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The yield of agricultural wastes is increasing year by year, and composting is 
a common and effective strategy. However, the influence of marine-derived 
carbohydrates such as chitosan oligosaccharide (COS) and Enteromorpha prolifera 
polysaccharides (EPP)—on composting efficiency and microbial dynamics remains 
poorly understood. Here, we conducted composting experiments using agricultural 
wastes (cow manure, rice husks, and tomato residues) as substrates, and systematically 
evaluated the effects of chitosan oligosaccharide (COS) and Enteromorpha prolifera 
polysaccharides (EPP) supplementation through physicochemical analysis and 
high-throughput sequencing. These additives not only advanced the thermophilic 
phase and facilitated compost maturation but also reshaped the composition of the 
bacterial community in compost piles. By providing suitable microenvironments, 
the carbohydrates-containing group increased the abundance of thermophilic 
bacteria such as Ureibacillus, Geobacillus, and Ammoniibacillus, facilitating the 
degradation and utilization of organic matter. During which, the organic matters 
loss rates of COS and EPP were 26.61 and 12.66% higher than CK, respectively. By 
increasing the abundance of Cellvibrio and Flavobacterium in the cooling phase, 
carbohydrates-containing additives are expected to promote the conversion of 
recalcitrant lignocellulosic fibers. Additionally, PICRUSt 2 predictions revealed 
that carbohydrates addition increased the gene abundance related to amino 
carbohydrates and nucleotide carbohydrates metabolism, fructose and mannose 
metabolism, galactose metabolism, and butanoate metabolism in the initial and 
thermophilic phases, thereby facilitating carbohydrate metabolism. In summary, 
the addition of carbohydrates-containing additives enhanced the maturity and 
fertility of compost products and exerted significant regulatory effects on the 
composition and function of the bacterial community during composting.
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1 Introduction

The accelerated advancement of agricultural modernization, 
coupled with rising living standards, has significantly increased the 
generation of agricultural waste, including crop residues and livestock 
manure. Current estimates indicate China produces approximately 
97 million tons of crop straw and 3.8 billion tons of livestock and 
poultry manure annually (Ge et al., 2020; Sun et al., 2021). Improper 
management of these organic wastes may lead to substantial 
environmental degradation and public health risks (Li et al., 2019). 
Composting is the current ideal treatment (Wang et al., 2018), which 
is a complex process that involves the utilization of various 
microorganisms to drive the conversion of biodegradable organic 
materials into stable humus-like substances (Cesaro et al., 2015). And 
the resulting compost products, such as agricultural fertilizers or soil 
amendments, can not only enhance crop quality but also improve soil 
structure, increasing its capacity to retain water, heat, air, and nutrients 
(Wu et al., 2022).

Microorganisms (e.g., bacteria) drive the biological decomposition 
and play a vital role in the composting process (Wu et al., 2017). For 
example, bacteria accelerate compost maturation by promoting the 
breakdown of recalcitrant organic compounds and facilitating nutrient 
conversion through elevated metabolic activity and extracellular 
enzyme secretion (Liu X. et al., 2023). Microbial community dynamics 
during composting exhibit successional patterns that are both shaped 
by and reciprocally influence key physicochemical parameters, 
ultimately determining composting efficiency (Meng et  al., 2019; 
Zhong et  al., 2020; Hernandez-Lara et  al., 2022). Furthermore, 
microbial co-occurrence patterns can disentangle complex microbial 
communities and delineate the underlying ecological processes 
(Banerjee et  al., 2016). Network analysis identifies keystone 
microorganisms that shape community structure and function 
through node-link interactions (Ai et  al., 2023). Monitoring the 
dynamic changes in microbial community structure, co-occurrence 
network and metabolic functions during composting is crucial for 
unraveling the mechanisms of material transformation and enhancing 
the quality of compost products (Li D. et al., 2023).

However, the long composting time, nitrogen loss, incomplete 
organic matter decomposition, and low humification degree directly 
reduce the application value of compost products (Wang et al., 2016; 
Chen et al., 2023). Several approaches have been proposed to improve 
the composting process as well as the quality of the finished products, 
including the addition of physical, chemical and microbial additives 
(Wu et al., 2019; Zhou et al., 2019; Duan et al., 2020; Wang et al., 2021; 
Li S. et al., 2023). In recent years, marine carbohydrates, e.g., chitosan 
oligosaccharides (COS) and Enteromorpha prolifera polysaccharides 
(EPP), which have been widely used in food, medical and livestock 
and poultry industry (Li et al., 2018; Wang W.-W. et al., 2022; Kim 
et al., 2024; Li et al., 2024). COS are degradation products obtained 
from chitin or chitosan in shrimp shells or crab shells through 
chemical or enzymatic hydrolysis. Previous studies have revealed that 
COS can not only promote plant growth, enhance their nitrogen 
fixation capacity and nutrient absorption efficiency but also 
significantly optimize soil microbial community structures, leading to 
a substantial increase in the abundance of beneficial bacteria such as 
Talaromyces (Guo et al., 2012; Salachna et al., 2017; Mukhtar Ahmed 
et al., 2020). EPP are a water-soluble sulfated heteropolysaccharide 
extracted from Enteromorpha prolifera, which have been proven to act 

as a biostimulant, promoting seed germination, plant growth, and 
inducing plant defense responses (Battacharyya et al., 2015; Shukla 
et al., 2016; Mzibra et al., 2018). In addition, EPP could promote root 
colonization of plant growth-promoting rhizobacteria by serving as 
an environmental signal for bacterial biofilm formation (Chu et al., 
2023). Furthermore, both COS and EPP, being carbon sources to 
be metabolized by bacteria easily, serve to bolster microbial activity 
and expedite the decomposition of organic matter. Given the potential 
role of COS and EPP in regulating microbial structure directly and 
indirectly, we  speculate that the application of COS and EPP to 
compost would reshape bacterial community, and then impact 
compost performance. However, it remains unclear how COS and 
EPP, as compost additives, affect the microbial community 
characteristics, co-occurrence network and their metabolic functions, 
as well as composting performance during composting.

Therefore, in this study, composting experiments was conducted 
with cow manure, rice husks, and tomato residues as substrates, with 
COS and EPP as additives. The main objectives of this study were to: 
(1) investigate the effects of COS and EPP on the physicochemical 
properties of compost; (2) explore the influence of COS and EPP on 
bacterial community succession during composting using high-
throughput sequencing technology, and to analyze the correlation 
between physicochemical properties and bacterial community 
dynamics; (3) to identify the core bacteria and interaction of key 
bacterial community in composting with co-occurrence network 
analysis; (4) analyze the impact of COS and EPP on the metabolic 
functionalities of bacterial community through PICRUSt 2 
functional prediction.

2 Materials and methods

2.1 Experimental design and sampling

The husks of rice (Oryza sativa L.) were provided by Beisenmiao 
Energy Company. Cow manures were obtained from the local dairy 
farm in the Jimo District, Qingdao, Shandong Province, China. 
Tomato residues were collected from a conventional tomato farm 
located in Jimo District, Qingdao. COS and EPP were provided by 
Qingdao Seawin Biotech Group. The three components were 
thoroughly mixed at a wet weight ratio of 5:1:2, and their main 
physicochemical properties are summarized in 
Supplementary Table S1. The composting process employed a 60 L 
airtight stainless steel composting reactor, equipped with a device 
capable of automatically recording temperature and constructed with 
double-layer insulated stainless steel. The experiment adopted a 
bottom ventilation design, with a ventilation device connected to the 
bottom of the composting reactor. To ensure effective ventilation and 
oxygen supply, a stainless steel porous sieve plate was placed at the 
bottom to support the composting materials. Three treatments were 
set up: (1) rice husks + cow manure + tomato residues (CK); (2) rice 
husks + cow manure + tomato residues + 0.02% chitosan 
oligosaccharide (COS); (3) rice husks + cow manure + tomato residues 
+ 0.02% Enteromorpha prolifera polysaccharide (EPP). Samples were 
collected after each turning of the compost pile to ensure uniformity. 
At each sampling time point, three samples were collected from three 
different vertical positions and then thoroughly mixed together. 
Samples were treated following Xie’s protocol (Xie et al., 2024). All 
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samples were ground, sieved, thoroughly mixed, and divided into two 
parts. One sample was stored at 4°C for physicochemical property 
analysis, while the remaining sample was frozen at −80°C for 
microbiological analysis. Samples collected on days 0, 2, 8, and 20 
were selected to represent the initial, thermophilic, cooling, and 
maturation stages, respectively.

2.2 Physicochemical analyses

The compost temperature was automatically recorded using a 
temperature sensor at the center of the compost pile, with a time 
interval of 1 h. Fresh compost samples were mixed with deionized 
water at a ratio of 1:10 (w/v) and oscillated at 200 rpm for 30 min. pH 
and electrical conductivity (EC) were measured with a digital pH 
meter (pHS-3C, China) and a conductivity meter (DS-307A, China), 
respectively. The water extract and pak choi seeds were incubated in a 
constant temperature incubator at 25°C in darkness for 48 h to 
determine the germination index (GI). The dried sample weighing 
1.00 g was transferred to a crucible and then placed in a muffle 
furnace, where it was incinerated at 550°C for 6 h until a constant 
weight was achieved. The difference in mass before and after 
incineration, divided by the mass of the sample before incineration, 
represented the organic matter content (OM). The sample to be tested 
reacted with ammonium molybdate to form yellow 
phosphomolybdate, and the concentration of phosphate ions was 
determined by measuring the absorbance of the solution. The total 
carbon (TC) and nitrogen (TN) content of the dried sample were 
determined using an elemental analyzer (ThermoFisher FlashSmart, 
USA), and the carbon/nitrogen ratio (C/N) was calculated. 
Ammonium nitrogen (NH4

+–N) and nitrate nitrogen (NO3
−–N) in the 

compost samples were extracted using a 2 mol/L KCl solution and 
analyzed using a segmented flow analyzer (Skeleton San++, France). 
Unfortunately, due to the low concentration of NO3

−–N, it was not 
measurable, and therefore not included in the subsequent analysis.

2.3 DNA extraction and high-throughput 
sequencing

Total microbial DNA was extracted using the FastDNA® Spin Kit 
for Soil (MP Biomedicals, Solon, USA). A NanoDrop 2000 ultraviolet–
visible spectrophotometer was used to measure DNA concentration 
and purity. The V3–V4 region of the bacterial 16S rRNA gene was 
amplified using primers 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) 
and 806R (5′-GGACTACHVGGGTWTCTAAT-3′). The amplified 
products were subjected to high-throughput sequencing on the 
Illumina Miseq PE 300 platform by Majorbio Bio-Pharm Technology 
Co., Ltd. (Shanghai, China).

2.4 Data analysis

All samples for analysis were triplicated and all data was analyzed 
and visualized in Excel 2019 and OriginPro 2021. One-way analysis 
of variance (ANOVA) and post-hoc multiple comparison tests were 
conducted using SPSS 25.0 (SPSS for Windows, version 25.0, USA). 
Differences with a p < 0.05 were considered statistically significant. 

Based on the MGISEQ bioinformatics platform, sequences were 
clustered into Operational Taxonomic Units (OTUs) with a 97% 
similarity threshold. OTU sequences were then annotated against the 
Silva138/16s_bacteria database. To visually display differences in 
bacterial community composition among different composting 
treatments and over time, non-metric multidimensional scaling 
(NMDS) statistical analysis and plotting were conducted using R 
(version 3.3.1). Redundancy analysis (db-RDA) based on Bray-Curtis 
distance matrix was employed to investigate the relationship between 
bacterial community composition in compost and environmental 
factors. Spearman correlation analysis was conducted using R (version 
3.3.1) with the pheatmap package to reveal the correlation between 
environmental parameters and the abundance of bacterial community 
composition (Top 30 genes). PICRUSt 2 was utilized for predicting 
functional gene profiles based on bacterial 16S rRNA data using the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The 
network analysis was performed to explore the co-occurring 
relationships between the members of bacterial communities using 
the “WGCNA” and “igraph” R packages. The interactive platform 
“Gephi” was used to identify the modules (ecological clusters) of 
microbial taxa.

3 Results and discussion

3.1 Changes in physicochemical properties 
during composting

Temperature, as one of the crucial indicators in composting, 
determines the succession of microbial communities and the 
degradation process of organic matter (Wei et al., 2014). In this study, 
CK, COS, and EPP reached peak temperatures on the 3rd, 1st, and 
2nd days, respectively, with peak temperatures of 57.96°C, 65.12°C, 
and 63.15°C (Figure 1A). This finding suggested that the addition of 
marine carbohydrate led to an advance in the thermophilic phase and 
an increase in peak temperature, especially COS (Zhao et al., 2022). 
pH is a critical parameter affecting the composting process, 
influencing microbial nutrient uptake and altering their activity (Cao 
et al., 2023). As illustrated in Figure 1B, the pH values of all treatments 
exhibited an initial increase followed by a decrease trend, reaching 
their peaks on the 2nd day. The pH increase was likely attributed to 
microbial decomposition of organic nitrogen and reduction of 
NH4

+–N, while the subsequent decrease may have been caused by 
rapid microbial degradation of organic matter, resulting in the 
accumulation of organic and inorganic acids (Jiang et al., 2015). After 
composting, the final pH values were 7.78 ± 0.07, 8.22 ± 0.06, and 
8.06 ± 0.14, respectively, all within the optimal pH range (5.5–8.5) 
(Wang Z. et  al., 2023). The EC of each treatment exhibited a 
continuous upward trend, reaching peak values at the end of 
composting, all exceeding 4 ms·cm−1 (Figure 1C), which was related 
with the ongoing decomposition of organic matter (Liu J. et al., 2023). 
The GI reflects the phytotoxicity of compost (Cao et al., 2023). As GI 
values indicated, marine carbohydrates promoted compost maturity, 
with final values of 104.82 ± 20.83%, 156.12 ± 16.02%, and 
119.47 ± 15.48% in CK, COS, and EPP, respectively (Figure 1D), all 
meeting the security requirements (>80%). The loss rates of organic 
matters (OMs) for COS and EPP were 51.41 and 37.46%, respectively, 
higher than 24.80% in CK (Figure  1E). It was speculated that 
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carbohydrates provided nutrients to promote microbial metabolism, 
thereby increasing the degradation rate of organic matter (Zhang 
et al., 2013). After composting, the content of PO4

3− decreased slightly. 
Compared with CK, the addition of marine carbohydrates increased 
the phosphorus content in the compost, possibly because the carbon-
containing additives directly drove the phosphorus decarbonating 
microorganisms to contribute microbial biomass P (Chen P. et al., 
2022) (Figure 1F). Compared to the initial stage, the TN concentration 
of CK, COS, and EPP in the mature stage increased by 3.46, 91.74, and 
96.84%, respectively, resulting in a higher TN of final compost in COS 
and EPP than in CK (Figure 1G). These results indicated that the 
addition of marine carbohydrates increased the nutrient content of the 
compost (Zhou et al., 2019). In the initial stage of composting, the 
decrease rate of NH4

+-N in the carbohydrates-added group was faster 
than that in the CK group, which was due to the faster heating rate in 
the carbohydrates-added group, resulting in more intense NH3 
volatilization. Notably, the CK group exhibited a distinct NH₄+–N 
variation pattern: continuous decline until day 2 followed by 
stabilization through day 8, then rebounding by day 20—contrasting 
sharply with the carbohydrates-added group pattern of initial rapid 

decrease followed by slight recovery. This divergence likely stemmed 
from microbial community restructuring induced by carbohydrate 
supplementation, thereby promoting NH₄+–N accumulation (Szliszka 
et  al., 2009) (Figure  1H). Ultimately, all treatments achieved 
comparable NH₄+–N reduction levels by day 20. The C/N ratio in 
composting is an important indicator affecting the nutrient 
requirements of microorganisms (Cao et  al., 2023). C/N < 20 can 
be  considered as the standard for compost maturity (Chen et  al., 
2021). At the end of composting, the C/N of CK, COS and EPP 
decreased to 27.29, 11.40, and 15.37, respectively, and all the 
carbohydrates groups met the requirements of decomposition 
(Figure 1I).

3.2 Bacterial diversity and community 
composition during composting

Bacteria, being the most abundant microorganisms during 
composting, exhibit rapid growth and play a key role in the 
degradation of nutrients such as carbohydrates and proteins. 

FIGURE 1

Physicochemical properties in different treatments during composting. (A) Temperature, (B) pH, (C) EC, (D) germination index (GI), (E) organic matter 
content, (F) phosphate content, (G) total nitrogen (TN), (H) NH4

+–N, and (I) C/N. CK, rice husks + cow manure + tomato residues; COS, rice husks + 
cow manure + tomato residues + 0.02% chitosan oligosaccharide; EPP, rice husks + cow manure + tomato residues + 0.02% Enteromorpha prolifera 
polysaccharides. Error bars represent standard deviations of triplicate measurements.
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Differences in bacterial diversity among different treatments at 
different stages were observed. The Chao 1 index reflects the richness 
of bacterial community, while the Shannon index indicates the 
diversity of bacterial community. Higher values signify greater 
richness or diversity (Liu et al., 2017; Zhong et al., 2020). As shown in 
Figure 2A, the richness of bacterial community in the composting 
process exhibited a trend of initially decreasing and then increasing, 
and the initial decline may be attributed to a sharp rise in temperature 
during the first 2 days (Wang Y. et al., 2022). Meanwhile, bacterial 
diversity showed a continuous increase, indicating microbial 
adaptation to the environment throughout the composting process, 
ultimately reaching its highest level in mature compost (Xu et al., 
2021; Chen Y. et al., 2022) (Figure 2B). Notably, EPP outperformed 
COS in promoting microbial richness and diversity, potentially 
because of COS’ antimicrobial activity, though the distinction 
diminished by day 20 (Liu et al., 2018; Phil et al., 2018; Yin et al., 2020).

Non-metric multidimensional scaling (NMDS) was conducted 
to analyze β diversity, and the results were shown in Figure 2C. It 
could be  observed that the although composting stage was the 
primary factor (Han et  al., 2022), additives also significantly 
influenced the bacterial community composition. During 
composting, the phyla Firmicutes, Proteobacteria, Actinobacteriota, 

and Bacteroidota are important dominant bacteria in the composting 
system (Figure 2D). These phyla were widely utilized in agricultural 
waste treatment (Liu et al., 2017; Wang et al., 2018; Wang G. Y. et al., 
2022). During the initial stage, the abundance of Firmicutes was 
highest, with an increase during the thermophilic phase and a 
subsequent decrease during the cooling and maturation phases. This 
pattern was attributed to the predominance of thermophilic bacteria 
within the Firmicutes phylum, such as the genera Bacillus, 
Thermobacillus, and Ureibacillus (Zhong et al., 2018) (Figure 2E). 
These bacteria have the capability to produce heat-resistant 
endospores and efficiently degrade large molecular organic 
compounds like cellulose and polysaccharides (Li et al., 2019; Awasthi 
et al., 2020; Bello et al., 2020). The abundance of Proteobacteria and 
Bacteroidota was inhibited at high temperatures, resulting in a 
decrease in abundance, followed by an increase during the cooling 
and maturation phases. Actinobacteriota exhibited less fluctuation in 
abundance with temperature changes, suggesting their tolerance to 
the high temperatures in the composting process. They worked 
synergistically with Firmicutes in cellulose degradation (He et al., 
2022). In addition, except for the initial stage, the relative abundance 
of Firmicutes in the CK group was lower than in the carbohydrates-
containing group (Supplementary Figure S1). This might be due to 

FIGURE 2

Changes in bacterial diversity index and community composition in different treatments during composting. (A) Chao 1 diversity index, (B) Shannon 
diversity index. Bars without shared lowercase and uppercase letters indicate significant differences among different additive treatments at each 
composting time and among different composting time according to Tukey’s HSD. (C) Non-metric multidimensional scaling (NMDS) analysis of 
microbial communities based on bray–curtis dissimilarity. (D) Phylum level and (E) genus level. CK, rice husks + cow manure + tomato residues; COS, 
rice husks + cow manure + tomato residues + 0.02% chitosan oligosaccharide; EPP, rice husks + cow manure + tomato residues + 0.02% 
Enteromorpha prolifera polysaccharides.
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the incorporation of carbohydrates-containing additives, which 
changed microbial activity by increasing the amount of organic 
compounds in the heap (Zhong et al., 2018; Bello et al., 2020).

At the genus level (Figure  2E), there were differences in the 
dominant bacterial genera and their relative abundance among 
treatments at the initial phase. The dominant genera in the CK group 
included Staphylococcus (27.99%), Brevibacterium (14.33%), 
Oceanobacillus (12.35%), Weissella (6.67%), and Bacillus (4.79%); In 
group COS, the dominant bacterial genera included Staphylococcus 
(17.99%), Enterococcus (11.24%), Brevibacterium (8.59%), Weissella 
(5.96%), and Bacillus (3.31%); In group EPP, the dominant bacterial 
genera were Lactobacillus (37.04%), Weissella (8.15%), Enterococcus 
(7.20%), Staphylococcus (7.14%), and Brevibacterium (2.49%). It was 
worth emphasizing that Lactobacillus was capable of organic matter 
degradation and promoted the initiation of composting (Xu et al., 
2022). In summary, the addition of carbohydrates-containing 
additives could alter the composition of initial bacterial communities, 
indicating a meaningful additive significance (Wang Y. et al., 2022). In 
the thermophilic phase, the dominant genera in each treatment were 
Bacillus (25.67–34.63%), Thermobifida (4.84–10.44%), Thermobacillus 
(3.30–5.69%), and Oceanobacillus (4.01–8.98%). Oceanobacillus has 
strong protein hydrolysis ability and participates in the humification 
of organic matter (Zhang et al., 2020). In addition, there were also 
relatively high abundances of norank _f_ Bacillaceae in groups COS 
and EPP. During the cooling phase, compared with CK group, the 
carbohydrates-added group had more Cellvibrio (belonging to the 
Proteobacteria phylum) and Flavobacterium (belonging to the 
Bacteroidetes phylum). Both Cellvibrio and Flavobacterium have 
excellent abilities to utilize polysaccharides, converting recalcitrant 
lignocellulose into stable humic substances. The addition of 
carbohydrates-containing additives provided them with a suitable 
growth environment (He et al., 2022; Wang C. et al., 2022; Wang 
S. P. et al., 2022). In the maturation stage, the diversity of dominant 
bacteria decreased, and the abundance of each bacterial taxon tended 
to be uniform.

Interestingly, the abundance of Ureibacillus, Geobacillus, and 
Ammoniibacillus increased in the thermophilic stage, with the 
abundance in the carbohydrates-added group significantly greater 
than that of CK group. The thermophilic bacterium Ureibacillus is one 
of the main microbial groups responsible for organic matter 
degradation under high-temperature conditions, and it has been 
reported in most high-temperature phases of composting trials (Li 
et al., 2020; Wang Y. et al., 2022). Geobacillus, like Ureibacillus, is also 
a thermophilic bacterium that dominates during the high-temperature 
phase of composting and can prolong this phase (Sarkar et al., 2010; 
Xu et al., 2022). Ammoniibacillus, another thermophilic bacterium, 
relies on NH4

+–N as its sole nitrogen source for growth (Sakai et al., 
2015; Qiu et al., 2021). In other words, the higher the abundance of 
Ammoniibacillus, the higher the utilization rate of corresponding 
NH4

+–N and the less nitrogen loss (Wang N. et al., 2022). The above 
taxa belong to the thermophilic bacteria of Firmicutes and are closely 
related to the degradation and utilization of organic matter. The 
observed results might be attributed to the provision of a more suitable 
microenvironment for their growth by the addition of carbohydrates-
containing additives (Wang et  al., 2021; Wang Y. et  al., 2022). In 
summary, the application of carbohydrates additives increased the 
abundance of microorganisms that could effectively degrade organic 
matter in compost, thereby promoting the maturity of compost.

3.3 Drivers of microbial communities 
during composting

Changes of environmental factors drive bacterial community 
structure succession during composting (Ge et  al., 2020). The 
relationship among samples, environmental factors, and bacterial 
community was explored using distance-based redundancy analysis 
(db-RDA). As shown in Figure 3A, in the CK treatment, only two 
environmental factors, EC (R2 = 0.9527, p = 0.001) and NH4

+–N 
(R2 = 0.8901, p = 0.001), showed significant correlations with 
bacterial community structure. By contrast, in the COS treatment, 
eight environmental factors, pH (R2 = 0.8001, p = 0.002), EC 
(R2 = 0.8769, p = 0.001), OM (R2 = 0.6555, p = 0.002), GI 
(R2 = 0.6347, p = 0.02), TC (R2 = 0.6681, p = 0.015), TN (R2 = 0.861, 
p = 0.001), C/N (R2 = 0.7644, p = 0.002), and NH4

+–N (R2 = 0.7099, 
p = 0.008) were significantly correlated with bacterial community 
structure (Figure 3B). For the EPP treatment, five environmental 
factors, EC (R2 = 0.7443, p = 0.011), OM (R2 = 0.8027, p = 0.001), 
TN (R2 = 0.6261, p = 0.017), C/N (R2 = 0.5112, p = 0.044), and 
NH4

+–N (R2 = 0.6507, p = 0.019) exhibited significant correlations 
with bacterial community structure (Figure 3C). These findings 
suggested that carbohydrates additives could significantly enhance 
the correlation between bacterial community and environmental 
factors. Carbohydrate amendment induces bacterial population 
shifts, altering community structure and function, thereby 
modulating the system’s environmental responsiveness. Therefore, 
the observed correlations suggest that carbohydrates additives can 
play a key role in modulating the relationship between bacterial 
communities and their surroundings.

The Spearman correlation analysis reflected the relationship 
between dominant bacteria genera and environmental factors 
(Figure  3D). It could be  seen that the relative abundance of 
Ureibacillus, Geobacillus, and Ammoniibacillus in the carbohydrates-
added group compared with that in the CK group was mainly 
positively correlated with pH and TN. The Spearman correlation 
heatmap broadly reflected two clusters of taxa: the first cluster 
included Corynebacterium, Staphylococcus, Enterococcus, 
Lactobacillus, Weissella, Brevibacterium, and Klebsiella, which were 
mainly pathogenic bacteria, lactic acid bacteria, and thermosensitive 
bacteria (Lasaridi et al., 2006; Wang et al., 2014; Tran et al., 2019; Liu 
et al., 2021; Shangguan et al., 2022; Shi et al., 2022). Their abundance 
was negatively correlated with EC, GI, and TN, and positively 
correlated with NH4

+–N, OM, TC, and C/N. The second cluster 
included norank_f__Methylococcaceae, Paenibacillus, 
unclassified_f__Rhizobiaceae, Chelativorans, Cellvibrio, 
Pusillimonas, and Luteimonas, which were mainly associated with 
the degradation of cellulose, lignin, nitrogen-containing compounds, 
and organic matter (Yin et al., 2017; Wang Y. et al., 2023; Wongkiew 
et al., 2023; Xie et al., 2023). The correlation of their abundance with 
environmental factors was exactly opposite to that of the first cluster 
of genera. This suggested that the bacteria in the first cluster 
primarily relied on NH4

+–N, OM, and TC for nutrition and were 
responsible for TN degradation, while TN primarily supported the 
nutrition of bacteria in the second cluster and promoted the 
transformation of NH4

+–N and the humification of OM. Combining 
the relative abundance heatmap (Figure 2E), it was observed that the 
bacteria belonging to the first cluster decreased continuously as 
composting progresses, while those in the second cluster increased. 
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This indicated that significant succession of bacterial community 
occurred during composting, and the abundance of dominant 
genera was closely related to environmental factors.

3.4 Bacterial co-occurrence network 
patterns during composting

The addition of marine polysaccharides affected the co-occurrence 
network patterns of bacteria during composting (Figure 4; Table 1). 
Compared to CK, the addition of COS reduced the total number of 
nodes, total number of edges, and avgD, but increased the avgCC, GD, 
and proportion of positive edges. The addition of EPP reduced the 
total number of edges, avgD, and proportion of positive edges, but 
increased the total number of nodes, avgCC, and GD. In summary, 
the addition of carbohydrates decreased the total number of edges and 
avgD, and increased GD, indicating that the addition of carbohydrates 
weakened the overall associations among bacteria and reduced 
network complexity, which was also directly reflected in the graph 
density data. However, the higher avgCC suggested that the addition 
of carbohydrates could enhance the connections within certain 
bacterial communities (Li G. et al., 2023).

Keystone taxa are highly connected taxa in microbial 
communities, which have special and important roles, and their 
removal can cause drastic changes in community structure and 
function. The keystone taxa from the highest connectome were 
Mesorhizobium (Lin et  al., 2023), Steroidobacter (Krishnan et  al., 
2017), Edaphobaculum, Anseongella (Wang Y. et  al., 2023), 
Actinomadura (Wang Y. et al., 2023) with degrees of 61, 59, 59, 59, 
59 in the CK treatment. The COS treatment keystone taxa composed 
of Actinomadura, Steroidobacter, Ammoniphilus, Cohnella (Rastogi 
et al., 2010) and Luteimonas (Yang et al., 2023; Liu N. et al., 2024) with 
47, 46, 37, 37, 37 degrees. The EPP treatment keystone taxa composed 
of Leuconostoc (Kot et  al., 2014), Persicitalea, Corynebacterium 
(Ahmed et al., 2023), Enterococcus (Liu S. et al., 2024) and Proteus (Shi 
et al., 2022) with 54, 52, 51, 51, 50 degrees.

Although taxonomic composition of keystone taxa differed in 
different treatments, the critical bacteria remain those involved in the 
degradation of organic matter and nitrogen cycling. These potential 
core bacteria played a crucial role in the maturation of compost, 
underscoring the importance of enhancing indigenous functional 
bacteria in compost. Interestingly, the first bacterial cluster mentioned 
earlier (e.g., Corynebacterium, Enterococcus, Staphylococcus, 
Lactobacillus, Weissella, and Brevibacterium) exhibited high degree, 

FIGURE 3

Db-RDA of the bacterial community in CK (A), COS (B) and EPP (C) during composting. (D) Spearman’s correlation heatmap between compost 
physicochemical properties and top 30 genera. The value of p < 0.05 is marked with “*,” p < 0.01 is marked with “**,” and p < 0.001 is marked with “***.” 
CK, rice husks + cow manure + tomato residues; COS, rice husks + cow manure + tomato residues + 0.02% chitosan oligosaccharide; EPP, rice  
husks + cow manure + tomato residues + 0.02% Enteromorpha prolifera polysaccharides.
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demonstrating significant linking roles (Supplementary Table S2). 
These bacterial groups exhibited close interactions with other bacteria 
during the composting process, performing their main functional 
roles before gradually disappearing. Considering that this bacterial 
group included some potential pathogens or antibiotic resistance 
genes hosts, their disappearance after compost maturation provided a 
safeguard for compost safety (Wei et al., 2018; Wang B. et al., 2022).

3.5 Prediction of microbial metabolic 
functions during composting

The changes in bacterial community often lead to alterations in 
bacterial metabolic functions (Zhou et al., 2019). Bacterial metabolic 
function was predicted by PICRUSt 2 based on KEGG pathway 
database. As shown in Figure 5A, most of the predicted functional 
genes were assigned to metabolic (76.22–78.19%), genetic information 
processing (6.50–7.23%), environmental information processing 
(5.89–7.64%), and cellular process (3.71–5.01%) pathways in different 
composting processes.

As shown in Figure  5B, among the pathways with relative 
abundances exceeding 1%, the second-level KEGG orthology function 
predictions encompassed 12 metabolic pathways, 2 environmental 
information processing pathways, 3 genetic information processing 
pathways, and 2 cellular processes pathways. The major metabolic 

pathways included global and overview maps (39.33–40.18%), 
carbohydrate metabolism (8.62–10.99%), and amino acid metabolism 
(6.90–8.42%).

Carbohydrate metabolism primarily provides substrates for 
microbial reproduction and the formation of humic substances 
through the degradation of cellulose and hemicellulose (Toledo 
et  al., 2017; Yin et  al., 2019). It was easy to predict that the 
addition of marine carbohydrates significantly promoted 
carbohydrate metabolism. As expected, the gene abundance 
related to carbohydrate metabolism was higher in group EPP 
than in group COS, that was, polysaccharides had a more 
pronounced effect than oligosaccharides in promoting 
carbohydrate metabolism (Figure 5B).

As illustrated in Figure  5C, the addition of carbohydrates 
augmented the gene abundance related to amino carbohydrates and 
nucleotide carbohydrates metabolism, fructose and mannose 
metabolism, galactose metabolism, and butanoate metabolism 
during the initial and thermophilic stages of composting. These 
substrates are readily degradable and can be  rapidly consumed 
during the early stages of composting (Zhong et  al., 2020). By 
modulating the gene abundance associated with the metabolism of 
arginine, proline, lysine, phenylalanine, and tryptophan, among 
others, carbohydrates were speculated to reduce bacterial protein 
synthesis and activity in the amino acid metabolism pathway 
(Figure 5D) (Zhou et al., 2019).

FIGURE 4

Molecular ecological network analysis showing the bacterial co-occurrence pattern during composting. (A–C) The bacterial co-occurrence network 
of different treatments. The colors of the nodes are assigned according to the module. The size of each node is proportional to the degree. Edge 
thickness is proportional to the weight of each correlation. A red edge indicates a positive interaction between two individual nodes, whereas a green 
edge indicates a negative interaction. Only nodes whose degree is greater than the average degree of corresponding processing are shown. CK, rice 
husks + cow manure + tomato residues; COS, rice husks + cow manure + tomato residues + 0.02% chitosan oligosaccharide; EPP, rice husks + cow 
manure + tomato residues + 0.02% Enteromorpha prolifera polysaccharides.

TABLE 1 Key topological features of soil microbial communities under different fertilization treatments.

Treatment Total 
nodes

Total 
edges

Average 
degree 
(avgD)

Average 
clustering 
coefficient 

(avgCC)

Average 
path 

distance 
(GD)

Density Proportion of 
positive edges

CK 144 1,740 24.167 0.614 2.484 0.169 67.76%

COS 137 1,166 17.022 0.631 3.334 0.125 68.82%

EPP 154 1,609 20.896 0.659 3.088 0.137 65.05%
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4 Conclusion

The present study revealed that COS and EPP had significant 
effects on the physicochemical properties of cow manure and rice 
husk compost, which could accelerate compost decomposition 
and promote bacterial community succession, and enhance the 
correlation of bacterial communities with environmental factors. 
Specifically, chitosan oligosaccharides outperform Enteromorpha 
prolifera polysaccharides in terms of temperature, TN 
concentration and GI. EPP exhibited higher influence on 
microbial diversity and metabolic function. However, they did not 
contribute to enhancing the complexity of the co-occurrence 
network. This study provides a theoretical basis for the utilization 
of chitosan oligosaccharides and Enteromorpha prolifera 
polysaccharides as compost additives to ameliorate agricultural 
waste composting.
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