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Food security has become one of the central issues drawing global attention. 
Currently, the global food security situation is becoming increasingly urgent, 
profoundly impacting both China’s economic development and social stability, 
while also bearing significant national strategic importance. This paper is based 
on county-level grain production data from Sichuan Province between 2000 and 
2022. Firstly, it employs methods such as standard deviation ellipses, center of 
gravity shifts, and spatial autocorrelation analysis to explore the spatiotemporal 
evolution of grain production in Sichuan Province. Furthermore, the Geodetector 
and GWR models are applied to identify and quantify the key drivers affecting 
grain production in Sichuan Province, as well as their spatial heterogeneity. The 
study finds that: (1) grain production in Sichuan Province shows a fluctuating 
growth trend, with clear regional disparities in its spatial distribution; (2) The 
spatial distribution of grain production in Sichuan Province exhibits a positive 
correlation, with its spatial association gradually strengthening, while also displaying 
significant spatial differences and regional clustering; (3) In terms of detecting 
driving factors, actual cultivated land area of the year has a significant impact 
on grain production, with its influence becoming particularly prominent when 
interacting with other factors; (4) Regarding the spatial heterogeneity of driving 
factors, each driver shows distinct spatial differentiation characteristics. Cultivated 
land area, fertilizer usage, and rural electricity consumption all exert a significant 
positive effect on overall grain production, while other influencing factors generally 
have a negative impact. This study not only deepens the scientific understanding 
of the spatiotemporal evolution and driving mechanisms of grain production but 
also provides scientific evidence and policy recommendations for food security 
and sustainable agricultural development in Sichuan Province and similar regions.
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1 Introduction

Food security is a crucial foundation for global sustainable 
development (Pawlak and Kołodziejczak, 2020), directly related to 
key issues such as eradicating hunger (SDG 2) and reducing 
poverty (SDG 1) in the United Nations Sustainable Development 
Goals (Khanal et al., 2021). According to data from the United 
Nations Food and Agriculture Organization (FAO), global grain 
production reached 2.8 billion tons in 2022, an increase of 1.2% 
year-on-year. However, due to factors such as climate change, land 
degradation, and socioeconomic pressures, over 800 million people 
worldwide still face food insecurity, and food security remains a 
critical challenge (Barakat et al., 2023; Agapkin and Makhotina, 
2021). In China, food security is given even greater attention. 
Statistics show that China’s total grain production reached 
686 million tons in 2022, maintaining a level above 650 million 
tons for eight consecutive years, effectively ensuring the food 
supply for its 1.4 billion people. However, in the face of challenges 
such as the reduction of arable land, climate change, and the aging 
of the agricultural labor force, food security remains an important 
issue for China’s socio-economic development. The Chinese 
government highlights the importance of ensuring food security 
in its annual No. 1 Central Document, continuously emphasizing 
the need to increase grain production and optimize the structure 
of grain production. Grain production is not only an important 
indicator of agricultural productivity but also a key factor in 
ensuring national food security (Fei et al., 2023; Li et al., 2021). In 
recent years, the trends and driving factors behind changes in grain 
production have garnered widespread attention from the academic 
community. In-depth research on the spatiotemporal evolution of 
grain production and its driving factors helps to understand the 
dynamics of grain production in different regions, providing 
support for the formulation of scientific agricultural management 
policies, thereby ensuring food security and contributing to 
sustainable agricultural development.

In the academic field of food security, much of the research has 
focused on the spatiotemporal evolution characteristics of grain 
production and the identification of its driving factors. Firstly, 
scholars have widely applied methods such as remote sensing 
monitoring and spatial analysis to study the trends of grain 
production changes on global and regional scales. These studies 
have effectively revealed the dynamic temporal and spatial 
characteristics of grain production (Jiang et al., 2024; Pan et al., 
2020; Zhou et al., 2020; Zhu et al., 2022; Zhang D. et al., 2023), 
which can help us understand the regional differences in grain 
production and the trends in grain production over different 
periods, thus providing foundational support for formulating more 
effective agricultural policies and improving grain production 
efficiency. Further, based on the analysis of the spatiotemporal 
evolution of grain production, scholars have used methods such as 
regression analysis (Liu Y. et al., 2021; Liu, 2024), path analysis (Sun 
et  al., 2024; Liu et  al., 2023), and structural equation modeling 
(Khan et al., 2024; Eze and Abe, 2024) to identify the driving factors 
behind it. However, these methods often overlook the spatial 
heterogeneity of driving factors across different regions, leading to 
an inability to fully identify the local characteristics of the driving 
factors, thus limiting the understanding of the complexity of grain 
production changes. To address this issue, some scholars have 

introduced the Geodetector model (Lei et al., 2022; Kheyruri et al., 
2024) or the Geographically Weighted Regression (GWR) model 
(Zhao et al., 2022; Xia et al., 2018) into their studies. However, while 
the Geodetector model can reveal spatial heterogeneity, it cannot 
quantitatively assess the local effect strengths of different driving 
factors (Chen et al., 2024; Zhang et al., 2022) and while the GWR 
model can further identify local effects, it has certain limitations in 
revealing the spatial differences of driving factors (Zhang W. et al., 
2023; Yuan et al., 2024). Therefore, combining the Geodetector and 
GWR models can more comprehensively identify the heterogeneity 
of driving factors. The Geodetector model can reveal the spatial 
differentiation of influencing factors at the macro level and identify 
the relative importance of driving factors in different regions 
(Zhang H.-Z. et al., 2023; Wan et al., 2023), while the GWR model 
can further quantify the local effect strength of each driving factor 
at the micro level (Cheng et  al., 2024; Hu Y. et  al., 2024). By 
combining these two models, it is possible to obtain an overall 
spatial distribution of driving factors and also finely depict the 
specific manifestations of driving effects in different regions, thus 
achieving a comprehensive identification of spatial heterogeneity 
and enhancing the relevance and effectiveness of policy measures. 
Therefore, combining these two models can effectively address the 
gaps in existing research on the identification of spatial 
heterogeneity in driving factors, providing more precise support for 
the scientific management and decision-making of grain production.

Sichuan Province, as a major grain-producing area in southwest 
China, holds a significant strategic position for national food security. 
The province’s diverse natural geographic conditions and agricultural 
production methods result in significant complexity and 
heterogeneity in the spatial distribution of grain production and its 
driving factors in Sichuan. Based on this, the study utilizes grain 
production data from 177 counties in Sichuan Province between 2000 
and 2022. First, it employs models such as kernel density estimation 
and standard deviation ellipse center of gravity shift to 
comprehensively characterize the spatiotemporal evolution of grain 
production. Second, it combines the Geodetector and GWR models 
to comprehensively identify the heterogeneous driving factors. This 
study aims to provide a deeper understanding of the spatial 
distribution patterns and driving mechanisms of grain production in 
Sichuan Province, thereby offering scientific evidence for formulating 
more refined agricultural policies and optimizing agricultural inputs 
in the province, and providing valuable insights to help Sichuan build 
a higher-level “Tianfu Granary” in the new era.

2 Overview of the study area

Sichuan Province is located between 97°21′E and 108°33′E, and 
26°03′N and 34°19′N, covering an area of approximately 
486,000 km2 (Liu C. et al., 2021; He C. et al., 2022) (Figure 1). It is 
mainly divided into five major economic regions: the Chengdu 
Plain Economic Zone (CPEZ), the South Sichuan Economic Zone 
(SSEZ), the Northeast Sichuan Economic Zone (NSEZ), the Panxi 
Economic Region (PER), and the Northwest Sichuan Ecological 
Demonstration Area (NSEDA) (Wan et al., 2023). The terrain of 
Sichuan Province is characterized by high mountains in the west 
and lower elevations in the east, sloping from northwest to 
southeast. The topography is complex and diverse, dominated by 
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mountains and plateaus, with hills in secondary prominence and 
plains being relatively scarce. Sichuan Province has a diverse range 
of climate types, generally exhibiting characteristics of a subtropical 
humid climate, with warm and moist conditions and ample rainfall. 
The climate of the province is heavily influenced by its topography, 
with an annual average temperature ranging from 15°C to 
22°C. Specifically, the climate in the eastern basin region is mild, 
with annual precipitation ranging from 500 to 1,200 mm. Such 
climatic conditions are highly favorable for the growth of food 
crops. In contrast, the climate in the western plateau region is 
relatively cold, with annual precipitation around 600–700 mm, and 
there is a notable vertical climate variation.

3 Research methods and data sources

3.1 Research methods

3.1.1 Standard deviation ellipse and center of 
gravity shift

The standard deviation ellipse is a spatial statistical method used 
to reveal the spatial distribution and multidimensional characteristics 
of the subject under study. This study uses the standard deviation 
ellipse to analyze the shift of the grain production center of gravity. 
The long axis of the standard deviation ellipse represents the spatial 
characteristics of the data distribution, while the short axis indicates 

the degree of data dispersion. The formula is given by Wu and 
Li (2024):
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In Equation (1), andX Y  are the longitude and latitude of the 
center of gravity, respectively; andi iX Y  represent the longitude and 
latitude of the center of the i-th region; iW  denotes the spatial weight 
of the attribute value of the i-th region.

3.1.2 ESDA exploratory spatial data analysis
Spatial autocorrelation analysis can reveal the spatial distribution 

of a certain attribute and its association and differences with 
neighboring regions. It can be  divided into global spatial 
autocorrelation and local spatial autocorrelation.

 (1) Global Autocorrelation

The function of global spatial autocorrelation is to describe the 
overall distribution of a variable’s attribute values and determine 

FIGURE 1

Overview of the study area. Data: National Geographic Information Resource Directory Service System and Open Topography Platform.
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whether the phenomenon exhibits clustering characteristics. The 
calculation method is as follows (Zhou et al., 2020)
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In Equation (2), xi and ji represent the attribute values of the i-th 
and j-th spatial units, respectively; n is the number of spatial units; and 
x is the average attribute value of all i-th and j-th spatial units. The I 
value ranges from [−1 to 1]. A I value greater than 0 and closer to 1 
indicates a more significant spatial clustering of grain production. A I 
value less than 0 and closer to −1 indicates a more significant spatial 
dispersion of grain production.

 (2) Local Autocorrelation

The drawback of global autocorrelation analysis is its inability to 
specifically characterize local spatial clustering effects. Local spatial 
autocorrelation can estimate the extent of clustering areas. Local 
spatial autocorrelation exhibits spatial heterogeneity, meaning that the 
degree of spatial autocorrelation varies across different regions, which 
can be tested using LISA (Local Indicators of Spatial Association) (Li 
et al., 2022):
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In Equation (3), When Ii > 0, it indicates positive spatial 
correlation in neighboring areas, including two types: “high-high” and 
“low-low,” where grain production in adjacent areas exhibits high 
(low) clustering. When Ii < 0, negative spatial correlation exists, 
including two types: “high-low” and “low-high,” where there is a 
significant difference in grain production between neighboring areas.

3.1.3 Selection of Geodetector and GWR 
indicators

This study introduces the use of the Geodetector and GWR to 
investigate the factors influencing grain production in Sichuan 
Province. Based on previous studies and the ease of data collection as 
well as data completeness (Liu C. et al., 2021; He C. et al., 2022; Wu 
and Li, 2024; Zhou et al., 2020; Li et al., 2022), nine indicators were 
selected for measurement, as shown in Table 1.

3.1.4 Research framework
As shown in Figure 2, this study first constructs a comprehensive 

indicator system from three dimensions: socioeconomic factors, 
agricultural input elements, and geographical environment. Next, 
standard deviation ellipse and center of gravity shift analysis, and 
spatial autocorrelation analysis are employed to reveal the spatial 
distribution characteristics of grain production. Finally, the 
Geodetector model and GWR model are used to deeply analyze the 

spatial heterogeneity relationship between grain production and 
various driving factors.

3.1.5 Geodetector
Geodetector is a statistical method used to detect the spatial 

differentiation of geographical factors and their driving forces. Based 
on the optimal parameter-based Geodetector model (OPGD), it uses 
factor detection to analyze the explanatory power of influencing 
factors on grain production in Sichuan Province (Chen et al., 2023). 
The expression for the explanatory power q-value is as follows:
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In Equation (4), the explanatory power, represented by the 
q-value, is expressed as follows: where the q-value ranges from [0, 1]. 
A larger q-value indicates a stronger explanatory power of the 
independent variable on the dependent variable, and a more obvious 
spatial differentiation of the dependent variable; conversely, a smaller 
q-value suggests weaker explanatory power. N is the total sample size 
of the study area; σ2 is the variance of the indicator; Nj and σj

2 are the 
sample size and variance of indicator j-th (j = 1, 2, …, p); p is the total 
number of indicators.

3.1.6 Geographically weighted regression (GWR)
GWR is a local parameter estimation method used to quantify 

spatial heterogeneity. In this study, the GWR model is used to analyze 
the spatial impact of various factors on grain production in Sichuan 
Province (Gao et al., 2022). The expression is as follows:

 
( )α α λ

=
= + +∑0

1
, ( , )

n

i i i m i i im i
m

y w v w v x
 

(5)

In Equation (5), yi represents the grain production of the i-th 
county; ( ,i iw v ) represents the geographic coordinates of the i-th 
county; ( )α0 ,i iw v  is the intercept of the regression equation; 

( )α ,m i iw v  represents the regression coefficient of the m-th 
explanatory variable for the i-th county; and λi is the error term.

3.2 Data sources

The main study period of this research is from 2000 to 2022, with 
statistical data primarily sourced from the following three aspects:

 (1) Geographic Information Base Data: The county-level vector data 
of grain production in Sichuan Province is sourced from the 
National Geographic Information Resource Directory Service 
System,1 covering a total of 183 county-level administrative units.

 (2) Remote Sensing Data: DEM data was downloaded from the 
Open Topography Platform.2 Slope data was calculated from 

1 https://www.webmap.cn/

2 https://opentopography.org/
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DEM data using the “Slope” tool in ArcGIS 10.7. Meteorological 
data includes both temperature and precipitation data, sourced 
from the China 1 km Resolution Monthly Average Temperature 
Dataset (1901–2022) and the China 1 km Resolution Monthly 
Precipitation Dataset (1901–2022), both provided by the 
National Qinghai-Tibet Plateau Science Data Center.3

 (3) Socio-economic Data: The county-level socio-economic 
statistical data used in this study was compiled from the 
“Sichuan Provincial Statistical Yearbook (2001–2023)” 
published by the Sichuan Provincial Bureau of Statistics.4 
Missing data was supplemented by referring to the statistical 
yearbooks of various prefecture-level cities.

3 https://data.tpdc.ac.cn/home

4 http://tjj.sc.gov.cn/scstjj/c105855/nj.shtml

Due to missing agricultural data for Jinjiang District, Qingyang 
District, Jinniu District, Wuhou District, Chenghua District, and 
Hongyuan County, these six areas were excluded from this study.

4 Results of the study

4.1 Characteristics of temporal changes

Using county-level units in Sichuan Province as the research scale, 
grain production data from 2000 to 2022 were statistically analyzed to 
examine the temporal evolution characteristics of grain production in 
Sichuan Province (Figure  3). The results reveal that the grain 
production in Sichuan Province fluctuated between 3,200 × 104 and 
3,600 × 104 t overall. In the regional comparative analysis, the grain 
production in the CPEZ generally showed a downward trend, 
primarily due to farmland being converted into construction land. 

TABLE 1 Selection of impact factor indicators.

Variant Define Description Selection of significance

X1

Actual 

cultivated land 

area (ACLA)

hm2

The physical scale and land resource base of cultivated land directly determine the spatial extent available for grain 

cultivation. Expansion or contraction in arable land area imposes an upper limit on total grain output. Moreover, the 

quality of arable land—such as soil fertility and land contiguity—further modulates per-unit productivity, making it 

one of the most fundamental natural constraints on grain production (Wang, 2022).

X2

Fertilizer 

Application 

Rate (CFAR)

t

The physical scale and land resource base of cultivated land directly determine the spatial extent available for grain 

cultivation. Expansion or contraction in arable land area imposes an upper limit on total grain output. Moreover, the 

quality of arable land—such as soil fertility and land contiguity—further modulates per-unit productivity, making it 

one of the most fundamental natural constraints on grain production (Penuelas et al., 2023).

X3

Rural electricity 

consumption 

(REC)

10,000 kW·h

Electricity supply powers modern agricultural equipment including irrigation systems and harvesting machinery, 

thereby improving operational efficiency and disaster resilience. It also supports the post-harvest supply chain—such 

as grain refrigeration and processing—enhancing effective grain supply from both production and distribution ends 

(Candelise et al., 2021).

X4

Annual average 

temperature 

(TEM)

°C

Temperature directly influences biomass accumulation by regulating photosynthetic rates and the duration of crop 

growth periods. Extreme high temperatures (>35°C) may induce pollination failure and kernel abortion, leading to 

significant yield loss. This underscores the nonlinear stress impacts of global warming on crop productivity (Neupane 

et al., 2022).

X5

Annual 

precipitation 

(PRE)

mm

The spatiotemporal distribution of precipitation determines water availability in rain-fed agricultural zones. Drought 

during critical growth stages can severely inhibit yield formation, while floods may damage essential agricultural 

infrastructure. Together, these dual effects highlight precipitation as a dominant driver of natural productivity 

fluctuations (Srivastav et al., 2021).

X6
Population 

density (PD)

Persons per 

square kilometer.

High population density ensures abundant agricultural labor, fostering intensive farming practices. However, land 

scarcity per capita encourages the substitution of labor with technology. Meanwhile, urbanization-driven non-

agricultural employment may result in farmland abandonment, reflecting the dynamic trade-off in human–land 

relationships and its influence on production intensity (Aboye et al., 2024).

X7
Per capita GDP 

(GDP)
yuan

Economic development levels shape the capacity for technological investments such as mechanization and genetic 

improvement, directly enhancing yield per unit area. Additionally, rising incomes drive dietary transitions, which in 

turn shift market demand and influence the cropping balance between staple and cash crops, indirectly altering 

overall grain output structure (Lee et al., 2023).

X8 Slope (SLP) °

In areas with slopes exceeding 15°, soil erosion intensifies, necessitating the construction of terraces and contour 

farming to stabilize yields. Steep terrain restricts the operation of large-scale agricultural machinery, often leading to 

extensive cultivation methods. Thus, both land availability and mechanization limitations constrain yield from dual 

perspectives of usability and efficiency (Mekonnen, 2021).

X9 Elevation (Elev) m

Altitude affects the thermal regime through the environmental lapse rate, restricting crop suitability to cold-tolerant 

varieties in high-elevation zones. It also increases the frequency of frost, hail, and other climatic hazards, thereby 

shaping yield ceilings via both biological adaptability and disaster risk exposure (Kazemi Garajeh et al., 2023).
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Specifically, it decreases from 1,540 × 104 t in 2000 to 1,245 × 104 t in 
2022; Despite this, the grain production in the CPEZ remained at a 
relatively high level compared to the five major economic regions. 
Meanwhile, the grain production in the SSEZ, NSEZ, and the PER 
showed an annual growth trend, though the growth rate was relatively 
slow. In contrast, the grain production in the NSEDA remained 
relatively stable, consistently staying at a low level of approximately 
37 × 104 t.

4.2 Spatial distribution characteristics

4.2.1 Spatial variation characteristics
The natural breaks classification method was used to visualize the 

spatial distribution of grain production at the county level in Sichuan 
Province (Figure 4). As shown in Figure 4, high-production counties 
are concentrated in the NSEZ, CPEZ, and SSEZ, which consistently 
exhibit high grain production across all years. Low-production 
counties are mainly located in the NSEDA, from 2000 to 2022, the 
number of high-production counties increased from 24 to 25, while 
the number of low-production counties decreased from 100 to 97.

4.2.2 Standard deviation ellipse and center of 
gravity shift

Figure 5 illustrates the standard deviation ellipse and the shift of 
the center of gravity for grain production in Sichuan Province from 
2000 to 2022. The standard deviation ellipse reveals the main trend 
and directionality of grain production distribution in Sichuan 
Province. The ellipse is oriented from northeast to southwest, with an 
overall southeastward shift. The major and minor axes of the standard 
deviation ellipse represent the degree of dispersion and the 
distribution range of grain production in Sichuan Province, 
respectively (Table 2). From 2000 to 2022, the major axis increased 
from 2.281 km to 2.482 km, while the minor axis fluctuated from 
1.305 km to 1.302 km, indicating an increase in the dispersion of grain 
production in Sichuan Province. The ellipse’s eccentricity increased 
from 0.428  in 2000 to 0.471  in 2022, suggesting a rise in the 
concentration of grain production in Sichuan Province. The standard 
deviation ellipse of grain production in Sichuan Province exhibits a 
distinct northeast–southwest orientation, which closely aligns with 
the region’s topographic and hydrological configuration. In the 
northeast, the Jialing River basin is dominated by alluvial plains with 
fertile soils and well-developed irrigation systems, forming a 
traditional high-yield agricultural zone. In contrast, the southwestern 
region is shaped by tributaries of the Anning and Jinsha Rivers, where 
arable land is distributed in linear strips along river valleys. This 
spatial pattern reflects the fundamental constraints imposed by terrain 
and water availability on the distribution of grain production. 
Moreover, the elliptical orientation corresponds to the gradual 
elevation increase from east to west across Sichuan, highlighting the 
spatial variation in land suitability along topographic gradients. This 
directional trend reveals an adaptive coupling between natural 
environmental conditions and agricultural land use patterns in 
the province.

The shift of the center of gravity reflects the changing trend of 
grain production distribution. As seen in the figure, the center of 
gravity for grain production in Sichuan Province has undergone a 
noticeable shift, yet it has remained within Lezhi County, indicating 

that grain production in Sichuan Province exhibits high stability 
and continuity. The shifting path of the center of gravity shows the 
changing trend of grain production distribution. The path of the 
center of gravity shift shows the changing trend in the distribution 
of grain production. The center of gravity positions in 2005 and 
2010 are relatively close, indicating that the distribution of grain 
production was relatively stable during this period. The center of 
gravity positions in 2015 and 2020 are also relatively close; however, 
compared to 2005 and 2010, the center shifted eastward, indicating 
faster growth in grain production in the eastern regions during 
this period.

4.3 Spatially correlated features

 (1) Global autocorrelation analysis

According to Table 3, the Moran’s I results for 2000–2022 show 
that the global Moran’s I  values were all positive, with Z-values 
exceeding 13, and all passed the significance test, indicating a 
significant positive correlation in grain production across Sichuan 
Province. The Moran’s I values were all above 0.5, with relatively large 
values, reflecting a high degree of spatial autocorrelation in grain 
production within Sichuan Province.

 (2) Local autocorrelation analysis

The evaluation of global spatial association features has the 
drawback of overlooking the instability of local spatial processes. 
Therefore, to further explore the clustering relationships of grain 
production in Sichuan Province, this study conducts a local spatial 
autocorrelation analysis of grain production from 2000 to 2022 at the 
county level, calculating the LISA values for different years. As shown 
in Figure 6, overall, high-high and low-low clustering are the most 
widespread patterns of grain production distribution in 
Sichuan Province.

High-value clustering areas are mainly concentrated in the NSEZ 
and the CPEZ, and expanded into the SSEZ in 2022; Low-value 
clustering areas are primarily distributed in the NSEDA and the PER, 
with a decreasing trend in 2022; High-low dispersed areas are mainly 
located in the PER, showing a year-on-year growth trend; Low-high 
dispersed areas are sporadically distributed around the high-high 
clustering zones; As for the non-significant areas, these regions exhibit 
no significant spatial autocorrelation with surrounding areas. From 
2000 to 2015, the distribution of non-significant areas remained 
largely stable, but decreased in 2022.

4.4 Analysis of the results of the impact 
factors

4.4.1 Geodetector
Grain production is influenced by various factors, and exploring 

the impact and intensity of different factors on the regional differences 
in grain yield has long been a focus of many scholars. The results of 
the single-factor analysis indicate the degree of influence of nine 
factors on grain production in that particular year.
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FIGURE 2

Research framework diagram.

FIGURE 3

Chronological evolution of grain production in Sichuan Province. Data: Sichuan Provincial Statistical Yearbook.
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As shown in Figure 7, at the county level, with the exception of per 
capita GDP, the intensity of the influence of various factors on the 
spatial differentiation of grain production remained relatively stable 
across different periods, without exhibiting significant fluctuations. 
Actual cultivated land area and the amount of fertilizer applied 
consistently maintained high positive values in all years, serving as the 
dominant factors influencing the spatial differentiation of grain 
production in Sichuan Province. Among these, the effect of actual 
cultivated land area is the most prominent. Although the q-value 
shows a declining trend, it still ranks first among all factors, as the area 
of arable land directly affects the scale and level of grain production.

The positive impact on grain production was most significant in 
2005. With increased agricultural investment, improved labor quality, 
and enhanced agricultural disaster resilience (Zhang Y. et al., 2023; 
Wijerathna-Yapa and Pathirana, 2022), the impact of per capita GDP 
on grain production in 2022 showed a significant increase compared 
to other years. Changes in other influencing factors remained 
relatively stable.

The above content analyzed the impact of individual factors on 
grain production in Sichuan Province, but in practice, complex 
interactions among multiple factors jointly influence the spatial 
distribution pattern of grain production. To investigate the 
contribution of interactions among various factors to grain production 
in Sichuan Province, this study conducted interaction detection on the 
driving factors from 2000 to 2022, with the results shown in Figure 8. 
These interaction results can be categorized into two main types: dual-
factor enhancement effects and nonlinear enhancement effects, 
revealing the significant efficacy of interaction analysis in explaining 
grain production, far exceeding that of single-factor analysis. This 
indicates that grain production in the study area is influenced by the 
combined effects of multiple factors, rather than the simple addition 
or independent effects of individual factors.

Specifically, in 2000, the highest interaction value among 
influencing factors was 0.93 (X1∩X2, X1∩X4, X1∩X5, X1∩X9), and 
the lowest was 0.59 (X7∩X8). Interaction factor values related to the 
actual cultivated land area (X1) were consistently high. In 2005, the 

FIGURE 4

Spatial distribution of grain production by county in Sichuan Province, 2000–2022. Data: Sichuan Provincial Statistical Yearbook.
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highest interaction value among influencing factors was 0.94 (X1∩X2, 
X1∩X9), and the lowest was 0.55 (X7∩X8). In 2010, the highest 
interaction value among influencing factors was 0.93 (X1∩X4, 
X1∩X9). In 2015, the interaction between actual cultivated land area 
(X1) and elevation (X9) had a particularly significant impact on grain 
production, with a q-value as high as 0.95, while the lowest value was 
0.63 (X7∩X8). In 2022, interaction values among influencing factors 

generally declined but remained significant. Throughout all years, the 
interaction between actual cultivated land area and other factors 
consistently demonstrated significance, indicating strong explanatory 
power for grain production in Sichuan Province. To enhance grain 
production in Sichuan Province, it is essential to pay attention to the 
uniqueness of these interaction factors. For interaction factors that 
promote grain production, efforts should focus on further enhancing 
their positive effects. For interaction factors that inhibit grain 
production, prudent measures should be  taken to mitigate their 
negative impacts.

4.4.2 Geographically weighted regression
Based on the aforementioned analysis, grain production in 

Sichuan Province exhibits significant positive spatial 
autocorrelation. Although the Geodetector model excels in 
assessing the impacts of variables at the macro level, it shows 
limitations in analyzing local spatial heterogeneity and spatial 
weighting. In contrast, the GWR model, with its in-depth analysis 
of spatial non-stationarity and effective integration of spatial 
weights, demonstrates significant advantages in uncovering local 
spatial relationships and spatial correlations. Therefore, this study 
introduces the GWR model to perform more refined local spatial 
regression analysis, aiming to reveal the spatial direction and 
intensity differences of nine influencing factors. After standardizing 
all variables, the GWR regression analysis was conducted to 
construct the GWR model. Detailed results of the model parameters 
are presented in Table 4. The adjusted R2 values of the model all 
exceed 0.7, indicating a high goodness of fit.

FIGURE 5

Spatial directionality analysis of grain production in Sichuan Province. Data: Sichuan Provincial Statistical Yearbook.

TABLE 2 Shape parameters of standard deviational ellipses.

Year Majoraxis Shortaxis Oblateness

2000 2.281 1.305 0.428

2005 2.343 1.279 0.454

2010 2.364 1.272 0.462

2015 2.398 1.297 0.459

2022 2.482 1.312 0.471

TABLE 3 Global correlation results.

Year Moran’s I Z p

2000 0.593 13.068 0.000

2005 0.560 13.003 0.000

2010 0.590 13.022 0.000

2015 0.591 13.038 0.000

2022 0.597 13.136 0.000
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Cultivated land resources, as a key indicator of agricultural 
production conditions, have a significant direct impact on grain 
production. As can be seen from Figure 9, the cultivated land area 
exhibits a decreasing trend from east to west. Specifically, from 2000 
to 2005, there was an overall upward trend, particularly in the CPEZ, 
indicating an increasing reliance of grain production in Sichuan 
Province on cultivated land resources. However, after 2010, the 
regression coefficients generally declined across the province, and the 
impact of cultivated land area on grain production weakened, with 
negative correlations emerging in certain areas.

Grain production in Sichuan Province is significantly influenced 
by fertilizer application, with this impact exhibiting notable 
heterogeneity across different regions and time periods. The regression 
coefficients of fertilizer application generally show a decreasing trend 
from west to east. As shown in the regression analysis results in 
Figure 9, the impact of fertilizer application on grain production has 
gradually intensified over time. In 2000, a significant positive 

correlation was observed between fertilizer application and grain 
production in the NSEDA. From 2005 to 2015, the positive effects of 
fertilizer application were generally enhanced across the province, 
with particularly notable impacts in the central and southern regions. 
In 2022, the positive impact of fertilizer application in the PER and 
the NSEDA was further amplified across the province.

The impact of rural electricity consumption on grain production 
varies significantly across different regions in Sichuan Province. As can 
be seen in Figure 9, in 2000, rural electricity consumption in the NSEZ 
exhibited a significant positive relationship with grain production, 
whereas the positive impact of rural electricity consumption on grain 
production in the NSEDA was less pronounced. From 2005 to 2010, the 
positive impact of rural electricity consumption on grain production 
increased across the province. However, the negative regression 
coefficients in the western regions persisted. From 2015 to 2022, the 
positive impact of rural electricity consumption on grain production 
significantly intensified in the NSEDA and the SSEZ.

FIGURE 6

LISA clustering of grain production in Sichuan Province, 2000–2022. Data: Sichuan Provincial Statistical Yearbook.
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The impact of temperature on grain production varies significantly 
across different regions in Sichuan Province. As can be  seen from 
Figure 10, in 2000, temperature had a greater impact on grain production 
in the CPEZ, the NSEZ, and the SSEZ. In contrast, the impact of 
temperature in the NSEDA was relatively minor. In 2005, the positive 
impact of temperature on grain production increased across the province, 
particularly in the central region. In 2010, the impact of temperature on 
grain production was generally low across the province, with negative 
values observed in some regions. From 2015 to 2022, the positive impact 
of temperature on grain production increased across the province, 
especially in the western regions and the SSEZ.

Water resources are a crucial factor in agricultural 
development, with higher annual precipitation improving regional 
irrigation conditions. As shown in Figure  10, the spatial 
distribution of rainfall’s impact on grain production shows a 
decreasing trend from east to west. The NSEZ and the CPEZ have 
a greater impact on grain production, primarily exhibiting positive 
effects. In contrast, the central and western regions have relatively 
smaller impacts. From 2000 to 2005, the positive impact of annual 
precipitation on grain production increased, particularly in the 
NSEZ. In 2010, the impact of precipitation on grain production in 
Sichuan Province was generally low across the province. Especially 

FIGURE 7

Single-factor probes of grain production in Sichuan Province, 2000–2022. Data: Calculated using the Geodetector Model.
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in the central and western regions, the uneven distribution of 
precipitation resulted in a relatively minor impact of temperature. 
From 2015 to 2022, the range of areas with high positive values first 
expanded and then contracted.

As shown in Figure 10, population density from 2000 to 2022 
exhibits significant heterogeneity across different regions and time 
periods. The regression coefficients display a decreasing trend from 
west to east. In 2000, the increase of population density in Northwest 
Sichuan and Pannan regions of Sichuan Province provided abundant 
labor resources for agricultural production, and population density 
had a positive effect on grain production. From 2010 to 2022, the 
positive impact of population density on grain production weakened 
across the province. However, in the Chengdu Plain region, the 
massive influx of population increased the pressure on cultivated land, 
resulting in a negative correlation between population density and 
grain production.

As shown in Figure 11, from 2000 to 2022, the regression coefficients 
of per capita GDP generally showed a decreasing trend from west to east. 

FIGURE 8

Interactions of grain production drivers in Sichuan Province (2000–2022). Data: Calculated using the Geodetector Model.

TABLE 4 Results of model parameters.

Year AICc R2 Adjusted R2

2000 −489.744 0.9388 0.9351

2005 −443.493 0.9170 0.9120

2010 −408.519 0.8942 0.8879

2015 −492.879 0.9339 0.9299

2022 −297.958 0.8108 0.7994
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The proportion of positive values exhibited a trend of first decreasing and 
then increasing. Despite fluctuations, the regression coefficients of per 
capita GDP remained generally low overall. The direct impact of GDP 
per capita on grain production is relatively small.

As shown in Figure 11, the central region has a significant impact 
on grain production due to its suitable slope. In contrast, the western 
and eastern regions are less affected due to steeper slopes. The 
regression coefficients in the central region are generally high, 
indicating a significant positive impact of slope on grain production. 
However, the regression coefficients in the western region are generally 
low and even show negative values, suggesting that the impact of slope 
on grain production is relatively minor or negatively correlated.

As shown in Figure 11, from 2000 to 2022, the positive impact in 
the central and eastern regions showed a trend of gradual expansion 
or increased intensity. The areas with high positive elevation values 
were primarily concentrated in the central and eastern regions, 
characterized by lower elevations and relatively gentle terrain, which 
provides favorable conditions for land cultivation and agricultural 
production. In contrast, the regression coefficients in the western 
region exhibited negative correlations or insignificant relationships. 
This region generally has higher elevations, which may result in 
harsher climatic conditions, such as lower temperatures, shorter 
growing seasons, and potential arid or semi-arid climates, all of which 
are unfavorable for agricultural production.

FIGURE 9

Spatial heterogeneity of key drivers: GWR coefficients for ACLA, CFAR, and REC. Data: Calculated using the GWR model.
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5 Discussion

5.1 Evolution of spatial and temporal 
patterns of grain production in Sichuan 
Province

 (1) From a temporal perspective, grain production in Sichuan 
Province experienced a slight decline in the early 2000s, 
followed by a fluctuating upward trend beginning in 2004. 
Overall, the province maintained a slow yet steady growth in 
grain output, with production levels remaining relatively stable. 

Although fluctuations were observed, their amplitude was 
limited, with the maximum annual increase reaching 5.42% 
(between 2006 and 2008) and the maximum decline recorded 
at −7.79% (between 2000 and 2002), indicating a relatively 
high degree of output stability—a pattern comparable to that 
observed in traditional grain-producing provinces such as 
Henan and Shandong (Wu and Li, 2024; He H. et al., 2022). The 
reasons for this fluctuating growth lie in the significant 
emphasis placed on grain production by the national and 
Sichuan provincial governments, which have introduced a 
series of supportive policies, such as the minimum grain 

FIGURE 10

Spatial heterogeneity of key drivers: GWR coefficients for TEM, PRE, and PD. Data: Calculated using the GWR model.
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purchase price policy and subsidies for grain farmers (Qian 
et al., 2020), thereby boosting farmers’ production enthusiasm 
and promoting the growth of grain production.

 (2) Grain production among counties shows significant variability. 
The total grain production in Sichuan Province exhibits a trend 
of increasing from west to east, a pattern consistent with the 
overall distribution of grain production in China (Li et al., 
2022), a phenomenon common to most provinces in China, as 
supported by numerous previous studies (Xin et al., 2020). 
Surprisingly, the area of high grain production in Sichuan 

Province is not located in the flat and expansive CPEZ, but is 
concentrated in the SSEZ and NSEZ, differing from the 
findings of previous studies (Chang et al., 2024). The possible 
reason for this is that, although the Chengdu Plain has a large 
expanse of arable land, in recent years, with the accelerated 
pace of urbanization and the advanced progress of 
industrialization, part of the arable land has been converted 
into construction land, leading to the loss of arable land 
resources (Pan et al., 2021), which in turn affects the area under 
food crops, causing grain production in the Chengdu Plain to 

FIGURE 11

Spatial heterogeneity of key drivers: GWR coefficients for GDP, SLP, and Elev. Data: Calculated using the GWR model.
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exhibit a declining trend, posing a challenge to regional food 
security and the sustainable development of agriculture. The 
spatial and temporal distribution characteristics of grain 
production in Sichuan Province reveal distinct regional 
differences, suggesting that in future strategic agricultural 
planning, greater emphasis should be placed on the principle 
of adapting to local conditions, and on formulating targeted 
policies and measures based on the unique conditions of each 
region, with the aim of optimizing the distribution of 
agricultural production in alignment with regional 
characteristics, and promoting the sustainable development of 
grain production.

5.2 Analysis of factors affecting grain 
production in Sichuan Province

 (1) Agricultural factor inputs are critical to ensuring grain 
production. According to the results of Geodetector and GWR, 
actual cultivated land area, the amount of fertilizer applied, and 
electricity usage in rural areas significantly impact grain 
production, consistent with findings from previous studies (Liu 
et  al., 2014; Zhang, 2024; Zhe et  al., 2023). Therefore, 
implementing active and effective measures to protect and 
utilize arable land resources rationally is a key cornerstone for 
ensuring the stability and sustainability of grain production. 
Moreover, inputs such as fertilizers and electricity supply are 
equally crucial. Fertilizer, as a critical input for agricultural 
production, directly influences crop growth and yield. The 
scientific and rational application of fertilizers can effectively 
enhance soil fertility, meet nutrient demands during crop 
growth and development, and thereby achieve a steady increase 
in grain production (Li et al., 2023). Similarly, an adequate and 
stable electricity supply can support the efficient operation of 
agricultural machinery, irrigation systems, and agricultural 
product processing (Jadhav et al., 2022).

 (2) Geography provides the fundamental conditions for the growth 
of food crops. Mean annual air temperature, annual 
precipitation, and slope significantly affect grain production, 
consistent with findings from existing studies (Ha et al., 2021; 
Pickson et  al., 2020; Tan et  al., 2021). In this study, air 
temperature played a crucial role in grain production in 
Sichuan Province, particularly in the plateau region of 
northwest Sichuan, where temperature changes significantly 
impacted the crop growth cycle, photosynthesis, and water 
evaporation. Moderate and well-distributed annual 
precipitation enhances grain production, whereas extreme 
weather can adversely impact grain production (Lesk et al., 
2022; Gandía et  al., 2021). Slope influences soil water 
accumulation and drainage; steeper slopes lead to soil erosion, 
while gentler slopes promote water retention and fertilizer 
accumulation (Wang et al., 2023). Additionally, elevation has 
received less attention in previous studies. However, the 
complex topography and geomorphology of Sichuan Province 
make elevation a critical factor, especially in mountainous and 
hilly areas, as it limits the crop growth cycle and heightens the 
risk of frost damage at high altitudes by influencing air 
temperature and precipitation (Lou et al., 2023). The plateau 

region of northwest Sichuan experiences low temperatures, 
short frost-free periods, and a dry climate, which constrain 
crop growth cycles and photosynthetic efficiency. Additionally, 
higher evapotranspiration exacerbates soil moisture loss, 
negatively affecting crop growth. Furthermore, the region’s 
steep slopes and dramatic terrain variations hinder soil 
moisture and fertilizer retention, adversely affecting crop 
growth and yields. These factors result in relatively low grain 
production in northwest Sichuan and heightened sensitivity to 
changes in natural conditions such as temperature, 
precipitation, slope, and elevation.

 (3) Socioeconomic factors are an important driving force. The 
impact of per capita GDP on grain production in Sichuan 
Province is minor compared to other influencing factors, 
whereas the effect of population density on grain production is 
more pronounced, consistent with findings from previous 
studies (Alemu et al., 2024). Comprehensive regional economic 
development and the expansion of secondary and tertiary 
industries may reduce the quantity and quality of arable land, 
cause environmental pollution, and negatively impact the 
efficiency of arable land utilization, ultimately reducing grain 
production. An increase in population density provides 
abundant labor resources for agricultural production. However, 
in the Chengdu Plain region, the large influx of people, 
particularly non-agricultural populations, coupled with 
accelerated urbanization and industrialization, directly strains 
arable land resources (Hu Y.N. et al., 2024) and affects grain 
production. Therefore, managing population flows reasonably 
is key to balancing the relationship between population growth 
and grain production.

 (4) By combining the Geodetector and GWR methods, we can 
reveal the spatial heterogeneity characteristics of influencing 
factors in greater depth. Previous studies primarily relied on 
Geodetectors (Swain et  al., 2024), which can analyze the 
magnitude of explanatory power among influencing factors at 
the macro level but struggle to accurately depict differences in 
these factors across spatial locations. The present study 
advances this approach, retaining macro-level insights while 
delving deeper into the micro level to carefully depict the 
spatial trends of influencing factors. Similarly, previous studies 
using GWR (Zhou et al., 2020) alone could capture spatial 
differences in factors but struggled to comprehensively assess 
their interactive explanatory power. In this study, factors such 
as temperature, precipitation, and elevation, which were not 
the most prominent when analyzed independently, exhibited 
peak effects when interacting with cropland area. Therefore, 
the combination of Geodetector and GWR leverages the 
strengths of both methods, detecting the explanatory power of 
influencing factors while revealing their local spatial 
relationships. In policy formulation, this combined method can 
provide a scientific basis for policies on agriculture, soil and 
water conservation, and adjustments to planting structures.

 (5) The temporal dynamics captured by the GWR model reveal 
that the effects of key driving factors on grain production 
exhibit distinct phase-dependent variations over time. For 
example, the median positive regression coefficient for 
cultivated land area declined from 0.73 in 2000 to −0.40 in 
2022, indicating a diminishing marginal effect on grain output. 
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This trend aligns with the dual decline in both the quantity and 
quality of arable land under the pressure of urban expansion.

Conversely, the influence of fertilizer input has intensified over 
time. High-value zones of the regression coefficients have progressively 
expanded toward southern and western regions, with the upper bound 
increasing from 0.30 in 2000 to 0.92 in 2022, suggesting that fertilizer 
has become a critical compensatory input in maintaining yields in 
certain areas.

The impact of electricity consumption has also grown, especially 
after 2015. In western regions such as the Northern Sichuan Economic 
Development Area (NSEDA), the average regression coefficient rose 
from 0.003 in 2010 to 0.36 in 2022, reflecting the accelerating adoption 
of agricultural electrification in mid- to high-altitude zones and its 
growing contribution to productivity.

In contrast, the effects of climatic variables—temperature and 
precipitation—have shown greater volatility. Between 2000 and 2022, 
areas with significant positive correlations between temperature and 
grain production have notably expanded, particularly across the 
western Sichuan Plateau and southern regions, with peak coefficients 
rising from 0.12 to 1.29. Meanwhile, the spatial influence of 
precipitation appears to have shifted gradually from central to 
peripheral regions, underscoring the increasingly nonlinear and 
spatially heterogeneous response of agricultural systems to 
water availability.

Taken together, the temporal evolution of regression coefficients 
suggests a general pattern of “declining land effects, strengthening 
input dependence, and increasing variability of natural factors.” These 
quantified transitions not only reflect stage-specific differences in the 
mechanisms driving agricultural output, but also provide empirical 
guidance for the formulation of regionally tailored, phase-appropriate 
agricultural management strategies.

5.3 Research shortcomings and prospects

This study has the following shortcomings: (1) Data acquisition 
limitations: In exploring the spatio-temporal evolution characteristics 
of grain production and its heterogeneous driving factors in Sichuan 
Province, this study was constrained by data acquisition difficulties 
and did not adequately address the impacts of key factors, such as 
policies and the total power of agricultural machinery, on grain 
production. In future research, access to more comprehensive data 
could facilitate an in-depth analysis of the specific mechanisms 
through which these factors influence grain production. (2) Model 
selection and extension: This study used the GWR model to analyze 
the spatio-temporal heterogeneity of grain production. While the 
GWR model is advantageous in capturing local spatial heterogeneity, 
its capacity for temporal analysis is limited. Future research could 
consider incorporating spatio-temporal geographically weighted 
regression (GTWR) or multiscale geographically weighted regression 
(MGWR) models to better capture the temporal dynamics of grain 
production changes and their interactions with spatial heterogeneity. 
(3) This study primarily employed the Geodetector and GWR models 
to identify the spatial heterogeneity of driving mechanisms. While 
these methods offer substantial explanatory power for spatial patterns, 
there remains considerable room for improvement in terms of model 
complexity and predictive accuracy. Future research could benefit 
from the integration of interpretable machine learning 

approaches—such as Random Forest and XGBoost-SHAP—to 
enhance the identification of nonlinear drivers and to quantify the 
interactive effects among variables. Moreover, the incorporation of 
higher-resolution remote sensing imagery would enable the capture 
of finer-scale land use dynamics, thereby improving the temporal 
sensitivity and spatial accuracy of the analysis. In terms of data 
integration, efforts should be  made to fuse multisource datasets, 
including agricultural machinery operations, satellite-based 
meteorological observations, and farmer input records. Such an 
approach would support the construction of a more comprehensive 
driver system and provide robust data intelligence for advancing 
research on food security.

6 Conclusions and policy 
recommendations

6.1 Conclusion

This paper examines the spatial and temporal changes in grain 
production using county-level grain production data from Sichuan 
Province (2000–2022), employing the standard deviation ellipse and 
center of gravity transfer methods. It also analyzes the spatial 
agglomeration of grain production through the spatial autocorrelation 
method and investigates the driving factors of grain production 
changes in Sichuan Province using Geodetector and GWR. The main 
conclusions are summarized as follows.

 (1) From a time-series perspective, grain production in Sichuan 
Province exhibited a fluctuating upward trend within the range 
of 3,200 × 104 to 3,600 × 104 tons, accompanied by a gradual 
narrowing of inter-county disparities in output.

 (2) From a spatial order perspective: analysis of the standard 
deviation ellipse and center of gravity shift reveals that the 
standard deviation ellipse of grain production in Sichuan 
Province exhibits a “Northeast-Southwest” distribution pattern. 
While the center of gravity of the ellipse has shifted significantly 
over different time periods, it has consistently remained 
concentrated in the area of Lezhi County. The overall spatial 
distribution of grain production in Sichuan Province remains 
relatively stable. According to the spatial autocorrelation 
analysis, there is a clear positive correlation in grain production 
among counties in Sichuan Province. Grain production 
distribution shows significant clustering, with high-high 
aggregation areas becoming more concentrated and increasing 
in number. Meanwhile, low-low aggregation areas also display 
a certain degree of clustering, although their numbers 
have decreased.

 (3) From the perspective of influencing factors, the results of 
one-factor detection indicate that the area of actual cultivated 
land at the end of the year has the strongest explanatory power 
for grain production. The results of two-factor interaction 
detection reveal that the interaction between actual cultivated 
land area and other factors is the most significant. The 
geographically weighted regression results indicate that grain 
production in Sichuan Province is influenced by the complex 
interplay of multiple factors. Each variable exhibits significant 
spatial differentiation characteristics, and the spatial 
distribution pattern of their influence is diverse. Cultivated 
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land area, fertilizer application, and rural electricity 
consumption all exert a significant positive effect on grain 
production, whereas other factors have a negative impact.

6.2 Policy recommendations

Based on a systematic analysis of the spatiotemporal dynamics of 
grain production and its driving factors in Sichuan Province, we propose 
the following four targeted policy recommendations to enhance regional 
food security and promote sustainable agricultural development:

 (1) Improve the Utilization Efficiency of Cultivated Land Resources

Cultivated land area remains a key determinant of grain output, yet 
its marginal contribution has gradually diminished. Efforts should focus 
on accelerating the construction of high-standard farmland to boost 
per-unit productivity. Given the spatial disparity in land distribution—
more abundant in the east than in the west—region-specific strategies are 
needed. These include promoting agricultural machinery suitable for hilly 
and mountainous terrain, as well as the adoption of water-saving 
irrigation technologies in western Sichuan, to enhance land productivity 
and achieve more balanced regional grain capacity.

 (2) Promote Precision and Green Fertilizer Application

While fertilizer input exerts a significant positive impact on grain 
yields, it also poses risks of resource inefficiency and environmental 
degradation. Precision fertilization technologies should be  widely 
promoted to optimize application methods and timing, thereby 
minimizing nutrient loss. In regions such as northeastern Sichuan, where 
soils are relatively infertile, emphasis should be placed on improving soil 
health and advancing “soil testing and formula fertilization” practices to 
reduce excessive fertilizer use, mitigate soil degradation, and achieve 
higher-quality, more efficient agricultural production.

 (3) Strengthen Rural Electricity Supply and Adoption of Smart 
Agricultural Equipment

Electric power is essential for the modernization of agriculture. 
Upgrading and expanding rural power infrastructure is crucial to 
ensure stable and widespread electricity supply, thereby supporting 
the operation of agricultural machinery and smart farming 
technologies. Promoting the use of intelligent irrigation systems and 
energy-efficient agricultural equipment can significantly improve 
productivity and enhance the resilience of food supply systems.

 (4) Optimize Population Mobility and Land Use Patterns

Shifts in population density exert mounting pressure on cultivated 
land, particularly in high-density regions such as the Chengdu Plain. 
Policies should support the orderly migration of rural populations to 
urban areas and facilitate the transition of agricultural labor to 
non-agricultural sectors, thereby easing land-use pressures. 
Integrating rural–urban land use planning can optimize agricultural 
spatial layouts, enhance the efficiency of land resource allocation, and 
ensure the preservation of foundational resources for grain production.
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