helping inthe 
early detection of abiotic stress, enabling timely interventions and 
better crop management practices. In addition, AI and ML-based 
algorithms can be used to enhance crop yield under different stress 
conditions. Further, the use of ML in QTL (quantitative trait loci) 
mining will help in identifying various genetic factors of stress 
tolerance in legumes (Singh et  al., 2021). Different VIs used for 
analysing stress level particularly water stress in plants include NDVI 
(Karnieli et al., 2010), PRI (Photochemical Reflectance Index) (Ryu 
et  al., 2021) and MSI (Mositure Stress Index) (Hunt et  al., 1987). 
NDVI can be used to optimize irrigation scheduling by identifying the 
drought prone areas of field, thereby helpful in precise water 
scheduling of crops. PRI measures how efficiently a crop utilizes 
incoming radiations and assesses water stress in plant and how CO2 is 
absorbed by plants. MSI works on the principle of measuring the 
amount of water present in leaves of plants and is used to analyze 
canopy stress, fire hazard conditions, ecosystem physiology and 

predict productivity. Navarro et  al. (2022) utilized the leaf image 
hyperspectral data along with an AI model to reveal the etiological 
cause of different stresses. An ANN was used to read the reflectance 
pattern of visible and near-infrared region wavelengths which were 
the main cause of stress. Advancement in field of AI has led to 
development of high-throughput gadgets, which help to overcome the 
biotic and abiotic stresses, and provide big data sets like transportable 
array for remotely sensed agriculture and phenotyping reference 
platform (TERRA-REF) forecasts stress at an early as possible (Gou 
et al., 2024).

3.9 Irrigation water requirement

RS can detect changes in the water level of a field, whether it is 
experiencing water-logged or drought conditions, with the help of 
variable rate irrigation technology such as the centre pivot system 
(McDowell, 2017). A higher-resolution land data assimilation system 
was utilized as a computational tool to develop soil moisture and 
temperature maps. The system aimed to provide information about the 
amount of soil moisture present at a specific depth of land and soil 
temperature at various depths, including the rhizosphere (Das et al., 
2017). There is a dire need to utilize AI and ML models to estimate the 
water requirement for crop irrigation. Mohammed et  al. (2023) 
researched implementing AI-based models to predict the optimal water 
requirements for sensor-based micro-irrigation systems run by solar 
photovoltaic systems. FourML algorithms — LR, SVR, SLTM neural 
network, and extreme gradient boosting (XGBoost) were utilized and 
validated for predicting water requirements, and among all, LSTM and 
XGBoost were more accurate than SVR and LR in predicting irrigation 
requirements. Under limited water availability, the automatic irrigation 
decision support system can be  helpful in intelligently scheduling 
irrigation to improve water use efficiency and enhance crop 
productivity. Katimbo et  al. (2023) evaluated the performance of 
various AI-based algorithms and models for predicting crop 
evapotranspiration and crop water stress index. They achieved this by 
measuring soil moisture, canopy temperature, and NDVI from irrigated 
maize plants. Based on overall performance and scores, CatBoost and 
Stacked Regression were identified as the best models for calculating 
crop water stress index and crop evapotranspiration, respectively. To 
cope up with the problem of water scarcity in legume farming, in Uttar 
Pradesh, India AI integration was done with precision farming to raise 
pea crop and AI-based precision irrigation offered a significant edge in 
allocating water, enhancing crop production, decreasing greenhouse 
gas emmission and reducing cultivation cost (Kim and AlZubi, 2024).

4 Applications of remote sensing and 
artificial intelligence in insect pest 
management

The wavelength of electromagnetic radiation (EMR) changes 
based on its interaction with the plant surface. Therefore, the 
condition of plant vigour and health may significantly affect the 
reflectance pattern of leaves (Luo et al., 2013). The use of RS to assess 
plant defoliation caused by insect pests, chlorosis, and necrosis has 
been conducted by comparing spectral responses (Franklin, 2001). 
Several studies have been conducted on the use of RS, AI, and ML 
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techniques for insect species identification, assessment of incidence 
and severity, mapping of new insect habitats and breeding areas, and 
identification of disease symptoms (Tables 1–3 and Figure 4).

AI algorithms have played a crucial role in identifying diseases 
and pests that affect cotton, by automatically detecting crop symptoms, 

environmental conditions, and physical characteristics associated with 
pests or diseases. In a study, Gopinath et al. (2022) introduced an 
automated big data framework specifically designed for classifying 
plant leaf diseases by employing a Convolutional Recurrent Neural 
Network Classifier (CRNN) algorithm to successfully differentiate 

TABLE 1 Application of remote sensing techniques in insect pest research.

Insect Crop Research parameter Remote sensing 
technology used

Reference

Fruitfly - Species identification RGB camera Faria et al. (2014)

Stored grain pests Wheat Species identification Proximal RS and hyperspectral 

reflectance profile

Singh et al. (2010)

Fruitfly - Species identification Proximal RS Dowell and Ballard (2012)

Tobacco bud worm and corn ear 

worm

Cotton Species identification Proximal RS Jia et al. (2007)

Ants - Cryptic Species identification Imaging Spectroscopy Klarica et al. (2011)

Evacanthine Leafhopper Jujubes Species classification Hyperspectral Imaging Wang et al. (2016)

Vespa vellutina - Flight monitoring Harmonic RADAR Maggiora et al. (2019)

Leafhopper Cotton Infestation Hyperspectral RS Prabhakar et al. (2012)

Leaf miner Tomato Damage and incidence Leaf reflectance spectroscopy Xu et al. (2007)

Cyst nematode Beet root Mapping of symptoms Combined use of remote sensing 

and GIS technique

Hillnhütter et al. (2011)

Cotton leaf worm Cotton Management timing Satellite RS Yones et al. (2012)

Mite Cotton Early infestation detection Multispectral RS Fitzgerald (2000)

Desert locust - Habitat detection and breeding 

zones

Remote sensing and GIS 

technique

Latchininsky and Sivanpillai 

(2010)

Brown plant hopper (BPH) Rice Changes in spectral 

characteristics due to brown 

plant hopper

Hyperspectral RS Yang et al. (2007)

Mountain pine beetle Pine Infestation dynamics NDMI Multispectral (Landsat) RS Goodwin et al. (2008)

Aphid (Diuraphisnoxia) Wheat Quantification of stress level Multispectral RS Backoulou et al. (2011)

TABLE 2 Applications of remote sensing techniques in plant disease research.

Disease Crop Research parameter Remote sensing 
technology used

Reference

Scald Apple Detection of scald induced 

browning in stored apples

Hyperspectral RS Chivkunova et al. (2001)

Yellow rust Wheat Early disease detection Hyperspectral RS Bravo et al. (2003)

Orange rust Sugarcane Detection of disease DWSI Hyperspectral (Hyperion) 

RS

Apan et al. (2004)

Powdery mildew and take all 

disease

Wheat Identification of diseases caused by 

Erysiphe graminis and 

Gaeumannomyces graminis

Hyperspectral RS Graeff et al. (2006)

Soft rot Broccoli Early detection of disease Hyperspectral RS Datt (2006)

Late leaf spot Peanut Change in spectral characteristics Multispectral RS Prabhakar et al. (2006)

Leaf rust Wheat Disease detection and 

identification

Hyperspectral (HyMap) RS Franke and Menz (2007)

Bacterial leaf blight Rice Disease severity MLR Hyperspectral RS Yang (2010)

Wheat streak mosaic Wheat Disease severity Multispectral (Landsat TM) RS Meraj et al. (2022)

Stem rot Oil Palm Mapping and identification Multispectral (QuickBird) RS Santoso et al. (2011)
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between healthy and diseased leaves across diverse plant species, 
including bananas, peppers, potatoes, and tomatoes. Sujithra and 
Ukrit (2022) employed a range of deep neural networks, such as CNN, 
Radial Basis Neural Network (RBNN), and Feed-Forward Neural 
Network (FFNN), to diagnose leaf diseases in banana and sugarcane. 
The workflow process of various AI models, along with deep learning 
algorithms, for making effective decisions in insect pest management 
is illustrated in Figure 5. UAV-based pest detection approach utilizes 
Unmanned Aerial Vehicles aided with various sensors and imaging 
technologies (RGB cameras, multispectral cameras, infrared thermal 
cameras, hyperspectral cameras) for identification of insect pests in 
crops. This approach leads to early detection of pests and judicious 
application of pesticides for their management keeping intact the 
ecological balance. The IoT based UAVs (Yadav et al., 2024) focuses 
on AI mechanism and python programming paradigm for sending the 
images of different rice pests to Imagga Cloud and provides valuable 
and timely information for necessary action (Bhoi et al., 2021).

4.1 Insect taxonomy and systematics

The concern about the invasion of non-native pest species is 
growing day by day, creating a biosecurity threat. This occurs due to 
activities such as tourism, inter-border trade, and global climate 
change (Hulme, 2009). Therefore, there is a need for strict quarantine 
and inspection approaches to prevent the spread of non-native invasive 
pests. To reduce inspection costs and processing time, automatic 
inspection and detection of invasive pest species in commodities, 
proximal RS is an effective approach. With the help of reflectance data 
gathered by an RGB camera, the wings and aculeus of three closely 
resembling fruit fly species were analyzed and three different fruit fly 
species—Anastrepha fraterculus, A. oblique, and A. sororcula were 

identified (Faria et al., 2014). Using a NIR and hyperspectral imaging 
system, researchers were able to differentiate healthy wheat kernels 
from insect-damaged ones in storage, by employing proximal RS and 
hyperspectral reflectance profiles (Singh et al., 2010). Using the same 
technique, two fruit fly species (Dowell and Ballard, 2012), tobacco 
budworm, and corn earworm (Jia et al., 2007) were also identified. 
Similarly, Klarica et al. (2011) used imaging spectroscopy to identify 
two cryptic ant species (Tetramorium caespitum and T. impurum). 
Wang et al. (2016) utilized a hyperspectral imaging of 37 spectral 
bands between 41.1 to 87 nm for insect classification, incorporating 
mitochondrial DNA analysis and morphometry and identified seven 
species of the Evacanthine leafhopper genus Bundera.

Despite species acting as core units for all research, 
morphologically identified species can be serving as ill found entities 
in organisms where intricate evolutionary processes like 
hybridization, polyploidy and mutation occur. So, integration of 
taxonomy with AI under a unified concept of species can enable data 
integration and automatic feature identification that reduce 
subjectivity of species delimitation (Karbstein et al., 2024). A ML 
algorithm was developed to identify the most common insect pests 
infesting coffee fields by analyzing images and was found to be more 
effective than traditional methods for detecting and identifying pests 
(Lee and Tardaguila, 2023). Deep learning, a branch of ML, was used 
to identify and detect the abundance of whiteflies in tomatoes by 
recognizing whiteflies at various stages (Lutz and Coradi, 2022). 
Saikumar et al. (2023)conducted experiments on the detection and 
classification of insect pests in brinjal using artificial intelligence. 
They utilized Python software with the Keras and Tensorflow 
frameworks, and the model employed was CNN-VGG-16. A total of 
204 images of insect pests captured throughout the study were used 
as input data for the automatic identification and classification of 
insect pests like Brinjal shoot and fruit borers and Epilachna beetle 
(Saikumar et al., 2023).

TABLE 3 Examples of application of artificial intelligence and machine learning in insect research.

Insect Crop Research parameter Reference

Major pests Coffee Detection and identification Lee and Tardaguila (2023)

Diamond back moth Cabbage Abundance forecasting Kaur et al. (2022)

Major pests Tomato Prediction of pest outbreak Holzinger et al. (2023)

Thrips Tomato Management González et al. (2022)

Whitefly Tomato Life stages assessment and identification Lutz and Coradi (2022)

Fruit fly _ Species detection and identification Murmu et al. (2022)

Aphid Soybean Population dynamics Murmu et al. (2022)

Insect pests - Pest classification Xia et al. (2023)

Insect pests - Insect activity Rydhmer et al. (2022)

Whitefly Cotton detect crop symptoms, environmental 

conditions, and physical characteristics

Toscano-Miranda et al. (2022)

Aphid Pest forecasting Bourhis et al. (2021)

Brinjal shoot and fruit borer, Epilachna beetle Brinjal Detection, identification, and classification Saikumar et al. (2023)

Aphid - Monitoring and forecasting Batz et al. (2023)

Riptortuspedestris Soyabean Detection and forecasting Park et al. (2023)

Locust - Monitoring and management Klein et al. (2021)

Stored grain pest Wheat Grain damage Sabanci (2020)
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4.2 Insect movement and migration

The monitoring of migrant insect species can be conducted using 
entomological RADAR. RS technology can automatically monitor the 
height, horizontal speed, direction, orientation, body mass, and shape 
of insects. Recent advancements in RS technology have resulted in the 
development of innovative harmonic RADAR systems that are 
effective in tracking specific insect species, such as Vespa vellutina, 
flying at high altitudes of 500 meters (Maggiora et al., 2019). AI-based 
pest surveillance and monitoring systems use cameras and sensors for 
data collection and can accurately predict the infestation of a 
particular pest in an area. Scientists at California University have 
developed an AI-based pest monitoring system that helps to identify 
the cause and track the movement of pests (Sharma et al., 2022). The 
computer vision system and information and communication 
technology (ICT) algorithm proposed show promise as an automated 
solution for insect observations, serving as a valuable addition to 
existing systems for monitoring nocturnal insects (Bjerge et al., 2021). 
AMMODs (Automated Multisensor Stations for Monitoring Species 
Diversity) share similarities with weather stations and are operated as 
autonomous samplers designed to monitor a range of species, 
including plants, birds, mammals, and insects (Wägele et al., 2022).

4.3 Detection of biotic stress

Biotic stresses, diseases and insect pests, can severely affect crop 
productivity. Crop stress caused by pests and diseases can 
be detected using remote sensing, based on the principle that biotic 
stress causes changes in pigmentation, physical appearance of 
plants, and photosynthesis, which directly alter the absorption rate 
of incident energy and the reflectance pattern of plants (Prabhakar 
et al., 2012). Prabhakar et al. (2012) detected the level of stress and 
severity caused by leafhopper attacks in cotton plants by assessing 
chlorophyll content and relative water content (RWC) using 
ground-based hyperspectral RS and categorized plants into five 
infestation grades from 0 to 4, representing healthy to severe 
damage. The leaf minor damage in a tomato field was assessed using 
leaf reflectance spectra (Xu et al., 2007) and the symptoms of cyst 
nematode in beet were mapped using a combination of RS and GIS 
techniques (Hillnhütter et  al., 2011). The abundance of 
diamondback moth in cabbage crop was predicted using a subset of 
deep learning within ML (Kaur et al., 2022). Similarly, to detect and 
identify different pests in tea plantation in Yunnan for preventing 
the quality deterioration of tea leaves, transfer learning CNN were 
used (Li et al., 2024).

FIGURE 4

Application of artificial intelligence and remote sensing in insect pest management.
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4.4 Pest monitoring, forecasting, and early 
warning

Understanding the distribution of larval age in the field is an 
important factor in predicting primary and secondary pest outbreaks, 
as well as in determining the timing for effective insecticide application 
for pest management. RS plays a crucial role in providing information 
about the stage of insect pests present in the field based on 
accumulated degree days (Yones et al., 2012). The optimal timing for 
effective management of the cotton leafworm (Spodoptera littoralis) 
was determined based on degree days calculated from air temperature 
ranging between 174.85 and 197.59, using satellite RS (Yones et al., 
2012). A study conducted by Nansen et al. (2015) on two species of 
insects, maize weevil (Sitophilus zeamais) and large flour black beetle 
(Cynaus angustus), revealed that temporal changes in body reflectance 
patterns were correlated with the response to two killing agents: 
entomopathogenic nematodes (EPNs) and insecticidal plant extract. 
Colour infrared photography was used to analyze infestations of black 
fly and brown spot scale in citrus orchards, as well as white fly 
infestation in cotton. Similarly, the infestation of mites in cotton fields 
was investigated at an early stage by observing changes in appearance, 
colour, and canopy over time using multispectral RS (Fitzgerald, 2000).

ML models can help predict pest outbreaks, for example, the 
major pests in tomato crops were predicted with significantly higher 

accuracy compared to traditional statistical models (Holzinger et al., 
2023). ML can be used to develop DSS that correlate pest population 
dynamics with the environment, aiding in effective management. A 
DSS was developed using ML to manage thrips in tomatoes, resulting 
in a direct reduction in the use of insecticides (González et al., 2022). 
AI-based algorithms, such as ML, assist in early warning and 
forecasting of pests. In the case of fruit flies, different species were 
classified and detected based on their wing patterns (Murmu et al., 
2022). The population dynamics of pests to environmental factors 
such as temperature and rainfall can be forecasted by ML algorithms. 
Deep learning algorithms can aid in predicting the occurrence and 
abundance of aphids in soybean (Murmu et al., 2022). AI has the 
potential to enhance aphid pest forecasting through various means, 
including optimizing monitoring infrastructure to improve predictive 
models (Bourhis et al., 2021).

The time required for analyzing a large number of samples 
collected by traditional insect collection techniques, such as suction 
traps, is extensive. Additionally, a skilled taxonomic expert is needed 
for precise sample processing, creating bottlenecks in monitoring 
insect populations. For this, AI-based image recognition and ML 
algorithms have emerged as a more promising approach. Aphids are 
capable of causing heavy losses in crop yield through direct feeding or 
by serving as vectors for plant viral diseases. Batz et  al. (2023) 
investigated the potential of AI, ML, and image recognition in 

FIGURE 5

Workflow of AI-trained model for insect pest management.
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systematically monitoring and forecasting insect pests. Detection of 
an important pest, Riptortus pedestris, which causes heavy damage to 
soybean pods and leaves, was conducted using a surveillance platform 
based on an unmanned ground vehicle equipped with a GoPro 
camera. The ML-based models used to study this pest were under the 
subset of deep learning algorithms, namely MRCNN, YOLOv3, and 
Detectron2 (Park et al., 2023). In the global population growing era, 
it becomes more important to early warn about invasion of new pests 
like locusts in areas where these are not present. Halubanza (2024) 
developed an advanced AI-based CNN model, specifically the 
MobileNet version 2 for automatic identification of different locust 
species which achieved a precision of 91% for Locusta migratoria and 
85% for Nomadacris septemfasciata.

4.5 Detection, identification, and 
classification of insect habitats

With the assistance of multispectral scanners mounted on Earth-
orbiting satellites such as Landsat, RS imagery can be obtained to aid 
in the detection of a particular insect’s habitat. In the states of Nebraska 
and South Dakota, USA, mosquito larval habitats were detected in 
Lewis and Clarke Lake using a multispectral scanner. This lake was 
found to be  the home of seven mosquito species: Aedes dorsalis, 
A. vexans, Culex tarsalis, C. restruans, C. silinarius, Culiseta annulate, 
and Anopheles walker (Hayes et al., 1985). Similarly, the use of RS and 
GIS techniques has helped to detect locust habitat monitoring and 
breeding zones in Africa, South Europe, and Southwest Asia 
(Latchininsky and Sivanpillai, 2010).

Infrared sensors can detect flying insect activity by using near-
infrared LED lights and high-speed photodetectors (Rydhmer et al., 
2022). Various parameters, such as wing beat frequency, melanisation, 
and wing-to-body ratio, can be measured in the field, automatically 
uploaded to a cloud database, and analyzed using ML and AI. Xia et al. 
(2023) evaluated the effectiveness of Vision Transformer (ViT) models 
in pest classification. The researchers utilized ResNet50, MMAINet, 
DNVT, and an ensemble learner to aggregate the predictions of these 
three models through a final classification vote. MMAINet 
incorporated an attention mechanism to identify discriminative image 
regions. The identified regions were then used to train fine-grained 
CNN-based classification models at different resolutions. Every year, 
the outbreak of locusts in different parts of world is common. This is 
due to the difficulty in mapping and monitoring locust habitats, which 
are mainly, located in inaccessible conflict zones of different countries. 
However, since the 1980s, RS applications have been utilized for 
monitoring and managing locust swarms. Nowadays, UAVs have 
brought new potential for more efficient and rapid management of 
locusts. The studies have utilized AVHRR, SPOT-VGT, and MODIS 
as well as Landsat for monitoring locust outbreaks (Klein et al., 2021).

4.6 Pest damage and yield forecast

One can analyze crop damage due to pests by knowing the 
reflectance pattern with the help of unmanned aircraft systems and 
the percentage of crops to be harvested under specific conditions like 
pest damage (Hunt and Rondon, 2017). The crop yield forecast has 

been done based on the relationship between VIs and yield with the 
help of remote sensors (Casa and Jones, 2005). The dependence of 
crop yield on various factors particularly pest and disease infestation, 
makes it a tough parameter to know properly but the detection of 
different growth profiles with the help of field sensors has made it 
possible to forecast the yield. Sharma et al. (2020) applied a fusion of 
CNN with LSTM models to raw imagery data for estimating the yield 
of wheat crops. The proposed model demonstrated a remarkable 
accuracy improvement of 74%over conventional methods for crop 
yield prediction and outperformed other deep learning models by 
50%. Dharani et al. (2021) conducted a comparative analysis of three 
techniques namely ANN, CNN, and RNN with LSTM to assess their 
effectiveness in crop yield prediction. The results revealed that CNN 
exhibited superior accuracy compared to ANN, while RNN with 
LSTM outperformed all other techniques, achieving an accuracy of 
89%. A CNN-RNN model was proposed for predicting soybean and 
corn yields in the United States (Khaki et al., 2020). Sabanci (2020) 
used AI techniques, including artificial bee colony optimization, 
ANN, and extreme learning machine algorithms, to detect sunn pest 
damage in wheat grains in Turkey. Toscano-Miranda et al. (2022) 
conducted a study on cotton crops using artificial intelligence 
techniques such as classification, image segmentation, and feature 
extraction. They employed algorithms including support vector 
machines, fuzzy inference, back-propagation neural networks, and 
CNN. The study focused on the most prevalent pests, whiteflies, and 
diseases such as root rot.

5 Challenges and future trends

The potential of AI and RS in insect pest management rests on 
creating precise and real time monitoring systems capable of 
forecasting pest outbreaks and facilitating more focused pest control 
approaches. However, significant challenges like data quality and 
availability, technological accessibility, computational cost, species 
identification complexity, regulatory frameworks for use of AI-driven 
pest management technologies and adaptation to environmental 
shifts, especially those caused by global climate change must 
be  addressed, for ensuring responsible and sustainable pest 
management. The promising future directions in this aspect would 
be  advanced image analysis, multi-sensor integration, predictive 
modeling, precision pest control, drone based monitoring, use of 
smart traps and lures and creating accessible platforms for stakeholders 
to share data, enabling better pest management.

6 Conclusion

Agriculture heavily relies on timely and accurate information, and 
RS and AI play a crucial role in providing such information. The 
ability of RS and AI to rapidly capture data and cover large agricultural 
areas enables farmers and decision-makers to make informed and 
timely decisions about crop management, irrigation, and pest control. 
One specific area where RS and AI have shown great potential is insect 
pest management. These techniques enable pest monitoring and 
detection, identification of pest outbreaks, early warning issuance, and 
determination of the optimal timing for pest control application. This 
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proactive approach could help farmers to prevent crop damage and 
minimize economic losses caused by pests. Furthermore, recent 
advancements in spectroscopy and other RS techniques have opened 
new opportunities for developing alternative and innovative 
approaches to crop management. The integration of RS data with 
traditional agricultural practices can lead to more precise and efficient 
resource utilization, optimizing inputs such as water, fertilizers, and 
pesticides. Efforts should be  made to improve the speed of data 
acquisition and processing, allowing for a prompt response to 
changing conditions on the ground. This would make the information 
even more pertinent and practical for agricultural decision-makers 
and can lead to increased productivity and resilience in response to 
constantly changing environmental conditions.

Author contributions

DA: Conceptualization, Software, Writing – original draft. SMR: 
Conceptualization, Software, Writing – original draft. PaS: Resources, 
Supervision, Writing – review & editing. IA: Supervision, Writing – 
review & editing. BaG: Resources, Writing – review & editing. SAR: 
Resources, Writing – review & editing. SFR: Resources, Writing – 
review & editing. PoS: Resources, Writing – review & editing. GR: 
Resources, Writing – review & editing. KA: Resources, Writing – 
review & editing. GS: Resources, Writing – review & editing. BeG: 
Resources, Writing – review & editing. MN: Resources, Writing – 
review & editing.

Funding

The author(s) declare that no financial support was received for 
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the 
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Abdelhamid, A. A., Alhussan, A. A., Qenawy, A. S. T., Osman, A. M., Elshewey, A. M., 

and Eed, M. (2024). Potato harvesting prediction using an improved ResNet-59 model. 
Potato Res., 67, 1–20. doi: 10.1007/s11540-024-09773-6

Ahirwar, S., Swarnkar, R., Bhukya, S., and Namwade, G. (2019). Application of drone 
in agriculture. Int. J. Curr. Microbiol. Appl. Sci. 8, 2500–2505. doi: 
10.20546/ijcmas.2019.801.264

Ahmad, S. N. I. S. S., Juraimi, A. S., Sulaiman, N., Che'Ya, N. N., Su, A. S. M., 
Nor, N. M., et al. (2023). Weeds detection and control in Rice crop using UAVs and 
artificial intelligence: a review. Adv. Agric. Food Res. J. 4:1–25. doi: 
10.36877/aafrj.a0000371

Al-Adhaileh, M. H., and Aldhyani, T. H. (2022). Artificial intelligence framework for 
modeling and predicting crop yield to enhance food security in Saudi Arabia. Peer J. 
Comput. Sci. 8:e1104. doi: 10.7717/peerj-cs.1104

Ampatzidis, Y., Partel, V., and Costa, L. (2020). Agroview: cloud-based application to 
process, analyze and visualize UAV-collected data for precision agriculture applications 
utilizing artificial intelligence. Comput. Electron. Agric. 174:105457. doi: 
10.1016/j.compag.2020.105457

Apan, A., Held, A., Phinn, S., and Markley, J. (2004). Detecting sugarcane ‘orange 
rust’disease using EO-1 Hyperion hyperspectral imagery. Int. J. Remote Sens. 25, 
489–498. doi: 10.1080/01431160310001618031

Aslan, M. F., Sabanci, K., and Aslan, B. (2024). Artificial intelligence techniques in 
crop yield estimation based on Sentinel-2 data: a comprehensive survey. Sustain. For. 
16:8277. doi: 10.3390/su16188277

Ayyalasomayajula, B., Ehsani, R., and Albrigo, G. (2009). Automated citrus tree 
counting from oblique images and tree height estimation from oblique images. 
Proceedings of the symposium on the applications of precision agriculture for fruits and 
vegetables international conference. Acta Hortic. 824, 91–98. doi: 
10.17660/ActaHortic.2009.824.10

Babaee, M., Maroufpoor, S., Jalali, M., Zarei, M., and Elbeltagi, A. (2021). Artificial 
intelligence approach to estimating rice yield. Irrig. Drain. 70, 732–742. doi: 
10.1002/ird.2566

Backes, M., and Jacobi, J. (2006). Classification of weed patches in Quickbird images: 
verification by ground truth data. EARSeL eProceedings 5, 173–179.

Backoulou, G. F., Elliott, N. C., Giles, K., Phoofolo, M., and Catana, V. (2011). 
Development of a method using multispectral imagery and spatial pattern metrics to 
quantify stress to wheat fields caused by Diuraphisnoxia. Comput. Electron. Agric. 75, 
64–70. doi: 10.1016/j.compag.2010.09.011

Bakala, H. S., Singh, G., and Srivastava, P. (2020). Smart breeding for climate resilient 
agriculture. Plant Breeding-Curr. Future Views, 4847:77–102. doi: 
10.5772/intechopen.94847

Barbedo, J. G. A. (2019). Plant disease identification from individual lesions and spots 
using deep learning. Biosyst. Eng. 180, 96–107. doi: 10.1016/j.biosystemseng.2019.02.002

Batz, P., Will, T., Thiel, S., Ziesche, T. M., and Joachim, C. (2023). From identification 
to forecasting: the potential of image recognition and artificial intelligence for aphid pest 
monitoring. Front. Plant Sci. 14:1150748. doi: 10.3389/fpls.2023.1150748

Bhatia, A., Chug, A., and Singh, A. P. (2020). “Hybrid SVM-LR classifier for powdery 
mildew disease prediction in tomato plant”, in Proceedings of the 2020 7th International 
Conference on Signal Processing and Integrated Networks (SPIN), (Noida, India), 
218–223.

Bhoi, S. K., Jena, K. K., Panda, S. K., Long, H. V., Kumar, R., Subbulakshmi, P., et al. 
(2021). An internet of things assisted unmanned aerial vehicle based artificial 
intelligence model for rice pest detection. Microprocess. Microsyst. 80:103607. doi: 
10.1016/j.micpro.2020.103607

Bjerge, K., Nielsen, J. B., Sepstrup, M. V., Helsing-Nielsen, F., and Høye, T. T. (2021). 
An automated light trap to monitor moths (Lepidoptera) using computer vision-based 
tracking and deep learning. Sensors 21:343. doi: 10.3390/s21020343

Bourhis, Y., Bell, J. R., van den Bosch, F., and Milne, A. E. (2021). Artificial neural 
networks for monitoring network optimisation—a practical example using a national 
insect survey. Environ. Model. Softw. 135:104925. doi: 10.1016/j.envsoft.2020.104925

Bravo, C., Moshou, D., West, J., McCartney, A., and Ramon, H. (2003). Early disease 
detection in wheat fields using spectral reflectance. Biosyst. Eng. 84, 137–145. doi: 
10.1016/S1537-5110(02)00269-6

Bu, F., and Wang, X. (2019). A smart agriculture IoT system based on deep 
reinforcement learning. Future Gen. Comput. Syst. 99, 500–507. doi: 
10.1016/j.future.2019.04.041

Casa, R., and Jones, H. G. (2005). LAI retrieval from multiangular image classification 
and inversion of a ray tracing model. Remote Sens. Environ. 98, 414–428. doi: 
10.1016/j.rse.2005.08.005

Chivkunova, O. B., Solovchenko, A. E., Sokolova, S. G., Merzlyak, M. N., 
Reshetnikova, I. V., and Gitelson, A. A. (2001). Reflectance spectral features and 
detection of superficial scald–induced browning in storing apple fruit. J. Russ. 
Phytopathol. Soc. 2, 73–77.

Christakakis, P., Papadopoulou, G., Mikos, G., Kalogiannidis, N., Ioannidis, D., 
Tzovaras, D., et al. (2024). Smartphone-based citizen science tool for plant disease and 

https://doi.org/10.3389/fsufs.2025.1551460
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://doi.org/10.1007/s11540-024-09773-6
https://doi.org/10.20546/ijcmas.2019.801.264
https://doi.org/10.36877/aafrj.a0000371
https://doi.org/10.7717/peerj-cs.1104
https://doi.org/10.1016/j.compag.2020.105457
https://doi.org/10.1080/01431160310001618031
https://doi.org/10.3390/su16188277
https://doi.org/10.17660/ActaHortic.2009.824.10
https://doi.org/10.1002/ird.2566
https://doi.org/10.1016/j.compag.2010.09.011
https://doi.org/10.5772/intechopen.94847
https://doi.org/10.1016/j.biosystemseng.2019.02.002
https://doi.org/10.3389/fpls.2023.1150748
https://doi.org/10.1016/j.micpro.2020.103607
https://doi.org/10.3390/s21020343
https://doi.org/10.1016/j.envsoft.2020.104925
https://doi.org/10.1016/S1537-5110(02)00269-6
https://doi.org/10.1016/j.future.2019.04.041
https://doi.org/10.1016/j.rse.2005.08.005


Aziz et al. 10.3389/fsufs.2025.1551460

Frontiers in Sustainable Food Systems 14 frontiersin.org

insect Pest detection using artificial intelligence. Technologies 12:101. doi: 
10.3390/technologies12070101

Coble, K. H., Mishra, A. K., Ferrell, S., and Griffin, T. (2018). Big data in agriculture: 
a challenge for the future. Appl. Econ. Persp. Pol. 40, 79–96. doi: 10.1093/aepp/ppx056

Costello, B., Osunkoya, O. O., Sandino, J., Marinic, W., Trotter, P., Shi, B., et al. 
(2022). Detection of Parthenium weed (Parthenium hysterophorus L.) and its growth 
stages using artificial intelligence. Agriculture 12:1838. doi: 
10.3390/agriculture12111838

Das, N. N., Entekhabi, D., Kim, S., Jagdhuber, T., Dunbar, S., Yueh, S., et al. (2017). 
“High-resolution enhanced product based on SMAP active-passive approach using 
sentinel 1A and 1B SAR data”, in 2017 IEEE international geoscience and remote sensing 
symposium (Fort Worth, TX, USA, IGARSS), 2543–2545.

Datt, B. (2006). Early detection of exotic pests and diseases in Asian vegetables by 
imaging spectroscopy: a report for the Rural Industries Research and Development 
Corporation. Rural Ind. Res. Dev. Corp.:31.

De Jong, S. M., and Van der Meer, F. D. (2007). Remote sensing image analysis: 
Including the spatial domain. AA Dordrecht, The Netherlands: Springer Science & 
Business Media.

Dharani, M. K., Thamilselvan, R., Natesan, P., Kalaivaani, P. C. D., and 
Santhoshkumar, S. (2021). Review on crop prediction using deep learning techniques. 
J. Physics 1767:012026. doi: 10.1088/1742-6596/1767/1/012026

Dowell, F. E., and Ballard, J. W. O. (2012). Using near-infrared spectroscopy to resolve 
the species, gender, age, and the presence of Wolbachia infection in laboratory-reared 
Drosophila. G3 2, 1057–1065. doi: 10.1534/g3.112.003103

Dutta, S., Singh, S. K., and Panigrahy, S. (2014). Assessment of late blight induced 
diseased potato crops: a case study for West Bengal district using temporal AWiFS and 
MODIS data. J. Ind. Soc. Remote Sens. 42, 353–361. doi: 10.1007/s12524-013-0325-9

Faria, F. A., Perre, P., Zucchi, R. A., Jorge, L. R., Lewinsohn, T. M., and Rocha, A. 
(2014). Automatic identification of fruit flies (Diptera: Tephritidae). J. Vis. Commun. 
Image Represent. 25, 1516–1527. doi: 10.1016/j.jvcir.2014.06.014

Fitzgerald, G. (2000). Bug checking for mites – from the sky. Austral. Cotton Grow. 
21, 29–31.

Franke, J., and Menz, G. (2007). Multi-temporal wheat disease detection by multi-
spectral remote sensing. Precis. Agric. 8, 161–172. doi: 10.1007/s11119-007-9036-y

Franklin, S. (2001). Remote sensing for sustainable forest management. Boca Raton, 
Florida: Lewis publisher.

Fuentes, M. T., Lenardis, A., and De la Fuente, E. B. (2018). Insect assemblies related 
to volatile signals emitted by different soybean–weeds–herbivory combinations. Agr. 
Ecosyst. Environ. 255, 20–26. doi: 10.1016/j.agee.2017.12.007

Ghatrehsamani, S., Jha, G., Dutta, W., Molaei, F., Nazrul, F., Fortin, M., et al. (2023). 
Artificial intelligence tools and techniques to combat herbicide resistant weeds—a 
review. Sustain. For. 15:1843. doi: 10.3390/su15031843

Giménez-Gallego, J., González-Teruel, J. D., Soto-Valles, F., Jiménez-Buendía, M., 
Navarro-Hellín, H., and Torres-Sánchez, R. (2021). Intelligent thermal image-based 
sensor for affordable measurement of crop canopy temperature. Comput. Electron. Agric. 
188:106319. doi: 10.1016/j.compag.2021.106319

González, M. I., Encarnação, J., Aranda, C., Osório, H., Montalvo, T., and Talavera, S. 
(2022). “The use of artificial intelligence and automatic remote monitoring for mosquito 
surveillance” in Ecology and control of vector-borne diseases (PA, Leiden, The 
Netherlands: Wageningen Academic Publishers), 1116–1121.

Goodwin, N. R., Coops, N. C., Wulder, M. A., Gillanders, S., Schroeder, T. A., and 
Nelson, T. (2008). Estimation of insect infestation dynamics using a temporal sequence 
of Landsat data. Remote Sens. Environ. 112, 3680–3689. doi: 10.1016/j.rse.2008.05.005

Gopinath, S., Sakthivel, K., and Lalith, S. (2022). A plant disease image using 
convolutional recurrent neural network procedure intended for big data plant 
classification. J. Intell. Fuzzy Syst. 43, 4173–4186. doi: 10.3233/JIFS-220747

Gou, C., Zafar, S., Fatima, N., Hasnain, Z., Aslam, N., Iqbal, N., et al. (2024). Machine 
and deep learning: artificial intelligence application in biotic and abiotic stress 
management in plants. Front. Biosci. Landmark 29:20–34. doi: 10.31083/j.fbl2901020

Graeff, S., Link, J., and Claupein, W. (2006). Identification of powdery mildew 
(Erysiphe graminis sp. tritici) and take-all disease (Gaeumannomyces graminis sp. tritici) 
in wheat (Triticum aestivum L.) by means of leaf reflectance measurements. Open Life 
Sci. 1, 275–288. doi: 10.2478/s11535-006-0020-8

Hahn, F. (2004). Spectral bandwidth effect on a Rhizopus stolonifer spore detector and 
its on-line behavior using red tomato fruits. Can. Biosyst. Eng. 46, 49–54.

Halubanza, B. (2024). A framework for an early warning system for the management 
of the spread of locust invasion based on artificial intelligence technologies (Doctoral 
dissertation,: The University of Zambia.

Hara, P., Piekutowska, M., and Niedbała, G. (2021). Selection of independent variables 
for crop yield prediction using artificial neural network models with remote sensing 
data. Land 10:609. doi: 10.3390/land10060609

Hayes, R. O., Maxwell, E. L., Mitchell, C. J., and Woodzick, T. L. (1985). Detection, 
identification, and classification of mosquito larval habitats using remote sensing 
scanners in earth-orbiting satellites. Bull. World Health Organ. 63, 361–374

Hillnhütter, C., Mahlein, A. K., Sikora, R. A., and Oerke, E. C. (2011). Remote sensing 
to detect plant stress induced by Heterodera schachtii and Rhizoctonia solani in sugar 
beet fields. Field Crop Res. 122, 70–77. doi: 10.1016/j.fcr.2011.02.007

Holzinger, A., Keiblinger, K., Holub, P., Zatloukal, K., and Müller, H. (2023). AI for 
life: trends in artificial intelligence for biotechnology. New Biotechnol. 74, 16–24. doi: 
10.1016/j.nbt.2023.02.001

Hulme, P. E. (2009). Trade, transport and trouble: managing invasive species pathways in 
an era of globalization. J. Appl. Ecol. 46, 10–18. doi: 10.1111/j.1365-2664.2008.01600.x

Hunt, E. R. Jr., Rock, B. N., and Nobel, P. S. (1987). Measurement of leaf relative water 
content by infrared reflectance. Remote Sens. Environ. 22, 429–435. doi: 
10.1016/0034-4257(87)90094-0

Hunt, E. R. Jr., and Rondon, S. I. (2017). Detection of potato beetle damage using 
remote sensing from small unmanned aircraft systems. J. Appli. Remote Sens. 11:026013. 
doi: 10.1117/1.JRS.11.026013

Ibatullin, S., Dorosh, Y., Sakal, O., Dorosh, O., and Dorosh, A. (2022). “Crop 
identification using remote sensing methods and artificial intelligence” in International 
conference of young professionals (European Association of Geoscientists & 
Engineers), 1–5.

Javaid, M., Haleem, A., Khan, I. H., and Suman, R. (2023). Understanding the 
potential applications of artificial intelligence in agriculture sector. Adv. Agrochem. 2, 
15–30. doi: 10.1016/j.aac.2022.10.001

Jensen, J. R. (2007). Remote sensing of the environment: An earth resource 
perspective: Pearson Prentice Hall.

Jia, F., Maghirang, E., Dowell, F., Abel, C., and Ramaswamy, S. (2007). Differentiating 
tobacco budworm and corn earworm using near-infrared spectroscopy. J. Econ. Entomol. 
100, 759–764. doi: 10.1093/jee/100.3.759

Johnson, L. F., Bosch, D. F., Williams, D. C., and Lobitz, B. M. (2001). Remote sensing 
of vineyard management zones: implications for wine quality. Appl. Eng. Agric. 17, 
557–560. doi: 10.13031/2013.6454

Jones, H. G., Stoll, M., Santos, T., Sousa, C. D., Chaves, M. M., and Grant, O. M. 
(2002). Use of infrared thermography for monitoring stomatal closure in the field: 
application to grapevine. J. Exp. Bot. 53, 2249–2260. doi: 10.1093/jxb/erf083

Jordan, C. F. (1969). Derivation of leaf area index from quality of light on the forest 
floor. Ecology 50, 663–666. doi: 10.2307/1936256

Jung, J., Maeda, M., Chang, A., Bhandari, M., Ashapure, A., and Landivar-Bowles, J. 
(2021). The potential of remote sensing and artificial intelligence as tools to improve the 
resilience of agriculture production systems. Curr. Opin. Biotechnol. 70, 15–22. doi: 
10.1016/j.copbio.2020.09.003

Kamath, R., Balachandra, M., and Prabhu, S. (2020). Paddy crop and weed 
discrimination: a multiple classifier system approach. Int. J. Agron. 2020, 1–14. doi: 
10.1155/2020/6474536

Kanu, N. J., Gupta, E., and Verma, G. C. (2024). An insight into India's moon mission–
Chandrayan-3: the first nation to land on the southernmost polar region of the moon. 
Planetary Space Sci. 242:105864. doi: 10.1016/j.pss.2024.105864

Karbstein, K., Kösters, L., Hodač, L., Hofmann, M., Hörandl, E., Tomasello, S., et al. 
(2024). Species delimitation 4.0: integrative taxonomy meets artificial intelligence. 
Trends Ecol. Evol. 39, 771–784. doi: 10.1016/j.tree.2023.11.002

Karnieli, A., Agam, N., Pinker, R. T., Anderson, M., Imhoff, M. L., Gutman, G. G., 
et al. (2010). Use of NDVI and land surface temperature for drought assessment: merits 
and limitations. J. Clim. 23, 618–633. doi: 10.1175/2009JCLI2900.1

Katimbo, A., Rudnick, D. R., Zhang, J., Ge, Y., DeJonge, K. C., Franz, T. E., et al. (2023). 
Evaluation of artificial intelligence algorithms with sensor data assimilation in estimating 
crop evapotranspiration and crop water stress index for irrigation water management. 
Smart Agric. Technol. 4:100176. doi: 10.1016/j.atech.2023.100176

Katiyar, S. (2022). “The use of pesticide management using artificial intelligence” in 
Artificial intelligence applications in agriculture and food quality improvement (IGI 
Global), 74–94.

Kaur, J., Sahu, K. P., and Singh, S. (2022). Optimization of pest management using 
artificial intelligence: fundamentals and applications, vol. 11: Souvenir & Abstracts.

Khaki, S., Wang, L., and Archontoulis, S. V. (2020). A CNN-RNN framework for crop 
yield prediction. Front. Plant Sci. 10:1750. doi: 10.3389/fpls.2019.01750

Khan, H. A., Rao, S. A., and Farooq, U. (2024). Optimizing olive harvesting efficiency 
through UAVs and AI integration. J. Agric. Sci. 16:45. doi: 10.5539/jas.v16n11p45

Kho, S. J., Manickam, S., Malek, S., Mosleh, M., and Dhillon, S. K. (2017). Automated 
plant identification using artificial neural network and support vector machine. Front. 
Life Sci. 10, 98–107. doi: 10.1080/21553769.2017.1412361

Kim, T. H., and AlZubi, A. A. (2024). AI-enhanced precision irrigation in legume farming: 
optimizing water use efficiency. Legum. Res. 47, 1382–1389. doi: 10.18805/LRF-791

Kim, Y., Evans, R. G., and Iversen, W. M. (2008). Remote sensing and control of an 
irrigation system using a distributed wireless sensor network. IEEE Trans. Instrum. 
Meas. 57, 1379–1387. doi: 10.1109/TIM.2008.917198

Klarica, J., Bittner, L., Pallua, J., Pezzei, C., Huck-Pezzei, V., Dowell, F., et al. (2011). 
Near-infrared imaging spectroscopy as a tool to discriminate two cryptic Tetramorium 
ant species. J. Chem. Ecol. 37, 549–552. doi: 10.1007/s10886-011-9956-x

https://doi.org/10.3389/fsufs.2025.1551460
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://doi.org/10.3390/technologies12070101
https://doi.org/10.1093/aepp/ppx056
https://doi.org/10.3390/agriculture12111838
https://doi.org/10.1088/1742-6596/1767/1/012026
https://doi.org/10.1534/g3.112.003103
https://doi.org/10.1007/s12524-013-0325-9
https://doi.org/10.1016/j.jvcir.2014.06.014
https://doi.org/10.1007/s11119-007-9036-y
https://doi.org/10.1016/j.agee.2017.12.007
https://doi.org/10.3390/su15031843
https://doi.org/10.1016/j.compag.2021.106319
https://doi.org/10.1016/j.rse.2008.05.005
https://doi.org/10.3233/JIFS-220747
https://doi.org/10.31083/j.fbl2901020
https://doi.org/10.2478/s11535-006-0020-8
https://doi.org/10.3390/land10060609
https://doi.org/10.1016/j.fcr.2011.02.007
https://doi.org/10.1016/j.nbt.2023.02.001
https://doi.org/10.1111/j.1365-2664.2008.01600.x
https://doi.org/10.1016/0034-4257(87)90094-0
https://doi.org/10.1117/1.JRS.11.026013
https://doi.org/10.1016/j.aac.2022.10.001
https://doi.org/10.1093/jee/100.3.759
https://doi.org/10.13031/2013.6454
https://doi.org/10.1093/jxb/erf083
https://doi.org/10.2307/1936256
https://doi.org/10.1016/j.copbio.2020.09.003
https://doi.org/10.1155/2020/6474536
https://doi.org/10.1016/j.pss.2024.105864
https://doi.org/10.1016/j.tree.2023.11.002
https://doi.org/10.1175/2009JCLI2900.1
https://doi.org/10.1016/j.atech.2023.100176
https://doi.org/10.3389/fpls.2019.01750
https://doi.org/10.5539/jas.v16n11p45
https://doi.org/10.1080/21553769.2017.1412361
https://doi.org/10.18805/LRF-791
https://doi.org/10.1109/TIM.2008.917198
https://doi.org/10.1007/s10886-011-9956-x


Aziz et al. 10.3389/fsufs.2025.1551460

Frontiers in Sustainable Food Systems 15 frontiersin.org

Klein, I., Oppelt, N., and Kuenzer, C. (2021). Application of remote sensing data for 
locust research and management—a review. Insects 12:233. doi: 10.3390/insects12030233

Kshetrimayum, A., Goyal, A., and Bhadra, B. K. (2024). Semi physical and machine 
learning approach for yield estimation of pearl millet crop using SAR and optical data 
products. J. Spat. Sci. 69, 573–592. doi: 10.1080/14498596.2023.2259857

Latchininsky, A. V., and Sivanpillai, R. (2010). Locust habitat monitoring and risk 
assessment using remote sensing and GIS technologies, in integrated Management of 
Arthropod Pests and Insect Borne Diseases. Dordrecht: Springer Netherlands, 
163–188.

Lee, W. S., and Tardaguila, J. (2023). Pest and disease management, in advanced 
automation for tree fruit orchards and vineyards. Cham: Springer International 
Publishing, 93–118.

Li, Z., Sun, J., Shen, Y., Yang, Y., Wang, X., Wang, X., et al. (2024). Deep migration 
learning-based recognition of diseases and insect pests in Yunnan tea under complex 
environments. Plant Methods 20:101. doi: 10.1186/s13007-024-01219-x

Lillesand, T., Kiefer, R. W., and Chipman, J. (2015). Remote sensing and image 
interpretation: John Wiley & Sons.

Lins, E. C., Belasque, J., and Marcassa, L. G. (2009). Detection of citrus canker in citrus 
plants using laser induced fluorescence spectroscopy. Precis. Agric. 10, 319–330. doi: 
10.1007/s11119-009-9124-2

Liu, S. C., Jian, Q. Y., Wen, H. Y., and Chung, C. H. (2022). A crop harvest time 
prediction model for better sustainability, integrating feature selection and artificial 
intelligence methods. Sustain. For. 14:14101. doi: 10.3390/su142114101

Low, F., and Duveiller, G. (2014). Defining the spatial resolution requirements for crop 
identification using optical remote sensing. Remote Sens. 6, 9034–9063. doi: 
10.3390/rs6099034

Luo, J., Huang, W., Yuan, L., Zhao, C., Du, S., Zhang, J., et al. (2013). Evaluation of 
spectral indices and continuous wavelet analysis to quantify aphid infestation in wheat. 
Precis. Agric. 14, 151–161. doi: 10.1007/s11119-012-9283-4

Lutz, É., and Coradi, P. C. (2022). Applications of new technologies for monitoring 
and predicting grains quality stored: sensors, internet of things, and artificial intelligence. 
Measurement 188:110609. doi: 10.1016/j.measurement.2021.110609

Machleb, J., Peteinatos, G. G., Kollenda, B. L., Andújar, D., and Gerhards, R. (2020). 
Sensor-based mechanical weed control: present state and prospects. Comput. Electron. 
Agric. 176:105638. doi: 10.1016/j.compag.2020.105638

Maggiora, R., Saccani, M., Milanesio, D., and Porporato, M. (2019). An innovative 
harmonic radar to track flying insects: the case of Vespa velutina. Sci. Rep. 9:11964. doi: 
10.1038/s41598-019-48511-8

Malinowski, R., Groom, G., Schwanghart, W., and Heckrath, G. (2015). Detection and 
delineation of localized flooding from WorldView-2 multispectral data. Remote Sens. 7, 
14853–14875. doi: 10.3390/rs71114853

Martos, V., Ahmad, A., Cartujo, P., and Ordoñez, J. (2021). Ensuring agricultural 
sustainability through remote sensing in the era of agriculture 5.0. Appl. Sci. 11:5911. 
doi: 10.3390/app11135911

McDowell, R. W. (2017). Does variable rate irrigation decrease nutrient leaching losses 
from grazed dairy farming? Soil Use Manag. 33, 530–537. doi: 10.1111/sum.12363

Meraj, G., Kanga, S., Ambadkar, A., Kumar, P., Singh, S. K., Farooq, M., et al. (2022). 
Assessing the yield of wheat using satellite remote sensing-based machine learning 
algorithms and simulation modeling. Remote Sens. 14:3005. doi: 10.3390/rs14133005

Mogili, U. R., and Deepak, B. B. V. L. (2018). Review on application of drone systems 
in precision agriculture. Proc. Comput. Sci. 133, 502–509. doi: 10.1016/j.procs.2018.07.063

Mohammed, M., Hamdoun, H., and Sagheer, A. (2023). Toward sustainable farming: 
implementing artificial intelligence to predict optimum water and energy requirements 
for sensor-based micro irrigation systems powered by solar PV. Agronomy 13:1081. doi: 
10.3390/agronomy13041081

Moshou, D., Bravo, C., Oberti, R., West, J., Bodria, L., McCartney, A., et al. (2005). 
Plant disease detection based on data fusion of hyper-spectral and multi-spectral 
fluorescence imaging using Kohonen maps. Real Time Imaging 11, 75–83. doi: 
10.1016/j.rti.2005.03.003

Murmu, S., Pradhan, A. K., Chaurasia, H., Kumar, D., and Samal, I. (2022). Impact of 
bioinformatics advances in agricultural sciences. AgroSci. Today 3, 480–485.

Nansen, C., Ribeiro, L. P., Dadour, I., and Roberts, J. D. (2015). Detection of temporal 
changes in insect body reflectance in response to killing agents. PLoS One 10:e0124866. 
doi: 10.1371/journal.pone.0124866

Navarro, A., Nicastro, N., Costa, C., Pentangelo, A., Cardarelli, M., Ortenzi, L., et al. 
(2022). Sorting biotic and abiotic stresses on wild rocket by leaf-image hyperspectral 
data mining with an artificial intelligence model. Plant Methods 18:45. doi: 
10.1186/s13007-022-00880-4

Noutfia, Y., and Ropelewska, E. (2024). What can artificial intelligence approaches 
bring to an improved and efficient harvesting and postharvest handling of date fruit 
(Phoenix dactylifera L.)? A review. Postharvest Biol. Technol. 213:112926. doi: 
10.1016/j.postharvbio.2024.112926

Park, Y. H., Choi, S. H., Kwon, Y. J., Kwon, S. W., Kang, Y. J., and Jun, T. H. (2023). 
Detection of soybean insect pest and a forecasting platform using deep learning with 
unmanned ground vehicles. Agronomy 13:477. doi: 10.3390/agronomy13020477

Pinter, P. J. Jr., Hatfield, J. L., Schepers, J. S., Barnes, E. M., Moran, M. S., Daughtry, C. S., 
et al. (2003). Remote sensing for crop management. Photogramm. Eng. Remote. Sens. 69, 
647–664. doi: 10.14358/PERS.69.6.647

Prabhakar, M., Prasad, Y. G., Mandal, U. K., Ramakrishna, Y. S., Ramalakshmaiaha, C., 
Venkateswarlu, N. C., et al. (2006). Spectral characteristics of Peanut crop infected by 
late leafspot disease under Rainfed conditions. Agriculture and Hydrology Applications 
of Remote Sensing (SPIE), 109–115

Prabhakar, M., Prasad, Y. G., and Rao, M. N. (2012). “Remote sensing of biotic stress 
in crop plants and its applications for pest management” in Crop stress and its 
management: Perspectives and strategies (New York: Springer), 517–549.

Pellikka, P., and Rees, W. G. (2009). Remote sensing of glaciers: techniques for 
topographic, spatial and thematic mapping of glaciers. CRC Press. 1–315. doi: 
10.1201/b10155

Ranjithkumar, C., Saveetha, S., Kumar, V. D., Prathyangiradevi, S., and 
Kanagasabapathy, T. (2021). AI based crop identification application. Int. J. Res. Eng. Sci. 
Manag. 4, 17–21.

Rouse, J. W., Haas, R. H., Shell, J. A., and Deering, D. W. (1973). “Monitoring 
vegetation systems in the Great Plains with ERTS-1” in Proceedings of third earth 
resources technology satellite symposium (Washington, DC: Goddard Space Flight 
Center), 309–317.

Roy, L., Ganchaudhuri, S., Pathak, K., Dutta, A., and Gogoi Khanikar, P. (2022). 
Application of remote sensing and GIS in agriculture. Int. J. Res. Anal. Rev. 9:460.

Rydhmer, K., Bick, E., Still, L., Strand, A., Luciano, R., Helmreich, S., et al. (2022). 
Automating insect monitoring using unsupervised near-infrared sensors. Sci. Rep. 
12:2603. doi: 10.1038/s41598-022-06439-6

Ryu, J., Dohyeok, O. H., and Jaeil, C. H. O. (2021). Simple method for extracting the 
seasonal signals of photochemical reflectance index and normalized difference vegetation 
index measured using a spectral reflectance sensor. J. Integr. Agric. 20, 1969–1986. doi: 
10.1016/S2095-3119(20)63410-4

Sabanci, K. (2020). Detection of sunn pest-damaged wheat grains using artificial bee 
colony optimization-based artificial intelligence techniques. J. Sci. Food Agric. 20, 
1969–1986. doi: 10.1016/S2095-3119(20)63410-4

Sabrina, F., Sohail, S., Farid, F., Jahan, S., Ahamed, F., and Gordon, S. (2022). An 
interpretable artificial intelligence based smart agriculture system. Comput. Mater. 
Contin. 72, 3777–3797. doi: 10.32604/cmc.2022.026363

Saikumar, N., Emmanuel, N., Krishna, K. S. P., Chinnabbai, C., and Krishna, K. U. 
(2023). Artificial intelligence for classification and detection of major insect pests of 
Brinjal. Ind. J. Entomol., 563–566. doi: 10.55446/IJE.2023.1388

Santoso, H., Gunawan, T., Jatmiko, R. H., Darmosarkoro, W., and Minasny, B. (2011). 
Mapping and identifying basal stem rot disease in oil palms in North Sumatra with 
QuickBird imagery. Prec. Agric. 12, 233–248. doi: 10.1007/s11119-010-9172-7

Sharma, R., Kumar, N., and Sharma, B. B. (2022). Applications of artificial intelligence 
in smart agriculture: a review. Recent Innov. Comput. 832, 135–142. doi: 
10.1007/978-981-16-8248-3_11

Sharma, S., Rai, S., and Krishnan, N. C. (2020). Wheat crop yield prediction using 
deep LSTM model. arXiv preprint arXiv, 01498. doi: 10.48550/arXiv.2011.01498

Singh, D., Chaudhary, P., Taunk, J., Singh, C. K., Singh, D., Tomar, R. S. S., et al. (2021). 
Fab advances in fabaceae for abiotic stress resilience: from omics to artificial intelligence. 
Int. J. Mol. Sci. 22:10535. doi: 10.3390/ijms221910535

Singh, C. B., Jayas, D. S., Paliwal, J. N. D. G., and White, N. D. G. (2009). Detection of 
insect-damaged wheat kernels using near-infrared hyperspectral imaging. J. Stored Prod. 
Res. 45, 151–158. doi: 10.1016/j.jspr.2008.12.002

Singh, C. B., Jayas, D. S., Paliwal, J., and White, N. D. (2010). Identification of 
insect-damaged wheat kernels using short-wave near-infrared hyperspectral and 
digital colour imaging. Comput. Electron. Agric. 73, 118–125. doi: 
10.1016/j.compag.2010.06.001

Singh, A., Mehrotra, R., Rajput, V. D., Dmitriev, P., Singh, A. K., Kumar, P., et al. 
(2022). Geoinformatics, artificial intelligence, sensor technology, big data: emerging 
modern tools for sustainable agriculture. Sustain. Agric. Syst. Technol., 295–313. doi: 
10.1002/9781119808565.ch14

Small, I. M., Joseph, L., and Fry, W. E. (2015). Development and implementation of 
the BlightPro decision support system for potato and tomato late blight management. 
Comput. Electron. Agric. 115, 57–65. doi: 10.1016/j.compag.2015.05.010

Smith, L., McElrone, A. J., and Hartin, J. (2020). Remote sensing assessment of insect 
damage in vineyards. Remote Sens. 12:2395.

Spinelli, F., Noferini, M., and Costa, G. (2006). Near infrared spectroscopy (NIRs): 
perspective of fire blight detection in asymptomatic plant material. Proceeding of 10th 
international workshop on fire blight. Acta Hortic. 704, 87–90. doi: 
10.17660/ActaHortic.2006.704.9

Su, W. H. (2020). Crop plant signaling for real-time plant identification in smart farm: 
a systematic review and new concept in artificial intelligence for automated weed 
control. Artif. Intel. Agric. 4, 262–271. doi: 10.1016/j.aiia.2020.11.001

Subeesh, A., and Mehta, C. R. (2021). Automation and digitization of agriculture using 
artificial intelligence and internet of things. Artif. Intel. Agric. 5, 278–291. doi: 
10.1016/j.aiia.2021.11.004

https://doi.org/10.3389/fsufs.2025.1551460
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://doi.org/10.3390/insects12030233
https://doi.org/10.1080/14498596.2023.2259857
https://doi.org/10.1186/s13007-024-01219-x
https://doi.org/10.1007/s11119-009-9124-2
https://doi.org/10.3390/su142114101
https://doi.org/10.3390/rs6099034
https://doi.org/10.1007/s11119-012-9283-4
https://doi.org/10.1016/j.measurement.2021.110609
https://doi.org/10.1016/j.compag.2020.105638
https://doi.org/10.1038/s41598-019-48511-8
https://doi.org/10.3390/rs71114853
https://doi.org/10.3390/app11135911
https://doi.org/10.1111/sum.12363
https://doi.org/10.3390/rs14133005
https://doi.org/10.1016/j.procs.2018.07.063
https://doi.org/10.3390/agronomy13041081
https://doi.org/10.1016/j.rti.2005.03.003
https://doi.org/10.1371/journal.pone.0124866
https://doi.org/10.1186/s13007-022-00880-4
https://doi.org/10.1016/j.postharvbio.2024.112926
https://doi.org/10.3390/agronomy13020477
https://doi.org/10.14358/PERS.69.6.647
https://doi.org/10.1201/b10155
https://doi.org/10.1038/s41598-022-06439-6
https://doi.org/10.1016/S2095-3119(20)63410-4
https://doi.org/10.1016/S2095-3119(20)63410-4
https://doi.org/10.32604/cmc.2022.026363
https://doi.org/10.55446/IJE.2023.1388
https://doi.org/10.1007/s11119-010-9172-7
https://doi.org/10.1007/978-981-16-8248-3_11
https://doi.org/10.48550/arXiv.2011.01498
https://doi.org/10.3390/ijms221910535
https://doi.org/10.1016/j.jspr.2008.12.002
https://doi.org/10.1016/j.compag.2010.06.001
https://doi.org/10.1002/9781119808565.ch14
https://doi.org/10.1016/j.compag.2015.05.010
https://doi.org/10.17660/ActaHortic.2006.704.9
https://doi.org/10.1016/j.aiia.2020.11.001
https://doi.org/10.1016/j.aiia.2021.11.004


Aziz et al. 10.3389/fsufs.2025.1551460

Frontiers in Sustainable Food Systems 16 frontiersin.org

Sujithra, J., and Ukrit, M. F. (2022). Performance analysis of D-neural networks for leaf 
disease classification-banana and sugarcane. Int. J. Syst. Assur. Eng. Manag., Eds. Pandey, K., 
Kushwaha, N.L., Pande, C.B., Singh, K.G. 13, 1–9. doi: 10.1007/s13198-022-01756-5

Toscano-Miranda, R., Toro, M., Aguilar, J., Caro, M., Marulanda, A., and Trebilcok, A. 
(2022). Artificial-intelligence and sensing techniques for the management of insect pests 
and diseases in cotton: a systematic literature review. J. Agric. Sci. 160, 16–31. doi: 
10.1017/S002185962200017X

Trout, T. J., Johnson, L. F., and Gartung, J. (2008). Remote sensing of canopy covers in 
horticultural crops. Hortic. Sci. 43, 333–337. doi: 10.21273/HORTSCI.43.2.333

Vijayakumar, V., and Balakrishnan, N. (2021). Artificial intelligence-based agriculture 
automated monitoring systems using WSN. J. Ambient Intell. Humani. Comput. 12, 
8009–8016. doi: 10.1007/s12652-020-02530-w

Wägele, J. W., Bodesheim, P., Bourlat, S. J., Denzler, J., Diepenbroek, M., Fonseca, V., 
et al. (2022). Towards a multisensor station for automated biodiversity monitoring. Basic 
Appl. Ecol. 59, 105–138. doi: 10.1016/j.baae.2022.01.003

Wang, Y., Nansen, C., and Zhang, Y. (2016). Integrative insect taxonomy based on 
morphology, mitochondrial DNA, and hyperspectral reflectance profiling. Zool. J. 
Linnean Soc. 177, 378–394. doi: 10.1111/zoj.12367

Wongchai, A., Shukla, S. K., Ahmed, M. A., Sakthi, U., and Jagdish, M. (2022). 
Artificial intelligence-enabled soft sensor and internet of things for sustainable 
agriculture using ensemble deep learning architecture. Comput. Electric. Eng. 
102:108128. doi: 10.1016/j.compeleceng.2022.108128

Xia, W., Han, D., Li, D., Wu, Z., Han, B., and Wang, J. (2023). An ensemble learning 
integration of multiple CNN with improved vision transformer models for pest 
classification. Ann. Appl. Biol. 182, 144–158. doi: 10.1111/aab.12804

Xiao, Q., Li, W., Kai, Y., Chen, P., Zhang, J., and Wang, B. (2019). Occurrence 
prediction of pests and diseases in cotton on the basis of weather factors by long short 
term memory network. BMC Bioinform. 20, 1–15. doi: 10.1186/s12859-019-3262-y

Xu, H. R., Ying, Y. B., Fu, X. P., and Zhu, S. P. (2007). Near-infrared spectroscopy in 
detecting leaf miner damage on tomato leaf. Biosyst. Eng. 96, 447–454. doi: 
10.1016/j.biosystemseng.2007.01.008

Yadav, M., Vashisht, B. B., Vullaganti, N., Jalota, S. K., Yadav, S. L., Singh, G., et al. 
(2024). “IoT-enabled unmanned aerial vehicle: an emerging trend in precision farming” 
in Artificial intelligence and smart agriculture: Technology and applications, 271–292.

Yang, C. M. (2010). Assessment of the severity of bacterial leaf blight in rice using 
canopy hyperspectral reflectance. Precis. Agric. 11, 61–81. doi: 
10.1007/s11119-009-9122-4

Yang, C. M., Cheng, C. H., and Chen, R. K. (2007). Changes in spectral characteristics 
of rice canopy infested with brown planthopper and leaffolder. Crop Sci. 47, 329–335. 
doi: 10.2135/cropsci2006.05.0335

Yang, C., and Everitt, J. H. (2011). “Remote sensing for detecting and mapping whitefly 
(Bemisia tabaci) infestations” in The whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) 
interaction with Geminivirus-infected host plants: Bemisia tabaci, Host plants and 
Geminiviruses (Dordrecht: Springer Netherlands), 357–381.

Yang, W., Huang, D., Tan, B., Stroeve, J. C., Shabanov, N. V., Knyazikhin, Y., et al. 
(2006). Analysis of leaf area index and fraction of PAR absorbed by vegetation products 
from the terra MODIS sensor: 2000-2005. IEEE Transac. Geosci. Remote Sens. 44, 
1829–1842. doi: 10.1109/TGRS.2006.871214

Yones, M. S., Arafat, S., Abou Hadid, A. F., Abd Elrahman, H. A., and Dahi, H. F. 
(2012). Determination of the best timing for control application against cotton leaf 
worm using remote sensing and geographical information techniques. Egypt. J. Remote 
Sens. Space Sci. 15, 151–160. doi: 10.1016/j.ejrs.2012.05.004

Zaman, Q., Schumann, A. W., and Hostler, K. H. (2006). Estimation of citrus fruit 
yield using ultrasonically-sensed tree size. Appl. Eng. Agric. 22, 39–44. doi: 
10.13031/2013.20186

Zhang, J., Yang, C., Song, H., Hoffmann, W. C., Zhang, D., and Zhang, G. (2016). 
Evaluation of an airborne remote sensing platform consisting of two consumer-grade 
cameras for crop identification. Remote Sens. 8:257. doi: 10.3390/rs8030257

Zhang, F., Zaman, Q. U., Percival, D. C., and Schumann, A. W. (2010). Detecting bare 
spots in wild blueberry fields using digital color photography. Appl. Eng. Agric. 26, 
723–728. doi: 10.13031/2013.34938

https://doi.org/10.3389/fsufs.2025.1551460
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://doi.org/10.1007/s13198-022-01756-5
https://doi.org/10.1017/S002185962200017X
https://doi.org/10.21273/HORTSCI.43.2.333
https://doi.org/10.1007/s12652-020-02530-w
https://doi.org/10.1016/j.baae.2022.01.003
https://doi.org/10.1111/zoj.12367
https://doi.org/10.1016/j.compeleceng.2022.108128
https://doi.org/10.1111/aab.12804
https://doi.org/10.1186/s12859-019-3262-y
https://doi.org/10.1016/j.biosystemseng.2007.01.008
https://doi.org/10.1007/s11119-009-9122-4
https://doi.org/10.2135/cropsci2006.05.0335
https://doi.org/10.1109/TGRS.2006.871214
https://doi.org/10.1016/j.ejrs.2012.05.004
https://doi.org/10.13031/2013.20186
https://doi.org/10.3390/rs8030257
https://doi.org/10.13031/2013.34938

	Remote sensing and artificial intelligence: revolutionizing pest management in agriculture
	1 Introduction
	2 Remote sensing (RS)
	2.1 Remote sensing platforms

	3 Applications of remote sensing and artificial intelligence in agriculture
	3.1 Crop identification
	3.2 Crop acreage estimation
	3.3 Canopy measurement
	3.4 Harvest time assessment
	3.5 Crop yield estimation
	3.6 Stress due to pests and diseases
	3.7 Weed infestation mapping
	3.8 Abiotic stress monitoring
	3.9 Irrigation water requirement

	4 Applications of remote sensing and artificial intelligence in insect pest management
	4.1 Insect taxonomy and systematics
	4.2 Insect movement and migration
	4.3 Detection of biotic stress
	4.4 Pest monitoring, forecasting, and early warning
	4.5 Detection, identification, and classification of insect habitats
	4.6 Pest damage and yield forecast

	5 Challenges and future trends
	6 Conclusion

	References

