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Construction and validation of 
tertiary models for predicting 
growth of Salmonella Infantis in 
chicken liver during a processing 
chain deviation
Thomas P. Oscar *

Microbial and Chemical Food Safety Research Unit, University of Maryland Eastern Shore Worksite, 
Eastern Regional Research Center, Agricultural Research Service, United States Department of 
Agriculture, Princess Anne, MD, United States

Salmonella Infantis is a top human clinical isolate that is found at low levels in 
chicken liver after primary processing. However, temperature abuse of chicken 
liver during secondary processing can lead to growth of Salmonella and higher 
risk of salmonellosis. Therefore, a three-phase linear, polynomial regression, 
tertiary model (TMPR) and a multiple layer feedforward neural network with two 
nodes in the hidden layer, tertiary model (TMNN) for growth of Salmonella Infantis 
in chicken liver as a function of dose (101–106), time (0–8 h), and temperature 
(18–30°C) were constructed, validated, and compared using the criteria of the 
Acceptable Prediction Zones (APZ) method. When the proportion of residuals in 
the APZ or pAPZ was ≥0.7, predictions were considered acceptable. The pAPZ 
for the dependent data (n = 360) was 0.979 for the TMPR and 0.976 for the TMNN, 
whereas the pAPZ for the independent data for interpolation (n = 72) was 0.968 
for the TMPR and 0.964 for the TMNN. Thus, both the TMPR and TMNN were validated 
for interpolation, had similar performance, and can be used with confidence to 
predict the growth of Salmonella Infantis in chicken liver during a secondary 
processing deviation of temperature abuse. However, construction of the TMPR 
involved three steps, whereas construction of the TMNN involved one step. Thus, 
the TMNN was easier to construct and validate. Nonetheless, the final TM included 
the TMPR and TMNN because the TMPR predicted lag time and growth rate, whereas 
the TMNN did not.
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1 Introduction

Salmonella can colonize the liver of live chickens before primary processing (Khan et al., 
2024; Wang et al., 2024; Yokoyama et al., 2015). In addition, Salmonella in water, on equipment, 
or on hands can cross-contaminate chicken liver during primary processing (Rivera-Perez 
et  al., 2014). Thus, chicken liver can be contaminated with Salmonella before secondary 
processing of it into other products like chicken liver paté (Jung et al., 2019; Porto-Fett et al., 
2019; Procura et al., 2019).

Chicken liver is high in nutrients and has a pH and water activity that supports the growth 
of Salmonella at temperatures encountered during secondary processing in the processing 
plant or restaurant, institution, or home kitchen (Bovill et al., 2000). Therefore, secondary 
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processing of chicken livers can provide an opportunity for Salmonella 
to grow to levels that pose a higher risk of salmonellosis (Hanson et al., 
2014; Lanier et al., 2018). Models that predict the growth of Salmonella 
in chicken liver are valuable tools for assessing the impact of 
processing deviations on the risk of salmonellosis from chicken liver. 
However, there are currently no models for the growth of Salmonella 
in chicken liver.

A three step method for developing tertiary models (TM) for 
growth of Salmonella in food using regression methods is shown in 
Figure  1 (Whiting, 1995). In step one, data for log number of 
Salmonella in food over time for one combination of independent 
variables is fitted to a primary model (PM), like the three phase linear 
(3PL) model of Buchanan et al. (1997). The PM3PL has parameters for 
initial log number (Y1), lag time (X1), time to final log number (X2), 
and final log number (Y2). In step two, a dataset of the PM parameters 
and combinations of independent variables investigated is fitted to a 
secondary model (SM) like the polynomial regression (PR) model of 
Thayer et al. (1987). In step three, the SM are incorporated back into 
the PM to construct a TM that predicts the log number of Salmonella 
in the food over time as a function of the independent variables. Once 
constructed, the next step is to validate the TM.

Model validation occurs in three steps (Figure 2). In step one, 
model predictions are compared to dependent data. In step two, 
model predictions are compared to independent data for interpolation. 
In step three, model predictions are compared to independent data for 
extrapolation. Model validation occurs when all criteria for test data, 
model performance, and model validation are met for the first two 
steps. The third step is optional but important because validation of a 
model to a new independent variable can save time and money by 
identifying conditions for which new models are not needed. In the 

present study, the test data, model performance, and model validation 
criteria of the Acceptable Prediction Zones (APZ) method (Oscar, 
2020b, 2023) were used to validate PM, SM, and TM.

The three-step methods for construction and validation of models 
for growth of Salmonella in food are time consuming and complex. 
However, it is possible to construct the TM in one step using a neural 
network (NN) method (Oscar, 2009, 2015, 2018). Therefore, the 
current study was undertaken to construct, validate, and compare, for 
the first time, a TMPR to a TMNN for growth of Salmonella Infantis in 
chicken liver as a function of dose (101–106), time (0–8 h), and 
temperature (18–30°C). The Salmonella serotype and dose range 
investigated and modeled were based on results of a previous study 
that determined Salmonella serotype prevalence and number in 
chicken liver (Oscar, 2021), whereas the time and temperature ranges 
investigated and modeled were based on those commonly encountered 
during the secondary processing of chicken livers in a processing plant 
or in a restaurant, institution, or home kitchen.

2 Methods

2.1 Experimental designs

The experiment for model construction was a replicated (n = 6), 
3 × 5 × 4, full factorial of dose (101, 103.5, 106), time (0, 2, 4, 6, 8 h), 
and temperature (18, 22, 26, 30°C), whereas the experiment for 
model validation for interpolation was a replicated (n = 3), 2 × 4 × 3 
full factorial of dose (102.25, 104.75), time (1, 3, 5, 7 h), and temperature 
(20, 24, 28°C). The doses, times, and temperatures investigated and 
modeled were based on the following considerations. First, they were 

FIGURE 1

Flow diagram showing the three steps of the process used to construct a tertiary model using regression methods. MPN, most probable number; t, 
time; T, temperature; D, dose; Y1, initial MPN; X1, lag time; X2, time to final MPN; and Y2, final MPN.
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based on the ranges identified above. Second, they were based on the 
test data criterion of the APZ method for even spacing of 
independent variable values (Oscar, 2020b, 2023). Third, they were 
based on the test data criterion of the APZ method for intermediate 
independent variable values for internal validation of validation 
for interpolation.

2.2 Data collection

The method of Oscar (2024a) was used to collect the most 
probable number (MPN) data for model construction and validation 
with some modifications. A single brand of chicken liver rather than 
a single brand of ground turkey was used. Five doses instead of one 
dose of Salmonella Infantis were used. Storage trials were 8 h instead 
of 28 h and were conducted at 18–30°C instead of 16–40°C. Thus, the 
current model is for chicken liver instead of ground turkey, and the 
range of prediction is wider for dose and narrower for time 
and temperature.

2.3 Model construction

The method of Oscar (2024a) was used to construct the TMPR with 
modifications. First, the PM3PL was fitted to MPN data from individual 
storage trials instead of combined storage trials. Second, PR (StatTools, 
Decision Tools Suite, version 8.2, Lumivero) was used for SM instead 
of the SM of Oscar (2024a). Third, the TMPR had three (dose, time, 
temperature) independent variables instead of two (time, 
temperature). The PR form was:

 
2 2

0 1 2 3 4Y B B D B T B D B T= + + + +

where Y was a PM3PL parameter, B0 to B4 were regression 
coefficients, D was dose, and T was temperature. The PM3PL parameters 
were X1 = lag time (h); Y1 = initial MPN (log10/0.2 g); X2 = time to 
final MPN (h); and Y2 = final MPN (log10/0.2 g). The TMPR was 
constructed in Excel (Office 365, MicroSoft).

The method of Oscar (2020a), which uses the BestNet Search 
option of NeuralTools to identify the best-performing TMNN, was used 
with one modification to construct a multiple layer feedforward 
neural network with two nodes in the hidden layer that had three 
(dose, time, temperature) instead of two (time, temperature) 
independent variables. Here, the dependent data (n = 360) were used 
to train the TMNN, whereas the independent data for interpolation 
(n = 72) were used to test the TMNN for generalization. The TMNN was 
constructed in Excel with a spreadsheet add-in program (NeuralTools, 
Decision Tools Suite 8.2, Lumivero), which is needed to simulate 
the TMNN.

2.4 Model validation

The TMPR and TMNN and the PM and SM were validated using the 
APZ method of Oscar (2023) in the Validation Software Tool (ValT) 
for predictive microbiology (Oscar, 2020b). In brief, the observed and 
predicted values for the dependent data and independent data for 
interpolation were entered into ValT followed by calculation of the 
pAPZ, which was the proportion of residuals in the partly and fully 
acceptable prediction zones. Next, the “yes” or “no” questions in the 
decision trees for dependent data and independent data for 

FIGURE 2

Flow diagram showing the three steps of the model validation process used in the Acceptable Prediction Zones method in the Validation Software Tool 
(ValT) for predictive microbiology.
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interpolation were answered and then ValT provided an objective 
“yes” or “no” decision about model validation. A model was validated 
when it satisfied all APZ criteria for dependent data and independent 
data for interpolation.

A model was considered to provide predictions with 
acceptable bias and accuracy when pAPZ was >0.7. The 
justification for this threshold and the boundaries of the partly 
and fully acceptable prediction zones for the different types of 
models is complex and thus, beyond the scope of this study, but 
can be  found in previous studies (Oscar, 2005a, 2005b, 
2020b, 2023).

2.5 Statistical analysis

Two-way, analysis of variance (ANOVA) in Prism for Windows 
(version 10, GraphPad Software, San Diego) was used to determine if 
lag time and growth rate were affected (p ≤ 0.05) by dose, temperature, 
or their interaction and to determine if prediction bias (mean residual) 
and prediction accuracy (mean absolute residual) were affected 
(p ≤ 0.05) by type of data, type of TM, or their interaction.

3 Results

3.1 Primary modeling and validation

3.1.1 Primary modeling of dependent data
Figure 3 shows typical fits of the PM3PL to the growth curves. The 

rest of the growth curve fits are in Supplementary S42–S131 to provide 
a complete visual appraisal of data and model fit quality. The results in 
Figure 3 showed that curves had two and on rare occasions three 
phases of growth. Luckily, the PM3PL could be fitted to curves with one, 
two, or three phases of growth as well as those with limited data in a 
growth phase (Figure 3) and still provide complete and reliable PM 
parameter data for SM and TM construction. This contrasts with other 
PM like the Gompertz, Baranyi, and Huang that require more 
complete data in all growth phases to generate reliable PM parameter 
data for SM and TM construction.

3.1.2 Validation of the primary model (dependent 
data)

The APZ analysis in ValT for the PM3PL and dependent data 
(n = 360) is shown in Figure 4. Here, answers to questions (Q) 1–3 
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FIGURE 3

Typical growth curves fits of the three-phase linear primary model to the log10 most probable number (MPN) data (dependent data) for growth of 
Salmonella Infantis in chicken liver as a function of dose (101, 103.5, 106), time (0, 2, 4, 6, 8 h), and temperatures of (A) 18°C; (B) 22°C; (C) 26°C; and 
(D) 30°C. Results are from one storage trial per combination of independent variables.
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for test data in the decision tree were “yes” meaning that the criteria 
were met and where answers of “yes” lead to model validation, 
whereas and a single answer of “no” leads to model repair (Figure 2). 
Thus, the data were used in model construction, the levels of the 
independent variables (dose, time, temperature) were evenly 
spaced, and there was a minimum of four prediction cases (pair of 
observed and predicted values) for each combination of 
independent variables.

Continuing with the validation (Figure 4), answers to Q4 to Q6 
for model performance were “yes” indicating that the PM3PL satisfied 
these criteria. In other words, the PM3PL had no local or global 
prediction problems for the dependent data. Because the PM3PL 
satisfied the criteria for test data and model performance, the 
response to Q7 for the model validation criterion, which was 
automatically provided by a formula in ValT, was “yes” indicating that 
the PM3PL was validated for the dependent data or had acceptable 
goodness-of-fit.

The results in Figure 4 for the PM3PL and dependent data were 
confirmed in Figure  5, which shows the distribution of residuals 
(observed–predicted) among the partly and fully acceptable prediction 
zones as a function of the independent variables of dose, time, and 
temperature. Most residuals (357 of 360) were in the fully acceptable 
prediction zone from −1.0 to 0.5 log10 MPN per 0.2 g of chicken liver. 
The rest (3 of 360) were in the partly acceptable prediction zone from 
−1.0 to −2.0 log10 MPN per 0.2 g of chicken liver, and from 0.5 to 1.0 
log10 MPN per 0.2 g of chicken liver. None of the residuals were 
outside the partly and fully acceptable prediction zones.

The results of the APZ analysis in ValT for the PM3PL and 
dependent data are summarized in Table 1 (analysis A). The global 
pAPZ and the minimum pAPZ for a single level of independent 
variables, and a combination of all independent variables were all 
≥0.926. In addition, the mean residual, a measure of prediction bias, 
and mean absolute residual, a measure of prediction accuracy, were 
close to zero. Together, these results indicated that the PM3PL fitted the 
dependent data well.

3.1.3 Primary modeling of the independent data 
for interpolation

The PM3PL was fitted to the independent data for interpolation, 
which was necessary to obtain the PM parameter data needed to 
validate the SM. The robustness of the PM3PL was important here 
because the growth curves in this set of data only had four sampling 
times (S6).

3.1.4 Validation of the primary model for the 
independent data for interpolation

The APZ analysis in ValT for the PM3PL and independent data 
for interpolation is provided in S7 where the decision tree had nine 
questions. Questions 1 and 9 were for model validation criteria, 
Q2–Q5 were for test data criteria, and Q6–Q8 were for model 
performance criteria. Again, answers of “yes” led to model 
validation and a single answer of “no” led to model repair 
(Figure 2). A prerequisite was validation of the PM3PL for dependent 
data or an automated answer of “yes” to Q1, which was the case 
here (S7).

The test data criteria Q2–Q6 ensured that the data were not used 
in model construction, that levels of independent variables were 
intermediate to those used in model construction, sufficiently 
replicated (n = 3 or more) so that an unbiased and accurate evaluation 
of model performance was obtained, and that the data were collected 
using the same methods as those used to collect the data for model 
construction so that the comparison of observed and predicted values 
was not confounded by differences in data collection methods. The 
answers to Q2–Q6 in the decision tree of S7 were “yes” indicating that 
the independent data for interpolation satisfied the APZ criteria for 
test data.

As shown in S8, all residuals (72 of 72) were in the fully acceptable 
prediction zone resulting in pAPZ of 1.00 for all combinations and 
levels of independent variables and overall (analysis B in Table 1). 
These results indicated that the PM3PL fitted the independent data for 
interpolation well. Thus, the PM3PL was a good choice.

FIGURE 4

Screenshot of the Acceptable Prediction Zones (APZ) analysis in the Validation Software Tool for the three-phase linear, primary model that predicts 
the growth of Salmonella Infantis in chicken liver over time for individual combinations of dose (101, 103.5, or 106) and temperature (18, 22, 26, or 30°C). 
Results are for the dependent data.
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3.2 Secondary modeling and validation

3.2.1 Statistical summary of the secondary 
modeling of the dependent data

Table 2 provides a statistical summary of the SMPR fits to the PM 
parameter data. The R2 value was moderate for X1, high for Y1, very 
low for X2, and high for Y2. Temperature had a nonlinear effect 
(p ≤ 0.05) on X1, no effect (p > 0.05) on Y1, a nonlinear effect 
(p ≤ 0.05) on X2, and no effect (p > 0.05) on Y2 (Table 2). Dose had 
no effect (p > 0.05) on X1, a linear effect (p ≤ 0.05) on Y1, no effect 
(p > 0.05) on X2, and a linear effect (p ≤ 0.05) on Y2. Thus, PM 
parameters were affected by dose and temperature but in 
different ways.

3.2.2 Secondary modeling of the dependent data 
for lag time or X1

Graphs of the PMX1 data for lag time (Figure 6) and the SMPR 
predictions of X1 as a function of dose and temperature indicated that 
observed and predicted values were in close agreement and that the 

moderate R2 value for the SMPR fit (Table 2) was from high variation 
of lag time among replicated storage trials as indicated by large 
standard deviations. The graphs in Figure 6 clearly show the nonlinear 
effect of temperature on lag time.

3.2.3 Validation of the SMPR predictions of the 
dependent data for lag time or X1

The APZ analysis (S10) indicated that the data used to develop 
the SMPR for lag time satisfied the criteria for test data with answers 
of “yes” to Q1–Q3  in the decision tree for dependent data. In 
addition, the SMPR for X1 displayed no local or global prediction 
problems as indicated by answers of “yes” to Q4–Q6 in the decision 
tree for dependent data (S10). In fact, the pAPZ for individual 
levels and combinations of independent variables and overall were 
≥0.737 (analysis C in Table 1). These results were confirmed in 
Figure 7A where all relative residuals for X1 except three were in 
the partly or fully acceptable prediction zones. Therefore, the SMPR 
for X1 was validated for the dependent data as indicated by an 
answer of “yes” to Q7 in the decision tree for dependent data (S10). 

0 2 4 6 8
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5

Time (h)

R
es

id
ua

l(
lo

g 1
0 M

PN
/0

.2
 g

) Fail-dangerous

Fail-safe
0 2 4 6 8

-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5

A) B)

Time (h)

R
es

id
ua

l(
lo

g 1
0 M

PN
/0

.2
 g

) Fail-dangerous

Fail-safe

0 2 4 6 8
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5

Time (h)

R
es

id
ua

l(
lo

g 1
0 M

PN
/0

.2
 g

) Fail-dangerous

Fail-safe
0 2 4 6 8

-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5

C) D)

Time (h)

R
es

id
ua

l(
lo

g 1
0 M

PN
/0

.2
 g

) Fail-dangerous

Fail-safe

101 103.5 106

FIGURE 5

Distribution of residuals (observed–predicted) among the partly (dotted lines with no fill) and fully (dotted lines with gray fill) acceptable prediction 
zones for the three-phase linear, primary model fits to the dependent data for growth of Salmonella Infantis in chicken liver as a function of individual 
combinations of dose (101, 103.5, 106), time (0, 2, 4, 6, 8 h), and temperatures of (A) 18°C; (B) 22°C; (C) 26°C; or (D) 30°C.
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TABLE 1 Statistical summary of the acceptable prediction zones analysis of primary, secondary, and tertiary model performance for growth of Salmonella Infantis in chicken livera.

Analysis Model Other Data PE Boundariesb
pAPZ (minimum) Criteria Mean

Global Dose Time Temp Combo <0.7 Test Perf Val Biasc Accuracyd

A Primary 3PL Dep R −2, −1, 0.5, 1e 0.998 0.996 0.993 0.991 0.926 0 Pass Pass Pass −0.002 0.137

B 3PL Int R −2, −1, 0.5, 1e 1.000 1.000 1.000 1.000 1.000 0 Pass Pass Pass −0.001 0.081

C Secondary X1 Dep RR −1.2, −0.6, 0.3, 0.6f 0.910 0.859 NA 0.871 0.737 0 Pass Pass Pass −0.002 0.243

D X1 Int RR −1.2, −0.6, 0.3, 0.6f 0.823 0.778 NA 0.667 0.667 3 Pass Fail Fail 0.103 0.326

E Y1 Dep R −2, −1, 0.5, 1e 0.9996 0.999 NA 0.998 0.995 0 Pass Pass Pass 0.000 0.150

F Y1 Int R −2, −1, 0.5, 1e 0.996 0.992 NA 0.987 0.975 0 Pass Pass Pass −0.157 0.253

G X2 Dep RR −1.2, −0.6, 0.3, 0.6f 1.000 1.000 NA 1.000 1.000 0 Pass Pass Pass 0.000 0.028

H X2 Int RR −1.2, −0.6, 0.3, 0.6f 1.000 1.000 NA 1.000 1.000 0 Pass Pass Pass 0.127 0.127

I Y2 Dep R −2, −1, 0.5, 1e 0.967 0.950 NA 0.913 0.833 0 Pass Pass Pass 0.000 0.291

J Y2 Int R −2, −1, 0.5, 1e 0.946 0.898 NA 0.898 0.796 0 Pass Pass Pass −0.524 0.651

K Tertiary 3PL/PR Dep R −2, −1, 0.5, 1e 0.979 0.975 0.965 0.955 0.833 0 Pass Pass Pass 0.014 0.267

L 3PL/PR Int R −2, −1, 0.5, 1e 0.968 0.937 0.895 0.955 0.667 1 Pass Pass Pass −0.080 0.295

M MLFNN2 Dep R −2, −1, 0.5, 1e 0.976 0.973 0.961 0.959 0.830 0 Pass Pass Pass 0.000 0.278

N MLFNN2 Int R −2, −1, 0.5, 1e 0.964 0.928 0.900 0.945 0.709 0 Pass Pass Pass −0.027 0.261

apAPZ, proportion of prediction errors (PE) in the partly and fully Acceptable Prediction Zones (APZ); Combo, combination of dose, time, and temperature; Test, test data; Perf, model performance; Val, model validation; 3PL, three-phase linear primary model; Dep, 
dependent data; R, residual; Int, independent data for interpolation; RR, relative error; NA, not applicable; PR, polynomial regression; and MLFNN2, multiple-layer feedforward neural network with two nodes in the hidden layer.
bThe boundaries from left to right are: (1) the lower boundary for the fail-safe, partly acceptable prediction zone; (2) the upper boundary for the fail-safe partly acceptable prediction zone and lower boundary for the fully acceptable prediction zone; (3) the upper 
boundary for the fully acceptable prediction zone and the lower boundary for the fail-dangerous, partly acceptable prediction zone; and (4) the upper boundary for the fail-dangerous, partly acceptable prediction zone.
cBias = mean prediction error with units corresponding to those for boundaries.
dAccuracy = mean absolute prediction error with units corresponding to those for boundaries.
eLog10 most probable number per 0.2 g of chicken liver for observed - predicted.
fUnitless ratio of (predicted - observed)/predicted.
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Thus, SMPR for X1 was eligible for validation for interpolation 
(Figure 2).

3.2.4 Secondary modeling of the dependent data 
for initial most probable number or Y1

Graphs of the PM3PL parameter data for initial MPN and the 
SMPR predictions of Y1 as a function of the dose and temperature 
indicated that observed and predicted values were in close 
agreement (S12). In addition, there was a low variation of 
observed values of Y1 among replicated storage trials, which 
helped explain the high R2 value for the SMPR fit to these data 
(Table 2).

3.2.5 Validation of SMPR predictions of the 
dependent data for initial most probable number 
or Y1

The APZ analysis (S13) indicated that the data used to develop the 
SMPR for initial MPN satisfied the criteria for test data with answers of 
“yes” to Q1–Q3 in the decision tree for dependent data. In addition, 
the SMPR for Y1 displayed no local or global prediction problems as 
indicated by answers of “yes” to Q4–Q6  in the decision tree for 
dependent data (S13). In fact, the pAPZ for individual levels and 
combinations of independent variables and overall were ≥0.995 
(analysis E in Table 1). These results were confirmed in Figure 7B 
where all residuals for Y1 were in the partly and fully acceptable 
prediction zones. Therefore, the SMPR for Y1 was validated for the 
dependent data as indicated by an answer of “yes” to Q7  in the 

decision tree (S13) and thus, was eligible for validation for 
interpolation (Figure 2).

3.2.6 Secondary modeling of the dependent data 
for time to final most probable number or X2

Graphs of the PM3PL parameter data for time to final MPN and the 
SMPR predictions of X2 as a function of the dose and temperature 
indicated that observed and predicted values were in close agreement 
(S12) even though the R2 for the SMPR was very low (Table 2). The time 
to final MPN was fixed at 8 h for all PM3PL fits except four, which were 
for the combination of the highest dose (106) and highest temperature 
(30°C) where three phases of growth were observed in four of six 
replicated storage trials. Thus, the standard deviation was zero for all 
combinations of dose and temperature, except the one mentioned. The 
graphs in S14 show the small but significant nonlinear effect of 
temperature on X2.

3.2.7 Validation of the SMPR predictions of 
dependent data for X2

The APZ analysis indicated that the X2 data used to develop the 
SMPR for time to final MPN satisfied the criteria for test data with 
answers of “yes” to Q1–Q3 in the decision tree for dependent data 
(S15). In addition, the SMPR for X2 displayed no local or global 
prediction problems as indicated by answers of “yes” to Q4–Q6 in the 
decision tree for dependent data (S15). In fact, the pAPZ for individual 
levels and combinations of independent variables, and overall 
was = 1.00 (analysis G in Table 1). These results were confirmed in 

TABLE 2 Summary of the secondary modeling step for growth of Salmonella Infantis in chicken liver.

Dependent 
variable

Parameter Coefficient Standard 
error

p-Value Confidence 
interval 95%

R-square Adjusted 
R-square

Lower Upper

X1 Constant 33.002 4.868 0.000 23.285 42.720 0.865 0.748

Temperature −2.039 0.415 0.000 −2.867 −1.212

Dose 0.007 0.334 0.984 −0.660 0.674

Temperature2 0.034 0.009 0.000 0.017 0.051

Dose2 −0.014 0.047 0.772 −0.107 0.080

Y1 Constant 0.206 0.849 0.809 −1.489 1.901 0.992 0.991

Temperature −0.029 0.072 0.687 −0.174 0.115

Dose 1.064 0.058 0.000 0.948 1.181

Temperature2 0.001 0.002 0.722 −0.002 0.004

Dose2 −0.003 0.008 0.741 −0.019 0.014

X2 Constant 5.315 1.494 0.001 2.333 8.297 0.264 0.220

Temperature 0.255 0.127 0.049 0.001 0.509

Dose 0.102 0.103 0.323 −0.103 0.307

Temperature2 −0.006 0.003 0.029 −0.011 −0.001

Dose2 −0.023 0.014 0.119 −0.051 0.006

Y2 Constant −3.208 1.642 0.055 −6.485 0.068 0.978 0.977

Temperature 0.118 0.140 0.402 −0.161 0.397

Dose 0.902 0.113 0.000 0.677 1.127

Temperature2 0.004 0.003 0.146 −0.002 0.010

Dose2 0.018 0.016 0.253 −0.013 0.050
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Figure 7C where all the relative residuals for X2 were in the partly or 
fully acceptable prediction zones. Therefore, the SMPR for X2 was 
validated for dependent data as indicated by an answer of “yes” to 
Q7 in the decision tree (S15) and thus, was eligible for validation for 
interpolation (Figure 2).

3.2.8 Secondary modeling of the dependent data 
for Y2

Graphs of the PM3PL parameter data for final MPN and the SMPR 
predictions of Y2 as a function of the dose and temperature indicated 
that observed and predicted values were in close agreement (S16). In 
addition, there was a low variation of observed values among replicate 
storage trials, which explained the high R2 value for the SMPR fit to 
these data (Table 2).

3.2.9 Validation of SMPR predictions of dependent 
data for Y2

The APZ analysis indicated that the PM3PL data used to develop 
the SMPR for final MPN satisfied the criteria for test data as indicated 
by answers of “yes” to Q1–Q3 in the decision tree for dependent data 
(S17). In addition, the SMPR for Y2 displayed no local or global 
prediction problems as indicated by answers of “yes” to Q4–Q6 in the 

decision tree for dependent data (S17). In fact, the pAPZ for individual 
levels and combinations of independent variables and overall was 
≥0.833 (analysis I  in Table  1). These results were confirmed in 
Figure 7D where all residuals for Y2 except one were in the partly and 
fully acceptable prediction zones. Therefore, the SMPR for Y2 was 
validated for the dependent data as indicated by an answer of “yes” to 
Q7 in the decision tree (S17) and thus, was eligible for validation for 
interpolation (Figure 2).

3.2.10 Validation of SMPR predictions of 
independent data for interpolation of lag time or 
X1

Graphs of the independent data for interpolation of the PM3PL 
parameter of lag time and SMPR predictions of X1 as a function of 
dose and temperature (S18) indicated that observed and predicted 
values were not in as close agreement as they were for the 
dependent data (Figure 6). The APZ analysis (Figure 8) indicated 
that the independent data for X1 used to validate the SMPR for 
interpolation satisfied the criteria for test data as indicated by 
answers of “yes” to Q2–Q5 in the decision tree. Thus, the test data 
were not used to develop the SMPR; they were collected using the 
same methods as used to collect the dependent data; the values for 
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FIGURE 6

Fit of the polynomial regression, secondary model (SMPR) to the dependent data for the three-phase linear, primary model parameter values for lag 
time or X1 as a function of doses of: (A) 101; (B) 103.5; or (C) 106 and temperature (X-axis) for growth of Salmonella Infantis in chicken liver. Symbols are 
means ± standard deviation of results from six replicated storage trials and SMPR fits.
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the independent variables of dose, time, and temperature were 
intermediate to those of the dependent data; and there was a 
minimum of two prediction cases per combination of the 
independent variables.

Although the SMPR for X1 had acceptable overall performance 
(pAPZ = 0.823) for the independent data for interpolation, it had a 
local prediction problem at 24°C (pAPZ = 0.667) resulting in an 
answer of “no” to Q7 in the decision tree (Figure 8 and analysis D in 
Table 1). These results were confirmed in S20A where three of the 
relative residuals for X1 were outside the partly and fully acceptable 
prediction zones. Therefore, the SMPR for X1 failed validation for 
interpolation as indicated by an answer of “no” to Q9 in the decision 
tree for interpolation (Figure  8) and thus, was not eligible for 
validation for extrapolation (Figure 2). Rather, the course of action for 
this SMPR may be to repair it by collecting more data. However, this is 
only necessary if it causes the TMPR to fail validation, which was not 
the case.

3.2.11 Validation of SMPR predictions of 
independent data for interpolation of initial MPN 
or Y1

Graphs of the independent data for interpolation of the PM3PL 
parameter data for initial MPN and SMPR predictions of Y1 as a 
function of dose and temperature (S21) indicated that observed and 
predicted values were in close agreement. This was confirmed by the 
APZ analysis (S22), which indicated that the independent data for Y1 
used to validate the SMPR for interpolation met the criteria for test data 
as indicated by answers of “yes” to Q2–Q5 in the decision tree. In 
addition, the SMPR for Y1 had acceptable local and global performance 
with pAPZ ≥ 0.975 resulting in answers of “yes” to Q6–Q8 in the 
decision tree for interpolation (analysis F in Table 1). These results 
were confirmed in S20B where all residuals for Y1 were inside the 
partly and fully acceptable prediction zones. Therefore, the SMPR for 
Y1 passed validation for interpolation as indicated by an answer of 
“yes” to Q9  in the decision tree (S22) and thus, was eligible for 
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Distribution of relative residuals and residuals (observed–predicted) among the partly (dotted lines with no fill) and fully (dotted lines with gray fill) 
acceptable prediction zones for the polynomial regression, secondary model fits to the dependent data for the three-phase linear, primary model 
parameters of: (A) lag time (X1); (B) initial most probable number (Y1); (C) time to final most probable number (X2); and (D) final most probable number 
(Y2) for growth of Salmonella Infantis in chicken liver as a function of dose (101, 103.5, 106), and temperatures of 18, 22, 26, or 30°C. P, predicted; O, 
observed; and MPN, most probable number.
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validation for extrapolation to another independent variable 
(Figure 2).

3.2.12 Validation of SMPR predictions of the 
independent data for interpolation for time to 
final MPN or X2

Graphs of the independent data for interpolation of the PM3PL 
parameter for time to final MPN and the SMPR predictions of X2 as a 
function of dose and temperature are shown in S23. Because the last 
sampling time in these storage trials was 7 h, and the SMPR was based 
on 8 h storage trials, a prediction bias of 12.7% occurred (analysis H 
in Table 1). Nonetheless, the APZ analysis (S24) indicated that the 
independent data for time to final MPN met the criteria for test data 
as indicated by answers of “yes” to Q2–Q5 in the decision tree. Also, 
the SMPR for X2 did not have any local or global prediction problems 
as indicated by pAPZ of 1.00 (analysis H in Table  1) resulting in 
answers of “yes” to Q6–Q8 for model performance criteria in the 
decision tree for interpolation (S24). Thus, the observed prediction 
bias (S23), which was slightly fail-dangerous, was acceptable because 
all the relative residuals were in the fully acceptable prediction zone 
(S20C). Therefore, the SMPR for X2 was validated for interpolation as 
indicated by an answer of “yes” to Q9 in the decision tree (S24) and 
thus, was eligible for validation for extrapolation to a new independent 
variable (Figure 2).

3.2.13 Validation of SMPR predictions of the 
independent data for interpolation for final MPN 
or Y2

Graphs of the independent data for interpolation of the PM3PL 
parameter data for final MPN and the SMPR predictions of Y2 as a 
function of dose and temperature are shown in S25. Regardless of the 
storage temperature, the SMPR made biased predictions of Y2 at a dose 
of 102.25 and unbiased predictions of Y2 at a dose of 104.75 (S25). 
Overall, the prediction bias was −0.524 log10 MPN per 0.2 g of chicken 
liver (analysis J in Table  1). Nonetheless, the APZ analysis (S26) 
indicated that the independent data for Y2 used to validate the SMPR 

for interpolation met the criteria for test data as indicated by answers 
of “yes” to Q2–Q5 in the decision tree. Also, the SMPR for Y2 had no 
local or global performance problems with pAPZ ≥0.796 (analysis J 
in Table 1) resulting in answers of “yes” to Q6–Q8 in the decision tree 
for interpolation (S26). These results were confirmed in S20D where 
all the residuals for Y2 were in the partly and fully acceptable 
prediction zones. Therefore, the SMPR for Y2 passed validation for 
interpolation as indicated by an answer of “yes” to Q9 in the decision 
tree for interpolation (S26) and thus, was eligible for validation for 
extrapolation to another independent variable (Figure 2).

3.2.14 Two-way analysis of variance
Figure 9 shows results of the two-way, ANOVA for the dependent 

data (panels A to C) and for the independent data for interpolation 
(panels D to F) for initial MPN or Y1 (panels A and D), lag time or X2 
(panels B and E), and growth rate (panels C and F), which was 
calculated as {Y2-Y1}/{X2-X1}. Initial MPN was affected (p ≤ 0.05) by 
dose but not by temperature. Lag time and growth rate were affected 
(p ≤ 0.05) by temperature but not by dose. Thus, the growth of 
Salmonella Infantis in chicken liver was not affected by dose.

3.3 Tertiary model construction and 
validation

3.3.1 Construction of the TMPR for growth of 
Salmonella Infantis in chicken liver

The SMPR for PM3PL parameters X1, X2, Y1, and Y2 were 
incorporated into the PM3PL to construct the TMPR in an Excel 
spreadsheet (Figure  10). The TMPR predicted the growth of 
Salmonella Infantis in chicken liver as a function of dose (101–106), 
time (0–8 h) and temperature (18–30°C) for combinations of 
independent variables that were used and not used in TMPR 
construction. In the example shown in Figure  10, the TMPR 
predicted the growth of Salmonella Infantis in chicken liver for a 
temperature (25°C), times (0.1 h increments) and dose (101.5), not 

FIGURE 8

Screenshot of the Acceptable Prediction Zones (APZ) analysis in the Validation Software Tool for the polynomial regression, secondary model that 
predicts lag time (X1) of Salmonella Infantis in chicken liver as a function of dose (102.25, 104.75) and temperature (20, 24, 28°C). Results are for the 
independent data for interpolation. pAPZ, proportion of relative residuals in the partly and fully acceptable prediction zones.
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used in TMPR construction. The TMPR also predicted the PM3PL 
parameters X1, Y1, X2, and Y2, which were used to calculate the 
growth rate of 0.484 {log10 MPN/0.2 g} per h for the simulated 
combination of independent variables.

3.3.2 Validation of the TMPR for predicting the 
dependent MPN data

The ability of the TMPR to predict dependent MPN data was 
assessed by graphing observed MPN values and predicted MPN values 
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FIGURE 9

Two-way, analysis of variance results for the effects of dose, temperature, or their interaction on initial number or Y1 (A,D), lag time or X1 (B,E), and 
growth rate (C,F) for dependent data (A–C) or independent data for interpolation (D–F). Symbols are results for individual storage trials and lines are 
means.

FIGURE 10

Three-phase linear, polynomial regression, tertiary model (TMPR) and multiple layer feedforward neural network with two nodes in the hidden layer, 
tertiary model (TMNN) for predicting growth of Salmonella Infantis in chicken liver as a function of dose (101–106), time (0–8 h), and temperature (18–
30°C). Temp, temperature; and Log and MPN, most probable number. The model was developed in Excel (Office 365, MicroSoft) and was simulated 
with NeuralTools (version 8.2, Lumivero).
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as a function of the independent variables (Figure 11). These graphs 
indicated good agreement between the observed and predicted MPN 
values. This was confirmed by conducting an APZ analysis (Figure 12). 
Here, the global pAPZ of the TMPR for the dependent MPN data 
(n = 360) was 0.979 (analysis K in Table 1) and there were no local 
predictions problems with pAPZ ≥0.833 resulting in answers of “yes” 
to Q4 to Q6 in the decision tree for dependent MPN data (Figure 12). 
The acceptable performance of the TMPR was further confirmed in the 
residual plots (S31) where all residuals except one were in the partly 
and fully acceptable prediction zones. In addition, the dependent MPN 
data satisfied the criteria for test data as indicated by answers of “yes” 
to Q1 to Q3 in the decision tree (Figure 12). Therefore, the TMPR was 
validated for the dependent MPN data as indicated by an answer of 
“yes” to Q7 in the decision tree (Figure 12) and thus, was eligible for 
validation for interpolation (Figure 2).

3.3.3 Validation of the TMPR for predicting the 
independent MPN data for interpolation

The ability of the TMPR to predict the independent MPN data 
for interpolation was assessed by graphing the observed and 

predicted MPN values as a function of the independent variables 
(S32). These graphs indicated good but less agreement between 
observed and predicted MPN values than seen with the dependent 
MPN data (Figure  11). Nonetheless, the APZ analysis (S33) 
indicated that the TMPR provided acceptable predictions of the 
independent data for interpolation with pAPZ ≥0.667 (analysis L in 
Table 1) resulting in answers of “yes” to Q6–Q8 in decision tree for 
interpolation (S33). In fact, the global pAPZ was 0.968, which was 
slightly lower than that for the dependent MPN data (analysis K in 
Table  1). The acceptable performance of the TMPR for the 
independent MPN data for interpolation was confirmed in the 
residual plots (S34) where all residuals except one were in the partly 
and fully acceptable prediction zones. In addition, the independent 
MPN data for interpolation satisfied the criteria for test data as 
indicated by answers of “yes” to Q2–Q5  in the decision tree for 
interpolation (S33). Therefore, the TMPR was validated for 
interpolation as indicated by an answer of “yes” to Q9  in the 
decision tree for interpolation (S33) and thus, was eligible for 
validation for extrapolation to another independent variable 
(Figure 2).
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FIGURE 11

Tertiary model predictions of the dependent data for growth of Salmonella Infantis in chicken liver as a function of dose (101, 103.5, 106), time (0–8 h), 
and temperatures of (A) 18°C; (B) 22°C; (C) 26°C; or (D) 30°C. Observed values (symbols) are means ± standard deviation of six replicated storage trials. 
MPN, most probable number; PR, polynomial regression; TM, tertiary model; and NN, multiple layer feedforward neural network with two nodes in the 
hidden layer.
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3.3.4 Construction of the TMNN for predicting 
growth of Salmonella Infantis in chicken liver

A multiple-layer feedforward neural network with two nodes 
in the hidden layer, tertiary model (TMNN) was developed in Excel 
(Office 365, MicroSoft) and was simulated with NeuralTools 
(version 8.2, Lumivero) (Figure  10). The TMNN predicted the 
growth of Salmonella Infantis in chicken liver as a function of dose 
(101–106), time (0–8 h), and temperature (18–30°C) for 
combinations of the independent variables that were used and not 
used in TMNN construction. In the example shown in Figure 10, the 
TMNN predicted the growth of Salmonella Infantis in chicken liver 
for a combination of temperature (25°C), dose (101.5), and times 
(0.1 h increments) not used in TMNN construction. Unlike the 
TMPR, the TMNN does not predict lag time and growth rate, which 
is an important feature for some model users. Thus, to meet 
stakeholder needs, the final TM (Figure 10) included the TMPR 
and TMNN.

The simulations in Figures 10, 11 show that the TMPR and TMNN 
make similar predictions of the growth of Salmonella Infantis in 
chicken liver. This conclusion is supported by the APZ and two-way 
ANOVA analyses that are provided next.

3.3.5 Validation of the TMNN for predicting the 
dependent MPN data

The ability of the TMNN to predict dependent MPN data was 
assessed by graphing observed and predicted values as a function 
of the independent variables (Figure 11). These graphs indicated 
good agreement between observed and predicted MPN values and 
low variation of growth among replicated storage trials as indicated 
by small standard deviations of the MPN values. To confirm the 
visual appraisal of the performance of the TMNN for the dependent 
data, an APZ analysis was performed (Figure 13). The global pAPZ 
of the TMNN for the dependent data (n = 360) was 0.976 (analysis 
M in Table 1) and there were no local predictions problems with 

pAPZ ≥0.830 resulting in answers of “yes” to Q5 and Q6 in decision 
tree for dependent data (Figure 13). This was confirmed further in 
the residual plots (S38) where all residuals except one were in the 
partly and fully acceptable prediction zones. In addition, the 
dependent MPN data satisfied the criteria for test data as indicated 
by answers of “yes” to Q1–Q3  in the decision tree (Figure  13). 
Therefore, the TMNN was validated for the dependent MPN data as 
indicated by an answer of “yes” to Q7  in the decision tree 
(Figure 13) and thus, was eligible for validation for interpolation 
(Figure 2).

3.3.6 Validation of the TMNN for predicting 
independent MPN data for interpolation

The ability of the TMNN to predict the independent MPN data for 
interpolation was assessed by graphing the observed and predicted 
values as a function of the independent variables (S32). These graphs 
indicated good but less agreement between observed and predicted 
MPN values than seen with the dependent MPN data (Figure 11). 
Nonetheless, the APZ analysis (S39) indicated that the TMNN provided 
acceptable predictions of the independent MPN data for interpolation 
with pAPZ ≥0.709 (analysis N in Table 1) resulting in answers of “yes” 
to Q6–Q8 in the decision tree for interpolation (S39). Thus, there were 
no local or global prediction problems. In fact, the overall pAPZ was 
0.968 (S39), which was slightly lower than that for the dependent 
MPN data (analysis M in Table 1).

The acceptable performance of the TMNN for the independent 
MPN data for interpolation was confirmed in the residual plots (S40) 
where all residuals were in the partly and fully acceptable prediction 
zones. In addition, the independent MPN data for interpolation 
satisfied the criteria for test data as indicated by answers of “yes” to 
Q2–Q5 in the decision tree for interpolation (S39). Therefore, the 
TMNN was validated for interpolation as indicated by an answer of 
“yes” to Q9 in the decision tree for interpolation (S39) and thus, was 
eligible for validation for extrapolation to another independent 
variable (Figure 2).

FIGURE 12

Screenshot of the Acceptable Prediction Zones (APZ) analysis in the Validation Software Tool for the three-phase linear, polynomial regression, tertiary 
model (TMPR) that predicts the growth of Salmonella Infantis in chicken liver over time (0, 2, 4, 6, or 8 h) for individual combinations of dose (101, 103.5, 
or 106) and temperature (18, 22, 26, or 30°C). Results are for the most probable number (MPN) data used in TMPR construction or the dependent MPN 
data (n = 360).
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3.3.7 Comparison of the TMPR and TMNN for 
prediction bias and accuracy by two-way ANOVA

The mean residual, which was a measure of prediction bias, and the 
mean absolute residual, which was a measure of prediction accuracy, 
were compared as a function of the type of data (dependent or 
independent for interpolation), type of model (TMPR or TMNN), and 
their interaction (Figure 14). Prediction bias was not affected (p > 0.05) 
by type of data, type of model, or their interaction (Figure  14A). 
Likewise, prediction accuracy was not affected (p > 0.05) by type of 
data, type of model or their interaction (Figure 14B). These results 
indicated that, regardless of the type of data, the TMPR and the TMNN 
provided similar predictions of the growth of Salmonella Infantis in 
chicken liver as a function of dose (101–106), time (0–8 h), and 
temperature (18–30°C). Thus, either TM can be used with confidence 
to predict the growth of Salmonella Infantis in chicken liver as a 
function of the investigated and modeled independent variables. The 
TM could be  incorporated into a risk assessment model by using 
probability distributions for the independent variables and Monte Carlo 
simulation (Oscar, 2009, 2024b).

4 Discussion

The primary processing of poultry consists of a series of unit 
operations like bleed-out, scalding, defeathering, evisceration, 
washing, chilling, and cold storage. Within a unit operation one or 
more Salmonella events like growth, death, survival, or cross-
contamination may occur. Thus, to simulate changes in Salmonella on 
poultry during primary processing, TM for each unit operation and 
associated Salmonella event would need to be constructed, validated, 
and linked. The key to linking TM for Salmonella and poultry is 
considering the previous unit operation when collecting data for TM 
construction and validation.

In the current study, the unit operation targeted for construction 
and validation of TM for growth of Salmonella in chicken livers was 
secondary processing, which could occur in a processing plant or in a 

restaurant, institution, or home kitchen. The relevant previous unit 
operation was cold storage. Consequently, the chicken livers were 
inoculated at 4°C to simulate a previous history of refrigerated storage. 
In addition, the chicken liver samples (0.2 g) were inoculated with doses 
(101–106) of a serotype (Infantis) of Salmonella found in the chicken 
livers after cold storage in a previous study (Oscar, 2021). After 
inoculation, the chicken liver samples were held at times (0–8 h) and 
temperatures (18–30°C) relevant to a secondary processing deviation 
of temperature abuse. Thus, the MPN data used to construct and 
validate the TM were collected under dynamic conditions of 
temperature as the chicken liver samples warmed from 4°C to the test 
temperature. In this way, growth under dynamic conditions of 
temperature for the simulated scenario was a built-in feature of the TM.

In the present study, the construction and validation of the TMPR 
for growth of Salmonella Infantis in chicken liver was more time 
consuming and complex than the construction of the TMNN because 
it involved three construction steps instead of one and 12 APZ 
analyses instead of two. Stated differently, construction and validation 
of the TMNN was faster and simpler because it combined the primary, 
secondary, and tertiary steps of TM construction (Figure 1) into one 
step. Considering that the performance of the TMPR and TMNN for 
predicting the growth of Salmonella Infantis in chicken liver was the 
same, it was concluded that the one step, neural network method was 
the better one for TM construction and validation.

Although this was the first study, to the best of my knowledge, to 
compare performance of TMPR and TMNN, other studies have compared 
these two modeling methods at the PM and SM steps. For example, 
Schepers et al. (2000) compared a PMNN with four weights to a set of PMR 
with four parameters and found equal performance for fitting growth 
curves of Lactobacillus helviticus in broth culture. Jeyamkondan et al. 
(2001) compared SMNN and SMR for predicting generation time and lag 
time as a function of temperature for two pathogens and one spoilage 
organism. They found similar performance except for some test data sets 
for interpolation, where the SMR performed better than the SMNN. Thus, 
like the current results for TM, neural network (NN) and regression (R) 
methods result in similar performance of PM and SM in predictive 

FIGURE 13

Screenshot of the Acceptable Prediction Zones (APZ) analysis in the Validation Software Tool (ValT) for the multiple layer feedforward neural network 
with two nodes in the hidden layer, tertiary model (TMNN) that predicts the growth of Salmonella Infantis in chicken liver over time (0, 2, 4, 6, or 8 h) for 
individual combinations of dose (101, 103.5, or 106) and temperature (18, 22, 26, or 30°C). Results are for the dependent data (n = 360).
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microbiology. This conclusion is supported by other studies (Garcia-
Gimeno et al., 2005; Hajmeer et al., 1997) with some comparing NN and 
Rlogistic for no growth/growth models (Hajmeer and Basheer, 2003; 
Kuroda et al., 2019; Valero et al., 2007).

Validation of models is important because it provides users with 
confidence that model predictions are reliable (Zwietering et  al., 
1994). In addition, it helps modelers identify problems that can 
be repaired to provide users with better models (Oscar, 2005b). In the 
present study, models were validated using established criteria for test 
data, model performance, and model validation (Oscar, 2020b). The 
criteria for test data ensured that model validation process was 
complete, unbiased, and accurate. The criteria for model performance 
and validation ensured that an objective decision was made about 
model performance and validation.

In the present study, the validation process was more time 
consuming and complex for the TMPR than the TMNN because, in 
addition to the TM, it involved validation of the PM and 4 SM for 
dependent data and interpolation. Nonetheless, both TM had similar 
performance, and both were validated for interpolation. The only issue 
occurred in the SM for lag time, which had a local prediction problem 
for interpolation at 24°C. However, it was a prediction problem that 
did not result in a prediction problem in the TMPR. Consequently, the 
SM for lag time was not repaired.

The method used to construct the TMPR in the present study was 
to develop SM for all PM3PL parameters (Y1, X1, X2, Y2) and then 
incorporate them back into the PM3PL from which they were derived 
(Oscar, 2002). Once this was done, the TMPR was validated for 
interpolation in two steps. First, by comparing predicted MPN values 
to observed MPN values used in TMPR construction. Second, by 
comparing predicted MPN values to observed MPN values not used 
in TMPR construction but collected at intermediate values of the 
independent variables using the same methods used to collect the 
MPN data used in TMPR construction. However, this approach to TM 
construction and validation differs from other recent studies in which 
growth of Salmonella in food was investigated and modeled using 
regression-based methods.

In the study of Omac (2024), growth of Salmonella on carrots as 
a function of dose (101, 102), time, and temperature (5–37°C) was 

investigated and modeled. The growth curves were fitted to the 
Baranyi PM, which had parameters for initial cell concentration, 
maximum cell concentration, maximum growth rate, and lag time. 
Regression-based SMs were developed for PM parameters. The SM 
were compared to the dependent data but not to independent data for 
interpolation. The SM were not incorporated back into the Baranyi 
PM to construct and validate a TM. The dependent data did not satisfy 
the test data criteria of the APZ method (Oscar, 2023).

In the study of Noviyanti et al. (2024), growth of Salmonella in 
chicken juice and meat as a function of time (0–39 h) and temperature 
(10–25°C) was investigated and modeled. The growth curves were 
fitted to the Baranyi PM with parameters of initial log count, 
maximum specific growth rate, lag time, time to reach stationary 
growth phase, final log count, and increase in log count from initial to 
final log count. A SM was developed for growth rate, whereas no SM 
were developed for the other PM parameters. Predictions of the SM 
for growth rate were compared to published data for growth rate 
obtained with other data collection and modeling methods. Thus, a 
TM was not constructed and validated.

In the study of Haque et  al. (2024), growth of Salmonella in 
ground pork was investigated and modeled as a function of time, 
temperature (10–40°C), fat level (5, 25%), and microbial competition. 
The growth curves were fitted using a competition PM with 
parameters of initial density, maximum specific growth rate, and 
common saturation time. A SM for maximum specific growth as a 
function of temperature was developed, whereas SM for the other 
primary model parameters were not. A TM was constructed by 
inserting the SM for maximum specific growth rate into the 
differential form of the Baranyi PM with parameters of initial density, 
maximum specific growth rate, maximum population density, and 
physiological state. Maximum population density was calculated using 
the PM3PL of Buchanan et  al. (1997), whereas a fixed value for 
physiological state was determined by trial and error. Although TM 
predictions were compared to an independent set of data, they did not 
satisfy the test data criteria of the APZ method (Oscar, 2023). In 
addition, TM predictions were not compared to the dependent data.

In the study of Jia et al. (2020), growth of Salmonella in ground 
chicken as a function of time, temperature (8–33°C), and microbial 
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FIGURE 14

Comparison of (A) mean residual or prediction bias; and (B) mean absolute residual or prediction accuracy of the three-phase linear, polynomial 
regression, tertiary model (TMPR) and the multiple layer feedforward neural network with two nodes in the hidden layer, tertiary model (TMNN) for the 
dependent data used in model construction and the independent data for interpolation used in model validation for growth of Salmonella Infantis in 
chicken liver. There were no significant (ns; p > 0.05) differences between the TMPR and TMNN for prediction bias or accuracy.
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competition was investigated and modeled. A one-step regression-
based method was used to construct the TM. Thus, like the present 
study, SM for the PM parameters were used in the PM from which 
they were derived to construct the TM. Also, like the current study, 
the ability of the TM to predict the log count data used to construct 
the TM was evaluated. Although the ability of the TM to predict the 
log count data not used in TM construction was evaluated, the 
independent data did not satisfy the test data criteria for interpolation 
of the APZ method (Oscar, 2023) because they were not obtained at 
intermediate values of the independent variables. Nonetheless, the one 
step regression method used by Jia et al. (2020) is like the one step 
method used in the current study to construct a TMNN in that it was a 
faster and simpler way to construct a TM.

5 Conclusion

In conclusion, the results of the current study indicated that it is 
less time consuming and complex to construct and validate a TM for 
growth of Salmonella Infantis in chicken liver without sacrificing TM 
performance using a one-step, NN method rather than a three-step, 
PR3PL method. Both the TMPR and TMNN were validated for 
interpolation in this study using the test data, model performance, and 
model validation criteria of the APZ method in ValT (Oscar, 2020b). 
Thus, they can be  used with confidence to predict the growth of 
Salmonella Infantis in chicken liver during a secondary processing 
deviation as a function of dose (101–106), time (0–8 h), and 
temperature (18–30°C). A disadvantage of the TMNN for some is that 
it does not predict the lag time and growth rate of Salmonella in 
chicken liver like the TMPR. Thus, to meet stakeholder needs, the final 
TM deployed from the present study will include both the TMPR and 
TMNN. A common use of such TM is to determine if a process 
deviation results in significant growth of the pathogen, which is 
usually an increase of 1-log or more. If yes, the process is considered 
in need of correction, and the food is considered unsafe.
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